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Abstract

The Gaussian kernel density estimator is known to have substantial problems for bounded

random variables with high density at the boundaries. For i.i.d. data several solutions have

been put forward to solve this boundary problem. In this paper we propose the gamma kernel

estimator as density estimator for positive data from a stationary α-mixing process. We derive

the mean integrated squared error, almost sure convergence and asymptotic normality. In a

Monte Carlo study, where we generate data from an autoregressive conditional duration model

and a stochastic volatility model, we find that the gamma kernel outperforms the local linear

density estimator. An application to data from financial transaction durations, realized volatility

and electricity price data is provided.
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1 Introduction

An important first step in applied econometric modelling is looking at the characteristics of the

data at hand without making yet strong assumptions. Apart from the usual descriptive statistics,

we also estimate univariate marginal densities of the variables of interest to examine for example

the tails or to check if there is some multimodality in the density. This density estimation is usually

done using a Gaussian kernel estimator of which the asymptotic properties are well established for

i.i.d. data and for time series data, see for example Silverman (1986), Pagan and Ullah (1999) and

Fan and Yao (2003) for textbook details. Another advantage of the Gaussian kernel estimator is

the direct availability in most statistical software packages. A drawback is that it may give positive

weight to points outside the support when we estimate the density of a bounded random variable.

This causes a bias problem at the boundary and therefore inconsistency of the estimator. This

problem, well known as the boundary bias problem, has given rise to new methods and new kernel

estimators for i.i.d. data.

First solutions to this boundary problem are the reflection method, see Schuster (1985) and

the local renormalisation method, see Diggle (1985) and Härdle (1990). The idea behind the

reflection method is to recapture the missing weight by reflecting the estimate in the boundary.

The renormalisation method uses the Gaussian estimator with renormalized kernels. Although

both methods lower the bias, there is still more bias at the boundary compared to the interior of

the support. To obtain the same bias order over the whole support Devroye and Gyorfi (1985)

and Marron and Ruppert (1994), apply first a data transformation such that the first derivative

of the density of the transformed data is equal to zero at the boundary points. Second, they use

the reflection method to estimate the density function of the transformed data which is thereafter

transformed to the density of the original data. In order to get the same order of bias without

transforming the data, several authors propose to use an adapted kernel at the boundary region

and the standard kernel in the interior region. See Jones (1993) for the boundary kernel estimator,

Müller (1991) for optimal boundary kernel estimators and Lejeune and Sarda (1992) for the local

linear estimator. The drawback of these estimators is that they can take negative values near the

boundary. To solve this problem, Jones and Foster (1996) propose a simple nonnegative boundary

corrected estimator. A recent solution is to use asymmetric and adapted kernels which do not assign

any weight outside the support. Chen (1999) and Chen (2000) propose respectively beta kernel
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densities for variables with compact support and gamma densities as kernels for variables with

positive support. Chen (2002) also uses the gamma kernel in local linear smoothing to estimate a

regression curve with a positive support. Fernandez and Monteiro (2005) establish a central limit

theorem for gamma kernel functionals.

For economics data, it happens often that the range of the variable of interest is not the whole

real line. This does not necessarily poses a problem for the Gaussian kernel estimator because

the boundary can sometimes be ignored in practice. For example in the i.i.d. framework, income

data from the computer industry are positive but there are no values near the zero boundary and

therefore the boundary problem does not exist practically. However, income data for a country

can have most of the density mass near zero because of high unemployment and/or high income

inequality. Bouezmarni and Scaillet (2003), who derive weak convergence of the integrated absolute

error for the gamma kernel estimator, illustrate this for an income density using data from Brazil.

For positive dependent data, there are also many illustrations in economics where there is an

important concentration close to zero. Financial transaction data are typically highly dependent

and often close or approximately equal to zero for frequently traded stocks. In the autoregressive

conditional duration literature Engle and Russell (1998) analyse IBM trade duration data which a

substantial concentration near zero. See Bauwens, Giot, Grammig, and Veredas (2004) for similar

characteristics on other US stock data and Ghysels, Gourieroux, and Jasiak (2004) for Alcatel

traded on the Paris Stock Exchange. Another important example for this type of data is daily

volatility series constructed using intraday data using realized volatility techniques. Andersen,

Bollerslev, Diebold, and Labys (2001) investigate the shape of the unconditional distribution of

realized exchange rate volatility and find that the distribution is extremely skewed. See Andersen,

Bollerslev, Diebold, and Ebens (2001) for similar results on stock returns. A non finance example

is efficient frontier analysis where ineffeciency scores for a company related to its peer companies

are computed over time, see Park and Simar (1994) for an application using railway company data.

The objective of this paper is to propose the gamma kernel estimator for positive time series. To

do this, we build on Chen (2000) who introduces the gamma kernel estimator for i.i.d. data . We

derive the convergence properties for data series from a stationary α-mixing process. We compute

the mean integrated squared error and obtain the optimal rate of convergence. We also prove the

almost sure convergence and state the asymptotic normality for the gamma kernel estimator. The

asymptotic normal distribution can be used for confidence intervals as we show in some applications.

3



In a detailed Monte Carlo study, where we generate data from an autoregressive conditional duration

model and a stochastic volatility model, we show that, in terms of mean integrated squared error,

the gamma kernel outperforms its closest competitor which is the local linear density estimator of

Jones (1993).

