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Abstract

In this paper we propose a new approximate factor model for large cross-section and time

dimensions. Factor loadings are assumed to be smooth functions of time, which allows to

consider the model as locally stationary while permitting empirically observed time-varying

second moments. Factor loadings are estimated by the eigenvectors of a nonparametrically

estimated covariance matrix. As is well-known in the stationary case, this principal com-

ponents estimator is consistent in approximate factor models if the eigenvalues of the noise

covariance matrix are bounded. To show that this carries over to our locally stationary factor

model is the main objective of our paper. Under simultaneous asymptotics (cross-section

and time dimension go to infinity simultaneously), we give conditions for consistency of our

estimators. A simulation study illustrates the performance of these estimators.
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1 Introduction

Linear factor models have attracted considerable interest over recent years especially in the
econometrics literature. The intuitively appealing idea to explain a panel of economic variables
by a few common factors is one of the reasons for their popularity. One of the main models in
finance, the arbitrage pricing theory (APT) of Ross (1976), is based on a factor model. From
a statistical viewpoint, the need to reduce the cross-section dimension to a much smaller factor
space dimension is obvious considering the large data sets available in economics and finance.
The traditional approach of fixing either the time dimension T or the cross-section dimension
N and letting the other dimension go to infinity is likely to be inappropriate in situations where
both dimensions are large. Bai (2003) and Bai and Ng (2002) use a new concept of simultaneous
asymptotics, where both N and T go to infinity simultaneously, where the rates are rather
flexible. This seems to be a promising concept which we adopt in this paper.

One of the characteristics of the traditional factor model is that the process is stationary
in the time dimension. This appears restrictive, given the fact that over long time periods it
is unlikely that e.g. factor loadings remain constant. For example, in the capital asset pricing
model (CAPM) of Sharpe (1964) and Lintner (1965), a special case of the APT with just one
factor, the market portfolio, typical empirical results show that factor loadings, or betas, are
time-varying, which in the CAPM is caused by time-varying second moments.

There is indeed an extensive literature in financial econometrics, both theoretical and empiri-
cal, on time-varying variances and correlations. GARCH, the most popular parametric model in
the univariate context, has been generalized to the multivariate case, see e.g. the recent survey
by Bauwens et al. (2006). Factor models have also been proposed in the multivariate GARCH
framework. For example, Engle, Ng and Rothschild (1990) assume observability of the factors,
Diebold and Nerlove (1989) obtain estimates of the factors via the Kalman filter, and in the
orthogonal GARCH model of Alexander (2001) factors are the principal components obtained
from the unconditional sample covariance matrix. These approaches typically specify univariate
GARCH models for the factors and keep the factor loadings constant over time. Rather than
imposing GARCH type models for the factors, other models have been proposed to introduce
dynamics into the classical factor model. For example, Bai (2003) allows for serial correlation
of the error terms and Forni et al. (2000) suggest ARMA models for the factors.

A potential drawback of observationally driven dynamic models such as stationary ARMA or
GARCH is that dynamics explained by lagged observations are the same over time. Recently,
approaches have been made to relax the constant impact and specify time-varying parameters in
GARCH type models, see e.g. Härdle, Herwartz and Spokoiny (2004). A promising alternative
is to directly model unconditional variances and covariances via nonparametric estimation as in
Rodriguez-Poo and Linton (2001). It imposes very little structure on the unconditional covari-
ance matrix, while ensuring positive definiteness and being very easy to estimate. Moreover,
it does not impose any restrictions on the number of factors that can be estimated from the
time-varying covariance matrices. Finally, a combination of parametric GARCH models for the
variances and nonparametric estimation of correlations has been proposed by Hafner, van Dijk
and Franses (2006).

In this paper, we propose a new approach to allow for time-varying factor loadings. The basic
idea is to consider these as smooth functions of time, rendering the process nonstationary while
the factors are stationary. However, the assumption that loadings are smooth permits to consider
the process as locally stationary and enables us to estimate the model using nonparametric
methods. One of the techniques employed is the rescaling of time to the unit interval, as
proposed by Dahlhaus (1996), which generates an increasing number of observations in a small
neighborhood of the point where the loadings are estimated. The nonparametric estimation of
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locally stationary time series models is now well established in the univariate context, see e.g.
van Bellegem and von Sachs (2004). It is new in the context of locally stationary factor models.
We discuss identification and estimation of the model and derive the asymptotic theory for the
estimated loadings and factors. Clearly we have to pay a price for the nonparametric estimation
of our model in terms of slower convergence rates. In a Monte Carlo study, we show that for
moderately large N and T , the estimators perform very well.

Many issues remain to be resolved such as testing for the number of factors as in Bai and
Ng (2002) and Connor and Korajczyk (1993), forecasting as in Stock and Watson (2004), and
empirical applications, but we leave this for future research.

The paper is organized as follows. In the following section we first recall the traditional
factor model with constant factor loadings. The third section introduces the locally stationary
factor model and proposes an estimator of the factors and factor loadings. In the fourth section
we provide results on the asymptotic behavior of the estimates. In Section 5 we provide a
simulation study and Section 6 concludes. Some auxiliary results needed for the proofs are
collected in Appendix A to C, and Appendix D contains the proofs of the propositions.

Throughout the paper we denote by tr(·) the trace operator, by rk(A) the rank of a matrix
A, by In the identity matrix of dimension n and by || · || the L2 norm, i.e., ||A|| =

√
tr(A′A).

2 Factor models of large dimensions

Consider the following stationary r−factor model for the N−dimensional stochastic process
{Xt}, t ∈ Z:

Xt = ΛFt + et (1)

where




Λ is a N × r matrix of loadings,

E(Ft) = 0, Var(Ft) := ΣF = diag {φ1, . . . , φr} , φj > 0, j = 1, . . . , r,

E(et) = 0, Var(Ut) := Ψ, Ψ positive definite

Cov(Ft, et) = 0, t = 1, . . . , T.

We consider the case where the dimension N is large, say one hundred or larger, but the number
of factors r is small, say two or three. The idea of the factor model is to explain a substantial part
of the variation of Xt by some factors common to all components of Xt, and some idiosyncratic
error term et that is not correlated with the factors and that captures variable-specific variations.
In the classical factor model, Ψ is assumed to be diagonal, but as we will see it is useful to relax
this assumption when dealing with large dimensions. The model implies first that the mean of
Xt is zero, but this is without loss of generality. Furthermore, the covariance matrix of Xt is
given by

Var [Xt] := Σ = ΛΣF Λ′ + Ψ ∀t = 1, . . . , T (2)

which does not depend on t. The part of the variance explained by the factors is ΛΣF Λ′, the
remainder Ψ is the part due to idiosyncratic noise.

We can consider estimation of Λ and Ft by minimizing the nonlinear least squares objective
function

LNT (F,Λ; r) = (NT )−1
T∑

t=1

(Xt − ΛFt)
′ (Xt − ΛFt) , (3)

subject to
Λ′Λ/N = Ir. (4)
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The first order conditions for minimizing the loss function in (3) with respect to Ft are

Λ′ΛF̂t = Λ′Xt (5)

and thus, under (4), the estimator of the factor satisfies

F̂t =
1

N
Λ′Xt. (6)

Substituting (6) into the objective function (3) yields the concentrated objective function

L̃NT (Λ; r) = (NT )−1
T∑

t=1

(
Xt −

1

N
ΛΛ′Xt

)′(
Xt −

1

N
ΛΛ′Xt

)

= (NT )−1
T∑

t=1

(
X ′

tXt −
1

N
X ′

tΛΛ′Xt

)

= (NT )−1
T∑

t=1

tr
{
XtX

′
t

}
− (NT )−1

T∑

t=1

tr

{
1

N
Λ′XtX

′
tΛ

}
. (7)

Minimizing L̃NT (Λ; r) in (7) subject to (4) is equivalent to maximizing (NT )−1 tr(
∑T

t=1 Λ′XtX
′
tΛ)

subject to (4). By Lemma 4 in Appendix B, the solution is to set the estimator Λ̂ of Λ to be
√
N

times the matrix whose columns are the r orthogonal unit-length eigenvectors Λ corresponding
to the largest r ordered eigenvalues of (NT )−1

∑T
t=1XtX

′
t, that is

[
1

NT

T∑

t=1

XtX
′
t

]
Λ = ΛVNT , Λ

′
Λ = Ir, Λ̂ =

√
NΛ, Λ̂′Λ̂/N = Ir (8)

where VNT is the diagonal matrix containing the largest r eigenvalues of 1
NT

∑T
t=1XtX

′
t in

decreasing order. By equation (6), the resulting estimator of the factors is F̂t = Λ̂′Xt/N ,
which is the vector consisting of the first r principal components of Xt. The matrix VNT =
T−1

∑T
t=1 F̂tF̂

′
t is the diagonal matrix containing the largest r ordered eigenvalues of SNT :=

(NT )−1
∑T

t=1XtX
′
t = N−1ST , where ST is the sample covariance matrix estimator:

ST := T−1
T∑

t=1

XtX
′
t. (9)

Unless Ψ = σ2IN for some σ2 > 0, the principal components estimator is biased if N is fixed
and T → ∞. Allowing for weak cross-correlation of the errors et, i.e. a non-diagonal covariance
matrix Ψ, Bai (2003) has shown that under N → ∞ and T → ∞ the principal components
estimator is consistent and asymptotically normal. The model with non-diagonal Ψ is usually
called approximate factor model, see e.g. Chamberlain and Rothschild (1983), Stock and Watson
(2002) and Bai (2003). The assumptions of Bai even allow for weak serial correlation of the
errors, as well as weak correlation between the factors and the errors. A further condition is
that ‖Λ′Λ/N−ΣΛ‖ → 0 for some positive definite ΣΛ, which means that the factor contributions
are O(

√
N) for all variables.

