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Abstract

In this paper we use an approach of spatial multiscales for an improved characterization of

functional pixel intensities of images. Examples are numerous such as temporal dependence of

brain response intensities measured by fMRI or frequency dependence of NMR spectra measured

at each pixel. The overall goal is to improve the misclassification rate in clustering (unsupervised

learning) of the functional image content into a finite but unknown number of classes. Hereby

we adopt a non-parametric point of view to reduce the functional dimensionality of the observed

pixel intensities, modelled to be of a very general functional form, by a combination of “aggre-

gation” and truncation techniques. Clustering is applied via an EM-algorithm for estimating a

Gaussian mixture model in the domain of the discrete wavelet transform of the pixel intensity

curves.

We show improvements of our multiscale method, based on complexity-penalised likelihood

estimation for Recursive Dyadic Partitioning of the image, over existing monoscale approaches,

by simulated and real data examples, and we give some theoretical treatment of the resulting

misclassification rate in the simplified set-up of the “horizon” model of two classes.

Keywords: Mixture model; Recursive dyadic partition; Multiresolution trees; Aggregation;

Wavelets.

1. INTRODUCTION

In this paper we use an approach of spatial multiscales for an improved characterization of func-

tional pixel intensities of images. Examples are numerous such as temporal dependence of brain

response intensities measured by fMRI or frequency dependence of NMR spectra measured at each

pixel (voxel). Another example is satellite remote sensoring images of landscapes. The overall goal

is to improve the misclassification rate in clustering of the functional image content into a finite but

unknown number of classes. That is we place ourselves into the context of an unsupervised learning

approach. Hereby we adopt a nonparametric point of view to reduce the functional dimensionality

of the observed pixel intensities. Note that we model the pixel intensities to be of a very general

functional form and use wavelet thresholding techniques to be able to treat a large scale of func-

tions of possibly very low regularity. We combine statistical aggegration of nonlinear projection

estimators and truncation tests on the significance of the resulting coefficients with respect to their

importance of discriminating between different class memberships. Our approach is thus opposed

to commonly used parametric feature extraction based on a priori knowledge on the nature of the

functional response.

Our point of reference for comparisons are monoscale statistical models which are typically used

to clean the map of noise and to help extract structure in the underlying measurements: they work
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at a pixel level resolution and result in a low degree of aggregation of the information underlying

the data, since the appropriate choice of scale usually varies with spatial location. One prominent

example for a functional pixel-scale approach based on wavelet methods is the work by Whitcher

et al. (2005) which partially motivated our own work. The authors examine MRI time series

experiments (e.g., brain responses to pharmacological stimuli) that produce statistical data in 2 (or

3) spatial dimensions which evolve over time. Their nonparametric approach consists in grouping

pixels (or voxels) with similar time courses based on the Discrete Wavelet Transform representation

of each time course thus giving a localised pixel information over time and spatial (mono-) scale.

Note that such an approach is inherently different from using cross-correlation in the pixel domain.

On top of this, discarding scales in the DWT that are associated with noise, leads to a smoothed

(denoised) reconstruction. To produce a finite number of pixel clusters some clustering is applied

to the remaining wavelet coefficients. The choice of the number of cluster classes is done using a

recent proposal by Sugar and James (2003). Evaluation of this wavelet-based cluster analysis is

done using two representative classes.

Monoscale approaches are on the basis of a variety of methods that have been proposed, includ-

ing those based on maximum likelihood, decision trees, nearest neighbors, and neural networks.

Consider, for instance, the example displayed in Figure 1 in which one might characterize the

classes in a given rectangular region. In Figure 1(a), the image consists in individual pixels that

are labeled according to underlying circular regions of different intensity (different classes), while

Figure 1(b) displays the same image with additive noise. The purpose of a statistical classification

method is to infer for each pixel in the noisy image the label of its class. In looking at Figure 1(c), a

monoscale, i.e. pixel-scale, approach leads to a segmentation restricted to a spatial resolution of the

original pixels, with many false positives. A drawback of the monoscale approach, as already noted

by Bouman and Shapiro (1994), is that it uses uniform pixel sizes across the image and therefore

does not take into account local spatial variation, i.e. the characteristic shape and size of patches

for various classes.

On the contrary, the method developed in this paper is guided by an adaptive choice of spatial

scale at a given location. The main idea is that each potential class has its own spatial resolution

within a scene. We use a multiscale method, based on recursive dyadic partitioning (RDP) of

the image to adaptively choose the locally best scale for clustering. RDP is a by now widely used

method in image processing (see e.g. Donoho 1997 or Kolaczyk et al. 2005). Starting our functional

description of the pixel intensities on the finest resolution scale of a dyadic tree of square quads

we furnish a candidate model through a statistical likelihood, assuming statistical independence
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Figure 1.1: Example: Monoscale classification of pixels distributed in 5 classes of different intensi-

ties.

between signal measurements among pixels. We then use a method of penalization to encourage

aggregation of pixels where useful: similar regions of pixels likely to belong to the same cluster class

will be combined to a larger quad. A suitable penalty prevents from ending up with a tree with

too many splits, i.e. too many unnecessary small regions. Our RDP-based approach on combining

adjacent spatial information replaces correlation-model based approaches such as “Hidden Markov”

models which are frequent in the literature (see, e.g., Malfait and Roose 1997, or Choi and Baraniuk

2001).

Our approach is a functional one, we recall that the pixel intensities are actually curves which

are modelled as signal plus noise. As there are many, and as we need, for the subsequent clustering

step, to appropriately combine the information in all of these curves to a common one, we choose

a procedure of dimension reduction which allows combination with modern denoising techniques.

This leads us to an “aggregation” technique (Bunea et al. 2006) of nonlinear wavelet threshold

estimators for each of the intensity curves. As a consequence of the not sufficiently reduced dimen-

sionality after aggregation we have to subsequently apply Neyman truncation tests (Fan 1996) on

the significance of the resulting thresholded coefficients. Here “significance” is to be understood

with respect to their ability of discriminating between different class memberships. To cope with

the multiplicity of the test we use ideas based on the False Discovery Rate (FDR) to control the

level of the test. Using wavelet threshold estimators allows to combine three attractive features:

first, wavelets provide orthogonal bases they are ideal for dimension reduction by means of sparse

representations; in addition they allow for powerful denoising. Finally, wavelets allow to easily

include not only heteroscedasticity but also serial temporal correlation into the model we are going

to use, without losing independence of empirical wavelet coefficients over locations within scales,

i.e. our time-discretized curves can actually be serially correlated and hence be also seen as time

series realisations.
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We base our clustering on the application of an EM-algorithm for estimating a Gaussian mixture

model in the domain of the discrete wavelet transform of the pixel intensity curves. For this

clustering step we use now that we have one common “reduced” dimensionality for all the curves,

in order to encode the location of the resulting wavelet coefficients determined in the preceeding

dimension reduction step. In order to include the choice of the number of cluster classes from the

data we use the more refined EM-algorithm of Law et al. (2004). With this we also benefit from

an additional sparsification via selection of the most important “features”, i.e. those coefficients

that carry the most important signal information for discrimination.

The rest of the paper is organised as follows. In the following section we describe in detail our

multiscale set-up including our model for both the pixel intensity curves and the Gaussian mixture

model in the wavelet domain used for the clustering step. A ”nut-shell” description of our com-

plete algorithm is completed by some more details on the EM-Algorithm used for feature selection

and clustering, including the choice of the number of clusters. Section 3 gives methodological and

theoretical backing-up of the properties of the aggregation estimator and the additional dimen-

sion reduction step by Neyman truncation tests combined with FDR. Concering the theoretical

treatment of the encountered problems, we apply the ”horizon” model of Donoho (1999), already

implicitly being used by Korostolev and Tsybakov (1993) in their seminal work. Paralleling a simi-

lar derivation to be found in Kolaczyk et al. (2005), we show that our method, from an asymptotic

point of view, is able to correctly identify pixels belonging to two different cluster classes. In Section

4 we investigate the performance of our algorithm by simulated and real data examples, including a

comparison with a monoscale scheme (see above). We conclude with a discussion section, where we

also sketch possible extensions left for future work. All proofs are deferred to an appendix section.

2. MULTIRESOLUTION TREE-STRUCTURED SPATIAL FRAMEWORK AND

ADOPTED METHODOLOGY.

In this section we describe our spatial multiscale approach using recursive dyadic partitioning and

our model of functional pixel intensities. This includes the Gaussian mixture model we use in the

wavelet domain for our clustering step. We then describe step by step our algorithm composed of a

dimension reduction, a clustering and a spatial aggregation step. The section is completed by some

more details on the EM-Algorithm used for feature selection and clustering, including the choice of

the number of clusters.

We begin by preparing the set-up of spatial multiscales. Consider the notion of consecutive

spatial scales through the use of windows of different sizes, starting from the original pixels and
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then moving up to windows of sizes 2 x 2, 4 x 4, 8 x 8, and so on. In fact, a commonly used

multiscale data structure in image processing that precedes wavelets is the quad-tree (see also

Donoho, 1997). At the coarsest scale the entire image is treated as a single “pixel”, and at the

next finer scale, the image can be split into four square quads. Each of these quads can be further

split into four quads, and so on, until the finest scale is reached. This recursive dyadic partitioning

(RDP) results into a hierarchical presentation of the image. For an image with 2J × 2J pixels, a

maximal J + 1 layer of representations is produced. If one of these layers is used in its entirety,

the representation is monoscale (i.e. with uniform quad sizes). However, the idea is to exploit the

nesting of these layers to allow the quad size to vary across the image.

