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Abstract

The objective of this paper is to contribute to the methodology available
for extracting and analyzing signal content from protein mass spectrometry
data. Data from MALDI-TOF or SELDI-TOF spectra require considerable
signal pre-processing such as noise removal and baseline level error correction.
After removing the noise by an invariant wavelet transform, we develop a
background correction method based on penalized spline quantile regression
and apply it to MALDI-TOF (matrix assisted laser deabsorbtion time-of-flight)
spectra obtained from serum samples. The results show that the wavelet
transform technique combined with nonparametric quantile regression can handle
all kinds of background and low signal-to-background ratio spectra; it requires
no prior knowledge about the spectra composition, no selection of suitable
background correction points, and no mathematical assumption of the background
distribution. We further present a multi-scale based novel spectra alignment
methodology useful in a functional analysis of variance method for identifying
proteins that are differentially expressed between different type tissues. Our
approaches are compared with several existing approaches in the recent literature
and are tested on simulated and some real data. The results indicate that the
proposed schemes enable accurate diagnosis based on the over-expression of a
small number of identified proteins with high sensitivity.

Key words: curve estimation, wavelets, regression quantiles, robust point-matching, P-splines

smoothing, mean integrated square error, functional analysis of variance.

∗Corresponding author. E-mail: antonia@imag.fr

1



1 Introduction

The proteins are the controllers of all cell functions and, as such, are closely connected

with many diseases and metabolic processes. Microarray data has been successfully

used to identify genes responsible for many diseases, especially cancer. However,

although proteins are coded by genes, there is no one-to-one relationship between

the protein and the mRNA due to different rates of translation. Hence studying

mRNA expressions (microarrays) may be an indirect way to understand a disease

etiology. This ineffectiveness of genomics caused a big shift of interest from genomics

to proteomics, with the hope that proteomic studies may provide a more direct

information for understanding the biological functions towards a disease profile and

may help targeted drug therapy. An important tool used for protein identification and

high throughput comparative profiling of disease and non-disease complex protein

samples in proteomics is mass spectrometry (MS). With this technology it is possible

to identify specific biomarkers related to a given metabolic process or disease from

the lower molecular weight range of the circulating proteome from easily obtained

biological fluids such as plasma or serum. Recent research has demonstrated that

using such technology to generate protein expression profiles from lung cancer lystates

is an alternative promising strategy in the search for new diagnostic and therapeutic

molecular targets.

+

-

high
voltage

ions

detectorfield free region

Laser

Figure 1.1: Simplified Schematic of MALDI-TOF Mass Spectrometry
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There are at least two kinds of mass spectrometry instruments commonly applied

to clinical and biological problems today, namely, Matrix-Assisted Laser Desorption

and Ionization Time-Of-Flight (MALDI-TOF) and Surface-Enhanced Laser Desorption

and Ionization Time-Of-Flight (SELDI-TOF) mass spectroscopy. The schematic setup

of a linear MALDI-TOF instrument is shown in Figure 1.1. First, the biological

samples are mixed with an organic compound that acts as a matrix to facilitate the

desorption and ionization of compounds in the sample. The analyte molecules are

distributed throughout the matrix so that they are completely isolated from each other.

Some of the energy incident on the sample plate is absorbed by the matrix, causing

rapid vibrational excitation. The analyte molecules can become ionized by simple

protonation by the photo-excited matrix, leading to the formation of the typically

singly charged ions. Some multiply charged ions are also formed, but this is rarer. The

analyte ions are then accelerated by an electrostatic field to a common kinetic energy.

If all the ions have the same kinetic energy, the ions with low mass to charge ratio

(m/z) travel faster than those with higher m/z values, therefore, they are separated

in the flight tube and the number of ions reaching the detector at the end of the flight

tube is recorded as the intensity of the ions. For MALDI, normally the charge is equal

to one or two. The SELDI-TOF system uses preactivated differential binding surfaces

to achieve multidimensional chromatography and the protein-bound chips are then

analyzed by a similar technique. Whatever is the technique used, the calibrated output

is a mass spectrum characterized by numerous peaks, which correspond to individual

proteins or protein fragments (polypeptides) present in the sample. The heights of the

peaks represent the intensities or abundance of ions in the sample for a specific m/z

value. These heights along with the m/z values represent the fingerprint of the sample.

Hence by looking at the differential pattern of the spectra of samples one may detect

the presence or absence of a metabolic process or a disease.

The above techniques result in a huge amount of data to be analyzed and generate

a need for a rapid, efficient and fully automated method for matching and comparing

MS spectra. The raw spectra acquired by TOF mass-spectrometers are generally a

mixture of a real signal, noise of different characteristics and a varying baseline.

Statistically, a possible model for a given MS spectrum is to represent it schematically

by the equation

Y(m/z) = B(m/z) + NS(m/z) + ε(m/z),
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where Y(m/z) is the observed intensity of the spectrum at mass to charge ratio m/z,

B(m/z) is the baseline representing a systematic relatively smooth artifact commonly

seen in mass spectrometry data, S(m/z) is the true signal of interest consisting of

a sum of possible overlapping peaks, each corresponding to a particular biological

molecule, N is a constant multiplicative normalization factor to adjust for possibly

differing amounts of protein in each slide, and ε(m/z) is a white noise process arising

primarily from electronic noise in the detector. Data preprocessing at the “spectrum

level” is therefore extremely important for the quantitation of proteins from biological

tissues and fluids and inadequate or incorrect preprocessing methods can result in data

sets that exhibit substantial biases and make it difficult to reach meaningful biological

conclusions.

While many powerful low-level processing methods have been introduced for

analyzing mass spectrometry data, there is still room for improvement in this area.

Complex interactions between baseline subtraction, normalization, noise estimation,

and peak identification are related processes, so these steps should not be considered in

isolation. In this paper, we propose several new preprocessing steps to be used before

analyzing mass spectrometry (MS) data. These preprocessing steps include wavelet

denoising, baseline correction and normalization along the mass/charge axis. While

the benefits from denoising, baseline correction and normalization seem obvious,

we also study a scale-space approach to automatically align multiple MS peak sets

without manual parameter determination, by embedding intensity information into

the alignment framework, thus generalizing current approaches that use only the m/z

information during the alignment of peaks. Finally to avoid reliance on peak detection

methods that are currently used for analyzing protein mass spectra, as in [7] and

[34], we model the entire set of mass spectra as functions, and use functional analysis

of variance methods (FANOVA) (see [2]) to identify characteristic differences across

experimental conditions. From the FANOVA output, we also identify spectral regions

that are differentially expressed across experimental conditions in a way that takes

both statistical and clinical significance into account.

The rest of paper is organized as follows. Section 2 describes and introduces

our MS-TOF data pre-processing and normalization methods and compares them

to existing ones. Section 3 is devoted to a scale-space approach to automatically

align multiple MS peak sets, while Section 4 summarizes key ideas and results of
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FANOVA and demonstrates their use to analyze spectra from tumor samples and their

comparison with normal ones. Section 5 discusses the results and points out possible

extensions of the methodology. Some mathematical background and all proofs are

given in the Appendix.

2 Denoising and baseline subtraction

2.1 Wavelet denoising

In the rest of this paper, to isolate and remove the noise component of a spectrum

we will use a translation invariant discrete wavelet transform in a spirit similar to the

UDWT filtering method of [12] for denoising SELDI-TOF spectra.

One reason for the popularity of the discrete wavelet transform (DWT), as

formulated by [33] and [13] in times series analysis is that measured data from most

processes are inherently multiscale in nature, owing to contributions from events

occurring at different locations and with different localization in time and frequency.

Consequently, data analysis and modeling methods that represent the measured

variables at multiple scales are better suited for extracting information from measured

data than methods that represent the variables at a single scale. This is why wavelets

have recently received attention as a tool for preprocessing mass spectra (see e.g.

[10, 40, 12]).

Donoho and Johnstone [18] considered the problem of estimating a signal in noise

where all that is known about the signal is that it is spatially variable. They showed

that wavelet-based “universal thresholding” exhibits certain asymptotic optimality

properties – see [18] (p. 444) for details. Briefly, the following steps are used to

denoise an observed n-length mass spectrum Y: the discrete wavelet transform is

used to transform Y, certain subsets of coefficients are thresholded, then the inverse

transform is applied to obtain the denoised signal. Such wavelet thresholding has

become a standard technique used extensively in practice and available in many

software packages. Some details on the various transform used in this paper are given

in our Appendix (see also Section 3).

The orthogonal DWT is extremely efficient computationally, but it is not shift-

invariant. Thus, its denoising performance can change drastically if the starting
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position of the signal is shifted because the coefficients are not circularly shift

equivariant, so that circularly shifting the observed signal by some amount will not

circularly shift the discrete wavelet transform coefficients by the same amount. To

try to alleviate this problem Coifman and Donoho [11] introduced the technique of

“cycle spinning”; see also [45]. The idea of denoising via cycle spinning is to apply

denoising not only to Y, but also to all possible unique circularly shifted versions

of Y, and to average the results. As pointed out by Percival and Walden ([39], p.

429), this is equivalent to applying standard thresholding to the wavelet coefficients of

the maximal overlap discrete wavelet transform or the undecimated discrete wavelet

transform (UDWT), a transform we more briefly refer to as the stationary wavelet

transform throughout.