In the following section we will generalize this factor model to allow for time-varying factor
loadings.
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3 Locally Stationary Factor Models

We assume that Xt,T is an N−dimensional stochastic process explained by r factors, r < N :

Xt,T = Λ(ut,T )Ft + et. t = 1, . . . , T (10)

This process, in fact a sequence (triangular array) of doubly-indexed processes, is defined in
the rescaled time ut,T := t

T ∈ (0, 1) as in Dahlhaus (1996). This class of models allows to
model nonstationary multivariate time series because the loadings {λij(ut,T )} are assumed to
be smooth functions of time (t = 1, . . . , T , i = 1, . . . , N , j = 1, . . . , r). Hence, the covariance of
Xt,T becomes a matrix-valued smooth function of time

Var [Xt,T ] := Σ(ut,T ) = Λ(ut,T )ΣF Λ′(ut,T ) + Ψ t = 1, . . . , T. (11)

The class of locally stationary factor models is defined as the following.

Definition 1 (Locally Stationary Factor Model) The sequence {Xt,T } in (10) is a Locally

Stationary Factor Model [LSFM] if there exists a function

Λ(u) ∈ Ck
{
[0, 1],RN×r

}
, k ≥ 1, rkΛ(u) = r ∀u ∈ [0, 1], such that ∀T

Σ

(
t

T

)
:= Var (Xt,T ) = Λ

(
t

T

)
ΣF Λ′

(
t

T

)
+ Ψ.

We aim to estimate the loadings Λ(·) and the Matrix Ψ. Principal Component Regression (PCR)
is a well-known estimation approach in the framework of Approximate Factor Models (AFM)
defined by Chamberlain & Rothschild (1983). The main difference with respect to the classical
factor models is that the AFM allows the errors to be correlated in the cross section dimension,
i.e. the matrix Ψ is not diagonal. Recently Bai & Ng (2002) and Bai (2003) generalized the
definition of the Approximate Factor Model by also allowing for heteroskedasticity of the errors
in the time dimension. In this work we assume that the factors are orthogonal (ΣF is diagonal)
and uncorrelated to the errors (Cov[Ft, et] = 0 ∀t), but we allow for loadings that change over
time. We assume the errors are correlated in the cross section dimension but not in the time
dimension.

The definition of AFM is important because the loadings can be estimated by the eigenvectors
of an estimator of the covariance matrix. To do this we need that ΨN is a sequence of matrices
with uniformly bounded eigenvalues. More precisely, exactly r of the eigenvalues of the sequence
of covariance matrices ΣN increase without bound and all the other eigenvalues of ΣN are
bounded. The following definition combines the definitions of AFM and LSFM .

Definition 2 (Locally Stationary Approximate Factor Model) Let ΨN be the sequence

of N ×N covariance matrices of the N × 1 vector et in (10):

ΨN := Var(et) ∀t = 1, . . . , T.

The sequence {Xt,T } in (10) is a Locally Stationary Approximate Factor Model [LSAFM] if

(i) {Xt,T } is a LSFM and

(ii) ΨN is a sequence of positive definite matrices with uniformly bounded eigenvalues:

sup
N

eval1 (ΨN ) <∞

where eval1(A) denotes the largest eigenvalue of the matrix A.

4



3.1 Assumptions of the LSAFM

ASSUMPTION A - Factors:

1. E (Ft) = 0 ∀ t = 1, . . . , T ;

2. E ‖Ft‖4 ≤M <∞;

3. T−1
∑T

t=1 FtF
′
t

p−→ΣF , where the r × r matrix ΣF is diagonal and positive definite.

ASSUMPTION B - Factor loadings:

1. λij(u) ∈ C1[0, 1] ∀ i, j = 1, . . . , N ;

2.
∥∥Λ′ ( t

T

)
Λ
(

t
T

)
/N − ΣΛ

(
t
T

)∥∥ −→ 0 as T,N −→ ∞, where ΣΛ

(
t
T

)
is a positive definite

matrix ∀t.

ASSUMPTION C - Cross-Section Dependence of the idiosyncratic errors:

1. E(et) = 0 ∀ t = 1, . . . , T ;

2. E |eit|4 ≤M ∀ i = 1, . . . , N , ∀t = 1, . . . , T ;

3. E(eitejt) = ψij ,
∑N

j=1 |ψij | ≤M ∀ i = 1, . . . , N and ∀N .

ASSUMPTION D - Rates of convergence:

1. T → ∞, hT → 0, N → ∞ in such a way that ThT → ∞, Th3
T → 0 and NhT → 0.

2.
sup

u
||Λ(1)(u)|| = O(

√
N) .

ASSUMPTION E - Possible Multiplicity of eigenvalues:

Suppose that for the first ordered r eigenvalues {γ1, . . . , γr} of Σ(u) there exists an e ∈ {0, 1}
such that

lim
τ→0

inf
|γi (u+ τ) − γj (u+ τ)|

|τ e| > 0 , (12)

for all u ∈ (0, 1) and i 6= j, i, j = 1, ..., r. This is equivalent to require the same condition on
the eigenvalues of the r × r matrix ΣΛ(u)ΣF .

Chamberlain and Rothschild (1983) defined an AFM as having bounded eigenvalues for the
N × N covariance matrix Ψ = E (ete

′
t). If et is stationary with E (eitejt) = ψij ∀t, then the

largest eigenvalue of Ψ is bounded by maxi
∑N

j=1 |ψij |, see e.g. Lütkepohl (1996). Thus by
Assumption C3 model (10) will be an AFM in the sense of Chamberlain and Rothschild.

In Assumption B.1 the model quantities λij(u) are supposed to be in C1[0, 1]. This condition
is given for ease of presentation of the proofs, we note that one can more generally suppose
the time-varying factor loadings to be in Ck[0, 1] with k ≥ 1. However in this work we are not
interested in deriving optimal rates of convergence of non-parametric estimators of these model
quantities but content ourselves to prove consistency of our estimators. We suspect that even
a weaker condition on the regularity of the factor loading, such as Hölder-continuity, would be
sufficient to derive our results.

In Assumption D, we first have the usual requirement in nonparametric curve estimation that
the bandwidth goes to zero but at a slower rate than T−1. Second, to control a “multivariate
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bias” in smoothing a matrix of factor loadings which can grow with orderN , we requireNhT → 0
(see Proposition 1) and Th3

T → 0 (see proof of Theorem 2). Note that this implies that T grows
faster than N but allows either of N and Th to grow faster than the other. In this sense, we are
locally (i.e. in a neighborhood of each time t of effective sample size of order Th) in a similar
situation as Bai (2003) with either the cross-sectional dimension dominating the sample size or
vice versa.

Assumption E is an assumption on the identifiability in estimating the time-varying factor
loadings λij(u) as well as the common components Cit,T := λ′i(ut,T )Ft. Note that we do not
require distinctness of the eigenvalues of ΣΛ(u)ΣF (as it is done, e.g., in Assumption G of Bai,
2003). We rather control the degree of contact of the model eigenvalues as functions of rescaled
time u. Note that Assumption E does not permit identical eigenvalues to accumulate over time.
However, eigenvalues can intersect each other but in order to have continuous corresponding
eigenvectors it is not allowed that in the points of intersection the “derivatives from the right”
are equal. By Theorems 2.4 and 2.7 of Chern & Dieci (2000, p. 774-778), under this assumption
the matrix of orthogonal eigenvectors of Σ(u) can be taken to be a continuous function in u.
(For details we refer to Lemma 6 of Appendix C,which we apply in the case k = 1 and e = 1.)

We are now in a position to develop consistent estimation theory with well defined target
functions which are continuous in rescaled time. The appropriateness of this condition for our
purposes of consistent estimation theory results from the following observation. Assumption E
is in fact a sufficient condition to guarantee that not only our (estimated) eigenvalues but also
our estimated eigenvectors (i.e. the loadings) converge to continuous functions in time u ∈ [0, 1].
It is given in terms of the eigenvalues of Σ(u) which by Assumption B.1 are in C1[0, 1] (as
the eigenvalues depend continuously on the regularity of the elements of the covariance matrix
Σ(u) which in turn is determined by the regularity of the model loadings λij(u)). In a point of
intersection u0 of eigenvalues γi(u0), we define the ordering of corresponding eigenvectors to be
the same as the one for eigenvectors corresponding to eigenvalues γi(u

−
0 ).