Denote the class of all potential models as the set of all RDPs, i.e. the collection of all possible

prunings of the complete tree. We want to quantify the goodness-of-fit of a candidate model

through a statistical likelihood, assuming statistical independence between signal measurements

among pixels. We will then use a method of penalization to encourage aggregation of pixels where

useful; see Section 2.2 below.

2.1 Formal model description, including a motivating example

Consider a finite spatial region of an image, say the unit square [0, 1]2. We have a N = r × r

discretization of this region consisting of pixels Ii, i = 1, . . . , N . For each pixel we have a time

history over times t ∈ {t1, t2, . . . , tn}, n = 2Jn for some integer Jn. Focus now on just one pixel,

say I, and denote by xI(t) its intensity and by xI = (xI(t1), . . . , xI(tn))T the time history (i.e., the

discretized sample path of the measurements for pixel I). Assuming that the pixel belongs to one

among L possible classes, we write

xI(t) = f `(t) + ε`(t) , t = t1, . . . , tn, n = 2Jn ,

where f ` is the underlying mean intensity for each pixel in class `, 1 ≤ ` ≤ L, and ε`(t) is a

zero-mean noise. To be fairly general, we allow for weak serial dependence in the noise process, and

a convenient condition to match with our model in the wavelet domain below is to assume that the

autocovariances of the noise are absolutely summable.

The symbol c(i) is used to denote the class that is assigned to pixel i, and each of those c(i) takes

on some values within the set of pure classes {c1, . . . , cL} where naturally L < N . For simplicity

in the sequel we label the pure classes with {1, . . . , L}.
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Having introduced this notation, a rewriting of the above model for the intensity xi(t) of the

i−th pixel which is more convenient for the future, is

xi(t) = f c(i)(t) + εc(i)(t) , t = t1, . . . , tn, n = 2Jn ,

or, yet,

xi(t) |{c(i) = `} = f `(t) + εi(t) , t = t1, . . . , tn, n = 2J , 1 ≤ ` ≤ L . (1)

Starting from this model (1) in the functional domain, we apply to each of these N discretized

curves, say xi, i = 1, . . . , N , a discrete orthogonal wavelet transformation over time t, resulting

into the following coefficient model for pixel i on scale 0 ≤ j ≤ J − 1 , k = 0, . . . 2j − 1 :

wi
jk |{c(i) = `} = θ`

jk + εi
jk , 1 ≤ ` ≤ L < N , (2)

where we add now a parametric assumption for the model densities:

εi
jk |{c(i) = `} ∼ N (0, σ2

j,`) .

Note that the variances σ2
j,` of the empirical wavelet coefficients of pixel i, given the class label `, are

modelled to be scale but not location dependent. This is in accordance with our model in the time

domain which allows for serially correlated errors εi(t) with absolutely summable autocovariances

(see also Johnstone and Silverman 1997).

The interpretation of this time-dependent intensity model is that the intensity functions per

pixel can vary over time, e.g. due to, for medical images, a change of concentration of the blood

flow or the decay of the reaction to the stimulus. Another example where the maximum number

of classes is actually known and which will deserve a special attention in our numerical examples

section, comes from magnetic resonance spectroscopy with the purpose of diagnosis of brain tumors.

Since this example particularly fits our framework, we now describe it with more details. When a

brain tumor has been diagnosed on a patient, the next very important step is to identify the type

of tumor and possibly the tumor grade. The tumor type is dependent on the type of cell the tumor

originates from. Frequently one encounters three different types of tumor (oligodendroglioma,

astrocytoma and meningioma). The first two tumor types arise from the brains supportive tissue,

and are collectively called gliomas. The tumor grade indicates the level of tumor malignancy.

Tumors are graded on their growth rate, vascularity (blood supply), presence of a necrotic center,

invasive potential (border distinctness) and similarity to normal cells. As an alternative to invasive

brain biopsy for diagnosis, magnetic resonance spectroscopic imaging (MRSI) has become one of

7



the most important non-invasive diagnostic aids in clinical decision making, mostly because of the

good visibility of soft tissue structures in order to assess location and size of the tumor; see e.g

Meyerand et al. (1999). In brain tumor diagnosis, the voxel normally includes the tumorous area.

Each voxel contains an MR spectrum, that provides metabolic information about the volume it

is measured from. Our approach consists in using the appropriate statistical tools for analyzing

non-invasively obtained MR spectroscopy data. Spectra data of brain cells from healthy tissue (e.g.

gray matter, white matter), or unhealthy tissue (e.g. tumor, necrotic tissue), labeled according to

the type and grade of tumor, for which consensus about the histopathology was reached, are stored

as specific spectral patterns in MR spectra, and these are the reference pure classes that may be

used as the known maximum number Lmax of classes in our approach.

As an approximation of reality the content (e.g. tissue content in our MRSI example) within any

pixel may be described by one element of the set of pre-specified labels {1, . . . , L}. We want to create

an infered visual description of the {c(i), i = 1, . . . , N} from the “data” x = {xi, i = 1, . . . , N},

where each vector xi is the vector of length n made by the observation of the signal xi(t) over the

discretized time grid t = t1, . . . , tn. Without loss of generality, take N to be a power of 2. We

will take the xi to be conditionally independent draws from a finite set of component densities,

i.e. xi ∼ g(x, i) given the known collection {1, . . . , L} of true class labels. We will assume that the

subregions at the finest level are homogeneous in one of the “pure” classes {1, . . . , L}.

The above intensity modelling, for each pixel i = 1, . . . , N , will be done on several spatial levels

of the following multi-scale approach in two spatial image dimensions. Essentially, we will work on

the finest observed resolution level, i.e. the pixel level, to assign a class label to each pixel, whereas

in a subsequent step we will use a complexity-penalised maximum likelihood approach to find on

coarser spatial scales regions of similar class membership. In order to describe this hierarchy of

scale levels, we introduce now the notion of recursive dyadic partitioning (RDP).

2.2 The multiscale approach using recursive dyadic partitioning and complexity-penalised

maximum likelihood

Definition of recursive dyadic partitioning The following description is motivated from the

one in Kolaczyk et al. (2005). A recursive dyadic partitioning (RDP) P is any partition of [0, 1]2

that may be produced by

(1.) P0 = [0, 1]2
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(2.) if P is RDP composed of m squares R1, . . . , Rm, then any partition obtained by splitting one

of the Rj into four subsquares of equal size is also a RDP. The finest partition at the pixel

size is a C-RDP (”complete RDP”) and denoted by P∗N .

The set of all RDPs P ⊂ P∗N is in one-to-one correspondance with the set of all quad-trees. The

model class we are going to explore is defined as:

Let P∗N be a C-RDP of [0, 1]2. A model M in the set M of all models is a tuple (P, C(P)) with

P << P∗N (”<<”meaning ”coarser”) and C(P) = C(R)R∈P , along with densities g(x(·)|c) for

c ∈ {1, . . . , L} (i.e. c(i) a label for coloring the square Ri associated to this label) such that the xj ,

j ∈ Ri are sampled independently according to

fM (x|c(i)) = g(x|c(i)) ,

where c(i) = c(Ri) is the label assigned to pixel Ii through its association with Ri. In other

words, for each region R of an RDP P the model specifies that x for all pixels Ii ∈ R are sampled

independently from g(x|c(R)). Implicit in the definition we assume that the g(x|`), ` = 1, . . . , L

are known (they will be efficiently estimated in a previous step).

A Gaussian mixture model in the wavelet domain More specifically we will use a Gaussian

mixture model in the wavelet coefficient domain of x(·), with wi denoting the set of discrete wavelet

coefficients of xi, i.e.

wi ∼
L∑

`=1

π` g`(θ`,Σ`;w) , i = 1, . . . , N , (3)

where the parameters to be estimated are the prior mixture probabilities π`, the means θ` and

variances Σ` of the Gaussian densities g`(·, ·) of class `. We recall that following our model (2) of

independent wavelet coefficients each variance matrix Σ` is diagonal (but not necessarily a multiple

of the identity). Note that wi is a vector-valued compactified notation for the vector of the empirical

wavelet coefficients at scales j and locations k of the i−the pixel intensity representation, with means

θ` which also depend on scale and location and a diagonal matrix Σ` with non-identical variances

depending on scale j.

In order to come up with meaningful estimators, the number N of pixels has to be considerably

larger than L, and hence, for the rest of the paper, a convenient bound on the maximum number

Lmax of classes is to assume that Lmax ≤ CL · log(N) (which does however not mean that we allow

L to depend on N).
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With the above description, the estimated likelihood for coefficient vector wi writes as

f̂M (wi|ci) =
L∑

`=1

π̂`(Ri) ĝ`(wi) , (4)

noting that ĝ`(wi) := g(θ̂(i)
` , Σ̂(i)

` ;wi) denotes the Gaussian likelihood of coefficient wi with es-

timated mean θ
(i)
` and estimated variance Σ̂(i)

` . In words we have a model with regions Ri and

mixtures with mixture probabilities π`(Ri) for each of the classes 1 ≤ ` ≤ L, assigned to all the

pixels in the region Ri.