It is important to recall that for Y of length n (we suppose that n is an integer

multiple of 2J0 for some integer J0), the transform is overdetermined and produces

a mean-zero wavelet coefficient sequence {W̃(Y)
j,t , t = 0, . . . , n− 1} at each level j of the

transform. Such a sequence can be written as the length-n column vector W̃(Y)
j = WjY

where Wj is the level-j stationary wavelet transform matrix that maps Y to W̃(Y)
j .

Coifman and Donoho [11] and Coombes et al. [12] found that “hard thresholding

and translation invariance” combined gave both good visual characteristics and good

quantitative characteristics; hence we have adopted universal and hard thresholding

throughout for denoising MS spectra. As discussed in [39] (p. 429) cycle spinning can

be implemented efficiently in terms of the stationary wavelet transform. Let nj = Wjε.

Note that j = 1 corresponds to the finest resolution, and j = J0 to the coarsest.Then the

algorithm is:

1. Compute a level J0 partial stationary wavelet transform giving coefficient vectors

W̃(Y)
1 , . . . , W̃(Y)

J0
and Ṽ(Y)

J0
, where Ṽ(Y)

J0
denotes the vector of scaling coefficients at

resolution J0.

2. For each j = 1, . . . , J0 apply hard thresholding using the level-dependent

universal threshold with σ2
nj

= σ2
ε /2j, to obtain

Ŵ(Y)
j,t =

 W̃(Y)
j,t , if

∣∣∣W̃(Y)
j,t

∣∣∣ > σnj

√
2 log n

0, otherwise.
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3. The denoised signal is then obtained by applying the inverse stationary wavelet

transform to Ŵ(Y)
1 , . . . , Ŵ(Y)

J0
and Ṽ(Y)

J0
.

Since σε is unknow, it is estimated by the MAD scale estimate defined by

σ̂MAD =

√
2 median

{
|W̃(Y)

1,0 |, |W̃
(Y)
1,1 |, . . . , |W̃(Y)

1,n−1|
}

0.6745
.

After denoising in this manner, separating background from true signal is considerably

easier, and peaks , if necessary, can be rapidly identified and precisely quantified.

2.2 Baseline correction by penalized quantile regression splines

As already noted, spectra frequently exhibit a decreasing “baseline" (with increasing

m/z), that may be unrelated to constituent protein composition. Clearly, such nuisance

variation must be accommodated before meaningful quantitative analysis can be

conducted, since the background component is added to the real signal and overstates

the intensities of peaks. Another serious problem caused by varying background

is the difficulty with aligning spectra by maximizing a similarity measure between

them (see [25]). Varying background present in warped spectra makes it difficult to

properly calculate their similarity. Many numerical methods have been developed

for estimation of varying background present in one-dimensional signals. Among

these techniques are methods based on digital filters [50, 44]. Such filters usually

introduce artefacts and simultaneously distort the real signal. Other approaches rely

on automated peak rejection [43, 12]. These algorithms fit some functions to find

regions of signal that consist only of the baseline without peaks of real signal. The

functions being fitted may have different forms, e.g. polynomials, splines. The main

disadvantages of peak-rejection approaches are difficulties related to identification

of peak-free regions. On the other hand, threshold-based rejection of peaks gives

good results when the baseline is relatively smooth [51], and fails for signals with

significantly varying baseline.

Because of difficulties caused by automatic peak rejection other approaches have

been designed to fit a baseline without detecting the peaks. In [1], the baseline is fitted

with a low-order polynomial that prevents it from fitting the real signal peaks. For

signals with many positive peaks, however, e.g. mass spectra, the baseline estimated in
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this way has values which are too high. Subtraction of a background with values which

are too high from a signal introduces significant distortions to the analyzed signal, i.e.

the values for peaks are too low. Other approaches rely on statistical methods, such as

maximum entropy [37]. There are also approaches based on baseline removal in the

wavelet domain [32].

In this paper we focus on a method for background elimination based on penalized

regression quantile splines and evaluate its potential as an automated approach.

Although baseline drift correction is illustrated with respect to matrix-assisted laser

desorption/ionization time-of-flight data, our approach has much wider application,

since other types of spectral data suffer from baseline drift and, potentially, our

technique can also assist with a variety of instrumentation (not necessarily in the

bioinformatics domain) that suffers from baseline drift. Our method has also strong

similarities with the method, proposed by [20] for background elimination in two-

dimensional signals by asymmetric least squares splines regression (see Remark 2.1).

Since the pathbreaking paper by [30], quantile regression methods have attracted

considerable interest, basically in all domains of statistics: see the recent monograph

in [29] for a review of regression and regression quantiles in a traditional setting of

independent samples or time series data. To the best of our knowledge, and quite

surprisingly so, quantile regression seldom has been considered in the context of

baseline correction in MS spectra.

2.3 Mathematical presentation

We first describe the basic setup and background for quantile regression models.

For the ease of notation we will denote in the following by x the m/z variable. In

regression, the desired estimate of the regression function is not always given by a

conditional mean, although this is most common. Sometimes one wants to obtain

a good estimate that satisfies the property that a proportion τ of the conditional

distribution of Y with respect to regressors will be above the estimate. For τ = 0.5 this

is an estimate of the median. What might be called median regression, is subsumed

under the term quantile regression. In our context, most of the signal of interest in a

spectrum lies above the baseline which is assumed to be slowly varying, and therefore

it seems natural to estimate the baseline by using quantile regression with a small
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Figure 2.2: The check function with τ = 0.26

value of τ. While there is no criterion for establishing when most of the data lie

above the baseline, a cutoff of τ = 0.001 works well. Since the baseline is assumed

to be sufficiently smooth, our approach to estimating the background function B(·) in

a flexible manner is to represent it as a linear combination of known basis functions

{hk, k = 1, . . . , K},

B(x) =
K

∑
k=1

βkhk(x), (1)

and then try to estimate the coefficients β = (β1, . . . , βK)T. Usually the number K

of basis functions used in the representation of B should be large in order to give a

fairly flexible way for approximating B. Popular examples of such basis functions are

wavelets and polynomial splines. A crucial problem with such representations is the

choice of the number K of basis functions. A small K may result in a function space

which is not flexible enough to capture the variability of the baseline, while a large

number of basis functions may lead to serious overfitting and as a consequence to

an underestimation of the intensities of the peaks. Traditional way of “smoothing”

is through regularization which imposes a penalty on large fluctuations on the fitted

curve and this is the approach we will concentrate in this paper. As such, our quantile

regression based baseline-correction procedure may therefore be regarded as a method

similar to the “peak rejection” approaches; there is, however, no need to detect peaks.
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It will be based on a truncated power basis (P-splines) representation of the varying

background signal B(m/z) and a L1-penalization of a regression quantile loss-function.

We start by presenting basic definitions and some background knowledge about

regression splines, since not all the readers are familiar with these notions. Basic

references are [14] and [16]. Polynomial regression splines are continuous piecewise

polynomial functions where the definition of the function changes at a collection of

knot points, which we write as t1 < · · · < tK. Using the notation z+ = max(0, z), then,

for an integer p ≥ 1, the truncated power basis for polynomial of degree p regression

splines with knots t1 < · · · < tK is

{1, x, . . . , xp, (x− t1)
p
+, . . . , (x− tK)p

+}.

Altough polynomial of degre p regression splines are continuous up to their p − 1th

derivative, their derivatives of order p will not be in general differentiable at a knot

point where the function is defined by different polynomial pieces to the immediate

right and left of the knot. When representing an univariate function f as a linear

combination of these basis functions as

f (x) =
p

∑
k=0

βkxk +
K

∑
j=1

βp+j(x− tj)
p
+,

it follows that each coefficient βp+j is identified as a jump in the p-th derivative of f at

the corresponding knot. Therefore coefficients in the truncated power basis are easy to

interpret especially when tracking more or less abrupt changes in the regression curve.

The truncated power basis for polynomial of degree p regression splines with

knots t1 < · · · < tK may be viewed as a given family of piecewise polynomial

functions {hj, j = 0, . . . , p + K}. Assuming the initial location of the knots known,

the K + p + 1 dimensional parameter vector, β, describes the K + p + 1 necessary

polynomial coefficients that parsimoniously represent the function B, i .e. we have

B(x) = H(x)β where, for x given, H(x) is the matrix whose columns are hj(x), for

j = 0, . . . , K + p. We will consider a two-stage knot selection scheme for adaptively

fitting quantile regression splines to the background. An initial fixed large number of

potential knots will be chosen at fixed quantiles of the x variable with the intention to

have sufficient points at regions where the baseline curve shows rapid changes. Basis

selection by non-smooth at zero penalties will then eliminate basis functions when they
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are non necessary, retaining mainly basis functions whose support covers regions with

sharp features.

Following now Koenker and Bassett [30], define the check function as

ρτ(u) = τ|u|I{u > 0}+ (1− τ)|u|I{u ≤ 0},

where I{·} is an indicator function (see Figure 2.2). This check function highlights the

basic difference between the conditional mean and the conditional quantile function.

Here τ ∈ (0, 1) indicates the quantile of interest. Our quantile spline estimator of B can

then be given as the minimizer of

min
β∈RK+p+1

n

∑
i=1

ρτ

(
Ỹ(xi)− H(xi)β

)
+ λ

K+p

∑
j=1

|β j|.

Adapting some recent results from the literature on nonparametric function

estimation, we show in the appendix that the resulting estimator adapts to the

unknown smoothness of the underlying baseline function, as well as to its unknown

identifiablity properties.

