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Abstract

Let (Xi, Yi) (i = 1, . . . , n) be n replications of a random vector (X,Y ), where

Y is supposed to be subject to random right censoring. The data (Xi, Yi) are

assumed to come from a stationary α-mixing process. We consider the problem of

estimating the function m(x) = E(φ(Y )|X = x), for some known transformation

φ. Particular choices of φ lead to the conditional moment function of Y given X,

or the conditional distribution of Y given X. This problem is approached in the

following way : first, we introduce a transformed variable Y ∗i , that is not subject

to censoring and satisfies the relation E(φ(Yi)|Xi = x) = E(Y ∗i |Xi = x), and then

we estimate m(x) by applying local linear regression techniques to the pseudo-

data (Xi, Ŷ
∗
i ), where Ŷ ∗i is a certain estimator of Y ∗i . The asymptotic properties

of the proposed estimator are established. We investigate the performance of

the estimator for small samples through a simulation study, and we discuss the

optimal choice of the transformation Y ∗i . As a by-product, we obtain a general

result on the uniform rate of convergence of kernel type estimators of functionals

of an unknown distribution function, under strong mixing assumptions. This

result is of independent interest, and can be applied in a wide variety of contexts.

KEY WORDS: Censoring, kernel smoothing, local linear smoothing, mixing se-

quences, nonparametric regression, strong mixing, survival analysis.
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1 Introduction

A crucial point in a variety of statistical problems is the study of a relation between

a variable of interest Y and some covariate X. This can be done via estimating the

function

m(x) = E (φ(Y )|X = x) ,

where the (known) transformation φ is introduced to include various functions of in-

terest. For example taking φ(y) = yr gives the rth conditional moment and if we

take φ(y) = I(y ≤ t) then m becomes the conditional distribution function (CDF) of

Y given X = x at t. Suppose that we have a set of n replications (Xi, Yi) of (X, Y ).

Many kernel smoothing techniques consist in estimating m(x) by calculating a weighted

local average of the φ(Yi)’s. This can be written as

n∑

i=1

w̃i(x)φ(Yi), (1.1)

where w̃i(x) is a given weight function describing the degree of smoothing. Special

cases of (1.1) include the Nadaraya-Watson (NW) and local linear (LL) estimator. For

a review about the statistical properties of these two estimators and many other related

topics for independent data, we refer the reader to the book of Fan and Gijbels (1996).

For dependent observations, there is a large literature about the NW estimator

under different kinds of associations, like mixing processes and Markovian chains. For

more details see Györfi et al. (1989) and Bosq (1998) and the references therein. Masry

and Fan (1997) consider estimating the conditional mean for mixing sequences using

the LL estimator. They demonstrated the asymptotic normality for both strongly

mixing and ρ-mixing processes. For more references about nonparametric regression

techniques with dependent data see, for example, the bibliographical notes given in

Fan and Yao (2003).

In this paper we consider the problem of nonparametrically estimating m(x), when

the data are spatially or temporally correlated, and when in addition the variable of

interest is subject to censoring. To the best of our knowledge, this problem has not

been studied in the literature before. However, in many practical applications this

type of data is encountered. Consider for example economic duration data, in which

event times are often correlated, and the observation of the event may be prevented by

the occurrence of an earlier competing event (censoring). Observations on duration of

unemployment e.g., may be right censored and are typically correlated. Such dependent

censored data occur, for example, when study participants belong to clusters (e.g.,

month of unemployment, job type, neighborhood, school), with members of the same

cluster having correlated risk of the event of interest. In all these cases, instead of

observing Y (the survival time), we only observe the pair (Z, δ) = (min(Y, C), I(Y ≤
C)), where C is another variable, known as the censoring variable. The available data

are supposed to come from an α-mixing process.
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Neither the NW nor the LL method can be directly applied with censored data and

an adaptation of these techniques is therefore needed. One simple way to do inference

in this context is first to transform the data in an unbiased manner, and then to apply

the standard techniques to the transformed data as if they were uncensored. A variety

of such transformations has been proposed and studied in the literature in the case of

i.i.d. data. See for example, Buckley and James (1979), Koul et al. (1981), Doksum

and Yandell (1983), Zheng (1984, 1987), Leurgans (1987), Zhou (1992), Srinivasan and

Zhou (1994) and Lai et al. (1995). In all those papers, inference was done for a linear

regression function with uncorrelated data. Inspired by those works, Fan and Gijbels

(1994) proposed a more general transformation and used the LL method on the trans-

formed data to estimate the regression relationship without any assumption made on

its form. By using the Leurgans transformation, Singh and Lu (1999) also studied the

nonparametric case but with the NW instead of the LL smoother, and in a multivariate

context. All the transformations cited above need a prior estimation of Gx(t), i.e. the

CDF of C given X = x, since the transformed data involve this unknown quantity.

Many authors cited above used the somewhat strong assumption that the censoring

and the explanatory variables are independent, so that G, i.e. the unconditional DF,

can be approximated using the well-known Kaplan-Meier estimator. This condition

is reasonable whenever the censoring is not associated to the characteristic of the in-

dividuals under study. This is the case for example when censoring is caused by the

termination of the study. But in many other situations, this hypothesis is not met. In

this paper we will not make this assumption, so censoring is allowed to depend on X.