Complexity-penalised maximum likelihood We will identify the best model in M by max-

imising a complexity-penalised likelihood function

M̂ = arg max
M∈M

{l(x|M)− 2 pen(M)} ,

where the choice of the appropriate likelihood l(x|M) is motivated by analogy to Kolaczyk et al.

(2005). The choice of the appropriate penalty rather follows general ideas of model selection fol-

lowing the by now well-known ideas of Birgé and Massart (1998) (which are somehow on the base

of Kolaczyk’s penalty, too). More specifically, as one possibility to choose the penalty in practice

we propose an adaptation of the approach of Lavielle (2005) which we detail in Section 3.3 below.

As explained above, l(x|M) will be calculated in the wavelet coefficient domain (where the em-

pirical coefficients are independent over pixels i) by the product of the estimated likelihood over

all pixels in those regions R that correspond to model M , where for pixel i the above Gaussian

mixture model is used, in formulae

l(x(·)|M) = l(w|M) =
∏

{i: Ii∈R∼M}

f̂M (wi|ci) .

Optimisation in this penalised-complexity problem can be done using a standard bottom-up

tree pruning algorithm in which optimal submodels from coarser spatial resolutions are compared

in a recursive fashion. Beginning at the finest spatial resolution (i.e. P∗N ) select the class c for each

pixel Ii with the largest log-likelihood. Next for each quad of four pixels compare the complexity-

penalized likelihood of two submodels:

(i) the union of the four most-likely single pixel models with its penalty for a single spatial split

(i.e. the quad into four pixels)

(ii) the single model for the set of four pixels that is most likely among all allowable c ∈ {1, . . . , L}

with its smaller penalty.
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Continuing this in a recursive fashion leads to model M̂ . For later reference we note that such a

model using Gaussian mixtures is also called “mixlet”-model in the literature (Kolaczyk et al. 2005).

Note that this RDP-approach, though using the assumption of independency over pixels, allows

to recombine pixels in the same label class and hence is an alternative to more classical approaches

which work with correlation models over neighboring pixels. In order to respond to the possible

criticism of being restricted with RDP to spatially only dyadically representable regions we mention

that Kolaczyk et al. (2005) have a translation-invariant (TI-) version of this 2-d RDP which is able

to approximate more general regions of spatial homogeneity. We will use such a TI-version in our

numerical examples in Section 4.

2.3 Overall procedure

Having set-up our model in the coefficient domain, several questions of how to estimate its pa-

rameters arise. Foremost we have to control the complexity of our estimation problem: it is (even

numerically) impossible to estimate for j = 0, . . . , J − 1, all occuring parameters (e.g. by condi-

tional maximum likelihood estimation - see Section 2.4 below). Hence, a dimension reduction step

is necessary: adopting the approach of curves that do not behave “too differently” over time, we

will apply an “aggregation” approach (Bunea et al. 2006) to find the optimal “set” of positions of

empirical wavelet coefficients to keep common to all non-linear wavelet estimators. In practice, in

this first step of dimension-reduction, we actually just take the union of all those wavelet coefficients

that have survived a near-optimal thresholding on the basis of the individual curves. Embedding

this into the framework of the statistical approach of “aggregation” is just used to prove that this

union remains to be near-optimal when applied to the individual curves. After aggregation we

have to sparsify additionally by some truncation procedure which will reduce further the number of

wavelet coefficients to incorporate into the parametric estimation problem. Find in Section 3.1 be-

low more on aggregation and optimizing the aggregation risk, as well as the details of the truncation

test procedure in Section 3.2.

Our proposed algorithm can now be summarized as follows.

1. Reduction of complexity/dimension reduction:

(a) For each pixel 1 ≤ i ≤ N smooth its observed pixel intensity xi by a non-linear wavelet

threshold estimator. In principle any estimator which just has to have the near-optimal

L2 rate of convergence for estimating fci(t) is fine enough. For reason of near-optimal

denoising our preferred choice is hard-thresholding. Call this estimator f̂i(t).
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(b) Aggregation step: Construct an aggregated estimator f̂λ(t) =
∑N

i=1 λi f̂i(t), and choose

the optimal λ = (λ1, . . . , λN ) as in Bunea et al. (2006), by `1−penalized least squares

in the functional domain. Details are to be found in Section 3.1 below but basically this

amounts to taking the union of all the wavelet coefficients having survived thresholding

of the first step.

(c) Final dimension reduction step by truncation of this aggregated estimator: Apply a

Neyman truncation thresholding based test (Fan, 1996) on the wavelet coefficients of

this estimator f̂λ(t) to “sparsify” it additionally (for this control the level of the test by

FDR). Again, the details are to be found below, in Section 3.2. Collect the position of

the surviving wavelet coefficients. Construct new “dimension-reduced” estimators x̂i(t)

by taking the empirical wavelet coefficients of xi(t) at these positions. The reduced

dimensionality of this estimator will be refered to in the sequel as K∗.

2. Once this set of coefficients of dimensionality K∗ (sufficiently small) is determined for each

curve i, we apply the EM algorithm of Law et al. (2004) to estimate all the parameters of

model (2) and simultaneously determine the appropriate number of clusters L represented in

the observed data. Here we work with the Gaussian mixture model (3), and run EM on this

(see the detailed description in Section 2.4 below). To get back to the “pure class” model (2)

for assigning a label to each pixel we apply an additional step to identify from the output of

EM the class with the highest estimated prior probablity. This is actually our clustering step.

3. For the final spatial segmentation phase we use the penalized RDP approach to pass from

mono- to multiscale. We recall that the above modelling, estimation and clustering are

first done on the finest of the RDP spatial resolutions, but that in the complexity-penalized

maximum likelihood algorithm we use again EM to calculate the mixing probabilities for

the accordingly enlarged regions. See also the detailed description of RDP in Section 3.3,

including a justification of using the penalty approach of Lavielle (2005) or - for a simplified

algorithm in practice - using the “heuristics of the slope” (Gey and Lebarbier 2003). We

emphasize that to display our results in the end, we use again a majority vote to assign a

coloring to each region.

2.4 Details on the EM algorithm used for clustering

We recall that we are using the Gaussian “mixture (likelihood) model” of equation (3)

wi ∼
L∑

`=1

π` g(θ`,Σ`;w) , i = 1, . . . , N ,
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where the parameters to be estimated are the prior mixture probabilities π`, the means θ` and

variances Σ` of the Gaussian densities g`(wi) := g(θ`,Σ`;wi) of class `.

As input vectors for an algorithm to estimate the mixture model parameters, we emphasize

that we cannot use the full high-dimensional wavelet coefficient vectors wi but need to work with

the output of our dimension reduction steps. These steps, explained in more detail in Sections 3.1

and 3.2, give us a dimensionality, which we will call K∗, over i, of the resulting wavelet coefficients

to keep for the i−th curve. With slight abuse of notation we continue to call this wavelet coefficient

vector wi.

Now, instead of the “classical” version of the iterative EM-algorithm to estimate the parameters of

the above mixture model we are going to use the more refined EM-algorithm of Law et al. (2004)

which allows us to also determine the number L of actual clusters. For the reader’s convenience

however we first describe what the standard EM-algorithm would look like here:

Initialise by π
(0)
` , θ

(0)
` , Σ(0)

` .

Iterate over p ≥ 1 (until numerically convergence):

E-Step:

π
(p+1)
` =

1
N

N∑
i=1

ν
(p)
` (i) , where ν

(p)
` (i) =

π
(p)
` g

(p)
` (wi)∑L

`=1 π
(p)
` g

(p)
` (wi)

,

with g
(p)
` (wi) := g(θ(p)

` ,Σ(p)
` ;wi).

M-Step:

θ
(p+1)
` =

∑N
i=1 ν

(p)
` (i) wi∑N

i=1 ν
(p)
` (i)

, and Σ(p+1)
` =

∑N
i=1 ν

(p)
` (i) (wi − θ

(p+1)
` )′(wi − θ

(p+1)
` )∑N

i=1 ν
(p)
` (i)

.

Once the cluster densities and the mixture priors are estimated one can get back to the ” pure

class” model by assigning to each i a class c(i) via exploration of the vector of ”converged mixture

probabilities” for index i denoted by (ν1(i), . . . , νL(i)): Let `∗i = arg max1≤`≤L ν`(i) . Then we as-

sign the pure class `∗i to the pixel of index i.

The variant of this EM-algorithm that we are using is the one of Law et al. (2004). The idea

of this algorithm is to include not only the estimation of the actual number L of classes but also

the selection of the relevant “features” that is, the elements of the vector of wavelet coefficient wi

which carry the most important information for “feature extraction” (i.e. clustering). Roughly

speaking a feature is kept if its probability density gives sufficiently high likelihood for carrying a

label that belongs to one of the L classes. If the density is somehow the “same” independently of
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any specific class label then the feature is supposed to be not informative. This idea is realized by

introducing, for fixed i, probability weights ρq, q = 1, . . . , Q which measure the probability that

the q−th component of the vector wi should be included, i.e. that the feature represented by this

component is relevant. Note that the number of components of each of the input vectors wi is the

same Q, which, by the output of our dimension reduction step by combined aggregation and testing

equals K∗ (the reduced dimensionality after temporal aggregation and testing). The probability

weights ρq have to be estimated from the data and for the final purpose to be set to binary 0/1

(exclusion/inclusion) by obvious rounding. (This is because in the subsequent complexity-penalised

RDP approach we are not going to continue to work with a probability distribution on the feature

vector.)