Like other nonparametric smoothing methods, the smoothing parameter λ plays

a crucial role on determining the trade-off between the fidelity to the data and the

penalty. When is too large, there is too much penalty placed on the estimate. As a

consequence, the data is oversmoothed. On the other hand, when is too small, we tend

to interpolate the data more and this will lead to undersmoothing and underestimation

of peaks intensities. The main goal here is to pick a such that the distance between the

resulting estimate and the true function is minimized. The major difficulty is that we

do not observe the true baseline function. Therefore we cannot directly evaluate the

distance. Instead, we should rely on some other proxies. Two commonly used criteria

are the Schwarz information criterion [31] (SIC) and the generalized approximate

cross-validation criterion [54] (GACV)

GACV(λ) =
ρτ

(
Ỹ(xi)− H(xi)β̂λ

)
n− d f

where d f is a measure of the effective dimensionality of the fitted model. In our

implementation we have used the SIC criterion.
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Remark 2.1 The baseline-correction procedure proposed by Eilers [20] may be regarded as a

method similar to the quantile regression approach. His procedure is based on the Whittaker

smoother [19], which minimizes the following cost function:

n

∑
i=1

νi
(
Ỹ(xi)− B(xi)

)2 + λ
(

∆dB(xi)
)2

, (2)

where Y is the analyzed signal, B is a smooth approximation of Y (the baseline), d is the order

of differences between adjacent values of B and ν are weights. Weights ν have high values in

parts of the signal where the signal analyzed is allowed to affect estimation of the baseline. In all

other regions of the signal, values of ν are zero. The positive parameter λ is the regularization

parameter and controls the significance of the penalty term λ(∆dB(xi))2, i.e. the higher the

value of λ, the smoother the estimated baseline. Because of the asymmetry problem in baseline

estimation, the weights should be chosen in a way that will enable “rejection” of the peaks. To

achieve this, the weights are assigned as:

νi =

{
p if Ỹ(xi) > B(xi)

1− p if Ỹ(xi) > B(xi),
(3)

where 0 < p < 1. The positive deviations from the estimated baseline (peaks) have low weights

while the negative deviations (baseline) obtain high weights. There is, however, a problem

of simultaneous determination of weights (ν) and baseline (B). Without the weights it is

impossible to calculate the baseline and without the baseline it is impossible to determine the

weights. This problem is solved iteratively, i.e., in the first iteration all weights get the same

value, i.e. unity. Using these weights, a first estimate of the baseline is calculated. Iterating

between calculation of the baseline and setting weights, gives an estimate of the baseline in the

next iterations. The use of p close to zero and large λ enables baseline estimation. However,

experience has shown that the above procedure requires many iterations to converge to a good

baseline estimation and does not always converges.

2.4 Application and illustrations

The goal of this subsection is to illustrate the quantile regression based process of

finding a baseline curve to real and simulated proteomics MALDI spectral data and

to make some comparisons of the results with those obtained with the automated peak

rejection method proposed recently in [12].
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To estimate the baseline we have used two procedures; the first one implements

quantile regression splines (QRS) without further constrains or knots removal while

the second one uses a slight modification of a very attractive implementation of our

`1-penalized version of quantile regression splines, namely the constrained B-spline

smoothing method (COBS) of He and Ng [24] which extends earlier work of Koenker

et al. [31]. The spline basis used to model the baseline is based on quadratic splines

with usually a maximum number K = 60 of equally spaced quantile knots used in the

representation of B. The final number of knots is selected via the AIC criterion.

Peaks detection in biological samples

We consider samples of nipple aspirate fluid (NAF) from breast cancer patients and

from healthy women (for a complete description, see [12]). These data are available

from the web site http://bioinformatics.mdanderson.org/pubdata.html and have

been used by Coombes et al. [12] to look at the reproducibility of their method in

detecting and identifying relevant peaks, since the 24 spectra of the NAF data were

independently derived from the same starting material. The method of the above cited

authors includes a processing step that determines which peaks found in individual

spectra should be identified as representing the same biochemical substance across

spectra.

In order to illustrate the effects of our quantile regression based baseline removal

process, we have run the procedures of Coombes et al. [12], with the only difference

being in our way for estimating the baseline (using QRS or COBS) instead of the

monotone local minimum curve fitting procedure implemented by Coombes et al..

A comparison of the results obtained is illustrated by the histograms displayed in

Figure ??. We found 174 distinct peaks across the 24 spectra when using either

Coombes et al. procedure or the QRS quantile regression splines procedure for baseline

removal. When using COBS, 181 distinct peaks has been found.

Of course, it is clear that the number of peaks found per spectrum is not, by itself,

an adequate measure of the quality of a baseline removal algorithm. It is important

to ascertain if the peaks being found by the algorithm correspond to real phenomena

in the spectra. While we do not have knowledge of the “true” peaks in the spectra

used, one can look at the reproducibility of the method, since we have 24 spectra
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Figure 2.3: Histograms of the number of peaks found in multiple spectra.

independently derived from the same starting material. Table 1 gives the distribution

of the number of peaks for the three methods. For example when using COBS, 69 of

the 181 peaks were present in all 24 spectra. Moreover, 114 peaks were found in at least

20 spectra, 137 peaks were found in at least 15 spectra and 159 peaks were found in at

least 10 spectra.

Table 1: Distribution of the number of peaks. Number of peaks present in all 24

spectra, at least 20, at least 15 and at least 10 spectra.

all 24 at least 20 at least 15 at least 10

Monotone Local Minimum 47 83 106 130

QRS (with 60 knots) 68 112 128 145

COBS (with 60 initial knots) 69 114 137 159

These results tend to present substantial evidence that the removal of the baseline

estimated by our algorithm finds most of the true, reproducible peaks in the data.
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However, in order to also judge how well the baseline is estimated, we have conducted

a small simulation study, described in the the next subsection.

Quality of the baseline estimate

To illustrate the quality of the baseline estimate, we need spectrum samples with a

known baseline. To do so we have used the following procedure. Starting from

samples of the NAF data set, we first estimate by our COBS splines procedure (with 60

initial knots) the baseline (denoted by B0) of the average spectrum and the associated

baseline corrected denoised spectrum (denoted by N0S0). Next we build 24 new

spectra as noised replicates of B0 + N0S0 with noise similar to that of the original

sample. One may then consider that all spectra within this artificial data set have B0 as

a common baseline.

We then have run the three baseline estimation procedures over the simulated data.

Both spline based procedures were used with 60 knots. For each method we compute

the square average bias, the empirical variance and the mean square error at each point

of the grid of m/z values and report their average value (over the grid). We give also

the relative mean absolute error (see [8]) of reconstruction.
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Figure 2.4: Comparison of estimated baseline on simulated data.

Table 2 reports the results obtained for the three methods. COBS appears to be

the best method. The results obtained by QRS are slightly better than the ones of

the estimation of the baseline by a monotone local minimum curve. Note that the
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COBS procedure seems to be more variable with respect to the other two over the

simulations, probably due to the fact that the knots are chosen adaptively at each

run. However, the larger variance is compensated by a noticeable reduction in bias.

Figure 2.4 illustrates the behavior of the three procedures. Note that the “true” baseline

and the one estimated by COBS almost coincide.

Table 2: Simulated example. Comparison of the baseline estimates.

bias2 Var MSE RMAE

Monotone Local Minimum 1 346.78 8.40 1 347.63 0.0146

QRS (with 60 knots) 1 148.20 20.15 1 168.35 0.0063

COBS (with 60 initial knots) 317.15 67.66 384.81 0.0024

3 Wavelet transform and multi-scale robust spectra

alignment

Biologically significant comparisons and conclusions are all based on the alignment

results of spectra where the ultimate goal is to identify differentially expressed proteins

in samples of diseased and healthy individuals. MS spectra alignment is difficult even

after instrument calibration with internal markers because the mass errors vary with

m/z in a nonlinear fashion as a result of experimental and instrumental complexity

and data variation.

In this section, we introduce a new alignment algorithm that uses the wavelet

transform. We formulate the problem of aligning two spectra as a wavelet based non-

rigid registration problem and solve it using a robust point matching approach. To

align multiple spectra, we propose and justify a nonlinear wavelet denoising averaging

method to estimate a common spectrum as a standard using all individual spectra.

Once the standard common spectrum is found, the multiple spectra alignment problem

is simplified as pairwise alignment problem and is solved by using the robust point

matching approach sequentially (i.e. each time we align only one spectra to the

standard one).

Before introducing our framework, we briefly review few methods that have been
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recently proposed for addressing the alignment problem for MS spectra. Randolph

and Yasui [42] have also used wavelets to represent the MS data in a multiscale

framework. Within their framework, using a specific peak detection procedure, they

first align peaks at a dominant coarser scale from multiple samples and then align the

remaining peaks at a finer scale. However one may question if representing peaks at

multiple scales is biologically reasonable, i.e., if peaks at coarse scales really correspond

to true peptides. A similar in spirit procedure has been also developed by Coombes

et al. [12]. Johnson et al. [27] assume that the peak variation is less than the typical

distance between peaks and use a closest point matching method in peak alignment.