The paper is organised as follows. The gamma kernel estimator for positive time series is

introduced in Section 2. Section 3 provides convergence properties. In Section 4 we investigate

the finite sample properties of the gamma kernel estimator for data from a conditional duration

model and a stochastic volatility model. Both models are frequently used in financial econometrics.

Section 5 first provides an application to transaction duration data for four US stocks traded on the

New York Stock Exchange, the second application uses realised volatility series from the DM/dollar

exchange rate and IBM, and the last application estimates the density of hourly electricity prices.

Section 6 concludes. The proofs of the theorems are gathered in the Appendix.

2 Gamma kernel estimator

We observe X1, . . . ,Xn from a stationary α-mixing process with density function f . Our goal is to

estimate the function f(t) nonparametrically for t ∈ [0,∞). The gamma kernel estimator is defined

next.

f̂(x) =
1

n

n
∑

j=1

Kρb(x),b (Xj) (1)

where the kernel Kb is defined by

Kρb(x),b(t) =
tρb(x)−1 exp(−t/b)
bρb(x)Γ(ρb(x)))

and ρb(x) =



















x/b if x ≥ 2b

1
4 (x/b)2 + 1 if x ∈ [0, 2b).

(2)

For notational simplicity we write Kx,b instead of Kρb(x),b. The shape of the gamma kernel and the

amount of smoothing vary according to the position where the density is estimated, which implies

that the gamma kernel estimator is an adaptive density estimator. This is a crucial difference

with the Gaussion or other fixed symmetric kernel estimators. The support of the gamma kernel

matches the support of the probability density function to be estimated, and therefore no weight is
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lost when the density is estimated at the boundary region. The gamma kernel density estimator is

easy to implement, free of boundary bias and always non-negative. It achieves the optimal rate of

convergence, in the i.i.d. case, for the mean integrated squared error within the class of non-negative

kernel density estimators. Furthermore, their variance reduces as the position where the smoothing

is made moves away from the boundary. We show the importance of this feature when we deal with

the asymptotic normality of the gamma kernel estimator. For i.i.d. data, Chen (2000) shows by

simulations that, in term of mean squared error, the gamma kernel estimator outperforms the local

linear estimator of Jones (1993), the non-negative estimator of Jones and Foster (1996) and the

boundary kernel estimator of Müller (1991). Note that the last estimators are proposed to remove

the boundary bias problem of the standard kernel estimator. Bouezmarni and Scaillet (2003) state

the uniform weak consistency for the gamma kernel estimator on each compact set in the positive

real line when f is continuous on its support and the weak convergence in terms of mean integrated

absolute error. For unbounded densities at the origin, they investigate the performance of the

gamma kernel density estimator through simulations, and prove that it converges in probability to

infinity at the origin where the density is unbounded.

3 Convergence properties

As already mentioned, the boundary bias problem for the standard kernel density estimator of

density functions defined on [0,+∞) is still present when the data are dependent. In this section

we prove that the gamma kernel estimator is free of boundary bias in the case of dependant data.

We find that, under mild conditions, it is possible to obtain the same convergence rates as in

the i.i.d. case. In fact, we prove that the gamma kernel estimator achieves the optimal rate of

convergence for the mean integrated squared error within the class of non-negative kernel density

estimators. We also state the asymptotic normality and almost sure convergence.

For the remainder we denote by fi the joint density of (X1,X1+i) and gi(x, y) = fi(x, y) −
f(x)f(y). We suppose that the process satisfies the following conditions

Condition 1. (condition on g)

Suppose that gi satisfies the Lipschitz’s condition

|gi(ξ
′) − gi(ξ)| ≤ l||ξ′ − ξ||; ξ′, ξ ∈ R+ ×R+ for some constant l (3)
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We require that the process {Xi}i≥1 is α-mixing. The sequence is α-mixing if the mixing coefficient

α(i) → 0 as i→ ∞, where

α(i) = sup
k

|P (A ∩B) − P (A)P (B)|,

A ∈ Fk
1 (X) and B ∈ Fk+i(X) where Fk

i (X) is the σ-field of events generated by {Xj , i ≤ j ≤ k}.
The concept of α-mixing is omnipresent in time series analysis and is less restrictive than β and

ρ-mixing. The following condition requires that the α-mixing coefficient decreases geometrically.

Condition 2. (conditions on mixing processes)

(Xt) is supposed to be α-mixing such that

α(i) ≤ γi−β, i ≥ 1 (4)

for some positive constants γ and β.

The next theorem states the mean integrated square error of the gamma kernel estimator using

conditions 1 and 2, and the same conditions on the bandwidth parameter as in the i.i.d. case. In

the sequel we continue to denote the bandwidth parameter as b without stressing that it depends

on the sample size n.