More specifically, two important modifications have to be done to our likelihood function to take

this feature selection into account. For one, we need to let the parameter (θ`, Σ`) of the (Gaussian)

densities g`(wi) now depend on the index q = 1, . . . , Qi (= Q) of the feature label, i.e. this density

g`,q(wi) = g(θ`,q,Σ`,q;w
(q)
i ) describes now the pdf of the q−th feature w(q)

i in the `−th class. As

the features, i.e. the components of the wavelet vector wi are independent in our set-up, we have

that g`(wi) =
∏Qi

q=1 g`,q(wi).

A second modification comes from the idea that the q−th feature component is irrelevant if

its distribution is independent of the class label `, i.e. if it follows a common density, called

hq(w
(q)
i ) := h(λq,Γq;w

(q)
i ). For simplicity, and as this leads to reasonable results in practice, it is

suggested to use again a Gaussian density for h(λq,Γq; ·). With this, the final likelihood becomes

wi ∼
L∑

`=1

π`

Qi∏
q=1

g`,q(w) =
L∑

`=1

π`

Qi∏
q=1

(
ρq g`,q(w(q)) + (1− ρq) hq(w(q))

)
, i = 1, . . . , N ,

where now the set of parameters to be estimated by a more sophisticated variant of the EM-

algorithm is (π`, θ`,q,Σ`,q, ρq, λq,Γq). We recall that both matrices Σ`,q and Γq continue to be

diagonal (but not necessarily a multiple of the identity matrix).

In this modified EM-algorithm the idea is now to work with two “hidden” (i.e. latent) random

variables, one set of N variables Z = {z1, . . . , zN}, describing the N missing labels, with each

zi = (zi1, . . . , ziL), where zi` is a binary variable saying whether pixel i belongs to the hidden class

`. Another vector of binary variables Φ = (φ1, . . . , φQ) is used to describe the relevance of feature

q, i.e. ρq = P (φq = 1), q = 1, . . . , Q. This set-up then allows to run a standard EM-algorithm, for

details we refer to Law et al. (2004, Section 3.2.1).
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It remains to explain how the number L of cluster classes is selected, including the question

of a good general initialisation of this EM algorithm which is essential to reach a good local

optimum. For this Law et al. (2004), Section 3.3, use an approach based on the MML (Minimum

Message Length) criterion which is closely related to MDL (Minimum Description Length) by

adding to the negative loglikelihood a series of terms which “penalise” against the number of

model parameters. Interestingly enough, as long as a minimum number of components Lmin is

given by the user, optimisation of this “penalised” likelihood can be directly encorporated into the

M-Step of the standard EM-algorithm by only a slight modification. Since this model selection

algorithm determines the number L of components, it can be initialized with a large value Lmax of

L (the known maximum number of possible “pure” classes), thus alleviating the need for a good

initialisation. Hence, the following componentwise version of EM can be used (taken from Figure

6 of Law et al. 2004):

• Initialisation: Set the parameters of a large number of mixture components randomly and set

the common (Gaussian) distribution hq to cover all data. Choose ρq = 0.5 for all features q.

• Loop over descending L = Lmax, . . . , Lmin:

• Inner loop, for each L, over EM until a local minimum is reached (if π` becomes zero, the `−th

component is pruned, and if ρq becomes 1, the density hq(·) is pruned, whereas if ρq becomes

0, the densities g`,q(·) are pruned for all ` = 1, . . . , L). For given L, record the current model

parameters and its message length. Then, in order to descend L, remove the component with

the smallest weight.

• End of outer loop over L: Return to the model parameters that yield the smallest message

length. Postprocess the estimators for the probability weights π = (π1, . . . , πL) for the i−th

pixel to assign to it a pure class label (as described above) and also the estimators for ρ =

(ρ1, . . . , ρQ) to a vector of binary 0/1 weights for its feature components (i.e. the selected

components of the vector wi) by rounding the probabilities ρq to zero and one.

Note that with this, in general the dimension of the feature component vector, which is equal

to
∑

q 1{φq=1}, will be smaller than Q = K∗.
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3. STATISTICAL ASPECTS OF DIMENSION-REDUCTION AND OF PENALISED

MAXIMUM LIKELIHOOD

In this section we are going to give more details on justifying our dimension reduction approach

combining the framework of aggregation estimators and Neyman truncation tests in the wavelet

coefficient domain. Further we elaborate how to choose an appropriate penalty such that our

penalised maximum likelihood approach is likely to select a “good” RDP. We end by furnishing

some theoretical results on asymptotically correct classification by use of the “horizon” model. We

note that in order to show consistency of our estimation algorithm is consistent, we adopt the

following asymptotic approach. We first show near-optimality of the aggregation step by letting,

for a given number of pixels N , the temporal dimension n tend to infinity. Later, in order to achieve

consistent estimators of each true “class intensity” θ`
jk by the complexity-penalised RDP approach,

we let N tend to infinity.

3.1 Dimension-reduction by aggregation

We recall our model (1) in the functional domain, with the observed intensity for pixel i with

1 ≤ i ≤ N ,

xi(t) |{c(i) = `} = f `(t) + εi(t) , t = t1, . . . , tn, n = 2J , 1 ≤ ` ≤ L ,

In our present situation, the parametric form of each deterministic mean function f `(·) is unspeci-

fied. We therefore seek a parsimonious representation of a huge number of possible representations.

In order to perform efficient denoising of each time path of pixel intensities we will use a wavelet

domain representation exploiting to a full extent the sparseness and de-correlation properties of

the DWT. Indeed, it is reasonable hereafter to assume that each mean pixel intensity class curve

belongs to a ball of the Besov space Bs
p,q[0, 1]. It is then known, that for regular enough wavelet

bases, functions in such spaces admit a sparse representation in the sense that only few large co-

efficients dominate the representation since sparsity is measured by (
∑
|θj,k|p)1/p ≤ R (see, e.g.

Donoho and Johnstone, 1998) with 0 < p ≤ 1. Indeed, since the mean intensity class functions

are within the Besov balls, tail sums of coefficients become small after some point and the error in

zeroing out the coefficients from this point is perfectly controlled.

Applying a discrete wavelet transform to (1) we obtain a representation of the wavelet coeffi-

cients of xi(t) which is, we recall from (2),

wi |{c(i) = `} = θ` + εi , 1 ≤ ` ≤ L < N ,

where

εi
jk |{c(i) = `} ∼ N (0, σ2

j,`) .
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To proceed to our clustering one could apply a standard cluster-EM procedure to the empirical

wavelet coefficients, but such a procedure would not take advantage of the “sparse” situation of the

wavelet coefficients that is likely present and would result in a very unstable clustering. Our purpose

therefore is to proceed to some kind of dimension reduction without sacrificing the discriminative

characterisation of the classes. The idea is as follows.

For sparse signal nonlinear wavelet thresholding procedures lead to quasi-minimax denoising.

One may see wavelet soft thresholded estimation as a procedure that, for each pixel intensity curve

i (i = 1, . . . , N), selects a subset mi of J = {(j, k), j = 0, . . . , J − 1; k = 0, . . . , 2j−1} and for each

index (j, k) within mi estimates the corresponding coefficient by θ̂
(i)
j,k = ηt`,j

(w(i)
j,k) setting all other

coefficients to 0. In the previous expressions ηt denotes the scale dependent thresholding procedure

and t`,j the universal threshold σj,`

√
2 log n/

√
n.

Denote by m̄ = ∪N
i=1mi ⊂ J the set of indices of all coefficients retained from all the N curves

by wavelet denoising. By the minimax properties of the wavelet denoising procedure these carry

all the relevant information necessary to discriminate the L mean intensity curves. Note that

thresholding the coefficients indexed by m̄ for each of the observed curves will obviously give the

mi originally selected coefficients for the corresponding ith curve, since all other coefficients with

indices in m̄\mi are taken to be below the threshold t`,j and considered as noise. Since the total

number of classes is finite, with probability tending to 1 as n → ∞, thresholding any new curve

from a given class, will select the same coefficients (noise-free reconstruction property of wavelet

thresholding). Therefore, adding to the estimator of a new curve which comes from the same class

as the i−th, a set of di := #m̄\mi coefficients, will affect the asymptotic MSE properties by an

amount of the order max di log n/n. A rough upperbound of max di is N . Therefore the resulting

denoising procedure, while not as efficient, still produces consistent estimators as long as N log n/n

tends to zero.

What we would have liked is to show that max di = C(Bs
p,q, L) is not depending on N or n, but

this is not obvious, since wavelet thresholding is not truly a model selection procedure. The use

of #m̄ coefficients produces consistent estimates but their rates can be far from the minimax rates

that individual thresholding produces. To address this issue we will therefore justify our choice by

showing that our estimates based on the total #m̄ coefficients are not far from a linear aggregated

estimator. This is the purpose of what follows.

For each pixel i we estimate the underlying f ci(·) by soft (or hard) thresholding or even (level-

dependent) SURE thresholding. We focus the discussion on the version of the threshold estimator

expressed by its sequence of wavelet coefficients θ̂i. Under our assumption that each of the unknown
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curves f `(·) belongs to a Besov ball Bs
p,q(M), for 1 ≤ p, q ≤ ∞; M < ∞; s > (1/p − 1/2)+, we

have that

sup
θci∈Bα

p,q(M)
‖θ̂i − θci‖2

2 ≤ C log(n) n−
2s

2s+1 (1 + o(1)) .

