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1. Introduction

The seemingly unrelated regression system was first introduced by Zellner (1962,

1963) and later developed by Kementa and Gilbert (1968), Mehta and Swamy (1976)

and Wang (1988), etc. Recently, in a special issue of Journal of Statistical Planning

and Inference 88 (2000), Gao and Huang establish some finite sample properties of the

Zellner estimator in the context of m seemingly unrelated regression equations, whereas,

Liu proposes a two stage estimator and proves its superiorities over the ordinary least

square estimator and Zellner type estimator under mean square error matrix criterion.

∗Corresponding author: wlc@amss.ac.cn, Tel: +86-10-51684751, Fax: +86-10-51688433
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Differing from the past works, in this paper we employ the Bayes and empirical

Bayes approach to construct the estimators of the regression parameter and exhibit

their MSE properties. Also, differing from the above regressions, here we do not make

the same dimension assumption of observation vectors.

A system of two generalized seemingly unrelated regression equations is given by

y1 = X1β + u1, y2 = X2γ + u2, (1.1)

where y1 and y2 are m × 1 and n × 1 vectors of observations (m 6= n, without loss of

generality, let m > n ), X1 and X2 are m × p1 and n × p2 matrices with full column

rank, β and γ are vectors of unknown parameters, u1 and u2 are m×1 and n×1 vectors

of error variables, and

E(u1) = 0, E(u2) = 0,

Cov(u1, u1) = σ11Im, Cov(u2, u2) = σ22In,

Cov(u1, u2) = σ12

(
In

0

)
, Cov(u2, u1) = σ21(In

...0),

where Σ∗ = (σij) is a 2 × 2 non-diagonal positive definite matrix. Such a system

(usually m = n) appears in many research fields and has received considerable attention

including the above authors and Chen (1986), Lin (1991) and so on.

Denote y = (y′1, y
′
2)
′, X = diag(X1, X2), α = (β′, γ′)′, u = (u′1, u

′
2)
′, Σij = Cov(ui, uj).

Then (1.1) can be represented as

y = Xα + u, E(u) = 0, Cov(u) = Σ, (1.2)

where Σ = (Σij)2×2 is a partitioned matrix.

In what follows, our main concern is how to estimate β better. To adopt the Bayes

and empirical Bayes approach, we assume that the prior distribution of the parameter

β is

β ∼ N(β0, σ
2
βΣβ), (1.3)
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where Σβ is a positive definite matrix (namely Σβ > 0), β0 and σ2
β are hyper-parameters.

Furthermore, assume

u|β ∼ N(0, Σ). (1.4)

It follows from (1.3) and (1.4), that the posterior density of β given y1 is (see Wang

and Chow (1994))

f(β|y1) ∝ exp{− 1

2σ11

(β − β̄)Σ̄−1(β − β̄)}, (1.5)

where

β̄ = Σ̄(X ′
1X1β̂ + λΣ−1

β β0), (1.6)

Σ̄ = (X ′
1X1 +λΣ−1

β )−1, λ = σ11/σ
2
β and β̂ = (X ′

1X1)
−1X ′

1y1. Thus, under any quadratic

loss, the Bayes estimator (BE) of the parameter β would be the posterior expectation

of β with given y1, i.e.,

β̂BE = E(β|y1) = β̄. (1.7)

It is clear that β̂BE only contains the information of the first equation in the regres-

sions (1.1) but that it does not make most use of all information of regressions since

σ12 6= 0.

As we know the estimation problems arise in many situations in statistics. An

important concept is the minimum variance unbiased estimation (MVUE) and an in-

teresting result is how to judge whether an estimator is MVUE or not: Let ĝ(x) be an

unbiased estimator (UE) of g(θ), and V arθ(ĝ(x)) < ∞, then ĝ(x) is MVUE if and only

if Covθ(ĝ(x), l(x)) = 0 for any θ ∈ Θ (parameter space), where l(x) denotes any UE

of zero. Obviously, if there exists an UE l0(x) of zero such that Covθ(ĝ(x), l0(x)) 6= 0,

then ĝ(x) must not be the MVUE of its mean. However, a problem is how we utilize

the relationship between l0(x) and ĝ(x) to obtain the MVUE of g(θ). Rao (1967) in-

troduced the covariance adjusted approach to propose a UE of g(θ) whose variance is

less than ĝ(x), which is a linear combination of ĝ(x) and l0(x).