Theorem 1. (mean integrated squared error)

Suppose that f is twice continuously differentiable. Under conditions 1 and 2 with β > 3
2 , and

further assume that

lim
n−→∞

b = 0 and lim
n−→∞

n b1/2 = +∞. (5)

Then the mean integrated squared error of the gamma kernel estimator is given by

IE

(
∫ ∞

0
(f̂(x) − f(x)2 dx

)

= b2β + n−1b−1/2V + o(b) + o(n−1b−1/2) (6)

where

β =
1

4

∫ ∞

0
x2f ′′2(x) dx and V =

1

2
√
π

∫ ∞

0
x−1/2f(x) dx. (7)

The optimal bandwidth which minimizes the asymptotic mean integrated squared error is

b∗ =

(

V

4β

)2/5

n−2/5. (8)
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This leads to the optimal mean integrated squared error:

IE

(
∫ ∞

0
(f̂(x) − f(x)2 dx

)

∼ 5

44/5
V 4/5β1/5 n−4/5. (9)

As in the i.i.d. case, the gamma kernel estimator achieves the same optimal rate of convergence

in terms of mean integrated squared error. Note that relative to the Gaussian kernel estimator,

the gamma kernel estimator has a different optimal mean integrated squared error but has the

same optimal mean squared error. Theorem 1 also provides the theoretical formula of the optimal

bandwidth parameter which can not be used in practice since it depends on the unknown density

function f . Several techniques, such as cross-validation and block bootstrap, are available to

obtain a bandwidth in practice. In Section 5, we suppose as if the density function is gamma with

parameters estimated by maximum likelihood, and then apply (8). We will refer to this as the

gamma rule.

The asymptotic distribution, usually Gaussian, of density estimators is useful for goodness of fit

and confidence intervals. The following theorem deals with the asymptotic normality of gamma

kernel estimator.

Theorem 2. (asymptotic normality)

Let f be a density function twice continuously differentiable. Under condition 2 with β > 2 and

b = O
(

1
LogLog n

n−2/5
)

we have for all x such that f(x) > 0

(

n1/2b1/4 f̂(x) − f(x)
√

V ∗(x)

)

→ N(0, 1) (10)

where

V ∗(x) =



















f(x)
2
√

πx
if x > b→ ∞

Γ(2κ+1)b−1/2

21+2κΓ2(κ+1)
f(x) if x/b→ κ

(11)

For the standard symmetric kernel, the asymptotic normality is proved for the same conditions

when the boundedness of the support does not cause a problem. If we are interested in confidence
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intervals for the density function, a good feature of the gamma kernel estimator is that the variance

vanishes when the position is farther away from the origin, so that the confidence intervals narrow.

The unknown density function f(x) in the expression of V ∗ can be replaced by f̂(x). The result

of Theorem 2 remains valid thanks to the almost sure convergence of f̂(x). Indeed, Theorem 3

establishes the almost sure convergence of f̂(x).

Theorem 3. (almost sure convergence)

Let f be a continuous density. Under the condition 2 with β > 2 and following conditions on the

bandwidth parameter:

lim
n−→∞

b = 0 and lim
n−→∞

n b1/2

(log n)2
= +∞

we have

f̂(x) −→ f(x), almost surely.

4 Finite sample properties

We investigate the performance of the gamma kernel estimator for data generated from an autore-

gressive conditional duration (ACD) model and a stochastic volatility (SV) model. Both models

are frequently used in financial econometrics and typically exhibit relatively high dependence when

fitted to high frequency financial data. The performance of the gamma kernel estimator is com-

pared to the local linear density estimator of Lejeune and Sarda (1992) and Jones (1993) which

is defined next. For non-negative integer s and any symmetric kernel K with a compact support

[−1, 1], define

as(x, h) =

∫ x/h

−1
tsK(t)dt. (12)

The local linear estimator is defined as follows

f̂h(x) =
1

nh

T
∑

i=1

Kl

(

x, h,
x−Xi

h

)

(13)

where

Kl(x, h, t) =
a2(x, h) − a1(x, h)t

a0(x, h)a2(x, h) − a2
1(x, h)

K(t) (14)
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is a local linear kernel used at x. Note that Kl(x, h, t) = K(t) for x > h. Simulation results

of Jones (1993) and Chen (2000) show that the local linear estimator outperforms the boundary

kernel estimator of Müller (1991) and the non-negative estimator Jones and Foster (1996). The

latter estimators are therefore not considered here.

For each replication in the simulation, the bandwidth paramater is selected by minimizing the

L2 =
∫

(f̂(t) − f(t))2dt norm. Since the underlying density f is unknown for the ACD and the SV

models, we consider the empirical density function based on 500000 observations. For each model

we perform 500 replications for different degrees of dependence and for sample sizes 125, 250, 500,

1000 and 2000.

4.1 Autoregressive conditional durations

The analysis of durations between financial transactions is of central importance in the under-

standing of financial markets microstructure. Engle and Russell (1998) propose a new class of

point processes with dependent arrival rates. They model the expected duration between events

by an autoregressive structure and call it therefore the autoregressive conditional duration (ACD)

model. Let the duration be defined as xi = ti − ti−1, that is the interval between two arrival times.

Their ACD model is defined as

xi = ψi ǫi

ψi = ω + αxi−1 + βψi−1 (15)

where the innovations ǫi, i = 1, . . . , n are i.i.d random variables. Given a density assumption on

ǫi, for example the generalized gamma or the Burr distributions, the model is estimated easily

by maximum likelihood. Inference on a semiparametric model, where the distribution of ǫi is

determined only by the data sample, is provided by Drost and Werker (2004). The unconditonal

distribution of xi is unknown but expressions for the unconditional moments are available, see

Bauwens and Giot (2001), Chapter 3, and Fernandez and Grammig (2006). For extensions and

applications of the ACD model, see for example, Engle (2000), Hamilton and Jorda (2002), Bauwens

and Veredas (2004) and Bauwens, Giot, Grammig, and Veredas (2004).