The applicability of their method is limited by the data quality and it cannot handle

large peak variation or false positive peak detection results. A recent method, to which

our method will latter be compared, is the nonparametric warping model with spline

functions to align MS spectra proposed recently by Jeffries [26]. While the idea of using

smoothing splines to model the warping function is interesting it is unclear if a smooth

function with second order regularities is precise enough to describe the nonlinear

shift of MS peaks encountered in practice. Tibshirani et al. [48] applied a hierarchical

clustering method to construct a dendrogram of all peaks from multiple samples. They

cut off the dendrogram using a predefined parameter and clustered the remaining

branches into different groups. They then considered the centers of these groups as

common peaks and aligned every peak set with respect to the common peaks. The

implicit assumption behind their approach is that around each of the common peaks,

the observed peaks from multiple samples obey a certain kind of distribution with

the mean equal to the location of the common peak. The assumption agrees well

with the motivation of peak alignment. However, the cut-off parameter and the final

clustering results can be influenced by changing a few nodes in the dendrogram, while

some noisy points or outliers (e.g., caused by false positive peak detection results)

often cause such changes, as it is shown in the recent paper by Yu et al. [52]. To our

knowledge, frameworks that are closest to the one we propose in this work are the

recent approaches proposed by Saussen et al. [46] and Yu et al. [53]. Both use a robust

point matching algorithm to solve the alignment problem but an implicit assumption

in Saussen et al.’s approach is that there exists a one-to-one correspondence among

peaks in multiple spectra while Yu et al. [53] use a super set method to calibrate the

alignment. To end this subsection let us mention also that Sauve and Speed [47] also

17



discusses alignment methods that address proteomic data yet provide few details and

no software for their implementation.

3.1 Averaging individual denoised spectra

The idea of using an average spectrum to get around the peak matching problem is

not new and has been suggested by others (Morris et al. [35]). In their paper however,

Morris and colleagues assume that all individual spectra are already well calibrated

and justify their procedure by the law of large numbers. Our method takes into

account the fact that the mass errors among individual spectra may vary with m/z in

a nonlinear fashion and theoretically shows the benefits in denoising each individual

spectrum before averaging. When spectra are well calibrated the two procedures are

equivalent. Clearly, the average does not preserve the total intensity of individual

peaks, but the point here is to reduce the redundance among multiple peaks that

corresponding to the same peptide.

Experience shows that generally the m/z axis shift of peaks is relatively small,

approximately around 0.1% to 0.2% of the m/z value. Such an assumption is actually

implicit behind the motivation of peak alignment. Based on these facts, and for the

sake of simplicity denoting by t the equidistant m/z values, re-scaled to vary within

the interval [0, 1], we assume that a reference spectrum is modeled as

Y0
i = f (t0

i ), t0
i = i/n, i = 1, . . . , n, (4)

where f (t) = B(t) + NS(t). Due to the variation of the m/z values, we observe a set

of M spectra

Yk
i = f (tk

i ) + εk
i , i = 1, . . . , n, k = 1, . . . , M, (5)

where the εk
i are independent standard normal random variables with a common

standard deviation σ and where the design points tk
i are randomly shifted values of

the reference values t0
i , i.e.

tk
i = t0

i + δk
i , i = 1, . . . , n,

with δk a random vector, independent of the signal noise such that

E(δk) = 0,
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var(δk
i ) ≤ C/n2,

δk
i − δk

i+1 ≤
1
n

, i = 1, . . . , n,

and

δ1 ≥ − 1
n

δn ≤ 0.

The above model for the random shifts is in agreement with the belief that the m/z shift

of peaks in MS spectra is relatively small. The last two constraints on the components

of δk are needed to ensure that the order of the signal points is not changed. Note that

in such a model the peaks are moved by different amounts to the left or the right and

the relative distance between peaks is changed as well.

Instead of using now a TI wavelet transform for denoising the observed signal,

each observed signal will be analyzed via the discrete wavelet transform and the lack

of invariance of the DWT will be actually an important part of our estimator of f . By

obtaining different reconstructions via wavelet denoising for each observed signal Yk,

k = 1, . . . , M and averaging over them, any dependence of peak placement will be

removed or reduced.

Let φ and ψ represent the mother and mother wavelets and assume that they are

compactly supported. Denoting by φjl and ψjl the translations and dilations of φ and

ψ, the signal f can be expressed as an infinite series

f (t) =
2j

0−1

∑
`=0

ξ j0,`φj0`(t) +
∞

∑
j=j0

2j−1

∑
`=0

θj,`ψj`(t),

where the coefficients ξ j0,` represent the smooth part of f and the θj,` represent the

detailed structure of f . Let W be the wavelet transform matrix corresponding to the

choice of the wavelet function φ and ψ and denote by

θ = (ξ j0,0, . . . , ξ j0,2j0−1, θj0,1, . . . , θJ−1,2J−1−1)
T,

the vector of wavelet coefficients of f in (4). If n is a dyadic integer which we will

assume hereafter, then the DWT estimate of θ based on data Yk is

θ̃
k =

1√
n

WYk.

To get a denoised estimator of f one may use a term by term “soft” threshold rule

η(θ̃j,`, λ) =
θ̃j,`

|θ̃j,`|
(
|θ̃j,`| − λ

)
+ ,
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where the threshold λ can be for example the universal threshold σ
√

2 log n. With this

notation, our proposed estimate of the signal f based on the set of the observed signals

Yk, k = 1, . . . , M, can be symbolically written as

f̂ =
1
M

M

∑
k=1

W−1η(WYk, λ). (6)

The optimal rate of convergence, when measured via the mean integrated squared

error, in estimating a function in a Hölder space with unknown parameter α is

O(n−2α/(2α+1)) as can be see in the following theorem, whose proof is given in the

appendix.

Theorem 3.1 Suppose a signal such as the one given in expression (4) is in the Hölder ball

Λα(R), R > 0, with parameter α and is observed as in (5) with the variances of the δk
i ≤ C/n2.

Let f̂ be the estimator at (6). Let ψ have r vanishing moments. Then for α ∈ (0, r],

sup
f∈Λα(R)

E
(
‖ f − f̂ ‖2

2

)
≤ Cn−2α/(2α+1).

Thus, our estimator retains the optimal qualities of wavelet thresholding as if the

observed data were observed on the reference grid of m/z values. The same is not true

for the mean spectrum defined by Morris and his colleagues, which may be written in

our notation as

f̂M = W−1η(WȲ, λ),

since the transform η is not linear.

To end this subsection, we have run some Monte Carlo simulations to compare

these two denoising procedures on several test functions specifically chosen for their

possession of jumps and steep changes. The functions are depicted in figure 3.5

together with a typical misaligned version of them. They have been scaled so that

each has a standard deviation of 1.

To compare the reconstruction errors of the two estimators, Monte Carlo

simulations were performed. For each function, a set of 24 misaligned version of it

were generated and Gaussian noise was added at signal to noise ratio of 5. Sample

sizes ranged from n = 64 to n = 512. The reconstruction errors were estimated from

50 Monte Carlo replications of this experiment. For each denoising procedure the soft

SureShrink threshold rule with Symmlets of order 5 was used.
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Averaging individual denoised spectra

n bias2 Var MSE RMAE

Blip

64 0.4712 0.0163 0.4875 0.0265

128 0.2293 0.0105 0.2398 0.0171

256 0.2696 0.0048 0.2745 0.0140

512 0.1465 0.0028 0.1492 0.0102

Corner

64 0.1540 0.0116 0.1657 0.0157

128 0.0659 0.0057 0.0716 0.0099

256 0.0452 0.0036 0.0489 0.0079

512 0.0324 0.0022 0.0347 0.0061

Angles

64 0.2329 0.0146 0.2475 0.0400

128 0.0878 0.0100 0.0978 0.0198

256 0.0643 0.0050 0.0694 0.0162

512 0.0559 0.0023 0.0582 0.0147

Waves

64 0.2836 0.0284 0.3120 0.0335

128 0.1412 0.0174 0.1586 0.0220

256 0.0164 0.0099 0.0263 0.0076

512 0.0050 0.0050 0.0099 0.0041

Mean spectrum denoising

n bias2 Var MSE RMAE

Blip

64 0.7809 0.0254 0.8063 0.0376

128 0.3029 0.0352 0.3380 0.0213

256 0.2161 0.0111 0.2272 0.0156

512 0.2092 0.0073 0.2166 0.0125

Corner

64 0.2004 0.0158 0.2161 0.0179

128 0.0803 0.0105 0.0907 0.0110

256 0.0827 0.0065 0.0891 0.0112

512 0.0378 0.0061 0.0439 0.0066

Angles

64 0.3709 0.0218 0.3927 0.0514

128 0.1132 0.0190 0.1322 0.0265

256 0.0769 0.0086 0.0855 0.0189

512 0.0658 0.0054 0.0712 0.0175

Waves

64 0.6503 0.0153 0.6655 0.0517

128 0.6371 0.0083 0.6453 0.0469

256 0.0115 0.0173 0.0288 0.0066

512 0.0112 0.0103 0.0215 0.0064

Table 3: Simulation results for the two denoising procedures on 4 types of signals

(Blip, Corner, Angles and Waves). Each signal has been randomly misaligned 24

times and an additive noise with signal to noise ratio equal to 5 was added on each

misaligned signal. The experiment was replicated 50 times and the table displays the

error statistics for each method and each type of signal. The left displays the results for

the averaging individual denoised spectra methods while the right table summarizes

the results obtained by mean spectra denoising.

21



0.0 0.2 0.4 0.6 0.8 1.0

10
15

20
25

m/z

Corner

0.0 0.2 0.4 0.6 0.8 1.0

5
10

15
20

m/z

Blip

Angles Waves

m/zm/z0.0 0.2 0.4 0.6 0.8 1.0

5
10

15
20

0.0 0.2 0.4 0.6 0.8 1.0

10
15

20
25

Figure 3.5: The four test functions (solid line) together with a typical misaligned
version of them (dashed line) used in the simulation.