We end this remark by adding, that as already in the stationary case of the previous section,
the loadings can only be estimated up to a rotation, and it is only the product Λ′Λ which is
identifiable. Hence the above discussion has to be understood in the sense of continuity of the
limit T → ∞ of Λ̂′(t/T )Λ̂(t/T ); compare also the formulation of our Theorem 5. Note however
that it applies as well to the uniquely determined common components Cit,T as a function of
rescaled time (cf. also our discussion following Corollary 7).

3.2 Time-varying PCA

Consider now the nonstationary model in (10). In order to simplify the notation, we occasionally
denote Λt = Λ(ut,T ), Xt = Xt,T and ut = ut,T .

The corresponding time-varying weighted least squares objective function is

Lt,NT (F,Λ; r, h) = (NT )−1
T∑

s=1

(Xs − ΛsFs)
′Wt(us;h) (Xs − ΛsFs) (13)

subject to
Λ′

sΛs/N = Ir ∀s = 1, . . . , T. (14)

Without loss of generality, for reasons of ease of presentation we use the same bandwidth h
forall i, j = 1, . . . , N . This allows to write the N ×N matrix of weights Wt(us;h) as Wt(us;h) =
ωt(us;h)IN , where

ωt(us;h) = Kh (us − ut) > 0 ∀s, t = 1, . . . , T,
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Kh(·) := 1
hK

( ·
h

)
being the rescaled version of a kernel smoother. The first order conditions for

maximizing (13) with respect to Fs are

Λ′
sWt(us;h)ΛsF̂s = Λ′

sWt(us;h)Xs (15)

and thus the estimator of the factor satisfies

F̂s =
{
Λ′

sWt(us;h)Λs

}−1
Λ′

sWt(us;h)Xs. (16)

Substituting (16) into the objective function (13) yields the concentrated objective function

L̃t,NT (Λ; r) = (NT )−1
T∑

s=1

X ′
sWt(us;h)Xs

− (NT )−1
T∑

s=1

X ′
sWt(us;h)Λs

(
Λ′

sWt(us;h)Λs

)−1
Λ′

sWt(us;h)Xs. (17)

Since Wt(us;h) = ωt(us;h)IN , the concentrated objective function in (17) reduces to

L̃t,NT (Λ; r) = (NT )−1
T∑

s=1

tr
{
XsX

′
s

}
ωt(us;h)

− (NT )−1
T∑

s=1

tr

{
1

N
Λ′

sXsX
′
sΛs

}
ωt(us;h) (18)

subject to (14). Minimizing the concentrated objective function (18) with respect to Λ(us,T ) is
equivalent to maximizing

(NT )−1
T∑

s=1

tr
{
Λ′

sXsX
′
sΛs

}
ωt(us;h) (19)

subject to (14). If we assume that the sequence hT→ 0 as T→ ∞, for large values of T the
weight ωt(us) only takes into account the loadings Λs corresponding to the values us that are
very close to ut. Asymptotically, the loadings that minimize the concentrated objective function
in (19) depend only on t. This result is formalized in the following proposition; the proof is
given in Appendix D.

Proposition 1 Under Assumptions A-D, ∀ t = 1, . . . , T ,

(NT )−1
T∑

s=1

tr
{
(Λs − Λt)

′XsX
′
s (Λs − Λt)

}
ωt(us;h) = Op(Nh) = op(1) .

By Proposition 1 maximizing (19) is asymptotically equivalent to maximizing

N−1 tr
{

Λ′
tΣ̂(ut)Λt

}
t = 1, . . . , T

subject to (14), where

Σ̂(ut;h) := T−1
T∑

s=1

XsX
′
sωt(us;h) t = 1, . . . , T, (20)
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which is the nonparametric estimator of the covariance matrix proposed by Rodŕıguez-Poo and
Linton (2001). By Lemma 4 in Appendix B the solution is to set Λ̂t to be

√
N times the matrix

whose columns are the r orthogonal unit-length eigenvectors Λ(ut,T ) corresponding to the largest

r ordered eigenvalues of Σ̂(ut,T ). As for the stationary case, by analogous arguments we obtain

N−1Σ̂(ut;h)Λ̂t = Λ̂tVNT (ut), Λ̂′
tΛ̂t/N = Ir, t = 1, . . . , T. (21)

where VNT (ut) is the diagonal matrix containing the largest r ordered eigenvalues ofN−1Σ̂(ut;h)
(t = 1, . . . , T ).

It is useful to write the LSFM in a more compact matrix notation. Notice that N−1Σ̂(ut;h) =
(NT )−1X ′Wt(h)X, where the T × T matrix of weights Wt(h) is defined as

Wt(h) = diag {ωt (u1;h) , . . . , ωt (uT ;h)} (22)

where ωt (us;h) := Kh (us − ut), s, t = 1, . . . , T , and the T ×N matrix X collects the data:

X =




X ′
1,T
...

X ′
t,T
...

X ′
T,T




. (23)

This means that

1

NT
X ′Wt(h)XΛ̂(ut) = Λ̂(ut)VNT (ut), Λ̂(ut)Λ̂

′(ut)/N = Ir t = 1, . . . , T (24)

that is

VNT (ut) = N−1Λ̂′(ut)
1

NT
X ′Wt(h)XΛ̂(ut), Λ̂′(ut)Λ̂(ut)/N = Ir t = 1, . . . , T. (25)

If we define F t = XΛ̂(ut)/N , the result in (25) can be written as the following

VNT (ut) = F
′
tWt(hT )F t/T, t = 1, . . . , T (26)

where
F

′
t =

[
Λ̂′

tX1/N, . . . , Λ̂
′
tXt/N, . . . , Λ̂

′
tXT /N

]
t = 1, . . . , T. (27)

The matrix VNT (ut) is a localized version of the matrix VNT (see the definition of VNT in §2).
Indeed, in the stationary case the estimated factors contain the same information for all t, while
in the locally stationary framework the weights depend on time (they are contained in the matrix

Wt(hT )). Notice that the t−th column of the r × T matrix F
′
t is F̂t as defined in (16). Indeed,

the estimated factors F̂t in (16) can be written as

F̂t = Λ̂′
tXt,T /N t = 1, . . . , T (28)

since Wt(us;h) = ωt(us;h)IN (s, t = 1, . . . , T ) and Λ̂′
sΛ̂s/N = Ir ∀s = 1, . . . , T .
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4 Asymptotic theory

The following asymptotic results hold for N,T → ∞ and for ut,T = t
T →u ∈ (0, 1). The proofs

are given in Appendix D. The first result is about consistency of our nonparametric estimator
for Σ (ut,T ).

Theorem 2 Under Assumptions A-D,

N−1
∥∥T−1X ′Wt,T (h)X − Σ (ut,T )

∥∥ = Op

[
(ThT )−

1

2

]
(29)

where W·(h) is defined in (22) and Σ(·) is defined in (11).

The estimator T−1X ′Wt,T (h)X converges to Σ (ut,T ) at the rate 1√
ThT

. This means that each

element of the matrix
[
T−1X ′Wt,T (h)X − Σ (ut,T )

]
is Op

(
1√

ThT

)
. The fact that the Euclidean

norm of this N ×N matrix grows at the rate N explains the result.
The next result is on the consistency of the estimated eigenvalues of Σ (ut,T ).

Proposition 3 Under Assumptions A-D,

VNT (ut,T )
p−→V (u) (30)

where V (u) is a diagonal matrix containing the eigenvalues of ΣΛ(u)ΣF .

The next proposition is an auxiliary result used in the proofs of our main results.

Proposition 4 Under Assumptions A-E,

Λ′ (ut,T ) Λ̂ (ut,T )

N

p−→Σ
− 1

2

F Υ(u)V
1

2 (u) (31)

where Υ(u) is the r × r matrix containing the orthonormal eigenvectors of the r × r matrix

Σ
1

2

FΣΛ(u)Σ
1

2

F .

The following two theorems are our main results, which are about weak consistency of esti-
mated loadings and factors.

Theorem 5 Under Assumptions A-E,

(i) min
(√

N,
√
ThT

){
1√
N

∥∥∥Λ̂ (ut,T ) − Λ (ut,T )RNT (ut,T )
∥∥∥
}

= Op (1) (32)

(ii) min
(
N,

√
ThT

){
1√
N

∥∥∥λ̂i (ut,T ) −R′
NT (ut,T )λi(ut,T )

∥∥∥
}

= Op(1) (33)

where λ̂′i(ut,T ) is the i-th row of Λ̂(ut,T ), and where

RNT (ut,T ) :=

(
F ′F

T

)(
Λ′ (ut,T ) Λ̂ (ut,T )

N

)
V −1

NT (ut,T )
p−→Σ

1

2

F Υ(u)V − 1

2 (u) =: R(u) , (34)

and where F denotes the T × r matrix collecting the factors, i.e. F := {F1, . . . , FT }′.
The result in (32) shows that the appropriately scaled norm of the distance between the

estimated loading matrix and a rotated version of the true loading matrix converges to zero in
probability. The rate is given by the minimum of

√
N and

√
Th. Note that (33), the formulation

in terms of vectors, is the locally stationary analogue to Theorem 1 of Bai (2003).
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Theorem 6 Under Assumptions A-E,

min
(√

N,
√
ThT

)∥∥∥F̂t,T −R−1
NT (ut,T )Ft

∥∥∥ = Op(1), (35)

where F̂t,T is defined in (28), Ft obeys the Assumptions A of the [LSAFM] in (10) and R−1
NT (·)

is the inverse of the rotation matrix RNT (·) defined in Theorem 5.