3



In the followings, by virtute of the covariance adjustment technique, firstly, we use

an UE of zero to improve β̂BE and get β̂
(1)
BE, secondly, we adjust β̂

(1)
BE by another UE of

zero. Repeating this process, we obtain the best BE of the parameter β, which contains

all information of β in the regressions (1.1), and prove its MSE superiority over the

BLUE of β. When σij (i, j = 1, 2) and the hyper-parameters are unknown, we replace

them by their consistent estimators in the best BE of β and present the corresponding

empirical Bayes (EB) estimator and exhibit its MSE superiority, too.

2. MSE Superiority of the Best BE

We first state the following covariance adjustment lemma.

Lemma 2.1. Assume that T1 and T2 are k1 × 1 and k2 × 1 statistics with ET1 = θ

and ET2 = 0, where θ is an unknown parameter vector. Let

Cov

(
T1

T2

)
=

(
V11 V12

V21 V22

)
= V.

If V12 6= 0, then there exists a best linear unbiased estimator (BLUE) θ∗ = T1−V12V
−
22T2

over a class of estimators A = {A1T1 + A2T2|A1, A2 are nonrandom matrices}, and

Cov(θ∗) = V11 − V12V
−
22V21 ≤ V11 = Cov(T1),

where V −
22 is a generalized inverse of matrix V22, and A ≥ B denotes A − B ≥ 0(that

means A−B is real positive semi-definite).

Proof. It can directly be derived from Rao (1967).

Combing Lemma 2.1 with β̂BE, we obtain the covariance adjustment estimator se-

quence for the parameter β as follows:

β̂
(2k−1)
BE = β̂

(2k−2)
BE − Cov(β̂

(2k−2)
BE , N2y2|β)[Cov(N2y2|β)]−N2y2,

β̂
(2k)
BE = β̂

(2k−1)
BE − Cov(β̂

(2k−1)
BE , N1y1|β)[Cov(N1y1|β)]−N1y1,

k = 1, 2, ..., (2.1)
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where β̂
(0)
BE = β̂BE.

Simple induction computation yields

β̂
(2k−1)
BE = Σ̄X ′

1(P1 + ρ2N̄2N̄1)
k−1(y1 − σ12

σ22

N̄2y2) + λΣ̄Σ−1
β β0,

β̂
(2k)
BE = Σ̄X ′

1(P1 + ρ2N̄2N̄1)
ky1 − Σ̄X ′

1(P1 + ρ2N̄2N̄1)
k−1σ12

σ22

N̄2y2

+λΣ̄Σ−1
β β0, (2.2)

where ρ2 = σ2
12/(σ11σ22), N̄1 = (In

...0)N1, N̄2 =

(
In

0

)
N2, and

P1 = Im −N1 = X1(X
′
1X1)

−1X ′
1,

P2 = In −N2 = X2(X
′
2X2)

−1X ′
2.

Therefore, we have the following theorem.

Theorem 2.1. For 0 < ρ2 < 1, we have

β̂
(∞)
BE = lim

k→∞
β̂

(2k−1)
BE = lim

k→∞
β̂

(2k)
BE = Σ̄X ′

1

∞∑

i=0

(ρ2N̄2N̄1)
i(y1 − σ12

σ22

N̄2y2) + λΣ̄Σ−1
β β0

= Σ̄X ′
1(Im − ρ2N̄2N̄1)

−1(y1 − σ12

σ22

N̄2y2) + λΣ̄Σ−1
β β0.

Proof. Note that X ′
1(P1 + ρ2N̄2N̄1)

k = X ′
1

∑k
i=0(ρ

2N̄2N̄1)
i and λ(ρ2N̄2N̄1) < 1, we

know that Theorem 2.1 is true, where λ(A) denotes any eigenvalue of matrix A.

Remark 2.1. Following the fact that E(β̂
(k)
BE|β) = E(β̂

(0)
BE|β) and the monotonicity

of Cov(β̂
(k)
BE|β), it is easy to see that in BE sequence (2.2) Cov(β̂

(k+1)
BE ) ≤ Cov(β̂

(k)
BE) and

hence MSE(β̂
(k+1)
BE ) ≤ MSE (β̂

(k)
BE). Obviously, β̂

(∞)
BE is the best.