Therefore, for each i, the smooth estimate obtained by wavelet thresholding the corresponding

curve is an optimal estimate of the underlying mean intensity curve f c(i)(·). We would like to

construct a new estimate as a linear combination (in the wavelet domain) of all these estimates,

that mimics, without even knowing from which class the observations are drawn, the behavior of

the best (in L2 risk) among the individual estimates. Note that such an estimate is necessary based

on the m̄ coefficients described before.

For λ = (λ1, . . . , λN ) ∈ RN , we aggregate the above estimators (in the wavelet domain) by

defining

f̂λ(t) = W T

(
N∑

i=1

λi θ̂i

)
=

N∑
i=1

λif̂i(t),

where, due to the linearity of the wavelet (back) transform, aggregating the coefficients amounts

to directly combining linearly the estimators in the time domain.

The purpose of aggregation of M individual estimators is therefore to construct a single adap-

tive estimator (denoiser) that shares their advantages on terms of global L2 risk. The combined

procedure will pay a price and the main purpose of optimal aggregation is to obtain an upper bound

for this price that is asymptotically small. In what follows we denote M` the number of curves

within the M that are drawn from the `−th class and we assume, without any loss of generality

that M is large enough in order that the ratio M`/M can be considered as equal to p` (the weight

of the `−th class within the entire population). We will further assume that p` > 0 for ` = 1, . . . , L.

In summary, the performance of an aggregate f̃ , say, is evaluated by the target

1
M

L∑
`=1

M`Ef`‖f̃ − f `‖2 ≤ 1
M

L∑
`=1

M` inf
λ∈RM

Ef`‖f̂λ − f `‖2 + ∆n,M ,

where infλ∈RM
M`
M Ef`‖f̂λ− f `‖2 represents the best approximation of the unknown mean intensity

f ` of class ` (weighted by its representation in the image) by the linear combination of the M

estimators and ∆n,M is the price to be paid for aggregation (a constant to be found which has to

be independent of f `) and which should tend to 0 as n tends to ∞.

Following the standard literature on the construction of aggregation estimators we will use a

part of the original sample which could be half of the sample (e.g. the even pixels) say D1,N ,

called the training sample, to construct the estimators f̂i(tk)) and the other part , say D2,N (e.g.

the intensity curves xi(·) based on the odd pixels), called the learning sample, to construct the

18



aggregated estimator. The cardinal of D2,N will be denoted M hereafter. Following Nemirovski

(2000) and as long as the training sample is large enough to cover all classes, the estimators

f̂i based on D1,N will be considered as fixed function during the aggregation step, and we will

therefore focus our aggregation on learning, letting M going to ∞. As in Bunea et al. (2006),

we will make the assumption that all estimators f̂i, as well as the mean intensity functions f `

are uniformly bounded by an unknown finite bound U . This assumption is reasonable for f ` but,

although it seems more restrictive on the estimates f̂i, it is not really since one may replace the

individual estimates f̂i by an appropriate truncation as in Kohler (2003) without affecting their

optimal properties. We will assume further that, for M large enough, almost surely the matrix

ΨM =
(
1/n

∑n
k=1 f̂i(tk) f̂j(tk)

)
1≤i,j≤M

is positive definite for any given n ≥ 1. Let ξmin be the

smallest eigenvalue of ΨM . It is easy to see that under the above assumptions it follows that almost

surely

0 < ξmin ≤ 1/n
n∑

k=1

f̂2
i (tk) ≤ U2, i ∈ D2,N .

Let

Ŝ(λ) =
1

nM

∑
i∈D2,N

n∑
k=1

(xi(tk)− f̂λ(tk))2 ,

and

pen(λ) =
1
M

∑
j∈D2,N

τn,j |λj | , with τn,j = 2
√

2 σ‖f̂j‖n (
2 log(M) + log(n)

n
)1/2 ,

where σ2 = supi σ
2
i with σ2

i the integrated variance of the i-th estimated curve f̂i. Note that such

a variance is of the form
∑J−1

j=0 σ2
j,c(i) where σ2

j,c(i) is the variance of the wavelet estimator of the

mean curve f c(i) at scale j. In practice σ2 is unknown but can be consistently be estimated by the

maxi σ̂
2
i where σ̂2

i is the MAD level dependent robust estimator based on each curve xi.

Then the aggregate estimator is the one that minimizes Ŝ(λ) + pen(λ) over the set

ΛM,T,2 = {λ ∈ RM :
M∑

j=1

λ2
j < T 2} ,

with T > 0 such that T 2 ξmin > 2U2 and T ≤ (log(max{M,n}))1/4.

We can state the following proposition:

Proposition 3.1. Under the assumptions made in this section, let ξ
−1/2

min
√

2U ≤ T ≤ (log(max{M,n}))1/4.

Then there exists a constant C = C(T,U, σ2, ξmin) such that for all η > 0 and for all integers n ≥ 1

and M ≥ 2,

1
M

L∑
`=1

M`Ef`‖f̃ − f `‖2
n ≤ (1 + η)

1
M

L∑
`=1

M` inf
λ∈RM

Ef`‖f̂λ− f `‖2 + C(1 + η + η−1)
log(max(M,n))

nM
.
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Proof: see Appendix

The above proposition shows that our aggregate is nearly-optimal in the sense that the price

of adaptation through aggregation ∆n,N is of order log(max{M,n})/(Mn). The result will follow

from adapting to our case general results on aggregation from Bunea et al. (2006).

To perform denoising we have applied thresholding procedures to each intensity curve one at a

time and we have shown, by means of aggregation that the use of the union of wavelet coefficients

selected from individual data curves to construct a ”combined” representative set of coefficients

for approximating the original data curves is optimal (in terms of denoising) for multiple data

curves. However, whenever N is large, the aggregated wavelet denoiser, while maintaining sparsity,

may keep too many coefficients for each wavelet processed intensity curve. In practice, therefore,

the EM algorithm used for clustering may perform poorly and the use of such a large dimension

will also degrade considerably the RDP fitting process. It is therefore important to proceed to

a dimension reduction, before applying a simultaneous feature selection and clustering using our

mixtures models.

3.2 Final dimension reduction step by a Neyman truncation test

We propose hereafter a dimension reduction based on an appropriately defined multiple adaptive

Neyman truncation test based procedure for testing that, for each wavelet coefficient within the

representative union of coefficients, its expectation among the N intensity curves remains constant

against the assumption that its expected behaviour is different among curves. Since the maximum

number of possible classes is assumed to be small with respect to the total number of pixels, the

procedure is inspired by one-way ANOVA procedure where the levels of the nominal factor are the

class labels, which in our case are sparse but unfortunately unknown. Our final selection procedure

rests then on an implicit hypothesis that the active coefficients allowing good discrimination are

also sparse.

To begin with, let kmax be the cardinality of the set m̄ of the indices of the wavelet coefficients

retained by aggregation. When a wavelet-position k is fixed, denote by wi
k, i = 1, . . . , N , the

collection of coefficients from all curves at this position and let di
k = wi+1

k − wi
k, i = 1, N − 1 be

the vector of first order differences of these coefficients. It is easy to see that di
k can be considered

as a random sample from a Gaussian distribution N (µi
k, τ

2), where µi
k = E(wi+1

k −wi
k). Note that

the variance τ2 is closely related to the variance σ2
j,` of the wavelet coefficients wi

jk of model (2).)

If the kth coefficient, even if it is important for representing the curves, has not any discriminative
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power for separating the classes, then the vector µk will be identically equal to zero. Our testing

procedure to retain the coefficient is then inspired from the adaptive Neyman testing procedure for

testing

H0,k : µk = 0 versus H1,k : at least one component of µk is not zero.

Since the number of possible classes is small with respect to the total number of curves, most of

the components of µk will be 0, and a simple procedure to test the eventual presence of non-zero

components is to use the thresholding based Neyman test of Fan (1996). For our purpose we use

the hard thresholding statistic, TH
k , defined by

TH
k = σ−1

H (TH∗
k − νH

k ),

where

TH∗
k = τ−2

N∑
i=1

(di
k)

2I(|di
k| ≥ τδH),

and

νH
k =

√
2/πa−1

N δH(1 + δ−2
H )

σ2
H =

√
2/πa−1

N δ3
H(1 + 3δ−2

H )

The threshold value is given by δH =
√

2 log NaN and aN is given by

aN = min

(
4
(

max
i

|di
k|
τ

)−4

, log−2 N

)
.

By Theorem 2.3. of Fan (1996), under the null hypothesis, we have TH
k → N (0, 1) and, for a

significance level α we reject the null hypothesis (we keep the selected coefficient) if

TH
k > Φ−1(1− α),

where Φ is the standard cumulative distribution function.

To select the appropriate wavelet coefficients for discrimination we will use the False Discovery

Rate (FDR) procedure which has been developed in the context of multiple hypotheses testing by

Benjamini and Hochberg (1995). Given the set of our kmax hypotheses out of which an unknown

number k0 are true, the FDR method identifies the hypotheses to be rejected, while keeping the

expected value of the ratio of the number of false rejections to the total number of rejections below

q, a user specified control value. In addition, this technique can handle problems in which kmax is

very large at a very low computational cost.
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The FDR procedure, as suggested by Benjamini and Hochberg (1995) is as follows: First

find test statistics TH
1 , . . . , TH

kmax based on the Neyman’s procedure with corresponding p-values

π1, . . . , πkmax. Then, for any user-specified value q ∈ (0, 1), perform the following steps:

• Order the p-values π(1) ≤ · · · ≤ π(kmax).