Results of these simulations are given in Table 3. As we can see, in all cases, the

method we have proposed outperforms the mean spectrum denoising procedure in

terms of mean squared error and relative absolute mean error statistics. Note also that

the two estimators have similar errors when the sample size increases.

3.1.1 Alignment

Once a set of MS spectra is processed by the DWT algorithm described above, the

resulting average denoised spectrum f̂ will play the role of a “global” anchor to align

them together. Before proceeding to the alignment, the mean spectrum will be baseline

corrected using our regression quantile procedure and then each spectrum will be

denoised and baseline corrected with the mean spectrum smooth baseline determined

above. The alignment process is again based on the wavelet transform, avoiding the

determination and quantification of individual peaks, as it is usually done, and can be

decomposed into two steps: (1) alignment of two peak sets; (2) alignment of multiple

peak sets. The details are described as follows.

Spectra alignment consists in finding, for each observed spectrum, a warping
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function in order to synchronize all spectra before any other statistical inferential

procedure. In what follows, the terms alignment, warping, registration or matching

will also be used to refer to the synchronization of set of signals. Matching two

functions can be done by aligning individual locations of corresponding structural

points (or landmarks) from one curve to another. Previous approaches to landmark-

based registration in a statistical setting include Kneip and Gasser [28], Gasser and

Kneip [23], Ramsay and Li [41], Munoz Maldonado et al. [36] and Bigot [6]. For

landmark-based matching one needs to detect the landmarks of a set of signals from

discrete (noisy) observations. The estimation of the landmarks is usually complicated

by the presence of noise whose fluctuations might give rise to spurious estimates

which do not correspond to structural points of the unknown signals. Then, it is

necessary to determine the landmarks that should be associated. This step is further

complicated by the presence of outliers and by the fact that some landmarks of a

given curve might have no counterpart in the other curves. In this subsection, we

will use the scale-space approach proposed in Bigot [5] to estimate the landmarks

of a noisy function. This method is based on the estimation of the significant zero-

crossings of the continuous wavelet transform of a noisy signal, and on a new tool, the

structural intensity, proposed in Bigot [5] to represent the landmarks of a signal via a

probability density function. The main modes of the structural intensity correspond to

the significant landmarks of the unknown signal. In a sense, the structural intensity

can be viewed as a smoothing method which highlights the significant features of a

signal observed with noise.

We will first consider the alignment of two given spectra by a fast and automatic

method based on robust point matching of the structural intensities associated to the

significant landmarks in the two curves. Its computational cost only depends on the

number of landmarks and is therefore very low.

3.1.2 Scale-space estimation of the significant landmarks

We briefly recall here the scale-space approach proposed in Bigot [5], to automatically

estimate the landmarks of an unknown signal. This approach is based on the detection

of the significant zero-crossings of the continuous wavelet transform of a signal

observed with noise.

Let f ∈ L2(R) and ψ = (−1)rθ(r) where r ≥ 1 is the number of vanishing
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moments of the wavelet ψ, and θ is a smooth function with a fast decay such that∫ ∞
−∞(ψ(u))2du = 1. Then, by definition, the continuous wavelet transform of f at a

given scale s > 0 is:

Ws( f )(x) =
∫ +∞

−∞
f (u)ψs(u− x)du for x ∈ R,

where ψs(u) = 1√
s ψ(u

s ).The term zero-crossings is used to describe any point (z0, s0)
in the time-scale space such that z 7→ Ws0( f )(z) has exactly one zero at z = z0 in a

neighborhood of z0. We will call zero-crossings line any connected curve z(s) in the

time-scale plane (x, s) along which all points are zero-crossings. Now, note that if f is

Cr in an interval [a, b], then for all x ∈]a, b[

lim
s→0

Ws( f )(x)
sr+1/2 = K f (r)(x), where K =

∫ +∞

−∞
θ(u)du 6= 0. (7)

Hence, equation (7) shows that at fine scales the zero-crossings of Ws( f )(x) converge

to the zeros of f (r) in ]a, b[ (if any) . Thus, if the zero-crossings propagate up to fine

scales, one can find the locations of the extrema (resp. the points of inflexion) of a

function by following the propagation at small scales of the curves z(s) when ψ has

r = 1 (resp. r = 2) vanishing moment(s). This is the case when θ is a Gaussian since it

is well known that scale-space representations derived from Gaussian guarantee that

the zero-crossings lines are never interrupted when s goes to zero (see [5] for further

references).

In Figure 3.6 (b), the zero-crossings of a simulated signal are computed for a

Gaussian wavelet with r = 1 vanishing moment. One can see that the zero-crossings

lines are never interrupted and converge to the extrema of the signal when the scale

s goes to zero. When a smooth signal is observed with noise, its local extrema can

be detected by estimating the significant zero-crossings of its continuous wavelet

transform. A simple hypothesis testing procedure has been developed in [6] to

estimate the zero-crossings lines of a signal at various scales (see [6] for further details).

However, this procedure only gives a visual representation that indicates “where” the

landmarks are located, but there is generally no analytical expression of these lines in

a closed form. The structural intensity is a new tool introduced in [5] to identify the

limits of the zero-crossings lines when they propagate to fine scales. The structural

intensity method consists in using the zero-crossings of a signal at various scales to
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compute a “density” whose local maxima will be located at the landmarks of f . More

precisely, the structural intensity is defined to be:

Gz(x) =
p̂

∑
i=1

∫ ŝ2
i

ŝ1
i

1
s

θ

(
x− ẑi(s)

s

)
ds, (8)

where p̂ is the number of estimated zero-crossings lines ẑi(.), i = 1, . . . , p̂ and [ŝ1
i , ŝ2

i ]
represent the supports of these lines in the time-scale plane. The landmarks of the

unknown signal f are then defined as the local maxima of Gz(x) on [0, 1] (we will usually

refer to these local maxima as the modes of Gz). The structural intensity is therefore a

tool to identify the limits of the lines ẑi(.), i = 1, . . . , p̂ in the time-scale plane. In Figure

3.6(c), one can see that the local maxima of the structural intensity correspond to the

extrema of the signal (note that in Figure 3.6(c), the structural intensity is computed

with the true zero-crossings). One can also remark that for estimating only the local

maxima (resp. minima) of a signal f , one only keeps in the formula (8) the zero-

crossings z(s) such that Ws( f )(z(s)) > 0 (resp. < 0) for all z ∈ [z(s) − ε, z(s)[ with

ε sufficiently small. In Figure 3.6(e), we give an example of an estimation of the zero-

crossings of a noisy signal (compare the quality of this estimation with Figure 3.6(b)).

We also display in Figure 3.6(f) the structural intensity of the estimated zero-crossings

that correspond to the local maxima of a function. One can see that the modes of

this structural intensity correspond to the significant local maxima of the noisy signal

shown in Figure 3.6(d).

3.1.3 Spectra registration via the alignment of the structural intensities

One of the first issues encountered by landmark-based matching methods is the

correspondence problem between two sets of features. This step is usually performed

manually which can be tedious and prone to error. Let Gz1 and Gz2 denote the

structural intensities of the (estimated) zero-crossings of two signals f1 and f2. It

has been observed in [6] that the features that one would align manually correspond

to the modes of Gz1 and Gz2 whose shape and height are similar. To automatically

solve this correspondence problem, Bigot [6] has proposed a new technique, called

dynamic correspondence, to automatically compute a warping function that aligns the

common modes of Gz1 and Gz2. The computational cost of this approach depends

only on the number of estimated landmarks which is usually very small, and dynamic
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Figure 3.6: (a) Simulated signal with various extrema, (b) Zero-crossings computed for

a Gaussian wavelet with r = 1 vanishing moment: the vertical axis gives − log2(s),

(c) Structural intensity of the zero-crossings, (d) Simulated signal + Gaussian noise, (e)

Estimation of the zero-crossings, (f) Structural intensity of the estimated zero-crossings

that correspond to local maxima.

correspondence is therefore a very fast alignment technique (see [6] for further details).

Note that this approach handles the case when the two structural intensities do not

have the same number of modes, and discards the landmarks of a given curve that do

not have counterpart in the other curve. Dynamic correspondence is thus a robust

point matching technique for one-dimensional curves. Once the average denoised

spectrum f̂ has been computed, we simply use dynamic correspondence to register

each denoised and baseline corrected spectrum onto the “template” curve f̂ .

An illustrative example

Our purpose here is to test our scale-space alignment approach and to compare it

with the smoothing spline nonparametric approach developed recently by Jeffries [26].
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Here, we use replicate data coming from a real study to ensure that the sample

variation is minimal. These data are described in the recent paper by Jeffries and are

available from http://krisa.ninds.nih.gov/alignment/. More precisely, as part of

a larger study examining proteomic spectra from healthy individuals and those with

multiple sclerosis, reference samples from a large pool of serum were included as part

of a quality control procedure. As patient and control samples were processed, a few

spectra were consistently drawn from this common, fixed reference pool and analyzed

to alert investigators to deviations related to sample processing. Ideally, all the spectra

from the reference samples should look very similar. Samples were processed on

six distinct days using identical calibration procedures, personnel, equipment, and

sample handling techniques. Samples from the first four days were processed within a

single week while samples for the last two days were processed approximately 2 and

3 months later. We have chosen as reference spectrum a spectrum from the third day

(4/2/2003) and a spectrum for the fifth day (5/20/2003) to be aligned. Both spectra

are displayed in Figure 3.7. The graph indicates the data produced on the fifth day are

not well aligned with those of the third.
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Figure 3.7: Two spectra requiring alignment shown on a restricted range of m/z values.