In the following, note that in the regressions (1.1) X1 and X2 are m× p1 and n× p2

matrices and m > n, we partition X1 as X1 = (X ′
11

...X ′
12)

′ and make the following

intuitive assumption

µ(X ′
11)

⋂
µ(X ′

12) = {0}, (2.3)

where X11 and X12 are n×p1 and (m−n)×p1 matrices, respectively, and µ(A) denotes

the space generated by the column vector of matrix A.
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Lemma 2.2. If µ(X ′
11)

⋂
µ(X ′

12) = {0}, then

(a) X11(X
′
1X1)

−1X ′
12 = 0;

(b) X ′
11X11(X

′
1X1)

−1X ′
11 = X ′

11, X ′
12X12(X

′
1X1)

−1X ′
12 = X ′

12;

(c) X ′
1N̄2N̄1 = −X ′

1P̄2N1, P̄2N̄1N̄2N̄1 = P̄2P̄1P̄2N̄1,

where P̄1 = (In
...0)P1, P̄2 =

(
In

0

)
P2.

Proof. (a) Set

D = X ′
11X11(X

′
1X1)

−1X ′
12X12, (2.4)

thus µ(D) ⊂ µ(X ′
11). Note that X ′

1X1 = X ′
11X11 + X ′

12X12, we can represent D as

D = X ′
11X11 −X ′

11X11(X
′
1X1)

−1X ′
11X11, (2.5)

that means D = D′. Hence, µ(D) ⊂ µ(X ′
12). Since µ(X ′

11)
⋂

µ(X ′
12) = {0}, D = 0.

Then

X11(X
′
1X1)

−1X ′
12 = 0. (2.6)

(b) It follows from (a),

X ′
11X11(X

′
1X1)

−1X ′
11X11 = X ′

11X11(X
′
1X1)

−1(X ′
11X11 + X ′

12X12) = X ′
11X11.

Hence, X ′
11X11(X

′
1X1)

−1X ′
11 = X ′

11. Similarly, we can prove the other conclusion of (b).

(c) The conclusions of (c) are direct results of (a) and (b).

Based on Lemma 2.2, we present Theorem 2.2.

Theorem 2.2. In the regressions (1.1), the BLUE of the parameter β is

β̂BLUE = (X ′
1X1)

−1X ′
1(Im − ρ2N̄2N̄1)

−1(y1 − σ12

σ22

N̄2y2).

Proof. From the expression of (1.2), when Σ is known, we know

α̂BLUE =

(
β̂BLUE

γ̂BLUE

)
= (X ′Σ−1X)−1X ′Σ−1y. (2.7)
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Denote Σ−1 = (Σij)2×2 and (X ′Σ−1X)−1 = (W ij)2×2, we obtain

β̂BLUE = (W 11X ′
1Σ

11 + W 12X ′
2Σ

21)y1 + (W 11X ′
1Σ

12 + W 12X ′
2Σ

22)y2. (2.8)

By simple algebra and induction computation, we have

β̂BLUE = (X ′
1X1)

−1X ′
1{Im − ρ2

∞∑

i=0

(ρ2P̄2P̄1)
iP̄2N̄1}(y1 − σ12

σ22

N̄2y2). (2.9)

By the conclusion (c) of Lemma 2.2, we know

X ′
1{Im − ρ2

k−1∑

i=0

(ρ2P̄2P̄1)
iP̄2N̄1} = X ′

1

k∑

i=0

(ρ2N̄2N̄1)
i. (2.10)

Together with λ(ρ2N̄2N̄1) < 1 Theorem 2.2 ’ conclusion holds.

Especially, if P11P2 = P2P11, where P11 = X11(X
′
1X1)

−1X ′
11, then we have the

following clear and succinct results for β̂
(∞)
BE and β̂BLUE.

Theorem 2.3. If P11P2 = P2P11, then

β̂
(∞)
BE = Σ̄X ′

1(y1 − σ12

σ22

N̄2y2) + λΣ̄Σ−1
β β0 = β̂

(1)
BE.

β̂BLUE = β̂ − σ12

σ22

(X ′
1X

′
1)
−1X ′

1N̄2y2.