• Compute k̂ = max{k : π(1) ≤ k
kmax q/

∑kmax
k=1 k−1}.

• Reject all H0,(j), 1 ≤ j ≤ k̂ where µ(j) = 0 is the null hypothesis corresponding to the ordered

p-value π(j) . If no such k̂ exists, do not reject any hypothesis.

• Estimate the set of I0 of wavelet coefficients to keep by the set Î of indices corresponding to

the first k̂ ordered p-values.

The above procedure is completely justified by Proposition 2.1 of Bunea et al. (2006). We will

therefore take the above chosen k̂ as the choice for our best dimension K∗ for this purpose of

dimension reduction.

3.3 Choosing the RDP penalty

Our approach for producing a segmentation of an image is based on extracting the information in a

particular mixlet model that is optimal in some well-defined sense with respect to the measurements

x. In order to evaluate the goodness of fit of each candidate model, we have used a complexity-

penalized maximum likelihood criterion, balancing the fidelity to the data measured by the log-

likelihood with the parsimony of the model measured by a penalty function p(M).

Inspired by the recent work of Lavielle (2005) on change-point problems, the purpose of this

section is to propose an adaptive procedure for choosing and calibrating the penalty function on

the number of subregions in the RDP fitting process. In our framework any RDP P of size m = |P|

may be described through its corresponding quad-tree, pruned from that corresponding to P∗N .

Furthermore, there are a total of b(L) free parameters associated with the mixture model in each

region R ∈ P, but these remain constant for a given categorization of the pixels. The form of p(M)

depends only on m and increases with m. In the following we suggest to use the simplest penalty

function p(M) = β m. Such a choice finds its justification in Birgé and Massart (1998) and is

similar in spirit to the penalties used by Kolaczyk et al. (2005) or Castro et al. (2004). Moreover,

it is justified, when, as described in Kolaczyk et al. (2005), the RDP fitting process is seen as a

natural extension of the ‘horizon model’ by Donoho (1999) - see also Section 3.4 below - i.e. when

the regions defined by the partition P associated to the true model are separated by Hölder smooth

boundaries.
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Let mmax be an upper bound on the size of the RDP P, and for any 1 ≤ m ≤ mmax, let Tm

be the set of all RDP’s of size m. By definition the best mixlet model of size m is the one which

maximizes the loglikelihood `(x(·)|m) over Tm. For a given β and for a penalty proportional to the

size m, the best fitted model is the model of size m̂(β). Under the ‘horizon model’ and if β is a

function of N that goes to 0 at an appropriate rate as N goes to infinity, the estimated number of

regions m̂(β) converges in probability to the true number of regions. However, we are interested in

a choice of β in a non-asymptotic sense.

The way that m̂(β) varies with the regularization parameter β is given in the following proposition.

Proposition 3.2. For almost all x, there exists a sequence m1 = 1 < m2 < · · · < mmax and a

sequence β0 = ∞ > β1 > · · · with

βi =
−`(x(·)|mi) + `(x(·)|mi+1)

mi+1 −mi
, i ≥ 1,

such that m̂(β) = mi, for all β ∈ (βi, βi−1).

Note that by Proposition 3.2 the subset {(mi,−`(x(·)|mi), i ≥ 1} is just the convex hull of

the set {(k,−`(x(·)|k), k ≥ 1}. This also suggests the following graphical method for selecting

the parameter β and the corresponding dimension m: examine how the negative log-likelihood

−`(x(·)|k) decreases when k increases, and select the dimension k for which the negative log-

likelihood ceases to decrease significantly. The above procedure is very similar to the nonlinear

L-curve regularization method used for determining a proper regularization parameter in penalized

nonlinear least squares problems (see Gulliksson and Wadin 1998). In our context, the L-curve

is defined as the curve (−`(x(·)|m(β));m(β))β≥0 and defines a strictly decreasing convex function

with a derivative with respect to m(β) equal to −β. The L-curve has usually a distinct corner,

defined as the point where the L-curve has its greatest curvature and corresponding in our case to

the point β where the negative loglikelihood ceases to decrease.

One option to find the “optimal” β and the corresponding “optimal” dimension m̂(β) is based

on the idea of the “heuristic of the slope”.

The contrast (i.e. the log-likelihood) associated to a RDP is the sum of two terms: the first term

represents some approximation error within the associated clustering, i.e. a bias term, and a second

term which represents the complexity of the model and can therefore be interpreted as a variance

term. The idea of the heuristic of the slope is that when a model is high dimensional, the associated

bias is close to zero, and so the contrast of the RDP is essentially an estimation of the variance

of the model which is directly related to the size m of the RDP. (We recall that the choice of the

penalty is in order to balance the increase of the variance with increasing m.) Hence, for large m,
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the negative log-likelihood should become a linear function of m. The choice of the dimension m̂

beyond which the negative log-likelihood becomes linear is left to the user. The choice of m̂ can be

based on visual inspection of the L-curve (−`,m(β)), and is obtained by selecting the dimension

m for which the negative likelihood ceases to decrease significantly and becomes linear. To choose

m̂, one can also plot the curve (β, m(β)) and search for the parameter β associated to the first sig-

nificant jump in this curve. Once we have chosen the appropriate dimension m̂, the basic principle

is to fit a linear regression of −` with respect to m for m ≥ m̂. If we denote by α̂ the estimated

regression coefficient, then as suggested by Birgé and Massart (2001), an appropriate estimator for

β is given by β̂ = κα̂ where κ is a constant close to 2 (in practice we shall take κ = 2).

3.4 A theoretical result on correct clustering: the “horizon model” framework

To show that our RDP approach has some theoretical optimal property we use a ”horizon model”

(Donoho, 1999), a two label model with an arbitrary Lipschitz-frontier between the two regions.

Note that these techniques have already been suggested by Korostelev and Tsybakov (1993) on

their ”model of boundary fragments” to prove near-optimal minimax results of classification. We

simply refer to what has been derived in the similar RDP-context of Kolaczyk et al. (2005), Sec-

tion 3.3., and give, for the reader’s convenience, a short summary here on their results. Note that

Castro et al. (2004) essentially use the same techniques to prove their results, however using an

explicit basis of wedgelets to approximate their piecewise constant d−dimensional functions (d ≥ 2)

with d− 1-dimensional Hölder-2 smooth boundaries (for example, twice continuously differentiable

curves).

In the sequel we follow the description from Kolaczyk et al. (2005), Section 3.3. A horizon model

consists of a partitioning of the domain [0, 1]2 into two compact regions, say G and G, which are

separated by a smooth, i.e. Lipschitz-continuous, boundary δG, and of a density function f with

two distinct parts, on G and G, which defines the underlying structure in the image.

More specifically, assume that G ∈ G = {(t1, t2) ∈ [0, 1]2 : 0 ≤ t1 ≤ 1, 0 ≤ t2 ≤ h(t1), h Lipschitz on [0, 1]}.

Further, let π : [0, 1]2 → [0, 1]L be a function of L components on the unit square with each com-

ponent constant on each of the regions G and G, with at least one component differing on G and

G, and with
∑L

`=1 π`(t) = 1 ∀ t ∈ [0, 1]2. Then we use the horizon model density

f(w) =
L∑

`=1

π`(Ii) g`(w) ,

which, as we are using ”the pure class per pixel” modelling, does not say anything else than

assigning to each pixel of a given region the class label with its ”highest likelihood”. (Note that
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this is slightly different from the modelling in Kolaczyk et al. (2005) and actually a bit simpler.)

Let finally F denote the collection of all these horizon model densities, and observe that under

this class, sampling on the two subregions G and G can be done with respect to densities f with

any combination of the L-component densities g`.

As in Kolaczyk et al. (2005), one can measure the quality of the model M̂ selected by our

complexity-penalized likelihood approach by the following risk

R(f, f̂) = N−1 EH2(f, f̂) ,

where H2(f, g) =
∫

(
√

f − √
g)2 denotes the squared Hellinger distance between densities f and

g. We have the following analogue to Kolaczyket al. (2005), Theorem 1, the proof of which

follows the lines of the cited paper. We recall that in our set-up the total number LG,G of true

component densities g(w) corresponding to G and G under f is given by our number L of classes,

with L = O (log(N)).

Proposition 3.3. Suppose that w ∼ f , for f ∈ F . Let fM be the density corresponding to our

model (4), and consider the model M̂ selected by our complexity-penalized likelihood approach where

optimization is over a collection M∗
N produced through the discretization (over time) of the mixing

weights to an accuracy of N−1/2. Assume finally, in order to be able to discriminate between two

classes, that max
`,`′

sup
w

g`(w)
g`′(w)

≤ B < ∞. Then

R(f, fcM ) ≤ L · O (
log N

N
)1/2

for each f ∈ F , and

sup
f∈F

R(f, fcM ) = O (
log3 N

N
)1/2 .

Note first that the per density risk is of the same order as usual adaptive multiscale estimators

in the standard horizon model (e.g., Donoho 1999). Note further that the additional factor of order

log(N) of the optimal order over the entire class F can be considered as the price paid for not

knowing the number of component densities g used by f on G and G.