Finally, similar to Bai (2003) we can give a consistency result for the estimation of the
common components in the next proposition.

Corollary 7 Under Assumptions A-E,

Ĉit,T − Cit,T
p−→ 0 ∀i = 1, . . . , N (36)

where Ĉit,T := λ̂′i(ut,T )F̂t,T are the estimated common components and Cit,T := λ′i(ut,T )Ft are

the true common components (i = 1, . . . , N).

Corollary 7 states that Ĉit,T consistently estimates the common components. Note that, unlike

the estimation of Λ(u) or Ft, Cit,T and Ĉit,T are well identified. Cit,T is identified because the

indetermenacy of Λ(u) and Ft by the rotation matrix R(u) cancels out. Ĉit,T is identified because

Λ̂ and F̂t (depending on Λ̂) have the same sign. Due to Assumption E this unicity continues to
hold for the limit of the estimators as functions of rescaled time tending to a continuous limit
because the limit of the estimated eigenvectors are continuous functions of time. We also refer
to the discussion on the interpretation of Assumption E in Section 3.1.

The importance of this last result lies in the fact that it is via Ĉit,T that a predictor of
the originally observed series, i.e. its i-th component Xit,T , will be given. We will leave an
assessment of the qualities of such a predictor for future work, but we like to emphasize that it
is the flexibility of a locally stationary model with time-varying loadings that will prove useful
for enhanced prediction qualities (cf also a similar observation in the univariate situation of Van
Bellegem and von Sachs, 2004).

5 Simulation study

In this section we illustrate the performance of the estimators Σ̂(·;h), Λ̂(·) and VNT (·) defined
in (20), (21) and (25), respectively. The diagonal r × r matrix VNT (·) contains the largest r
eigenvalues of the N×N matrix N−1Σ̂(·;h). The N×r matrix Λ̂(·) is

√
N times the orthonormal

eigenvectors corresponding to the eigenvalues VNT (·) of the matrix N−1Σ̂(·;h). To obtain Λ̂(·)
and VNT (·) we thus need the estimate Σ̂(·;h) of the covariance matrix Σ(·).

The estimator Σ̂(·;h) depends on the bandwidth h. In our simulations, the choice of the
bandwidth is based on the local plug-in algorithm described in Brockmann et al. (1993) and in
Hermann (1997). We will not enter into the details of how to optimally choose this parameter
h because this problem goes beyond the scope of this paper and will be treated elsewhere.

5.1 Two examples

In Theorem 5, the matrix Λ̂( t
T ) is only able to identify the matrix Λ(u) up to rotation (i.e.

Λ(u)R(u)), and up to sign (note however that the squared difference between estimator and
rotated loadings is uniquely defined in this Theorem 5). The problem of an eigenvector to be

10



unique only up to sign (the linear eigenspace being equivalently represented by two different
normalized eigenvectors where one is the negative of the other) is a different problem than the
problem of the loadings (and the factors) of a factor model to be identifiable only up to a
rotation. In this context the two problems are superimposed: even though we have asymptotic
results for the product Λ(u)R(u) (which is the identified target), it remains the problem that
the estimator Λ̂(·) is defined to be a matrix of eigenvectors which are unique only up to sign.
This explains why in the simulation we still would need to take the absolute values of these
vectors (see §5.1.1 and Figure 2). To show the performance of the estimator Λ̂(·) we consider a
first set of simulations with ΣΛ(u) = Ir ∀u ∈ (0, 1) (see §5.1.1, Figures 1-2 and Figure 7). In
this case the rotation matrix R(u) is - up to sign - the identity matrix Ir (i.e. R(u) = ±Ir), and
thus the matrix Λ̂( t

T ) is able to identify the matrix Λ(u) up to sign.

By Proposition 3, the matrix VNT ( t
T ) is only able to identify the eigenvalues of the product

ΣΛ(u)ΣF . To show the performance of the estimator VNT (·) we consider a second set of simula-
tions with ΣF = Ir (see §5.1.2 and Figures 3-6). In this case the matrix VNT ( t

T ) is an estimate
of the eigenvalues of ΣΛ(u).

5.1.1 First example

We generate the data according to model (10) with N = 30, T = 900 and r = 2, and restrict to
the particular case

ΣΛ(u) = Ir ∀u ∈ (0, 1). (37)

To satisfy (37) we define
Λ(ut) =

√
N exp(πutY )A, (38)

where

ut := t
T ∈]0, 1], is a grid of T equidistant points in the rescaled time (t = 1 . . . , T ),

Y is an antisymmetric matrix of dimension N ,

A is an N × r matrix such that A′A = Ir,

exp (πutY ) is the N ×N matrix whose i, j element is exp (πutYij).

Then we have N−1Λ′(ut)Λ(ut) = Ir ∀t = 1 . . . , T .
An antisymmetric matrix is a square matrix that satisfies Y = −Y ′. In component notation,

Yij = −Yji. Letting k = i = j, the requirement becomes Ykk = −Ykk, so an antisymmetric
matrix must have zeros on its diagonal. The general 3 × 3 antisymmetric matrix is of the form

Y =




0 Y12 Y13

−Y12 0 Y23

−Y13 −Y23 0


 .

In our simulations Yij = 1 for i < j, Yij = 0 for i = j and Yij = −1 for i > j (i, j = 1 . . . , N).
In order to have nontrivial loadings, we multiply the matrix exp (πutY ) by the matrix A. To
obtain the matrix A, we simulate n = 50 iid realizations Z1, . . . ZN of an N−dimensional normal
random vector Z ∼ N (0, IN ) and take the r eigenvectors A1, . . . , Ar corresponding to the
largest eigenvalues of the sample covariance matrix SZ of the Zi’s: SZ := n−1

∑n
i=1 ZiZ

′
i and

A := [A1, . . . , Ar]. By construction A′A = Ir.

11



The covariance matrix is represented in Figure 1. For convenience of presentation (remember
that Σ(ut) is N ×N , a very huge matrix) we picked up some typical elements σij(ut), ut ∈]0, 1],
for some combinations of i, j: here i = 10, 20, 30, and j = 4, 7, 10, 14, 17, 20, 24, 27, 30.

We simulate M = 100 times the same model, that is model (10) with the same deterministic

loadings defined in (38) but different (realization of) factors and errors. In particular, Ft
iid∼

N (0,ΣF ) with ΣF = diag {3.5, 1}, and et
iid∼ N (0,Ψ) with Ψ = IN . For each m = 1, . . . ,M

and ∀ut ∈]0, 1], we compute the estimate Σ̂(ut;m) = {σ̂ij(ut;m)}N
i,j=1 defined in (20). Then

∀ut ∈]0, 1] we consider the average (bold line)

Σ̂(ut) := M−1
M∑

m=1

Σ̂(ut;m) =
{
σ̂ij(ut)

}N

i,j=1

and construct 95% confidence intervals based on asymptotic normality (dashed lines)

σ̂ij(ut) ± z0.975ν̂ij(ut) (39)

where zα = Φ−1 (α), Φ(·) is the standard normal cumulative distribution function, and

ν̂ij(ut) :=

√√√√ 1

M − 1

M∑

m=1

[
σ̂ij(ut;m) − σ̂ij(ut)

]2

is the estimator of the standard deviation (say νij(ut)) of the estimator σ̂ij(ut). The asymp-

totic normality of the estimator Σ̂(·) in (20) can be derived analogously to Proposition 3.2 of
Rodŕıquez-Poo & Linton (2001).

For each m = 1, . . . ,M and ∀ut ∈]0, 1] we define Λ̂(ut;m) as
√
N times the orthonormal

eigenvectors of the estimate N−1Σ̂(ut;m) (see Figure 2). If ΣΛ(u) = Ir ∀u ∈ (0, 1), then R(u)
(the limiting matrix to which RNT

(
t
T

)
converges) is ± the identity matrix Ir ∀u ∈ (0, 1), i.e.

Λ̂
(

t
T

)
converges to ±Λ(u). The definition of Λ(·) in (38) removes the indeterminacy due to

the rotation; at the same time, since the constraint (14) fixes Λ(·) except that any column may
have its elements reversed in sign, the loadings are estimated up to sign. We thus consider,

∀ut ∈]0, 1], the average
∣∣∣Λ̂(ut)

∣∣∣ := M−1
∑M

m=1

∣∣∣Λ̂(ut;m)
∣∣∣ (the absolute value removes the up-to-

sign indeterminacy).

5.1.2 Second example

We generate the data according to model (10) with loadings

Λ(ut) =
√
N sin (2πut) exp(πutY )A+ πA, (40)

where Y and A are the same as in (38), and restrict to the particular case ΣF = Ir. Figure 3
shows this example of time-varying loadings in the rescaled time and Figure 4 the corresponding
matrix ΣΛ(u).