Proof. Using the fact that

X ′
1N̄2N̄1 = (X ′

11

...X ′
12)

(
In − P2 0

0 0

) (
In − P11 0

0 Im−n −X12(X
′
1X1)

−1X ′
12

)

= X ′
11 −X ′

11P2 −X ′
11P11 + X ′

11P2P11

and X ′
11P11 = X ′

11, by P11P2 = P2P11, Theorem 2.3 is obvious.

Now we state the comparison result of MSE(β̂
(∞)
BE ) and MSE (β̂BLUE).

Theorem 2.4. Let (β̂
(∞)
BE ) and (β̂BLUE) be defined in Theorem 2.1 and Theorem

2.2, respectively, then MSE(β̂
(∞)
BE ) < MSE(β̂BLUE).

Proof. Firstly, simple calculation shows

Cov(β̂
(∞)
BE |β) = σ11Σ̄CΣ̄, (2.11)
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where C = X ′
1(Im − ρ2N̄2N̄1)

−1[Im − ρ2N̄2N̄
′
2](Im − ρ2N̄ ′

1N̄
′
2)
−1X1. Similarly,

Cov(β̂BLUE|β) = σ11(X
′
1X1)

−1C(X ′
1X1)

−1. (2.12)

Secondly, we have

Cov(E(β̂
(∞)
BE |β)) = σ2

βΣ̄X ′
1X1ΣβX ′

1X1Σ̄, (2.13)

and

Cov(E(β̂BLUE|β)) = σ2
βΣβ. (2.14)

Hence

Cov(β̂
(∞)
BE ) = ECov(β̂

(∞)
BE |β) + Cov(E(β̂

(∞)
BE |β))

= σ11Σ̄CΣ̄ + σ2
βΣ̄X ′

1X1ΣβX ′
1X1Σ̄, (2.15)

and also

Cov(β̂BLUE) = σ11(X
′
1X1)

−1C(X ′
1X1)

−1 + σ2
βΣβ. (2.16)

Note that X ′
1X1 + λΣ−1

β > X ′
1X1 > 0, hence (X ′

1X1)
−1 > Σ̄. Thus by C ≥ 0, we

have

σ11(X
′
1X1)

−1C(X ′
1X1)

−1 ≥ σ11Σ̄CΣ̄. (2.17)

Similarly, from (X ′
1X1)

−1 > Σ̄ and X ′
1X1ΣβX ′

1X1 > 0, we have

σ2
βΣβ > σ2

βΣ̄X ′
1X1ΣβX ′

1X1Σ̄. (2.18)

It follows from (2.15)-(2.18),

Cov(β̂
(∞)
BE ) < Cov(β̂BLUE). (2.19)

Hence

MSE(β̂
(∞)
BE ) = trace[Cov(β̂

(∞)
BE )] + ||Eβ̂

(∞)
BE − β||2

< trace[Cov(β̂BLUE)] + ||Eβ̂BLUE − β||2 = MSE(β̂BLUE). (2.20)

The proof of Theorem 2.4 is complete.
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3. MSE Superiority of the EB Estimator

However, in many situations, the covariance of errors Σ may be unknown, so that

β̂
(∞)
BE is unavailable to use. In this Section we use observations yi (i = 1, 2) to construct

an estimator for σij (i, j = 1, 2) and present the corresponding EB estimator and its

MSE superiority.

Denote Y = (y11
...y2), where y11 is the sub-vector containing the first n observations

of y1. We define the estimator for Σ∗ = (σij) as follows:

Σ̂∗ = (σ̂ij) =
1

n− r
Y ′N∗Y, (3.1)

where N∗ = In −X∗[(X∗)′X∗]−(X∗)′, X∗ = (X11
...X2) and rank(X∗)=̂r.

Note that N∗EY = 0, hence (n − r)Σ̂∗|β ∼ Wishart(n − r, Σ∗). Thus, there exist

n−r i.i.d. random variables Zi ∼ N2 (0, Σ∗) such that Y ′N∗Y =
∑n−r

i=1 ZiZ
′
i. By the law

of large numbers of Kolmogorov, we have Σ̂∗|β a.s.−→ Σ∗, as R →∞, where R = n− r.