We compare our alignment algorithm to the algorithm proposed by [26], which, for
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the sake of completeness, we now briefly recall. As for our method its algorithm begins

with a single spectrum, a set of N peaks with associated m/z values (denoted as pi),

and a set of target m/z values for these peaks (denoted mi). If yi = pi/mi denote the

ratio of the original mass value to its target value, then given {p1, m1, . . . , pN, mN} and

any positive value λ, the algorithm finds the unique function fλ(m) that minimizes

N

∑
i=1

(yi − f (pi))
2 + λ

∫
( f̈ (p))2dp,

among all functions f (m) with two continuous derivatives where m denotes any mass

value in the range of interest. The parameter λ is determined by cross validation. Once

the function fλ is determined the data are recalibrated by computing the recalibrated

(m/z)recal values associated to the ones of the reference spectrum (m/z)ori as

(m/z)recal =
(m/z)ori

fλ((m/z)ori)
.

Linear interpolation of the recalibrated masses that are closest to the original mass is

then used to obtain a new intensity for the original mass. Before proceeding to our

comparison, note however that this method is only based on the m/z information.

We now present our illustrative example. The landmarks of both spectra were

estimated by our detection algorithm of the significant zero-crossings of the continuous

wavelet transform of the signals. Figure 3.8 displays the resulting structural intensities

of the zero-crossings for the local maxima and local minima in both spectra leading to

the appropriate landmarks for multi-scale alignment.

Once landmarks are estimated, we proceed to the alignment of both spectra by our

robust point matching algorithm. The resulting warping function and the alignment

obtained are displayed in Figure 3.9.

Finally to compare our method with the one by Jeffrie’s we have also applied the

smooth warping procedure of Jeffrie to the same set of spectra. The result is displayed

in Figure 3.10 where one can clearly see that the peaks around the m/z values of 3220

Da and 3250 Da are not properly aligned.

To conclude, the above results show that our multi-scale based alignment method

seems more robust against noise than the smoothing spline method. In addition, in our

approach we use jointly both m/z information and intensity values in the alignment,

which is not the case for most previous approaches, including the smoothing spline

method but also Tibshirani’s hierarchical clustering method.
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Figure 3.8: Left: Structural intensity of the estimated zero-crossings that correspond

to local maxima; Right: Structural intensity of the estimated zero-crossings that

correspond to local maxima.

4 Wavelet based Functional analysis of Variance and

significant features

One of the most frequently asked questions in proteome-wide studies involving MS

data is how to find a list of biomarkers, defined as proteins differentially expressed

between two groups of samples. Conventional methods first detect the peaks in

protein spectrum for each sample after calibrations and then align these peaks across

the samples. Next they find peaks related to a mass-to-charge ratio (m/z) that

discriminate groups based on testing of peak intensities. There are two major concerns

with this approach. First, for MALDI or SELDI-TOF MS data, the peak detecting

methods are controversial because they are ad-hoc and the results can vary due to user

defined parameters. Second, since a large number of proteins, potentially correlated

with each other by unknown fashion, are tested simultaneously with a relatively small

number of samples, it is expected to have a lot of false positives in detecting statistically

significant biomarkers if one performs a series of standard univariate ANOVA tests
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Figure 3.9: Left: Warping function estimated using the landmarks (denoted as circles);

Right: Resulting alignment of the two spectra.
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Figure 3.10: Comparison of alignments obtained by the two methods.

to compare a set of spectra at each specific biomarker due to a serious multiplicity

problem given the usually large number of simultaneous tests. Ignoring multiplicity
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leads to an uncontrolled overall Type I error while, for example, Bonferroni type

procedures in which the p-value cutoff for each test is divided by the total number of

hypotheses to be tested, are known to be overly conservative and to yield an extremely

low power.

A more powerful and less ambiguous approach to high-dimensional hypothesis

testing is to consider each spectrum as the basic unit in the analysis and to focus on

testing for significant treatment effects in a functional data model. Such an approach

is available from adaptations of Fan and Lin [22], and more recently of Abramovich

et al. [2] discussing a functional analysis of variance (FANOVA) suitable for testing

fixed effects. Since spectra are composed by many peaks, their sparse representation

in the wavelet domain allows significant reduction in dimensionality of the original

functional data and we will adopt hereafter the wavelet-based testing procedures of

Abramovich et al. [2] of a zero signal in a “signal+white noise” model for testing in

the fixed-effects FANOVA.

First we describe the following white noise(or diffusion) version of the FANOVA

model we are going to consider hereafter. We will assume that the observed

spectra, baseline-corrected, normalized and properly aligned by means of the methods

described in the previous sections, are modeled as sample paths of a stochastic

processes driven by

dYij(t) = Si(t) dt + ε dWij(t), i = 1, . . . , r; j = 1, . . . , ni t ∈ [0, 1], (9)

where ε > 0 is the diffusion coefficient, r is a finite integer indicating the number of

treatments to be compared, ni the number of spectra recorded for treatment i, Si the

(unknown) mean spectrum in population i and Wij are independent standard Wiener

processes and where the m/z range has been re-scaled to [0, 1].
In practice, obviously, one always observes discrete data samples of size n with a

noise variance σ2, but from the well-known results of Brown and Low [9], under some

general conditions, the corresponding discrete model is asymptotically equivalent to

the white noise model (9) with ε = σ/
√

n.

Each of the r average spectra Si in model (9) admits the following unique

decomposition

Si(t) = m0 + ai + µ(t) + γi(t) i = 1, . . . , r; t ∈ [0, 1], (10)
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where m0 is a constant function (the grand mean), µ(t) is either zero or a non-constant

function of t (the main effect of t, i.e. a common spectrum if no difference exists among

treatments), ai is either zero or a non-constant function of i (the main effect of i) and

γi(t) is either zero or a non-zero function which cannot be decomposed as a sum of a

function of i and a function of t (the interaction component). The components of the

decomposition (10) satisfy the following orthogonal (identifiability) conditions∫
[0,1]

µ(t) dt = 0,
r

∑
i=1

ai = 0, (11)

r

∑
i=1

γi(t) = 0,
∫

[0,1]
γi(t) dt = 0, ∀ i = 1, . . . , r; t ∈ [0, 1]. (12)

As in the traditional fixed-effects ANOVA models, one is naturally interested in

testing the significance of the main effects and the interactions in the fixed-effects

FANOVA model (9)-(12). For each treatment i, i = 1, . . . , r, averaging over the ni

observed paths in the FANOVA model (9)-(10) yields

dYi(t) = m0 + µ(t) + ai + γi(t)dt + ε dW i(t), i = 1, . . . , r; t ∈ [0, 1]. (13)

where W i is the average of ni independent standard Wiener processes on [0, 1]. By

the basic properties of the increments of a standard Wiener process on [0, 1], the

stochastic processes {W i; i = 1, . . . , r} are Wiener processes with covariances kernel

C(s, t) = 1
ni

min (s, t), and are still independent.

Integrating (13) with respect to t and using the identifiability conditions (11)-(12),

we have

Y∗
i = m0 + ai + ε ξi, i = 1, . . . , r,

r

∑
i=1

ai = 0,

where Y∗
i =

∫
[0,1] dYi(t) and ξi are independent N(0, 1/ni) random variables. This is

the classical unbalanced one-way fixed-effects ANOVA model, so testing (ai = 0) (no

differences in level) can be performed by standard techniques.

We are mainly interested in testing the zero-interactions. Hence, denoting hereafter

the L2([0, 1])-norm by || · ||2, we consider the alternative hypotheses to be of the form

H1 : γi ∈ F (ρ), at least for one i = 1, . . . , r, (14)

where F (ρ) = { f ∈ L2([0, 1]) : || f ||2 ≥ ρ} and ρ is a positive distance separating the

alternative from the null hypothesis. Now, note that testing

H0 : γi ≡ 0, ∀ i = 1, . . . , r,
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is equivalent to testing

H0 : θ
(i)
jk = 0, ∀ i = 1, . . . , r, j ≥ 0; k = 0, . . . , 2j − 1,

where θ
(i)
jk are the wavelet coefficients of γi. We can therefore apply the appropriate

minimax tests of Abramovich et al. [2]. The interested reader is referred to the later

paper for the implementation details. Let us just mention that the above wavelet

formulation provides an efficient way to make meaningful inference on the fixed-

effects and that the properties of the test are nonasymptotic with an optimal power

(small ρ) over various classes of alternatives for the γi’s simultaneously.

These above focus on functional hypothesis testing for fixed effect functions. This

is clearly of interest, but is not the only relevant question with mass spectrometry

proteomics where the primary goal is not to only to decide whether there are any

systematic differences in the mean curves for different groups of patients, but also

to identify which regions of the curves demonstrate differences. These specific

regions can subsequently be mapped to individual proteins that may serve as useful

biomarkers in medical applications. There is some recent and ongoing related work

on this subject. More precisely, Park et al. [38] propose a new and simple algorithm

based on permutation method to visualize the possible range of difference in protein

abundance between groups with statistical significance while guarding against false

positives simultaneously by constructing confidence bands of the contrast between

groups. They also define a new concept for peaks (biomarkers) based on the proposed

confidence band method. Once a significant difference is assessed by the FANOVA

procedure, one then may use their procedure to find the relevant biomarkers.

To end this section, let us finally remark that since spectra are usually acquired

from certain subjects, a mixed-effects model is necessary to generalize inferences to the

population from which the subjects were selected. Researchers have started to derive

and apply wavelet based mixed-effects models to mass spectrometry data recently (see

[34, 3]), but we will not discuss them further in this paper.