The covariance matrix and its estimate are represented in Figure 5 (analogously to the first
example). The eigenvalues of the normalized covariance matrix N−1Σ(·) are plotted in Figure 6.
For each m = 1, . . . ,M and ∀ut ∈]0, 1] we compute the eigenvalues VNT (ut;m) of the estimate
N−1Σ̂(ut;m). Then ∀ut ∈]0, 1] we consider the average VNT (ut) := M−1

∑M
m=1 VNT (ut;m) (the

bold line) and construct 95% confidence intervals based on asymptotic normality (dashed lines).
Figure 2 shows the local performance of the estimator Λ̂(·). To have an idea of the global

performance of this estimator we consider different values of T = 100, 225, 400, 625, 900, 1225
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and N(T ) =
√
T , and for each combination of N and T we compute, in the spirit of Theorem 5,

the loss function

L(N,T ;M) :=
1

MT

M∑

m=1

T∑

t=1

1√
N

∥∥∥Λ̂(ut) − Λ(ut)RNT (ut)
∥∥∥ . (41)

By Theorem 5 this loss is decreasing w.r.t. T and N(T ), as also shown in Figure 7. This loss
function is the sample counterpart of the integrated loss

L(N,T ;M) :=
1

M

M∑

m=1

∫ 1

0

1√
N

∥∥∥Λ̂(u) − Λ(u)RNT (u)
∥∥∥ du.

We used the model defined in the second example (i.e. with ΣF = Ir) because in this case the
matrix R(u), to which the matrix RNT ( t

T ) converges, is in general different from the identity
matrix (we recall that R(u) = ±Ir if ΣΛ(u) = Ir).

Figure 1: Time-varying entries of the covariance matrix. Solid line: Σ(ut). Bold line: Σ̂(ut).

Dashed lines: confidence intervals.
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Figure 2: Time-varying entries of the matrices |Λ(ut)| and
∣∣∣Λ̂(ut)

∣∣∣. Solid line: |Λ(ut)|. Bold line:
∣∣∣Λ̂(ut)

∣∣∣.
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Figure 3: Time-varying entries of the matrix of loadings Λ(u).
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Figure 4: Time-varying entries of the matrix ΣΛ(u).
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Figure 5: Time-varying entries of the covariance matrix. Solid line: Σ(ut). Bold line: Σ̂(ut).

Dashed lines: confidence intervals.
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Figure 6: Time-varying entries of the diagonal matrices V (ut) and VNT (ut). Solid line: V (ut). Bold

line: VNT (ut). Dashed lines: confidence intervals.
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Figure 7: Integrated Loss defined in (41)
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6 Conclusions and outlook

In this paper we have proposed a new locally stationary factor model that allows for smoothly
time-varying factor loadings. We showed consistency of the principal components estimator
under double asymptotics up to rotation and sign. Due to the nonparametric estimation of
factor loadings, convergence rates are slower than in the stationary factor model with constant
loadings. In a simulation study, our estimator was shown to work very well for two alternative
scenarios: one where the rotation matrix is identity, another where it is not.

As already mentioned in the introduction, in practice one does not know the number of
factors and a test such as that of Bai and Ng (2002) is required. We are confident that analogue
tests can be developed for our model framework, but considered it here to be beyond the scope
of the paper. Furthermore, it would be interesting to compare our model more explicitly with
the dynamic factor model of Forni et al. (2000), especially in empirical applications. If in
reality factor loadings are smoothly changing, then quite likely this would show in positive
autocorrelations of factors in the dynamic factor model. To distinguish both types of dynamic
properties, we can extend our model to allow for autocorrelations of the factors, which is left
for future research.

As implied by Corollary 7, our model is promising for prediction purposes since the directly
identifiable common components can be used as predictors. As shown by van Bellegem and von
Sachs (2004) in a univariate framework, prediction using locally stationary models performs well
when compared with classical stationary models.

There are many potential applications in macroeconomics and finance. For example, the
dynamic factor model of Forni et al. (2000) has been applied to forecasting, monetary pol-
icy analysis, business cycle analysis and construction of economic indicators, see Breitung and
Eickmeier (2006) for a recent review. Comparing the empirical results of a factor model using
dynamic factors with those of a factor model with time-varying loadings would be an interesting
topic for future work. In finance, applications to asset pricing and portfolio selection are obvious
and this is also left for future research.
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A Some elements of matrix algebra

In this section all matrices are real. These results can be found in Lütkepohl (1996): the first
two lemmas are given in Section 4.1.2, Lemma 3 is given in Section 5.2.1.

Lemma 1 (Cauchy-Schwarz inequality)

tr2
{
A′B

}
≤ tr

{
A′A

}
tr
{
B′B

}

where A and B are real matrices of dimension m× n.

Lemma 2 Let A and B be positive semidefinite (m×m) matrices. Then tr(AB) ≤ tr(A) tr(B).

Lemma 3 Let A and B be k × k positive definite matrices. Then

γ is eigenvalue of BA ⇐⇒ γ is eigenvalue of B1/2AB1/2

where ⇐⇒ means that the two statements are equivalent.

B Optimization of Functions involving the trace

In this section all matrices are real. The following results are given in Section 4.1.3 of Lütkepohl
(1996).

Lemma 4 Let Σ (N × N) be real symmetric with eigenvalues γ1 ≥ · · · ≥ γN and associated

orthonormal (N × 1) eigenvectors Γ1, . . . ,ΓN , r ∈ {1, . . . , N}. Then:

- minL {tr (L′ΣL) : L(N × r) real, L′L = Ir} =
∑N

k=r+1 γk, the minimizing matrix being L̃ =

[Γr+1, . . . ,ΓN ];

- maxL {tr (L′ΣL) : L(N × r) real, L′L = Ir} =
∑r

k=1 γk, the maximizing matrix being L̂ =

[Γ1, . . . ,Γr].

Lemma 5 Let X be T×N and γ1 ≥ · · · ≥ γN be the eigenvalues of X ′X with associated (N×1)

orthonormal eigenvectors Γ1, . . . ,ΓN , 0 ≤ r < N . Then:

min
F,L

{
tr
(
X − FL′)′ (X − FL′) : F (T × r), L(N × r) with L′L = Ir

}
=

r∑

k=1

γk,

the minimizing matrices being

L̂ = [Γ1, . . . ,Γr] , F̂ = XL̂.

Lemma 6 Let Y be T × N , L be N × r with rk (L) = r, and W be T × T positive definite.

Then:

min
A

{
tr
(
Y −AL′)′W

(
Y −AL′) : A(T × r)

}
= tr

{
WY Y ′ −WY L

(
L′L

)−1
L′Y ′

}
.

The minimum is attained for A = Y L (L′L)−1.
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C Smoothness of spectral decomposition

Lemma 7 (Takagi’s factorization) . Let A ∈ Ck (R,Cn×n) be a complex symmetric matrix

valued function of constant rank: rk [A(x)] ≡ r for all x for fixed r : 1 ≤ r ≤ n. Then there

exists unitary U ∈ Ck (R,Cn×n) such that

A(x) = U(x)


 S+ 0

0 0


U ′(x) ∀x, (42)

and S+ ∈ C (R,Rr×r) is symmetric positive definite. Moreover, suppose that the continuous

eigenvalues {γ1, . . . , γr} of S+ satisfy

lim
τ→0

inf
|γi (x+ τ) − γj (x+ τ)|

|τ e| ∈ (0,+∞] (43)

for some nonnegative integers e ≤ k and for all x and i 6= j. Then there exists orthogonal

Γ ∈ Ck−e (R,Rr×r) such that Γ′S+Γ = diag (γ1, . . . , γr). The eigenvalues can be taken to be Ck

functions. The proof of this lemma is reported in Theorems 2.4 and 2.7 of Chern & Dieci (2000,

p. 774-778).

D Proofs

For the proofs we use the following abbreviations

Xs := Xs,T , Λs := Λ
(

s
T

)
, Λ̂s := Λ̂

( s
T

)
, Λ(1)

s := Λ(1)
( s
T

)
,

Λ̃s := Λ(us,T )/
√
N, Vs,NT := VNT

(
s
T

)
, Rs,NT := RNT

( s
T

)

for s = 1, . . . , T and, following the definition of equation (20),

Σ̂t := Σ̂(ut,T ;h) = T−1
T∑

s=1

Xs,TX
′
s,Tωt,T (us,T ;h) t = 1, . . . , T. (44)

In what follows a matrix is Op(rT ) if each element of that matrix goes to zero in probability at
the rate rT .

D.1 Proof of Proposition 1

The assertion of this proposition can be written as

tr
{

Λ̃′
sΣ̂tΛ̃s − Λ̃′

tΣ̂tΛ̃t

}
= Op(Nh) = op(1) .