We consider three innovation densities, the standard exponential, the Weibull with shape and

scale parameters equal to 0.91 and 1 respectively, and the Gamma with shape and scale parameters

equal to 2 and .05 respectively. As can be seen in Figure 1, the exponential and Weibull densities
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have a peak at zero, while the Weibull density is unbounded at zero. We consider three levels of
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(c) Gamma

Figure 1: Innovation densities.

dependence: high, low and independence. The parameter values for these levels are given in Table

1. The parameters for the high dependence case are rounded values from Fernandez and Grammig

Table 1: Parameter values for the ACD model

ω α β

I high dependence 0.017 0.11 0.88

II low dependence 0.153 0.11 0.80

III independence 1.700 0 0

(2005) who estimate the ACD model on NYSE price duration data. In general, the choice of α, β

and the parameter of the density function of ǫi obey |β| < 1 and E(β + αǫi)
2 < 1, such that the

process is β-mixing with exponential decay. See also Carasco and Chen (2002) for more mixing

properties of GARCH and ACD models.

By including the limiting independence case we can appreciate how the performance of the

gamma kernel changes when dependence is introduced. Figure 2 displays in the first panel a

simulated sample path of the high dependence model with exponential innovation density for 1000

observations. The second panel shows the gamma kernel estimator which, as it should be, has a

peak at zero. The bandwidth parameter which minimizes the integrated squared error is equal to

0.1064. As a comparison, the last panel displays the normal kernel estimator, using the rule of

thumb to obtain the bandwidth, for which we immediately observe the boundary problem.
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Figure 2: ACD model with high dependence and exponential innovation density.
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Table 2 shows the mean of the L2 norm for the gamma (G) and the local linear (LL) estimators

for ACD Models. For each replication, the bandwidth parameter is chosen such that the integrated

squared error is minimized. As expected, the mean norm decreases when the sample size rises, and

this holds for any dependence level. For any sample size, there is a positive relation between the

mean norm and the dependence level. Therefore, minimizing the L2 norm is more difficult in the

dependent data case. In most situations, the gamma kernel estimator dominates the local linear

estimator. The difference is more striking when the sample size is small and when the dependence

becomes high. For example, for the sample size of 125, the mean norm in the high dependence case

for the gamma kernel estimator is 0.0374 and 0.0515 for the local linear estimator, compared to

only 0.0077 and 0.0089 in the medium dependence case. This difference is less pronounced for the

exponential innovation density in the independent case.

Table 2: Mean of L2 norm for gamma (G) and local linear (LL) estimators for ACD Models

n = 125 n = 250 n = 500 n = 1000 n = 2000

G LL G LL G LL G LL G LL

I 0.0374 0.0515 0.0267 0.0339 0.0175 0.0207 0.0114 0.0148 0.0072 0.0078

A II 0.0077 0.0089 0.0048 0.0050 0.0030 0.0029 0.0020 0.0020 0.0013 0.0013

III 0.0048 0.0046 0.0032 0.0030 0.0021 0.0019 0.0014 0.0014 0.0010 0.0009

I 0.0342 0.0437 0.0278 0.0349 0.0197 0.0244 0.0137 0.0164 0.0095 0.0113

B II 0.0093 0.0103 0.0057 0.0066 0.0039 0.0046 0.0027 0.0033 0.0021 0.0026

III 0.0061 0.0064 0.0040 0.0045 0.0028 0.0033 0.0021 0.0025 0.0017 0.0021

I 0.0345 0.0439 0.0277 0.0314 0.0171 0.0181 0.0115 0.0115 0.0060 0.0067

C II 0.0092 0.0102 0.0058 0.0065 0.0037 0.0043 0.0026 0.0031 0.0019 0.0023

III 0.0063 0.0070 0.0042 0.0049 0.0030 0.0036 0.0022 0.0027 0.0017 0.0021

I: high dependence, II: low dependence, III: independent case. The innovations are drawn from exponential (A),

Weibull (B) and gamma (C) densities. For each of the 500 replications, the bandwidth parameter is chosen such

that the integrated squared error is minimized.

Table 3 shows the variances of the L2 norm for the gamma and the local linear estimators for

ACD Models. As expected, there is a negative relation between the size of the variance of the two

estimators and the sample size. Also, the variance increases for higher dependence levels. Except
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for the high dependence case and sample size 125, the variance of the two estimators are similar

for the Gamma innovation density. For the exponential and the Weibull innovation density the

gamma estimator has a smaller variance than the local linear estimator. In particular, in the high

dependence case the variance of local linear estimator is about twice the variance of gamma kernel

estimator. As an example, for the Weibull innovation density and a sample size 500, the variance

is respectively 4.41 and 2.40.