4. NUMERICAL EXAMPLES

In this section we present some results, both on simulated and on real data, that we obtain by com-

bining dimension reduction (i.e. statistical aggegration followed by the Neyman testing procedure

with FDR control of the type-1 error, as described in Section 3.2), the variant of the EM-algorithm

by Law et al. (2004) and our complexity-penalized RDP approach including an automatic choice

25



of the regularizing parameter β based on the heuristic of the slope (as desribed in Section 3.3). We

consider the following four examples:

• the “Circles” image: a N ×N simulated image consisting of 12 circles that correspond to 12

active regions in 3 columns of 4 rows. The 4th column corresponds to an inactive region. The

size parameters are N = 64 and n = 256.

• the “Whitcher” image: simulated data of Whitcher et al. (2005) - see description below -,

the size parameters are N = 64 and n = 128.

• the MRSI image (see our description of this example in Section 2.1): the size parameters are

N = 32 and n = 4096.

• the ONERA image: a multiband satellite image of remote sensoring measurements in various

spectral bands of an area which contains roads, forests, vegetation, lakes and fields. The size

parameters are N = 64 and n = 128 (frequencies).

For the reader’s convenience we give a short description of the “Whitcher” image. Similarly to

the “Circles” image, in 12 active regions in 3 columns of 4 rows (with 4th column corresponding to

an inactive region), the simulated signals were generated using the difference of the exponentials

function S(t) = a + b(e−t/To − e−t/Ti), with different values of Ti and To. The maximum signal

amplitudes were normalized relative to the standard deviation of the additive Gaussian white

noise such that the contrast-to-noise ratio in each row was 6,4,2, and 1. The spatial form of the

active regions was a circular region of diameter 8 pixels, containing maximum intensity at each

active region. This was surrounded by a Gaussian taper to zero within a square of 12 pixels, this

providing a locally-varying contrast-to-noise ratio.

For each of this four examples, we display a typical temporal cut in Figure 4.2 and we also plot

in Figure 4.3 each time two noisy curves corresponding to two pixels to give an idea of the signals

that we have to cluster.

For each image, we have first applied wavelet hard tresholding using a universal threshold and

a MAD estimator on the finest scale to estimate the variance of the wavelet coefficients. Then we

applied the dimension reduction step by truncation as described in Section 3.2 on the union of the

wavelet coefficients of all pixel intensity curves that survived this first hard thresholding. Note that

in practice using the union amounts virtually to the aggregation estimator of Section 3.1 which has

its justification only for the theoretical treatment of near-optimality of the latter one. In Figure

4.4, we plot the first 100 statistics TH
1 , . . . , TH

kmax based on the Neyman’s procedure (sorted in

absolute value and decreasing order).
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Figure 4.2: A temporal cut of the (a) Circles image, (b) Whitcher image, (c) MRSI Image, (d)

ONERA image
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Figure 4.3: Noisy curves associated to some pixels of the (a) Circles image, (b) Whitcher image,

(c) MRSI Image, (d) ONERA image

As explained by Bunea et al. (2006), the first very large values of these sorted statistics corre-

spond to the null hypotheses to be rejected and thus to the most discriminative wavelet coefficients

to separate the classes. In the FDR procedure, one has to choose a user-specified value q ∈ (0, 1)

which controls the ratio of the expected number of false rejections to the total number of rejec-

tions. However, in Buena et al. (2006) it is shown that the FDR procedure is consistent if we

choose q = qp → 0 as p → +∞ where p is the number of observations used to compute the statistics
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Figure 4.4: Sorted test statistics TH
1 , . . . , TH

kmax in absolute value and decreasing order for the (a)

Circles image, (b) Whitcher image, (c) MRSI Image, (d) ONERA image
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TH
1 , . . . , TH

kmax. The rate at which the parameter qp converges to zero depends on the rate at

which the expected value µi (this is the notation in Bunea et al. 2006) of TH
i converges to zero

for the indices i which correspond to the index set I0 of non-zero components of the parameters

(µ1, . . . ,µkmax) (see the assumption T page 5 and Theorem 2.2 in Bunea et al. 2006). It is rec-

ommended to choose qp = p−α for some α > 0, but no data-dependent choice for this parameter is

proposed. For the four images, we chose q = 0.05 but this is obviously not an optimal tuning for

this parameter. As we can see in Figure 4.4, the amplitude of these statistics are very different for

the four images. Actually, the magnitude of the largest TH
i ’s is proportional to the signal-to-noise

(SNR) ratio of the curves that we have to cluster. For the MRSI image, the SNR is very high (see

Figure 4.3c) and the amplitude of the largest test statistics is therefore extremely high (≥ 10−7).

For the Whitcher image, the SNR is very low (see Figure 4.3b) and the amplitude of the largest

test statistics is therefore extremely low (≈ 60) as compared to the values of the test statistics in

Figure 4.3c.

If we apply the FDR procedure with q = 0.05 to each of the four images, the number k̂ of

selected wavelet coefficients are 18 for the Circles image, 10 for the Whitcher image, 2629 for the

MRSI image and 66 for the ONERA image. For the MRSI image, the selected k̂ is obviously too

large. Hence, based on visual inspection of the decay of the test statistics in Figure 4.4c, we prefer

to choose k̂ = 50. The selected wavelet coefficients for each image are displayed in Figure 4.5.
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Figure 4.5: Selected wavelet coefficients by the FDR procedure for the (a) Circles image, (b)

Whitcher image, (c) MRSI Image, (d) ONERA image. Note that for the MRSI Image we have

arbitrarily chosen the first 50 smallest p-values.

After applying the EM algorithm of Law et al. (2004), we obtain the following estimation L̂

for the number of classes: 4 for the Circles image, 3 for the Whitcher image, 4 for the MRSI image

and 6 for the ONERA image. For each image, the corresponding clustering at the pixel scale is

given in Figure 4.6.

Note that the EM algorithm of Law et al. (2004) is initialised randomly which may give different

results for the estimated number of classes and the final pixel scale clustering (especially for the
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Figure 4.6: Clustering at the pixel scale for the (a) Circles image, (b) Whitcher image, (c) MRSI

Image, (d) ONERA image.

Whitcher image). Even for the same estimated number of classes, the clustering at the pixel scale

may be very different, and hence in practice it is highly recommended to re-launch the algorithm

a couple of times. Note that this problem is shared by any EM algorithm and not specific to our

set-up here.

Finally we apply the automatic method for choosing the parameter β for the RDP as described

earlier in Section 3.3. For each image, we display the L-curve (−`,m(β)) in Figure 4.7 and the

curve (β, m(β)) in Figure 4.8.
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Figure 4.7: L-curve for the (a) Circles image, (b) Whitcher image, (c) MRSI Image, (d) ONERA

image.

The selected dimension m̂ beyond which the L-curve is considered as a linear function is 150 for

the Circles image, 193 for the Whitcher image, 130 for the MRSI image and 700 for the ONERA

image, and based on the heuristic of the slope we obtain the following estimation β̂: 1.5222 for the

Circles image, 1.8870 for the Whitcher image, β̂ = 1.6908 for the MRSI image, β̂ = 2.1146 for the

ONERA image. A TI-version of the RDP with the above estimated β̂’s for each image is given in

Figure 4.9.
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Figure 4.8: Curve (m(β), β) for the (a) Circles image, (b) Whitcher image, (c) MRSI Image, (d)

ONERA image.
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Figure 4.9: TI RDP for the (a) Circles image, (b) Whitcher image, (c) MRSI Image, (d) ONERA

image.

In summary, we observe that for the Circles image (a) our method of clustering already gives

a perfect classification even without the final RDP step (which however does not take anything

away from this result). Examples (b) and (d) do greatly benefit from the final RDP step (for

example (d) it is even highly necessary), and we believe that the MRSI image (c) also gains clarity.

Remember that the result at the pixel level gives many pixels that are spatially dispersed which for

this example would not make much sense because we are trying to recover a specific segmentation

of the tissues where the disease (cancer) has spread gradually (regions with a different severity).

5. CONCLUSION

We are perfectly aware of the fact that our approach is not the only possible one when trying to

cluster images with a functional pixel intensity. However, we believe that it is a very appropri-

ate non-parametric possibility which addresses simultaneously the problem of high dimensionality

(spatial times functional dimension) and the drawbacks of working with a pixel-scale approach. To

mention comparisons we have tested a variety of algorithms which turned out to be very sensitive

to the high dimensionality of the problem, e.g. the work by Sugar and James (2003) for finding

the number of clusters and the information criteria methods by Biernacki et al. (2000). Similarly,
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applying an approach of modelling spatial correlation (between pixels), as in kriging, would suffer

from the too high spatial dimensionality (a possibility here would be to use reversible MCMC like

Vannucci et al. (2005) which is however very cost-consuming).

Wavelets seem to offer clear advantages in addressing the functionality aspect of the problem,

but as our various numerical examples have shown, there is obviously a necessity to use multi- over

monoscale approaches such as in Whitcher et al. (2005).

For the spatial multiscale modelling, in this paper we have used an approach based on RDP

motivated from the work by Kolaczyk et al. (2005) but one could also use other spatial models,

e.g. Hidden Markov modelling. Comparing our method with those of a multiscale hidden Markov

approach; see, e.g., Malfait and Roose (1997) or Choi and Baraniuk (2001), we note that both

mentioned papers deal with supervised classification/segmentation. However, it would be interesting

to replace the complexity-penalised RDP-step of our approach by using in particular the wavelet-

domain hidden Markov tree, to see how the latter one would perform in combination with our

non-supervised clustering step (after our non-parametric dimension reduction step).