Application to Petricoin’s ovarian SELDI-TOF MS dataset

We analyzed the latest SELDI-TOF MS data from the ovarian cancer study available

in the Clinical Proteomics Programs Databank with our method. This set of data
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consists of serum profiles of 162 subjects with ovarian cancer and 91 non-cancer control

subjects. For each subject, a set of data consisting of intensities at 15,154 distinct m/z

values ranging from 0.0000786 to 19,995.513 was available for analysis. This data set

was constructed using Ciphergen WCX2 ProteinChip Arrays. Preparation of chips

for sample analysis was performed robotically and the raw data, without baseline

subtraction, was posted for download. We used the normalization method, baseline

removal and alignment procedures outlined in the previous section before proceeding

to testing. We analyzed the ovarian cancer data set with 8192 m/z data points within

the m/z range of I = [1, 500 m/z, 20, 000 m/z] for 91 normal and 162 tumor samples.

The intensity measures within the range below 1500 m/z were discarded due to the

effects of matrix.

Figure 4.11 below displays the wavelet based estimated model components µ and

γ1 for Petricoin’s normalized Ovarian MS data set within the region of [4001 m/z,

12192 m/z]. To perform the estimation we have used Daubechies wavelets of order 6 (

3 zero moments).
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Figure 4.11: Zoom-in figure within the region [4001 m/z, 12192 m/z] for Petricoin’s
normalized Ovarian MS data set; mean µ(t) [toppanel] and the group effect γ1(t) for
the cancer group[bottom panel].

Assuming that the noise variance σ2 in each group (cancer and normal) is of the

same amplitude, in order to perform the tests suggested by Abramovich et al. [2], an
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estimate of the variance of the noise present in the data is necessary. The common

practice, adopted here also, is to robustly estimate σ2 by the median of absolute

deviation of wavelet coefficients at the highest resolution level divided by 0.6745 (see

[17]). This is done for each individual spectrum. The resulting estimates were then

averaged. Note that in this case the estimate of σ2 is independent from the test statistics

since the later ones do not involve coefficients from the finest level.

Figure 4.11 gives some ideas where we would expect the test to reject. One can see

that while the mean curve µ(t) and the group effect curve γ1(t), progress similarly,

they show different patterns in amplitude at several m/z locations and therefore it

is natural to use some kind of local test which is exactly the purpose of the adaptive

wavelet based FANOVA procedure of Abramovich et al.. In our analysis (using j(s) = 1

and jη = 11 for the testing procedures), the null hypothesis H0 : γi(t) = 0, i = 1, 2

is rejected by the adaptive version of the appropriate FANOVA testing procedure,

the corresponding value of the test statistic being 20.8892 to be compared with the

threshold 0.1488.
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Mathematical appendix

We briefly recall first some relevant facts about the wavelet series expansion and the

discrete wavelet transform that we have used in the paper.

4.1 The wavelet series expansion and the discrete wavelet transform

Throughout the paper we have assumed that we are working within an orthonormal

basis generated by dilations and translations of a compactly supported scaling

function, φ(t), and a compactly supported mother wavelet, ψ(t), associated with an

r-regular (r ≥ 0) multiresolution analysis of
(

L2[0, 1], 〈·, ·〉
)
, the space of squared-

integrable functions on [0, 1] endowed with the inner product 〈 f , g〉 =
∫
[0,1] f (t)g(t) dt.
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For simplicity in exposition, we have worked with periodic wavelet bases on [0, 1] (see,

e.g., [33], Section 7.5.1), letting

φ
p
jk(t) = ∑

l∈Z
φjk(t− l) and ψ

p
jk(t) = ∑

l∈Z
ψjk(t− l), for t ∈ [0, 1],

where φjk(t) = 2j/2φ(2jt − k) and ψjk(t) = 2j/2ψ(2jt − k). For any given primary

resolution level j0 ≥ 0, the collection

{φ
p
j0k, k = 0, 1, . . . , 2j0 − 1; ψ

p
jk, j ≥ j0; k = 0, 1, . . . , 2j − 1}

is then an orthonormal basis of L2[0, 1]. The superscript “p” has been suppressed from

the notation for convenience. Despite the poor behavior of periodic wavelets near the

boundaries, where they create high amplitude wavelet coefficients, they are commonly

used because the numerical implementation is particular simple. Therefore, for any

f ∈ L2[0, 1], we denote by ξ j0k = 〈 f , φj0k〉 (k = 0, 1, . . . , 2j0 − 1) the scaling coefficients

and by θjk = 〈 f , ψjk〉 (j ≥ j0; k = 0, 1, . . . , 2j − 1) the wavelet coefficients of f for the

orthonormal periodic wavelet basis defined above; the function f is then expressed in

the form

f (t) =
2j0−1

∑
k=0

ξ j0kφj0k(t) +
∞

∑
j=j0

2j−1

∑
k=0

θjkψjk(t), t ∈ [0, 1].

In statistical settings and signal processing, we are more usually concerned with

discretely sampled, rather than continuous, functions. It is then the wavelet analogy

to the discrete Fourier transform which is of primary interest and this is referred

to as the discrete wavelet transform (DWT). Given a vector of function values f =
( f (t1), ..., f (tn))T at equally spaced points ti, the discrete wavelet transform of f is

given by d = Wn×nf, where d is an n × 1 vector comprising both discrete scaling

coefficients, cj0k, and discrete wavelet coefficients, djk, and Wn×n is an orthogonal n× n

matrix associated with the orthonormal periodic wavelet basis chosen. The cj0k and djk

are related to their continuous counterparts ξ j0k and θjk (with an approximation error

of order n−1) via the relationships cj0k ≈
√

n ξ j0k and djk ≈
√

n θjk. Note that, because

of orthogonality of Wn×n, the inverse DWT (IDWT) is simply given by f = WT
n×nd,

where WT
n×n denotes the transpose of Wn×n. If n = 2J for some positive integer J, the

DWT and IDWT can be performed through a computationally fast algorithm (see, e.g.,

[33], Section 7.3.1) that requires only order n operations.
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4.2 Proofs and notes

For sake of brevity, we provide outlines of the proofs of the theoretical results obtained

in the paper.

Notes on the optimality of `1 penalized regression splines

Optimality of our `1 penalized regression splines procedure follows from general

results of van de Geer [49] on penalized regression once her conditions L, A, B and C

are satisfied (refer to this paper for more details on these conditions). In order to prove

that these assumptions hold in our case, we will make some standard assumptions

under our setup and then check that the above conditions hold.

We will denote by Y the response variable and by X the regressor. We will assume

that E(Y2) < ∞ and the following assumptions on the distribution of the random

variable X representing the observed m/z recorded values:

Assumption 1 The random variable X has a distribution Q that admits some density q with

respect to the Lebesgue measure on [0, 1]. Furthermore, there exists some positive ε such that,

for any x ∈ [0, 1],
ε ≤ q(x) ≤ 1/ε.

In particular, note that ||1/q||∞ ≤ 1/ε.

Under our setup, we deal with the family

F =

{
fβ(x) =

p

∑
k=0

βkxk +
K

∑
j=1

βp+j(x− tj)
p
+, β ∈ R p+1+K

}
.

It is well known (see for instance [21]) that this family can also be written in terms of

B-splines denoted hereafter by Bj:

F =

{
fθ(x) =

p+1+K

∑
j=1

θjBj(x, p), θ ∈ R p+1+K

}
.

We first recall below some relevant results on such B-splines approximations.

Barron and Sheu ([4]: remark 2) have shown that, if the knots tj, 1 ≤ j ≤ K, are equally

spaced on the interval [0, 1], then for any function g ∈ F ,

||g||∞ ≤ (p + 1)
√

K + 1||g||2.
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Let f be an element of the Sobolev space Wr
2 with 1 ≤ r ≤ p + 1, and let fm be its best

L2-approximation in F . Then de Boor and Fix [15] have shown that

|| f − fm||2 = O
(

1
mr

)
, || f − fm||∞ = O

(
1

mr−1/2

)
,

where m = p + 1 + K is the dimension of F .

Our second assumption concerns the Gram matrix associated to the B-splines basis.

Assumption 2 Define the vector B = (B1, . . . , Bm)T. The m×m matrix

Σ =
∫ 1

0
B(x)BT(x)q(x)dx

is positive definite with smallest eigenvalue ρ2 > 0.

Considering the loss function γ f (x, y) = γ( f (x), y) = ρτ(y− f (x)), we have

γ( f , y) = τ(y− f )− (y− f ) 1l{y− f <0} .

Denote by

f = argmin f∈F E
(
γ f (X, Y)

)
,

the target function for the loss γ f . Moreover, we will also assume that

Assumption 3 The conditional cumulative distribution function of Y given X, denoted by

Fx
Y/X(·), is differentiable in a neighborhood of z = f (X), Q-a.s. with a derivative at least 1/C0

Q-a.s.

Let us now check that conditions of [49] hold.