Table 3: Variance (× 10−4) of L2 norm for gamma (G) and local linear (LL) estimators for ACD

Models

n = 125 n = 250 n = 500 n = 1000 n = 2000

G LL G LL G LL G LL G LL

I 10.73 24.89 5.52 10.9 2.52 4.75 1.29 2.19 0.462 0.81

A II 0.324 0.818 0.108 0.18 0.0361 0.0576 0.0144 0.0225 0.0049 0.0081

III 0.102 0.127 0.0361 0.04 0.0121 0.0144 0.0036 0.0064 0.0016 0.0016

I 4.959 10.70 4.41 8.06 2.40 4.41 1.53 2.65 0.7744 1.36

B II 0.442 0.775 0.152 0.324 0.0576 0.115 0.0361 0.0625 0.0169 0.029

III 0.144 0.175 0.044 0.073 0.0169 0.0289 0.0081 0.0169 0.0049 0.01

I 12.11 21.72 8.82 11.4 3.24 3.88 1.51 1.66 0.640 0.624

C II 0.9133 0.956 0.25 0.28 0.096 0.108 0.036 0.04 0.0144 0.017

III 0.222 0.225 0.078 0.0841 0.0361 0.040 0.0144 0.0169 0.0049 0.0064

I: high dependence, II: low dependence, III: independent case. The innovations are drawn from exponential (A),

Weibull (B) and gamma (C) densities. For each of the 500 replications, the bandwidth parameter is chosen such

that the integrated squared error is minimized.

4.2 Stochastic volatility

The stochastic volatility (SV) model, see for example Taylor (1986), is a popular alternative to

the GARCH type volatility model. Estimation of the SV model is less straightforward than the

GARCH model, the likelihood function involves a high dimensional integral, but it has direct links

with finance theory such as option and bond pricing for example. As disscussed by Harvey, Ruiz,

and Shephard (1994) the SV model can be interpreted as a discrete-time approximation to the
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continuous-time Orstein-Uhlenbeck process which is often considered as the generating process for

realised volatility. See Barndorff-Nielsen and Shephard (2001) or Barndorff-Nielsen and Shephard

(2002) for more details on this. The basic SV model is given by

yi = exp
(xi

2

)

µi

xi = γ + δxi−1 + νǫi (16)

where µi and ǫi are i.i.d normal random variables and independent from each other. Various

extensions and other formulations exist of the basic SV model, see Shephard (2005) for a collection

of selected readings. Our interest lies in the marginal density of the variance.

In the simulation study we consider two innovation densities for µi, the normal and the student

distribution with 5 degrees of freedom. As before, we consider three levels of dependence: high,

low and independence, the parameters of which are given in Table 4. To illustrate the SV process,

Table 4: Parameter values for the SV model

γ δ ν

I high dependence 0.01 0.98 0.3

II low dependence 0.01 0.95 0.3

III independence 1 0 0

Figure 3 displays in the first panel a simulated sample path of the high dependence SV model

with normal innovation density for 1000 observations. The second panel shows the gamma kernel

estimator which, as it should be, has a peak at zero. The bandwidth parameter which minimizes

the integrated squared error is equal to 0.7324. The normal kernel estimator in the last panel suffers

from the boundary problem as expected. Here, the bandwidth is obtained using the rule of thumb.

Table 5 contains the mean of the L2 error for the gamma kernel and local linear density estima-

tors for the variance of the SV Model. Broadly speaking, the results are the same as the results of

the ACD model in Section 4.1. The mean error decreases with the sample size at about the same

rate as for the ACD models. However, the rate is higher for the local linear estimator. This is true

for all dependence levels and for both innovation densities. The mean error increases for higher

dependence levels no matter the innovation density and the sample size. The mean error of the
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Figure 3: SV model with high dependence and Gaussian innovation density.
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gamma kernel estimator is remarkably lower than the local linear estimator in the high dependence

case for sample sizes up to 500. For example, for 125 observations and a normal innovation den-

sity, the mean errors for the gamma kernel and the local linear estimator are respectively 0.0624

and 0.0926. For higher sample sizes, this difference becomes smaller. For 1000 observations the

difference in the mean error is respectively 0.0130 and 0.0135.

Table 5: Mean of L2 error for gamma (G) and local linear (LL) estimators for the variance of the

SV Model

n = 125 n = 250 n = 500 n = 1000 n = 2000

G LL G LL G LL G LL G LL

I 0.0624 0.0926 0.0453 0.0601 0.0313 0.0369 0.0205 0.0219 0.0130 0.0135

A II 0.0526 0.0562 0.0349 0.0361 0.0218 0.0214 0.0124 0.0118 0.0069 0.0065

III 0.0089 0.0125 0.0055 0.0081 0.0036 0.0052 0.0023 0.0032 0.0015 0.0020

I 0.0748 0.1089 0.0578 0.0689 0.0405 0.0427 0.0251 0.0256 0.0150 0.0153

B II 0.0475 0.0539 0.0320 0.0346 0.0212 0.0227 0.0116 0.0128 0.0066 0.0069

III 0.0076 0.0085 0.0045 0.0053 0.0028 0.0034 0.0016 0.0020 0.0010 0.0013

I: high dependence, II: low dependence, III: independent case. The data are drawn from A: normal and B: student

densities. For each of the 500 replications, the bandwidth parameter is chosen such that the integrated squared

error is minimized.