3.1 β0 is known

We define the EB estimator for the parameter β as follows:

β̃
(∞)
EB (Σ̂∗) = Σ̄X ′

1{Im − ρ̂2
∞∑

i=0

(ρ̂2P̄2P̄1)
iP̄2N̄1}(y1 − σ̂12

σ̂22

N̄2y2) + λ0Σ̄Σ−1
β β0, (3.2)

where ρ̂2 = σ̂2
12/(σ̂11σ̂22).

Also define the estimator of the BLUE as

β̃BLUE(Σ̂∗) = (X ′
1X1)

−1X ′
1{Im − ρ̂2

∞∑

i=0

(ρ̂2P̄2P̄1)
iP̄2N̄1}(y1 − σ̂12

σ̂22

N̄2y2), (3.3)

which is a Zellner type estimator.

It is necessary to notice that in this subsection we take λ as a constant λ0 for

simplicity. That means σ2
β = σ11/λ0, i.e., β ∼ N(β0, λ

−1
0 σ11Σβ). In fact if λ = σ11/σ

2
β is

unknown, we must define a suitable estimator, such as β̂ since β̂ ∼ N(β0, σ11(X
′
1X1)

−1+

σ2
βΣβ), for the hyper-parameter σ2

β. Unfortunately, it is very very difficult to separate

σ2
β from the covariance structure σ11(X

′
1X1)

−1 + σ2
βΣβ. Also, Arnold (1981) suggests
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taking Σβ = (X ′
1X1)

−1 as a convenient choice. Although it makes the above problem

easy, it is more or less unusual or unreasonable.

Theorem 3.1. Let β̃
(∞)
EB (Σ̂∗) and β̃BLUE(Σ̂∗) be given in (3.2) and (3.3), respectively.

If R →∞, then MSE(β̃
(∞)
EB (Σ̂∗)) < MSE(β̃BLUE(Σ̂∗)).

Proof. Denote B = X ′
1{Im − ρ̂2 ∑∞

i=0(ρ̂
2P̄2P̄1)

iP̄2N̄1}, we have

Cov(β̃
(∞)
EB (Σ̂∗)|β) = ECov(β̃

(∞)
EB (Σ̂∗)|β, σ̂ij) + Cov(E(β̃

(∞)
EB (Σ̂∗)|β, σ̂ij))

= σ11E[Σ̄B(Im + N̄2(
σ22

σ11

σ̂2
12

σ̂2
22

− 2
σ12

σ11

σ̂12

σ̂22

)N̄ ′
2)B

′Σ̄]. (3.4)

Similarly, we have

Cov (β̃BLUE(Σ̂∗)|β) = ECov(β̃BLUE(Σ̂∗)|β, σ̂ij) + Cov(E(β̃BLUE(Σ̂∗)|β, σ̂ij))

= σ11E[(X ′
1X1)

−1B(Im + N̄2(
σ22

σ11

σ̂2
12

σ̂2
22

− 2
σ12

σ11

σ̂12

σ̂22

)N̄ ′
2)B

′(X ′
1X1)

−1]. (3.5)

By the fact that σ̂ij|β a.s.−→ σij as R →∞, it is easy to see that

Cov(β̃
(∞)
EB (Σ̂∗)|β) ≤ Cov(β̃BLUE(Σ̂∗)|β), as R →∞. (3.6)

Note that X ′
1P̄2N̄1N

∗ = X ′
1N̄2N

∗ = X ′
1P̄2N̄1N̄2N

∗ = 0, σ̂ij (i, j = 1, 2) are indepen-

dent of X ′
1P̄2N̄1y1, X ′

1N̄2y2 and X ′
1P̄2N̄1N̄2y2. Therefore, we have

E(β̃
(∞)
EB (Σ̂∗)|β) = E(β̂

(∞)
BE |β), (3.7)

and

E(β̃BLUE(Σ̂∗)|β) = E(β̂BLUE|β). (3.8)

It follows from (3.6)-(3.8), (2.13)-(2.14) and (2.18),

Cov(β̃
(∞)
EB (Σ̂∗)) = E(Cov(β̃

(∞)
EB (Σ̂∗)|β)) + Cov(E(β̃

(∞)
EB (Σ̂∗)|β))

< E(Cov(β̃BLUE(Σ̂∗)|β)) + Cov(E(β̃BLUE(Σ̂∗)|β))

= Cov(β̃BLUE(Σ̂∗), as R →∞. (3.9)
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Together with (3.7) and (3.8), we obtain

MSE(β̃
(∞)
EB (Σ̂∗)) < MSE(β̃BLUE(Σ̂∗)), as R →∞. (3.10)

Theorem 3.1 has been proved.