The idea of the proof is to apply Lemma 2 to the positive semi-definite matrices Λ̃sΛ̃
′
s and Σ̂t,

i.e., tr
{

Λ̃sΛ̃
′
sΣ̂t

}
≤ tr

{
Λ̃sΛ̃

′
s

}
tr Σ̂t. The idea is further to use that tr Λ̃sΛ̃

′
s = O(1) and that

by Theorem 2 E tr Σ̂t = O(N).
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More specifically due to the existence and uniform boundedness of the first derivative of Λ(·)
we have the Taylor expansion

λij(s/T ) = λij(t/T ) + λ
(1)
ij (s∗/T )

t− s

T
for

∣∣∣∣
t− s

T

∣∣∣∣ ≤ h ,

with a mean value s/T ≤ s∗/T ≤ t/T (w.l.o.g.).

We plug in this Taylor expansion for each of the Λ̃s into tr
{

Λ̃′
sΣ̂tΛ̃s − Λ̃′

tΣ̂tΛ̃t

}
. Note that

due to the construction of Σ̂t to be a sum over kernel weights which are zero for arguments s
with s−t

T > h (essentially), we can directly infer that the above difference is equal to the sum of
three traces:

tr
{

Λ̃′
tΣ̂tΛ̃

(1)
s∗ h + Λ̃

(1)′

s∗ Σ̂tΛ̃t h + Λ̃
(1)′

s∗ Σ̂tΛ̃
(1)
s∗ h2

}
.

Here we give only the treatment of the first term, the second is similar due to symmetry, and
the third converges even faster. What we need to show is that

E

∣∣∣tr
{

Λ̃′
tΣ̂tΛ̃

(1)
s∗

}∣∣∣ = O(N) ,

as this will imply, by the Markov inequality the desired stochastic convergence of order Op(Nh)
of the whole difference under consideration.

We use that tr
{

Λ̃′
tΣ̂tΛ̃

(1)
s∗

}
= tr

{
Λ̃

(1)
s∗ Λ̃′

tΣ̂t

}
and that as indicated above,

tr
{

Λ̃
(1)
s∗ Λ̃′

tΣ̂t

}
≤ tr

{
Λ̃

(1)
s∗ Λ̃′

t

}
tr Σ̂t .

Further we use the Cauchy-Schwarz inequality Lemma 1 to bound

∣∣∣tr
{

Λ̃
(1)
s∗ Λ̃′

t

} ∣∣∣ ≤
∥∥∥Λ̃(1)

s∗

∥∥∥
∥∥∥Λ̃t

∥∥∥ = O(1) ,

where we recall the definition of the norm ‖A‖ =
√

tr {A′A}. But both norms on the right hand
side are bounded from above by condition D2, which we recall to be

sup
u

‖Λ(1)(u)‖ = O(
√
N) ,

and by the property of Λ̃′
tΛ̃t = Idr.

It remains to show that E tr Σ̂t = O(N). (Note that in fact the eigenvalues, and hence the
trace, of the smoothed covariance matrix estimator Σ̂t are non-negative by construction.).

With Theorem 2, EN−1 tr Σ̂t − N−1Σt = o(1), hence it is sufficient to show that trΣt =
O(N). Recall that

Σt = ΛtΣF Λ′
t + ΨN ,

and that with Assumption C.3, tr ΨN = O(N). Further, by the orthonormality of Λ̃t and the
invariance of the trace with respect to orthogonal rotations, we easily conclude that

tr
(
ΛtΣF Λ′

t

)
= N tr

(
Λ̃tΣF Λ̃′

t

)
= N tr ΣF = O(N) ,

as the trace of ΣF is bounded from above. @

20



D.2 Proof of Theorem 2

Since Xs = ΛsFs + es, we have the following decomposition:

(NT )−1X ′WtX = (NT )−1
T∑

s=1

XsX
′
sωt(s;hT ) = At,NT +Bt,NT +B′

t,NT + Ct,NT (45)

where

At,NT = (NT )−1
T∑

s=1

ΛsFsF
′
sΛ

′
sωt(s;hT ),

Bt,NT = (NT )−1
T∑

s=1

ΛsFse
′
sωt(s;hT ),

Ct,NT = (NT )−1
T∑

s=1

ese
′
sωt(s;hT ).

This decomposition allows us to write
∥∥∥∥(NT )−1X ′WtX −N−1Σ

(
t

T

)∥∥∥∥ =:
∥∥At,NT +Bt,NT +B′

t,NT + Ct,NT −N−1
(
ΛtΣF Λ′

t + Ψ
)∥∥ ≤

≤
∥∥At,NT −N−1ΛtΣF Λ′

t

∥∥+ ‖Bt,NT ‖ +
∥∥Ct,NT −N−1Ψ

∥∥

We now show that each of the terms above is Op

(
1√

ThT

)
. We apply the same Taylor expansion

as in the proof of Proposition 1, i.e.

λij(s/T ) = λij(t/T ) + λ
(1)
ij (s∗/T )

t− s

T
for

∣∣∣∣
t− s

T

∣∣∣∣ ≤ h ,

with a mean value s/T ≤ s∗/T ≤ t/T (w.l.o.g.), which we write in matrix notation and slightly
differently here

Λs = Λt + hT zs(Λ
(1)
t + o(1)) = Λt + hT zsΛ

(1)
t + o(hT ) ,

with Λt := Λ(t/T ) ,Λ
(1)
t := Λ(1)(t/T ) and zs := t−s

ThT
. Note again that due to the use of the

kernel weights in the matrix Wt which are essentially zero for arguments s with s−t
T > h, we can

w.l.o.g. argue that |zs| ≤ 1.
This allows us to consider for the first term in (45) a sum of 4 terms: At,NT =

∑4
k=1 kAt,NT ,

where

1At,NT = (NT )−1
∑T

s=1ΛtFsF
′
sΛ

′
tωt(s;hT )

2At,NT = (NT )−1
∑T

s=1ΛtFsF
′
s(Λ

′(1)
t + o(1))hT zsωt(s;hT )

3At,NT = (NT )−1
∑T

s=1(Λ
(1)
t + o(1)) FsF

′
sΛ

′
thT zsωt(s;hT )

4At,NT = (NT )−1
∑T

s=1(Λ
(1)
t + o(1))FsF

′
s(Λ

′(1)
t + o(1))h2

T z
2
sωt(s;hT ) .

In order to show that
∥∥At,NT −N−1ΛtΣF Λ′

t

∥∥ = Op

(
1√

ThT

)
+ O(hT ), we will only treat the

first two terms of the above given sum as the two other terms behave similarly or converge even
faster. First we show that

∥∥
1At,NT −N−1ΛtΣF Λ′

t

∥∥ tends to zero with the appropriate rate.
Indeed
∥∥∥∥∥

1

NT

T∑

s=1

ΛtFsF
′
sΛ

′
tωt(s;hT ) −N−1ΛtΣF Λ′

t

∥∥∥∥∥ ≤
∥∥∥∥

1

N
Λ′

tΛt

∥∥∥∥

∥∥∥∥∥
1

T

T∑

s=1

vec
(
FsF

′
s

)
ωt(s;hT ) − vec (ΣF )

∥∥∥∥∥
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and ∥∥∥∥
1

N
Λ′

tΛt

∥∥∥∥→ ‖ΣΛ(u)‖ = O(1)

by assumption B2. Then it suffices to show that

√
ThT

∥∥∥∥∥
1

T

T∑

s=1

vec
(
FsF

′
s

)
ωt(s;hT ) − vec (ΣF )

∥∥∥∥∥ = Op(1). (46)

To do that we show that the expectation and the variance of the argument of the norm in (46)
tend to zero. We recall that this is sufficient as the considered norm is the euclidean norm in
IRr with r fixed. For the expectation we have

E

[
1

T

T∑

s=1

vec
(
FsF

′
s

)
ωt(s;hT ) − vec (ΣF )

]
=

[
1

T

T∑

s=1

ωt(s;hT )Ir2 − Ir2

]
vec (ΣF ) =

=
{(

1 +O
(
T−1h−1

T

))
Ir2 − Ir2

}
vec (ΣF ) = O

(
T−1h−1

T

)
vec (ΣF ) = O

(
T−1h−1

T

)
.

The argument of the norm in (46) can be written as

1

T

T∑

s=1

Gsωt(s;hT ) +O
(
T−1h−1

T

)

where Gt := vec (FtF
′
t − ΣF )

iid∼ (0, P ) for a given matrix P . Then

Var

[
1

T

T∑

s=1

Gsωt(s;hT ) +O
(
T−1h−1

T

)
]

= 1
T 2 E

[∑T
s=1GsG

′
sω

2
t (s;hT )

]
=

= 1
T 2 E [GtG

′
t]
∑T

s=1ω
2
t (s;hT ) =

= P 1
T 2

∑T
s=1ω

2
t (s;hT ) = O

(
T−1h−1

T

)
.

The last assertion is due to a classical argument in nonparametric curve estimation with kernels
of finite second moment.