The variance of the L2 error for the gamma kernel and local linear density estimators for the

variance of the SV Model are given in Table 6. The main conclusions are similar as for the ACD

models of the previous section. The variance decreases with the sample size but at a rate that

is slower than that for the ACD models. However, the rate of decrease in variance is higher for

the local linear estimator. For example, in the high dependence case for the student innovation

density the variance of the L2 error for the gamma kernel and local linear density estimators

are respectively 13.875 and 64.717 for 125 observations and respectively 1.8521 and 1.9243 for

2000 observations. This observation holds true in general for all dependence levels and for both

innovation densities. The variance increases for higher dependence levels, and for small sample

sizes the difference between both density estimators becomes large. This difference is less strong

for the ACD models.
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Table 6: Variance (× 10−4) of L2 error for gamma (G) and local linear (LL) estimators for the

variance of the SV Model

n = 125 n = 250 n = 500 n = 1000 n = 2000

G LL G LL G LL G LL G LL

I 16.827 55.946 11.212 32.584 6.2972 14.434 2.8235 3.9522 1.1688 1.1901

A II 15.935 21.829 8.2979 9.2024 3.8092 3.9159 1.2030 1.0535 0.4139 0.3344

III 0.2865 0.3892 0.1277 0.1562 0.0476 0.0635 0.0162 0.0192 0.0058 0.0059

I 13.875 64.717 12.702 30.508 9.3288 14.466 4.371 4.8185 1.8521 1.9243

B II 12.943 20.716 7.3572 9.0309 3.5174 3.5112 0.9473 0.9459 0.26535 0.2676

III 0.2565 0.2245 0.0798 0.0897 0.0281 0.0345 0.0075 0.0094 0.00268 0.0028

I: high dependence, II: low dependence, III: independent case. The data are drawn from A: normal and B: student

densities. For each of the 500 replications, the bandwidth parameter is chosen such that the integrated squared

error is minimized.

5 Applications

In this section we use the gamma kernel to estimate some densities of positive financial time series

data the type of which are frequently used in financial econometric modelling. We also compute

pointwise confidence intervals based on the asymptotic results in Section 3. The first application

is on financial durations. We take a subset of the duration data of Bauwens, Giot, Grammig, and

Veredas (2004). They use the durations to compare several financial duration models via density

forecasts. The second application is using realized volatility data series from an exchange rate and

IBM. The last application estimates the density of hourly electricity prices.

5.1 Price durations

We use transaction data from New York Stock Exchange which trading process combines a market

maker system and an order book system. Apart from an opening auction, trading is continuous

from 9h30 to 16h. Data were extracted from the Trade and Quote (TAQ) database supplied by

the NYSE. The data cover the months September, October and November 1996 and is available for
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Boeing, Coca-Cola, Disney and Exxon which are actively traded Dow Jones stocks. In particular,

we use price durations which are defined as the time interval needed to observe a cumulative change

in the mid-price not less than a threshold that is set at 0.125. Price durations provide a measure

of the instantaneous volatility of the quoted mid-quoted price process as explained in Engle and

Russell (1998). For a more detailed description of the data and other types of durations, we refer

to Bauwens, Giot, Grammig, and Veredas (2004).

Figure 4 displays the durations series for the four stocks. The sample sizes differ for each stock

and range between 1609 and 2717 observations many of which are small because the stocks are

actively traded. We observe the typical characteristics of high frequency financial duration data

for all the series. Fitting ACD models to the durations typically implies a high persistence, α+ β

is close to one as explained in Section 4, because of the high dependence between the durations.

See Bauwens, Giot, Grammig, and Veredas (2004) for a model comparison using density forecasts

between several ACD models (different conditional mean and innovation density specifications)

using the same data as in this paper. Figure 5 displays the gamma kernel density estimates for

the four stocks. The bandwidth parameter is obtained using the gamma rule, as explained in

Section 3. There is an important concentration of observations near the origin. This makes the

Gaussian kernel estimator inadequate as already explained in Section 4. The shape of the four

densities is quite similar, although we remark that the Boeing and Coke price durations are more

concentrated at the origin than Disney and Exxon. The confidence intervals are close to the density

estimates because of the large sample sizes and are inverse trumpet shaped according to the results

in Theorem 2.

5.2 Realized volatility

A trading day can be divided in N equidistant periods, if ri,t denotes the intradaily return of the

ith interval of day t, the realized volatility for day t is defined as

Vt =
N
∑

i=1

r2i,t. (17)

If the intraday returns have zero mean and are uncorrelated, then (17) is an unbiased estimator

of volatility. Andersen, Bollerslev, Diebold, and Ebens (2001) show for the 30 stocks in the Dow

Jones Industrial Average index that the unconditional distributions of the realized variances are

extremely right-skewed and leptokurtic. See Andersen, Bollerslev, Diebold, and Labys (2003) and
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Figure 4: Price durations of four US stocks.
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Figure 5: Density estimates (solid line) and 95% pointwise confidence intervals.
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Andersen, Bollerslev, Diebold, and Labys (2001) for similar features on exchange rate data.

We use the DM/$ exchange rate and IBM data from Hansen and Lunde (2005) which are

available online from the Journal of Applied Econometrics Data Archive. The DM/$ exchange

rate data cover the period from October 1, 1992 to September 30, 1993 with N = 288 or five

minute intervals, which implies 260 daily volatility estimates. Similarly, the IBM dataset contains

254 daily volatility estimates from June 1, 1999 to May 31, 2000. Both realized volatility series

are displayed in Figure 6. Figure 7 displays the kernel density estimates for the realized volatility
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Figure 6: Realized volatility series.

series. The bandwidth parameter is obtained using the gamma rule. Although the mode for the

exchange rate data is closer to the origin than for the IBM data, the boundary problem for the

latter is more apparent because of its relatively high dispersion. Since there are only about 250

realized volatilities, the lengths of the confidence intervals are larger than in the price durations

application.
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Figure 7: Density estimates (solid line) and 95% pointwise confidence intervals.