Condition L

For a given y ∈ R, γ( f , y) is clearly convex as a function of f . Moreover,

|γ( fθ(x), y)− γ( fθ̃(x), y)| =


τ|( fθ̃(x)− fθ(x))|, if y− fθ(x) > 0 and y− fθ̃(x) > 0,

(1− τ)|( fθ̃(x)− fθ(x))|, if y− fθ(x) ≤ 0 and y− fθ̃(x) ≤ 0,

|τ( fθ̃(x)− fθ(x)) + y− fθ̃(x)|, if y− fθ(x) > 0 and y− fθ̃(x) ≤ 0,

|τ( fθ̃(x)− fθ(x))− y + fθ̃(x)|, if y− fθ(x) ≤ 0 and y− fθ̃(x) > 0.
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In the last but one case, fθ(x) < y ≤ fθ̃(x), so that

fθ(x)− fθ̃(x) ≤ y− fθ̃(x) ≤ τ( fθ̃(x)− fθ(x)) + y− fθ̃(x) ≤ τ( fθ̃(x)− fθ(x)).

The last case can be treated in a similar way and finally, we obtain,

|γ( fθ(x), y)− γ( fθ̃(x), y)| ≤ | fθ̃(x)− fθ(x)|,

so that the Lipschitz property (L) is verified.

Condition A

We suppose here that the knots tj, 1 ≤ j ≤ K are equally spaced on the interval [0, 1].
By our assumption 1, we have for l = 1, . . . , p + K + 1,

σ2
l = E Bl(X, p)2 ≥ ε||Bl||22.

Then, using Barron and Sheu’s [4] results, we see that

Kn = max
l=1,...p+1+K

||Bl||∞
σl

≤ (p + 1)
√

K + 1√
ε

.

Condition A is satisfied as soon as the degree p and the number of knots K remain

bounded as n tends to infinity.

Condition B

We have, for any f ∈ R

E(γ( f , Y)|X) = E(τ(Y − f )− (Y − f ) 1l{Y− f <0} |X)

= τ E(Y|X)− τ f + E(( f −Y) 1l{Y− f <0} |X)

= τ E(Y|X)− τ f +
∫ +∞

0
P
(
( f −Y) 1l{Y− f <0} > t|X

)
dt

since the random variable ( f −Y) 1l{Y− f <0} is nonnegative. Hence,

E(γ( f , Y)|X) = τ E(Y|X)− τ f +
∫ +∞

0
P (Y − f < 0∩ f −Y > t|X) dt

= τ E(Y|X)− τ f +
∫ +∞

0
P (Y < f − t|X) dt

= τ E(Y|X)− τ f +
∫ f

−∞
Fx

Y/X(u)du.

By our Assumption 3, this function is clearly twice differentiable and at least 1/C0 on a

neighbourhood of f̄ (X), Q-a.s., which suffices to prove that condition B of van de Geer

is fulfilled with G(u) = u2

2C0
.
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Assumption C

By the Cauchy-Schwarz inequality, we have

K+p+1

∑
k=1

σk|θk − θ̃k| ≤

√√√√K+p+1

∑
k=1

σ2
k

√√√√K+p+1

∑
k=1

|θk − θ̃k|2 =

√√√√K+p+1

∑
k=1

σ2
k ||θ − θ̃||2.

Furthermore, fθ(x) = BT(x)θ, so that by our assumption 2,

|| fθ − fθ̃||
2
2 =

∫ 1

0
(θ − θ̃)TB(x)BT(x)(θ − θ̃)q(x)dx = (θ − θ̃)TΣ(θ − θ̃) ≥ ρ2||θ − θ̃||22.

Hence,

∑
k∈K

σk|θk − θ̃k| ≤

√
∑k∈K σ2

k

ρ
|| fθ − fθ̃||2.

Condition C then holds with D(K) = ∑k∈K σ2
k /ρ2.

The above conclude the optimality of our `1 penalized quantile regression method.

Proof of Theorem 3.1.

Let f ∗ be the approximation of f given in (4) at resolution J = log2(n). Since f belongs

to the Hölder ball Λα(R) with 0 < α ≤ r, we know that (see [13])

‖ f − f ∗‖2
2 ≤ Cn−2α/(2α+1),

so it will be sufficient to compare the estimator f̂ with f ∗. For some fixed integer j0 < J,

and for each k = 1, . . . , M, the multiresolution properties of wavelets gives

f̃k(t) =
1√
n

n

∑
i=1

Yk
i φJ,i(t)

=
n

∑
i=1

ξ J,iφJ,i(t) +
n

∑
i=1

(
1√
n

f (tk
i )− ξ J,i

)
φJ,i(t)

+
n

∑
i=1

1√
n

σεk
i φJ,i(t),

which may be written as

f̃k(t) =
2j

0−1

∑
`=0

(
ξ j0,` + ξ1,k

j0,` + ξ2,k
j0,`

)
φj0,`(t)

+
J−1

∑
j=j0

2j−1

∑
`=0

(
θj,` + θ1,k

j,` + θ2,k
j,`

)
ψj,`(t)
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where ξ j0,` and θj,` are the coefficients for f ∗, ξ1,k
j0,` and θ1,k

j,` are the coefficients

for ∑n
i=1
(
n−1/2 f (tk

i )− ξ J,i
)

φJ,i(t), and ξ2,k
j0,` and θ2,k

j,` are the coefficients for

∑n
i=1

1√
n σεk

i φJ,i(t). Set

ξ̂ j0,` = ξ j0,` + ξ1,k
j0,` + ξ2,k

j0,`, ` = 0, . . . , 2J0 − 1

and

θ̃j,` = θj,` + θ1,k
j,` + θ2,k

j,` , ` = 0, . . . , 2j − 1.

Conditional on δk and by the orthogonality of the DWT, ξ̂ j0,` ∼ N(ξ j0,` + ξ1,k
j0,`, σ2/n)

and θ̃j,` ∼ N(θj,` + θ1,k
j,` , σ2/n). Thresholding is applied to the details coefficients θ̃.

Given δk and the orthonormality of the wavelet basis,

E
(
‖ f̂ − f ∗‖2

2

)
= E

(
2j0−1

∑
`=0

(ξ̂ j0,` − ξ j0,`)2

)
+ E

(
J−1

∑
j=j0

2j−1

∑
`=0

(θ̂j,` − θj,`)2

)
.

For the first term on the right in the above equation, given δk,

E
(
ξ̂ j0,` − ξ j0,`

)2 ≤ 2E
(

ξ̂ j0,` − (ξ j0,` + ξ1,k
j0,`)
)2

+ 2E(ξ1,k
j0,`)

2 ≤ 2σ2/n + 2E(ξ1,k
j0,`)

2.

In a similar way, for the second term

E
(
θ̂j,` − θj,`

)2 ≤ 2E
(

θ̂j,` − (θj,` + θ1,k
j,` )
)2

+ 2E(θ1,k
j,` )2.

To bound the first portion of this, it is only necessary to note that all the conditions are

met here for usual theorems on thresholding with wavelets. For example, if the rule η

is SureShrink or a block shrinkage rule, the rate is less than or equal to Cn−2α/(2α+1).

For a rule such as VisuShrink, this would be have an additional factor of log n in it.

In either case, the estimator is of the same order of convergence as the DWT. For sake

of argument, assume that η is a rule admitting the fast rate (no log n penalty). Then,

given δk,

E
(
‖ f̂ − f ∗‖2

2

)
≤ Cn−2α/(2α+1) + CE

(
2j0−1

∑
`=0

(ξ1,k
j0,`)

2

)
+ CE

(
J−1

∑
j=j0

2j−1

∑
`=0

(θ1,k
j,` )2

)
.

To bound the summation portion of this equation, note first that

E
(

2j0−1

∑
`=0

(ξ1,k
j0,`)

2

)
+ E

(
J−1

∑
j=j0

2j−1

∑
`=0

(θ1,k
j,` )2

)
= E

n

∑
i=1

(∫
[ f (tk

i )− f (t)]φJ,i(t)dt
)2

.
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Assuming that the wavelet φ has support [0, s], the scaling function φJ,i has support

[i/n, (i + s)/n] for i = 1, . . . , n− s and [0, (i + s−n)/n]∪ [i/n, 1] for i = n− s + 1, . . . , n.

Using this and the fact that f is α-Hölder, then for i = 1, . . . , n− s,(∫
[ f (tk

i )− f (t)]φJ,i(t)dt
)2

=
(∫ (i+s)/n

i/n
[ f (tk

i )− f (t)]φJ,i(t)dt
)2

≤ C
(∫ (i+s)/n

i/n
|tk

i − t|min(α,1)φJ,i(t)dt
)2

= C
(∫ (i+s)/n

i/n
|i/n + δk

i − t|min(α,1)φJ,i(t)dt
)2

≤ C
(∫ (i+s)/n

i/n
(|i/n− t|min(α,1) + |δk

i |min(α,1))φJ,i(t)dt
)2

≤ C(n−2 min(α,1) + |δk
i |min(α,1))2−J .

Using similar arguments, it is easy to show that, for i = n− s + 1, . . . , n we have(∫
[ f (tk

i )− f (t)]φJ,i(t)dt
)2

≤ C2J = Cn−1

Therefore,

E
n

∑
i=1

(
1√
n

f (tk
i )− ξ J,i

)2

≤ Cn−2 min(α,1) + C
1
n

n−s

∑
i=1

var(δk
i )

min(α,1).

Using now the fact that the variances of the δk
i ’s are less than or equal to Cn−2 , then

the bound becomes Cn−2 min(α,1) and the overall bound of the estimate’s f̂k error is less

than Cn−2α/(2α+1). We now have

E‖ f̂ − f ‖2
2 = E

(
1
M

M

∑
k=1

( f̂k − f )‖2
2

)
≤ 1

M
max

k=1,...,M
E(‖ f̂k − f ‖2

2) = O(M−1n−2α/(2α+1)),

which proves the Theorem.
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