Second, in order to treat the term 2At,NT we show quite analogously to the above and
recalling the condition Th3

T = o(1), that

√
ThT

∥∥∥∥∥(NT )−1
T∑

s=1

ΛtFsF
′
s(Λ

′(1)
t + o(1)) hT zsωt(s;hT )

∥∥∥∥∥ =
√
ThT Op(hT ) = op(1). (47)

To do so we essentially have to use that

1

N

∥∥∥Λ′
tΛ

(1)
t

∥∥∥ =
1

N

√
tr
(
Λ′

tΛtΛ
′(1)
t Λ

(1)
t

)
=
√
N−1 tr (Λ′

tΛt)

√
N−1 tr

(
Λ
′(1)
t Λ

(1)
t

)
= O(1)

by assumption D2.
Treatment of the terms 3At,NT and 4At,NT would be similar.

By similar arguments, it can be shown that ‖Bt,NT ‖ and
∥∥Ct,NT −N−1Ψ

∥∥ are bothOp

(
1√

ThT

)
.

For the term ‖Bt,NT ‖ we have

‖ 1Bt,NT ‖ ≤
∥∥∥∥

1√
N

Λt

∥∥∥∥

∥∥∥∥∥
1

T
√
N

T∑

s=1

Fse
′
sωt(s;hT )

∥∥∥∥∥
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where 1Bt,NT is the first term of the sum Bt,NT =
∑4

k=1 kBt,NT , again obtained by using a

Taylor expansion of Λs, and
∥∥∥ 1√

N
Λt

∥∥∥ = O(1) by assumption B2. Then

‖ 1Bt,NT ‖ ∝
∥∥∥∥∥

1

T
√
N

T∑

s=1

vec
[
Fse

′
s

]
ωt(s;hT )

∥∥∥∥∥

Since Cov[Ft, et] = 0 ∀t,

E

{
1

T
√
N

T∑

s=1

vec
[
Fse

′
s

]
ωt(s;hT )

}
= 0 ∀t.

In order to treat the variance now we define Ht := vec [Fte
′
t]

iid∼ (0, Q) for another given matrix
Q which does indeed exist due to Assumptions A2 and C2:

Var

[
1

T
√
N

T∑

s=1

Hsωt(s;hT )

]
= 1

NT 2 E

[∑T
s=1HsH

′
sω

2
t (s;hT )

]
= 1

NT 2 E [HtH
′
t]
∑T

s=1ω
2
t (s;hT ) =

= N−1Q 1
T 2

∑T
s=1ω

2
t (s;hT ) = O

(
N−1T−1h−1

T

)
.

This means that each term of the Nr× 1 vectors 1
T
√

N

∑T
s=1 vec [Fse

′
s]ωt(s;hT ) is Op

(
1√

NThT

)
,

and thus ∥∥∥∥∥
1

T
√
N

T∑

s=1

vec
[
Fse

′
s

]
ωt(s;hT )

∥∥∥∥∥ = Op

(
1√
ThT

)

because the norm of a vector of dimension ∝ N increases at a rate ∝
√
N .

For the last term we have

E

[
Ct,NT −N−1Ψ

]
=

[
1

NT

∑T
s=1 E (ese

′
s)ωt(s;hT )

]
−N−1Ψ =

= N−1Ψ
[
T−1

∑T
s=1ωt(s;hT )

]
−N−1Ψ =

= N−1Ψ
[
1 +O

(
T−1h−1

T

)]
−N−1Ψ =

= O
(

1
NThT

)
.

As before, define Jt := vec [ete
′
t − Ψ]

iid∼ (0, R) for another given matrix R which does exist due
to Assumption C2 and obtain:

Var

[
1

TN

T∑

s=1

Jsωt(s;hT ) +O

(
1

NThT

)]
=

1

N2T 2 E

[
T∑

s=1

JsJ
′
sω

2
t (s;hT )

]
=

1

N2T 2 E

[
JtJ

′
t

] T∑

s=1

ω2
t (s;hT ) = N−2R

1

T 2

T∑

s=1

ω2
t (s;hT ) = O

(
N−2T−1h−1

T

)
.

Each term of the N2 × 1 vectors 1
TN

∑T
s=1 vec [ese

′
s − Ψ]ωt(s;hT ) is Op

(
1

N
√

ThT

)
, and thus

∥∥∥∥∥
1

NT

T∑

s=1

vec
[
ese

′
s

]
ωt(s;hT )

∥∥∥∥∥ = Op

(
1√
ThT

)

because the norm of a vector of dimension ∝ N2 increases at a rate ∝ N . @
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D.3 Proof of Proposition 3

Consider equation (24)
(NT )−1X ′WtXΛ̂t = Λ̂tVt,NT (48)

where Wt := Wt(hT ), and multiply it to the left by

(
F ′F

T

)1/2 Λ′
t

N

to obtain

(NT )−1

(
F ′F

T

)1/2 Λ′
t

N
X ′WtXΛ̂t =

(
F ′F

T

)1/2 Λ′
t

N
Λ̂tVt,NT . (49)

By (45) we get

(
F ′F

T

)1/2 Λ′
t

N

[
At,NT +Bt,NT +B′

t,NT + Ct,NT

]
Λ̂t =

(
F ′F

T

)1/2 Λ′
t

N
Λ̂tVt,NT , (50)

which can be written as
Gt,NT + bt,NT + ct,NT = Qt,NTVt,NT

where

Gt,NT =
(

F ′F
T

)1/2 Λ′
t√
N
At,NT

bΛt√
N

bt,NT =
(

F ′F
T

)1/2 Λ′
t√
N

[
Bt,NT +B′

t,NT

]
bΛt√
N

ct,NT =
(

F ′F
T

)1/2 Λ′
t√
N
Ct,NT

bΛt√
N

Qt,NT =
(

F ′F
T

)1/2 Λ′
t
bΛt

N .

By Theorem 2, At,NT = N−1Λt

(
F ′F
T

)
Λ′

t + UNT , where UNT = Op

(
1

N
√

ThT

)
, i.e. UNT is an

N ×N matrix each element being Op

(
1

N
√

ThT

)
. Since

∥∥∥∥
F ′F

T

∥∥∥∥ = Op(1) by assumption A3

∥∥∥∥
Λt√
N

∥∥∥∥ = O(1) by assumption B2

∥∥∥∥∥
Λ̂t√
N

∥∥∥∥∥ = Op(1) by the constraint in (21).

we have

Gt,NT =

(
F ′F

T

)1/2 Λ′
tΛt

N

(
F ′F

T

)
Λ′

tΛ̂t

N
+Op

(
1

N
√
ThT

)
= Pt,NTQt,NT +Op

(
1

N
√
ThT

)

where

Pt,NT =
(

F ′F
T

)1/2 Λ′
tΛt

N

(
F ′F
T

)1/2

Qt,NT =
(

F ′F
T

)1/2 Λ′
t
bΛt

N
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The term bt,NT isOp

(
1√

NThT

)
becauseBt,NT = Op

(
1√

NThT

)
, and the term ct,NT isOp

(
1

N
√

ThT

)

because Ct,NT = Op

(
1

N
√

ThT

)
(see proof of Theorem 2). Then we have

Pt,NTQt,NT + dt,NT = Qt,NTVt,NT (51)

where dt,NT = bt,NT + ct,NT = Op

(
1√

NThT

)
= op(1).

From (51), using that Qt,NT is of full rank, see e.g. Lütkepohl (1996, 4.3.1. (13) applied to
Λ′

t
bΛt

N ), we have [
Pt,NT + dt,NTQ

−1
t,NT

]
Qt,NT = Qt,NTVt,NT

Let V ⋆
t,NT be a diagonal matrix consisting of the diagonal elements of Q′

t,NTQt,NT . Note that

V ⋆
t,NT is invertible because Qt,NT is of full rank. Denote Υt,NT = Qt,NTV

⋆−1/2
t,NT so that each

column of Υt,NT has unit length, and we have

[
Pt,NT + dt,NTQ

−1
t,NT

]
Υt,NT = Υt,NTVt,NT .

Thus each column of Υt,NT is an eigenvector of the matrix
[
Pt,NT + dt,NTQ

−1
t,NT

]
. Note that

[
Pt,NT + dt,NTQ

−1
t,NT

]
converges to P (ut) = Σ

1/2
F ΣΛ(ut)Σ

1/2
F by Assumptions A3 and B2 and

dt,NT = op(1)
For large values of T and N , the diagonal matrix Vt,NT contains the eigenvalues of Pt,NT .

By assumptions A3 and B2 and Slutsky’s Theorem

plimN,T→∞ Pt,NT = P (ut) = Σ
1/2
F ΣΛ(ut)Σ

1/2
F .

Lemma 3 in Appendix A gives the result. @

D.4 Proof of Proposition 4

For this proof we use the following lemma.

Lemma 8

Q′
t,NTQt,NT :=

Λ̂′
tΛt

N

(
F ′F

T

)
Λ′

tΛ̂t

N

p−→V (u).