5.3 Electricity prices

The econometrics of electricity prices is becoming an active research field, see for example Fare,

Grosskopf, Noh, and Weber (2005) and Haldrup and Nielsen (2006). The electricity data charac-

teristics are often different from the well known stylized facts of financial return data. We have

data available from ISO New England which is a regional transmission organization, serving Con-

necticut, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont. The company is an

independent, not-for-profit corporation and is responsible for the constant availability of electricity

for New England’s residents and businesses, The dataset consists of hourly reserve prices measured

in $/MWh from January 1, 2003 to January 14, 2003 (n=336). As one can see in Figure 8, the

price can become very close to zero, especially during the night, and peaks occur frequently many

of which are around seven in the morning. The density estimate and pointwise confidence intervals

are also given in Figure 8. The bandwidth parameter is obtained using the gamma rule.

6 Conclusion

There are many examples of economic time series data that are bounded and have a substantial

density mass at the boundary. We propose the gamma kernel estimator as density estimator for

positive data from a stationary α-mixing process. The gamma kernel is flexible enough to vary
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Figure 8: Electricity price data (upper panel) and density estimates (solid line) and 95% pointwise
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its shape and the amount of smoothing according to the location within the support. The gamma

kernel estimator does not allocate weight outside the support the underlying density and is therefore

free of boundary bias. Furthermore, for positive time series not concentrated at zero the gamma

kernel estimator has the same performance as the Gaussian kernel estimator. We derive the mean

integrated squared error, almost sure convergence and asymptotic normality. In a Monte Carlo

study, we find that the gamma kernel estimator outperforms the local linear density estimator.

We provide an illustration using data from transaction durations, realized volatility and hourly

electricity prices.

We think of several extensions of this paper. Firstly, the gamma kernel can be used to smooth

the Kaplan Meier estimator in order to estimate the density and the hazard rate functions for

α-mixing and right censored data. Secondly, an extension to the bivariate case using either a

copula or a bivariate gamma density is desirable, for example to estimate the density of realized

multivariate volatility. Finally, it would be interesting to develop confidence bands for the gamma

kernel estimator.
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Appendix

Proof of Theorem 1

We start with the usual decomposition

IE((f̂(x) − f(x))2 = (IE(f̂(x)) − f(x))2 +
1

n
var(Kx,b (Xj))

+
2

n

n−1
∑

i=1

(1 − n−1i) cov ((Kx,b (X1) ,Kx,b (X1+i))

= B2(x) + V (x) +C(x).

The expression of B(x) and V(x) can be derived from Chen (2000)

B(x) = b

{

1

2
xf ′′(x)

}

+ o(b)

and

V (x) =



















n−1b−1/2 f(x)
2
√

πx
+ o(n−1b−1/2) if x/b→ ∞

Γ(2κ+1)
21+2κΓ2(κ+1)n

−1b−1{f(x) +O(n−1)} if x/b→ κ.

(18)

The terms B and V are the same as in the i.i.d case. Note that the variance increases at the

boundary region but the integral of the variance is not affected by this. In fact, for δ = b1−ǫ, where

0 < ǫ < 1/2

∫ ∞

0
V ((x))dx =

∫ δ

0
+

∫ δ

0
V (x)dx =

n−1b−1/2

2
√
πx

∫ ∞

0

f(x)

x1/2
+ o(n−1b−1/2).

Now it remains to calculate the covariance term. From (3) and lemma (1.3) in Bosq (1996)

cov((Kb (t,X1) ,Kb (t,X1+i))) ≤ Γ(l)α(i)1/3 (19)

for some constant Γ(l).

On the other hand, from Billingsley’s inequality

cov((Kb (t,X1) ,Kb (t,X1+i))) ≤ 4||Kb||2∞α(i). (20)

Using Stirling’s formula and the fact that x is the mode of the kernel Kb(x)

||Kb||2∞ ≤ 1

2π
x−1b−1. (21)
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Combining (19), (20) and (21), we have for some sequence vn

n

2
C(x) ≤ Γ(l)

vn
∑

i=1

(1 − n−1i)α1/3(i) +
2

π
x−1b−1

n−1
∑

i>vn

(1 − n−1i)α(i)

≤ Γ(l)

vn
∑

i=1

α1/3(i) +
2

π
x−1b−1

n−1
∑

i>vn

α(i), (1 − n−1i) ≤ 1

≤ γΓ(l)

vn
∑

i=1

i−β/3 +
2

π
x−1b−1γ

n−1
∑

i>vn

i−β, from (4).

We choose vn
∼= c b

− 3
2β , we have the following results nb1/2C(x) = o(1) since β > 3/2. This

completes the proof of Theorem 1.

Proof of Theorem 2

We start with

n1/2b1/4
(

IE(f̂(x)) − f(x)
)

= n1/2b1/4O(b) = O((log log(n))−5/4).

It remains to show that

n1/2b1/4

(

f̂(x) − IE(f̂(x))

V ∗(x)

)

→ N(0, 1) (22)

Without loss of generality we prove the result for x > 2b. Almost the same argument can be used

to state the asymptomatic normality at the boundary region.

For x > 2b, let for i = 1, · · · , n,

Yi =
Kx,b (Xi) − IEKx,b (Xi)

√

V ∗(x)

and

Sn =

n
∑

i=1

Yi.