3.2 β0 is unknown

In this subsection, we do not make the assumption that λ is equal to a constant λ0.

Since β̂ ∼ N(β0, σ11(X
′
1X1)

−1 + σ2
βΣβ), we first estimate β0 by β̂ in the second term

of the right-hand side of the expression (3.2) and hence the EB estimator of β is

ˆ̄ΣX ′
1{Im − ρ̂2

∞∑

i=0

(ρ̂2P̄2P̄1)
iP̄2N̄1}(y1 − σ̂12

σ̂22

N̄2y2) + λ̂ ˆ̄ΣΣ−1
β β̂, (3.11)

where σ̂2
β is a suitable estimator for σ2

β, λ̂ = σ̂11/σ̂
2
β and ˆ̄Σ = (X ′

1X1 + λ̂Σ−1
β )−1.

However, note that Cov(β̂, N2y2|β) = σ11(X
′
1X1)

−1X ′
11N2 6= 0 if X ′

11N2 6= 0 ( In

fact P11P2 6= P2P11 =⇒ X ′
11N2 6= 0). Thereby, by Lemma 2.1, we adjust β̂ by N2y2 and

obtain a better estimator β̂1(Σ
∗). Similarly, we can use N1y1 to improve β̂1(Σ

∗) and get

β̂2(Σ
∗). Repeating above steps, finally we obtain

β̂∞(Σ∗) = (X ′
1X1)

−1X ′
1{Im − ρ2

∞∑

i=0

(ρ2P̄2P̄1)
iP̄2N̄1}(y1 − σ12

σ22

N̄2y2). (3.12)

Replacing Σ∗ by Σ̂∗ in (3.12) and substituting β̂∞(Σ̂∗) into (3.11), we define the

following EB estimator for the parameter β in this subsection,

β̄
(∞)
EB (Σ̂∗) = ˆ̄ΣX ′

1{Im − ρ̂2
∞∑

i=0

(ρ̂2P̄2P̄1)
iP̄2N̄1}(y1 − σ̂12

σ̂22

N̄2y2)

+λ̂ ˆ̄ΣΣ−1
β β̂∞(Σ̂∗). (3.13)

It is interesting to see β̄
(∞)
EB (Σ̂∗) = β̃BLUE(Σ̂∗) at this time. Hence, we have the

following obvious result.

Theorem 3.2. If R →∞, then the EB estimator equals to the estimator of BLUE,

i.e., β̄
(∞)
EB (Σ̂∗) = β̃BLUE(Σ̂∗), and

MSE(β̄
(∞)
EB (Σ̂∗)) = MSE(β̃BLUE(Σ̂∗)).

11



Similar to Theorem 2.3, Theorem 3.2 has the following corollary.

Corollary 3.1. If P11P2 = P2P11 and R →∞, then

β̄
(∞)
EB (Σ̂∗) = β̃BLUE(Σ̂∗) = β̂ − σ̂12

σ̂22

(X ′
1X

′
1)
−1X ′

1N̄2y2.

Also, it is not difficult to see that MSE(β̄
(∞)
EB (Σ̂∗)) = MSE(β̃BLUE(Σ̂∗)) ≤ MSE(β̂).

4. Conclusions

The covariance adjustment technique is a very effective approach. Combing it with

the Bayes method, under the assumption that the prior is normal, it presents the best

BE of the regression parameter in the sense of covariance. And under the MSE criterion,

the best BE performs better than the BLUE.

If the normal prior mean β0 is known, based on a covariance condition, we show

that the corresponding EB estimator is better under MSE criterion. Even though the

hyper-parameter β0 is unknown, the EB estimator can still work as good as the Zellner

type estimator. In fact, due to estimating β0 by β̂ in β̂BE, following the covariance

adjustment approach, the best BE equals to the BLUE as well as the EB estimator is

the same as Zellner estimator. Also, we find the BLUE of the regression parameter can

be obtained using the covariance adjustment approach to improve β̂.

12
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