Proof: By (24) we have Vt,NT =
bΛ′

t

N
X′WtX

NT Λ̂t, and by Theorem 2

X ′WtX

NT
= N−1Λt

(
F ′F

T

)
Λ′

t +N−1Ψ + Zt,NT

where the N ×N matrix Zt,NT is Op

[
1

N
√

ThT

]
. Then

Vt,NT =
bΛ′

tΛt

N

(
F ′F
T

)
Λ′

t
bΛt

N +
bΛ′

t√
N

Ψ
N

bΛt√
N

+
bΛ′

tZt,NT
bΛt

N

and thus

∥∥Vt,NT −Q′
t,NTQt,NT

∥∥ ≤
∥∥∥

bΛ′
t
bΛt

N

∥∥∥
∥∥Ψ

N

∥∥+
∥∥∥

bΛ′
t
bΛt

N

∥∥∥ ‖Zt,NT ‖ =
∥∥∥

bΛ′
t
bΛt

N

∥∥∥
(∥∥Ψ

N

∥∥+ ‖Zt,NT ‖
)

=

= Op(1)
[
O
(

1√
N

)
+O

(
1√

ThT

)]
= op(1)
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because

∥∥∥∥
Ψ

N

∥∥∥∥ = N−1

√√√√
N∑

i=1

N∑

j=1

ψ2
ij ≤ N−1

√√√√N max
1≤i≤N

N∑

j=1

ψ2
ij ≤

1√
N

max
1≤i≤N

N∑

j=1

|ψij | = O

(
1√
N

)

by assumption C3. With Proposition 3 we have the result. @

Note that our Lemma 8 is analogous to Lemma A.3(ii) of Bai (2003). Because the ordering of
eigenvectors in the points of intersections is identified by our convention (see §3.1), the matrix
Υt,NT converges to the matrix Υ(u), similar to the proof of Proposition 1 of Bai (2003, see pages
161-162). We now continue with the proof of Proposition 4.

From the definitions of Qt,NT and Υt,NT it follows that

Λ′
tΛ̂t

N
=

(
F ′F

T

)−1/2

Qt,NT =

(
F ′F

T

)−1/2

Υt,NTV
⋆1/2
t,NT .

The term
(

F ′F
T

)−1/2
converges to Σ

−1/2
F by Assumption A3. By Proposition 3 and Lemma

8, V ∗
t,NT = diag

{
Q′

t,NTQt,NT

}
p−→V (u), and Υt,NT

p−→Υ(u) by Proposition 3. Note that due

to Assumption E and our identifiability assumption in intersection points of eigenvalues of
ΣΛ(u)ΣF , the limiting function is uniquely defined in each u ∈ (0, 1) and a continuous function
of u. @

D.5 Proof of Theorem 5

By (24) and (45) we have

Λ̂t = (NT )−1X ′WtXΛ̂tV
−1
t,NT =

[
At,NT +Bt,NT +B′

t,NT + Ct,NT

]
Λ̂tV

−1
t,NT .

If we define the rotation matrix

Rt,NT =

(
F ′F

T

)(
Λ′

tΛ̂t

N

)
V −1

t,NT ;

we can write

Λ̂t − ΛtRt,NT =

[
At,NT −N−1Λt

(
F ′F

T

)
Λ′

t +Bt,NT +B′
t,NT + Ct,NT

]
Λ̂tV

−1
t,NT

that is

(i) 1√
N

∥∥∥Λ̂t − ΛtRt,NT

∥∥∥ ≤
(∥∥∥∥At,NT −N−1Λt

(
F ′F

T

)
Λ′

t

∥∥∥∥+ ‖Bt,NT ‖ + ‖Ct,NT ‖
)∥∥∥∥∥

Λ̂t√
N

∥∥∥∥∥
∥∥∥V −1

t,NT

∥∥∥

(ii) 1√
N

∥∥∥λ̂it −R′
t,NTλit

∥∥∥ ≤
∥∥∥V −1

t,NT

∥∥∥
∥∥∥∥∥

Λ̂t√
N

∥∥∥∥∥×
(∥∥∥∥Ait,NT −N−1Λt

(
F ′F

T

)
λ′it

∥∥∥∥+ ‖Bit,NT ‖ +
∥∥∥B̃it,NT

∥∥∥+ ‖Cit,NT ‖
)
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where λ̂it, λit, Ait,NT , Bit,NT , Cit,NT are the i−th columns of Λ̂′
t, Λ′

t, At,NT , Bt,NT , Ct,NT ,
respectively:

Ait,NT = (NT )−1
T∑

s=1

ΛsFsF
′
sλisωt(s;hT ),

Bit,NT = (NT )−1
T∑

s=1

ΛsFseisωt(s;hT ),

B̃it,NT = (NT )−1
T∑

s=1

esF
′
sλisωt(s;hT ),

Cit,NT = (NT )−1
T∑

s=1

eseisωt(s;hT ).

Consider part (i). By Theorem 2,
∥∥∥At,NT −N−1Λt

(
F ′F
T

)
Λ′

t

∥∥∥ and ‖Bt,NT ‖ are both Op

(
1√

ThT

)
.

For the last term we have Ct,NT = N−1Ψ +Op

(
1

N
√

ThT

)
; then

‖Ct,NT ‖ ≤
∥∥N−1Ψ

∥∥+Op

(
1√
ThT

)
= O

(
1√
N

)
+Op

(
1√
ThT

)
= O

(
1√
N

)
.

The terms
∥∥∥V −1

t,NT

∥∥∥ and
∥∥∥ bΛt√

N

∥∥∥ are both Op(1), and the proof of Proposition 5 (i) is complete.

Consider part (ii). The term
∥∥∥Ait,NT −N−1Λt

(
F ′F
T

)
λ′it

∥∥∥ is also Op

(
1√

ThT

)
because each

element of the r×1 vector λit, ∀i and ∀t, is allowed to grow at the rate
√
N by the constraint in

(21). The terms ‖Bit,NT ‖ and
∥∥∥B̃it,NT

∥∥∥ are both Op

(
1√

NThT

)
because ‖Λseis‖ and ‖esλ′is‖ are

Op(
√
N) and ‖Fs‖ = Op(1) ∀s and ∀i. For the last term we have ‖Cit,NT ‖ = Op

(
1
N

)
. Indeed

Cit,NT = N−1ψi +Op

(
1

N
√

ThT

)
, and

‖Cit,NT ‖ ≤ N−1 ‖ψi‖ +Op

(
1√

NThT

)
= O

(
1

N

)
+Op

(
1√

NThT

)

because

‖ψi‖ =

√√√√
N∑

j=1

ψ2
ij ≤

N∑

j=1

|ψij | = O(1) by assumption C3.

Then

1√
N

∥∥∥λ̂it −R′
t,NTλit

∥∥∥ = Op(1)Op(1)
(
Op

(
1√

ThT

)
+Op

(
1√

NTht

)
+Op

(
1
N

))
=

= Op

(
1√

ThT

)
+Op

(
1
N

)
.

@

D.6 Proof of Theorem 6

By (28) and (10), the estimated factors can be written as

F̂t =
Λ̂′

tΛt

N
Ft +

Λ̂′
t

N
et.
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The rotation matrix is Rt,NT =
(

F ′F
T

)(
Λ′

t
bΛt

N

)
V −1

t,NT , and its inverse is given by R−1
t,NT =

Vt,NT

(
Λ′

t
bΛt

N

)−1 (
F ′F
T

)−1
. The inverse of the rotation matrix can be written as (see the proof of

Lemma 8)

R−1
t,NT =

[(
bΛ′

tΛt

N

)(
F ′F
T

)(
Λ′

t
bΛt

N

)
+

bΛ′
t√
N

Ψ
N

bΛt√
N

+
bΛ′

tZNT
bΛt

N

] (
Λ′

t
bΛt

N

)−1 (
F ′F
T

)−1
=

=
(

bΛ′
tΛt

N

)
+
[

bΛ′
t√
N

Ψ
N

bΛt√
N

+
bΛ′

tZNT
bΛt

N

] (
Λ′

t
bΛt

N

)−1 (
F ′F
T

)−1
.

Thus

F̂t −R−1
t,NTFt =

bΛ′
t

N et +
[

bΛ′
t√
N

Ψ
N

bΛt√
N

+
bΛ′

tZNT
bΛt

N

] (
Λ′

t
bΛt

N

)−1 (
F ′F
T

)−1
Ft

and thus

∥∥∥F̂t −R−1
t,NTFt

∥∥∥ ≤
∥∥∥

bΛ′
tet

N

∥∥∥+
(∥∥∥

bΛ′
t
bΛt

N

∥∥∥
∥∥Ψ

N

∥∥+
∥∥∥

bΛ′
t
bΛt

N

∥∥∥ ‖ZNT ‖
)∥∥∥∥
(

Λ′
t
bΛt

N

)−1
∥∥∥∥
∥∥∥∥
(

F ′F
T

)−1
∥∥∥∥ ‖Ft‖ =

= Op

(
1√
N

)
+
[
Op(1)O

(
1√
N

)
+Op(1)Op

(
1√

ThT

)]
Op(1)Op(1)Op(1) =

= Op

(
1√
N

)
+Op

(
1√

ThT

)
.

Thus

min
(√

N,
√
ThT

)∥∥∥F̂t −R−1
t,NTFt

∥∥∥ = Op(1)

and the proof of Theorem 6 is complete. @

D.7 Proof of Corollary 7

This corollary follows directly from Slutsky’s Theorem applied to Theorems 5 and 6. @
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