Note that
(

n1/2b1/4 f̂(x) − IE(f̂(x))
√

V ∗(x)

)

= n−1/2b1/4 Sn.

Now consider the blocks

V1 = Y1 + · · · + Yp, V
∗
1 = Yp+1 + · · · + Yp+q, · · ·

Vr = Y(r−1)(p+q)+1 + · · · + Yrp+(r−1)q, V
∗
r = Yrp+(r−1)q+1 + · · · + Yr(p+q),
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where

r(p+ q) ≤ n ≤ r(p+ q + 1).

Then

Sn =

r
∑

i=1

Vi +

r
∑

i=1

V ∗
i + δn.

If we choose r ∼ na, p ∼ n1−a, q ∼ nc, where 0 < a < 1 and 0 < c < 1 − a, we obtain

var

( ∑r
i=1 V

∗
i

(rp)1/2b−1/4

)

= O(nc−1+a)

and

var

(

δn

(rp)1/2b−1/4

)

= O(na−1).

Then

(rp)−1/2b1/4
r
∑

i=1

V ∗
i

p−→ 0.

and

(rp)−1/2b1/4δn
p−→ 0

On the other hand, from Bradley’s lemma, there exist i.i.d random variables W1, · · · ,Wr such that

PWi = PVi and

P (|Wi − Vi| > ǫn) ≤ 11
(

ǫ−1
n ||Vi + cn||∞

)1/2
α(q) (23)

where

cn =
2p b−1/2

f1/2(x)(πx)1/4
, ǫn = ǫ(rp)1/2b−1/4. (24)

Now we prove the asymptotic normality of

(rp)−1/2b1/4
r
∑

i=1

Wi

and that

P

(

(rp)−1/2b1/4|
r
∑

i=1

(Wi − Vi)| > ǫ

)

p−→ 0. (25)

We start with 25, from 24 and 23 we obtain

P

(

(rp)−1/2b1/4|
r
∑

i=1

(Wi − Vi)| > ǫ

)

= O(p1/4r3/4b−1/8α(q)).
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Using the fact that α(i) ≤ γi−β , i ≥ 1 and b = c
log log n n

−2/5, we have

P

(

(rp)−1/2b−1/4|
r
∑

i=1

(Wi − Vi)| > ǫ

)

= O(n
3
10

+ 1
2
a−βc(log log n)1/8)

which converges to zero provided that c > 1
β (1

2a+ 3
10).

To complete the proof, we stat the asymptotic normality of

(rp)−1/2b1/4
r
∑

i=1

Wi.

In fact it suffices to prove that

zn =

r
∑

i=1

|IEWi|3

(rvar(W1))3/2
−→ 0

using Schwartz inequality and the boundedness of ft1,...,t4

zn ≤

(

r
∑

i=1

|IEWi|4
)1/2( r

∑

i=1

|IEWi|2
)1/2

(rvar(W1))3/2

= O(n
4
5
− 3

2
a(log log n)−1/2).

A sufficient condition to insure the convergence of zn to zero is a > 8/15. If we choose a < 2β
1+2β − 3

5β
1

1+2β ,

then we can have 0 < c < 1 − a, a > 8/15 and c > 1
β (1

2a+ 3
10) for β > 2.

Proof of Theorem 3

The continuity of f at x ensure that

IE(f̂(x)) → f(x).

Then it remains to prove that

|f̂(x) − IE(f̂(x))| → 0, a.s.

For this we apply large inequality for dependent data (see Bosq (1996) ), to the random variable

Yj = Kx,b (Xj) − IE(Kx,b (Xj)), 1 ≤ j ≤ n,

Throughout we denote by [ ] the integer part. Note also that

||Yj ||∞ ≤
√

2

π
x−1/2b−1/2.
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Using this inequality and Theorem 1.3 in Bosq (1996), for an integer q = [n1/2b−1/4] we have,

P
(

|f̂(x) − f(x)| > ǫ
)

≤ 4 exp

(

− ǫ2

8v2(q)
q

)

+ 22

(

1 +

√

32

π

x−1/2b−1/2

ǫ

)1/2

qα

([

n

2q

])

where

v2(q) =
2

p2
σ2(q) +

ǫ||Yj ||∞
2

with p = n
2q and

σ2(q) = max
0≤j≤2q−1

E
(

([jp] + 1 − jp)Y[jp]+1 + Y[jp]+1 + ...+ Y[(j+1)p]+([(j+1)p]+1−(j+1)p)Y[(j+1)p]+1

)2

= O(pb−1/2).

For ǫ > 0 small enough,

v2(q) ≤
√

2

π
x−1/2b−1/2ǫ.

Therefore

P
(

|f̂(x) − f(x)| > ǫ
)

≤ 4 exp

(

−1

8

√

π

2
ǫx1/2n1/2b1/4

)

+ 22

(

1 +

√

32

π

x−1/2b−1/2

ǫ

)1/2

n1/2b−1/4γ ([
1

2
n1/2b1/4])−β

≤ ξ exp
(

−ζn1/2b1/4
)

for some positive constants ξ and ζ depending on ǫ and x.

Let un = nb1/2

(log n)2
, then

∑

n≥1

ξ exp
(

−ζn1/2b1/4
)

=
∑

n≥1

ξ

nζ
√

un
<∞.

Therefore, Borel-Cantelli lemma concludes the proof the Theorem. 3
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