Other comparisons could include the approach of Berlinet et al. (2005) which is however again on

classification, i.e. a supervised method. Moreover, we found out that a criterion based on ordering

the energy in the domain of the squared coefficients - as in Principal Components Analysis - would

not necessarily have a good discriminating power and would in general not work in practice. Cf.

also the example in Figure 3 of the paper by Law et al. (2004).
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APPENDIX

Proof of Proposition 3.1 The proof will follow from the following inequality. Assume first that

T is such that ξ
−1/2

min
√

2U ≤ T and let λ̂ the optimal vector of weights that minimizes Ŝ(λ)+pen(λ)

over ΛM,T,2. For convenience of notation let f̃ = f̂λ̂ and fλ = f̂λ. Then, for all a > 1 and for all
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integers n ≥ 1 and M ≥ 2 we have

1
M

L∑
`=1

M`Ef`‖f̃ − f `‖2
n ≤ inf

λ∈RM

{
a + 1
a− 1

L∑
`=1

M`

M
Ef`‖fλ − f `‖2

n +
16a2

a− 1

(
σ2U2

Mξmin

)
2 log M + log n

n

}

+
(T + M−1/2)2U2

n
√

π(2 log M + log n)
. (5)

To prove the above inequality, note first that by definition of f̃ we have

Ŝ(λ̂) +
1
M

∑
j∈D2,N

τn,j |λ̂j | ≤ Ŝ(λ) +
1
M

∑
j∈D2,N

τn,j |λj |

for all λ ∈ ΛM,T,2, which can be rewritten as

L∑
`=1

M`

M
‖f̃ − f `‖2

n +
1
M

∑
j∈D2,N

τn,j |λ̂j |

≤
L∑

`=1

M`

M
‖f̂λ − f `‖2

n +
1
M

∑
j∈D2,N

τn,j |λj |+
2
M

∑
j∈D2,N

〈xj − f c(j), f̃ − fλ〉n .

Define the random variables

Vj =
1
n

n∑
k=1

f̂j(tk)(xj(tk)− f c(j)(tk)), j ∈ D2,N ,

and let A be the event

A = ∩j∈D2,N
{2|Vj | ≤ τn,j}.

Since the estimates f̂j are all computed on the training sample D1,N which is independent of the

learning one D2,N , and since the noise is Gaussian, we first have

√
nVj ∼ N(0, σ2

j ‖f̂j‖2
n), j ∈ D2,N .

By the standard tail bound for the N(0, 1) distribution, we obtain

P (Ac) ≤
∑

j∈D2,N

P{
√

n|Vj | ≥
√

nτn,j/2}

≤
∑

j∈D2,N

4√
2π

σj‖f̂j‖n√
nτn,j

exp

(
−

nτ2
n,j

8σ2
j ‖f̂j‖2

n

)
≤

∑
j∈D2,N

4√
2π

σ‖f̂j‖n√
nτn,j

exp

(
−

nτ2
n,j

8σ2‖f̂j‖2
n

)

≤ 1
Mn

√
π(2 log M + log n)

.

On the set A, we now have

2
M

∑
j∈D2,N

〈xj − f c(j), f̃ − fλ〉n =
2
M

∑
j∈D2,N

Vj(λ̂j − λj) ≤
1
M

∑
j∈D2,N

|λ̂j − λj |τn,j ,
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and therefore, still on A,

L∑
`=1

M`

M
‖f̃−f `‖2

n ≤
L∑

`=1

M`

M
‖fλ−f `‖2

n+
1
M

∑
j∈D2,N

τn,j |λ̂j−λj |+
1
M

∑
j∈D2,N

τn,j |λj |−
1
M

∑
j∈D2,N

τn,j |λ̂j |.

By the triangle inequality we therefore have

L∑
`=1

M`

M
‖f̃ − f `‖2

n ≤
L∑

`=1

M`

M
‖fλ − f `‖2

n + 2
1
M

∑
j∈D2,N

τn,j |λ̂j − λj |.

Since for all j ∈ D2,N , we have ‖f̂j‖2
n ≥ ξmin > 0, it follows that

ξ−1
min‖f̃ − fλ‖2

n ≥
∑

j∈D2,N

|λ̂j − λj |2.

Using the fact that
∑

` M`/M = 1 and combining the above with the Cauchy-Schwarz inequality

and triangle inequalities we find that on the set A

L∑
`=1

M`

M
‖f̃ − f `‖2

n ≤
L∑

`=1

M`

M
‖fλ − f `‖2

n + 2
1
M

∑
j∈D2,N

τn,j |λ̂j − λj |

≤
L∑

`=1

M`

M
‖fλ − f `‖2

n +
1
M

2ξ
−1/2

min

√ ∑
j∈D2,N

τ2
n,j‖f̃ − fλ‖n

≤
L∑

`=1

M`

M
‖fλ − f `‖2

n + 2
1
M

ξ
−1/2

min

√ ∑
j∈D2,N

τ2
n,j

L∑
`=1

M`

M
(‖f̃ − f `‖n + ‖fλ − f `‖n)

≤
L∑

`=1

M`

M
‖fλ − f `‖2

n + 2ξ
−1/2

min τnM−1/2
L∑

`=1

M`

M
(‖f̃ − f `‖n + ‖fλ − f `‖n)

≤
L∑

`=1

M`

M

(
‖fλ − f `‖2

n + 2ξ
−1/2

min τnM−1/2(‖f̃ − f `‖n + ‖fλ − f `‖n)
)

,

where

τn = 2
√

2Uσ

√
2 log M + log n

n
.

Taking each term on the left hand side and each term within the parenthesis in the above inequality,

the resulting inequality is of the form v2 ≤ c2 + vb + cb with v = ‖f̃ − f `‖n, b = 2ξ
−1/2

min τnM−1/2

and c = ‖fλ − f `‖n. We then obtain, using an argument similar to the one of Bunea et al. (2006),

L∑
`=1

E
{

M`

M
‖f̃ − f `‖2

nIA

}
≤ inf

λ∈ΛM,T,2

{
a + 1
a− 1

L∑
`=1

E
{

M`

M
‖fλ − f `‖2

n

}
+

2a2

(a− 1)ξminM
τ2
n

}
, ∀ a > 1.

Now, using the definition of ΛM,T,2 and the Cauchy-Schwarz inequality we have

L∑
`=1

M`

M
‖f̃ − f `‖∞ ≤ U(

∑
|λ̂j |+ 1) ≤ (

√
MT + 1)U,
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which gives

L∑
`=1

E
{

M`

M
‖f̃ − f `‖2

n

}
≤

L∑
`=1

E
{

M`

M
‖f̃ − f `‖2

nIA

}
+ (

√
MT + 1)2U2P (Ac)

≤ inf
λ∈ΛM,T,2

{
a + 1
a− 1

L∑
`=1

E
{

M`

M
‖fλ − f `‖2

n

}
+

2a2τ2
n

(a− 1)ξminM

}

+
(T + M−1/2)2U2

n
√

π(2 log M + log n)
, ∀ a > 1.

The above inequality is in fact valid not only within the set ΛM,T,2 but on the entire RM , because

the value of the whole expression under the infimum in the inequality for λ = 0 is strictly smaller

than the value of the same expression for any λ /∈ ΛM,T,2. The requested inequality (5) is then

proved by substituting the value of τ2
n.

To end the proof of the proposition, note first that by our assumptions one has trivially that

T > M−1/2. This implies that the last summand in (5) is O(1/n). The proof is then completed by

using an argument similar to the one used by Bunea et al. (2006) in the proof of their Corollary

3.4.

Proof of Proposition 3.2 The proof follows the lines of Lavielle (2005). For any m ≥ 1, and any

x, let m̂(β) = m. Then we have

−`(x(·)|mi) + β m < min
k>m

(−`(x(·)|k) + β k)

−`(x(·)|mi) + β m < min
k<m

(−`(x(·)|k) + β k)

Thus β satisfies

max
k>m

−`(x(·)|m) + `(x(·)|k)
k −m

< β < min
k<m

−`(x(·)|k) + `(x(·)|m)
m− k

,

which concludes the proof.
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Birgé, L., & Massart, P. (1998), Minimum contrast estimator on sieves: Exponential bounds and

rates of convergence, Bernoulli, 4, 329–375.
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Flour XXVIII - 1998, Lecture Notes in Mathematics, vol. 1738, 85–277, Springer, New York.

Sugar, C. and James, G. (2003). Finding the Number of Clusters in a Data Set : An Information

Theoretic Approach, J. Am. Statist. Assoc., 98, 750–763.

Vannucci, M., Sha, N. & Brown, P. J. (2005). NIR and mass spectra classification: Bayesian

methods for wavelet-based feature selection, Chemometrics and Intelligent Laboratory Systems,

77, 139–148.

Whitcher, B., Schwarz, A. J., Barjat,H., Smart, S. C., Grundy, R. I. & James, M. F. (2005).

Wavelet-Based Cluster Analysis: Data-Driven Grouping of Voxel Time-Courses with Applica-

tion to Perfusion-Weighted and Pharmacological MRI of the Rat Brain, NeuroImage, 24 (2),

281–295.

36