To do so we need to control the error induced by estimating Gx(t) uniformly in t.

In order to bound this error, and motivated by the work of Härdle et al. (1988), we

show a general result that can be applied in a large number of applications related

to inference with correlated data. In fact, for completely observed data, we provide a

uniform rate of convergence of NW type estimators of functionals of an unknown CDF

Lx, i.e.
∫
βt(y)dLx(y), under strong mixing assumptions. This result is established

in the Appendix and it can be read and used independently of the rest of the paper.

Using this result we prove then the asymptotic normality and weak consistency of a LL

estimator of m(x) based on transformed pre-estimated data from α-mixing censored

processes.

Note that this approach can also be used as a tool to study nonparametrically the

relationship between future and past values in the presence of censoring. For example

one may predict the future values of a censored process {Yt}t via kernel estimation of

E (Yt+1|Yt).

2 Transformation of the data

Let (Xi, Zi, δi), i = 1, . . . , n, be a sample of dependent r.v. each having the same distri-

bution as (X,Z, δ) considered in Section 1. The process (Xt, Yt, Ct), t = 0,±1, . . . ,±∞,
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has the same distribution as (X, Y, C) and is assumed to be stationary α-mixing (or

strong mixing). By this we mean that if FL
J denotes the σ-field generated by the family

{(Xt, Yt, Ct), J ≤ t ≤ L}, then the mixing coefficients

α(t) = sup
A∈F0

−∞,B∈F∞t
|P (A ∩B)− P (A)P (B)|

satisfy limt→∞ α(t) = 0. For the properties of this and other mixing conditions we

refer to Bradley (1986) and Doukhan (1994). Among all the strong mixing conditions

available in the literature, α-mixing is the weakest and many time series models are

α-mixing under mild conditions. See, for example, Pham and Tran (1985), Bougerol

and Picard (1992) and Masry and Tjøstheim (1995).

In this work, the mixing coefficient α(t) is assumed to be O(t−ν) for some ν > 3.5.

The random variables Y and C are nonnegative random variables with continuous

marginal DFs and they are independent given X. We denote, respectively, by f0(x),

Fx(t) and Gx(t) the marginal density of X, the CDF of Y given X and the CDF

of C given X. For a given conditional (sub)distribution function Lx(t) we will use

the notation L̄x(t) for the corresponding survival function, i.e. L̄x(t) = 1− Lx(t), and

L̇x(t) for the partial derivative of Lx(t) with respect to x. Define Hx(t) = P (Z ≤ t|x) =

1− F̄x(t)Ḡx(t), the CDF of the observed survival times, H0
x(t) = P (Z ≤ t, δ = 0|x) =∫ t

0
F̄x(s)dGx(s), the sub-CDF of censored observations, and Tx = sup {t : Hx(t) < 1},

the right endpoint of the support of Hx for a given x. Also, let J be the support of X,

which is an interval in R that may be infinite. We say that a real function f is ulL(J)

if f is uniformly locally Lipschitz on J , that is,

sup
x,x′∈J,|x−x′|≤ε

|f(x)− f(x′)| ≤M |x− x′| ,

for some ε > 0 and M > 0.

As we explained in the Introduction, the idea we follow here is to transform the

triplet (X,Z, δ) to a new vector (X, Y ∗) in such a way that, for a given x,

E(Y ∗|X = x) = E(φ(Y )|X = x).

Once this transformation is found, we estimate m(x) = E(φ(Y )|X = x) by applying a

local linear smoother to the transformed data (Xi, Y
∗
i ), that are not subject to censoring

unlike the original data. Put

Y ∗ = δϕ1
x(Z) + (1− δ)ϕ2

x(Z). (2.1)

A general transformation is obtained by solving the differential equation

ϕ1
x(t)Ḡx(t) +

∫ t

0

ϕ2
x(s)dGx(s) = φ(t). (2.2)
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Let dx(t) = ϕ2
x(t)− ϕ1

x(t). A general class of possible solutions of (2.2) is





ϕ1
x(t) = φ(0) +

∫ t

0

dφ(s)

Ḡx(s)
−
∫ t

0

dx(s)

Ḡx(s)
dGx(s)

ϕ2
x(t) = ϕ1

x(t) + dx(t).

An interesting case is obtained by choosing dx(t) = η(t) − (1 − α)φ(t)/Ḡx(t), where

α ∈ R and η(t) is a real valued function. This leads to





ϕ1
x(t) = α

(
φ(0) +

∫ t

0

dφ(s)

Ḡx(s)

)
+ (1− α)

φ(t)

Ḡx(t)
−
∫ t

0

η(s)

Ḡx(s)
dGx(s)

ϕ2
x(t) = α

(
φ(0) +

∫ t

0

dφ(s)

Ḡx(s)

)
+ η(t)−

∫ t

0

η(s)

Ḡx(s)
dGx(s).

So our theoretically transformed data (2.1) can be written as

Y ∗ = (1− α)ζ1 + αζ2 + ζη, (2.3)

with

ζ1 =
δφ(Z)

Ḡx(Z)
, ζ2 = φ(0) +

∫ Z

0

dφ(s)

Ḡx(s)
and ζη = (1− δ)η(Z)−

∫ Z

0

η(s)

Ḡx(s)
dGx(s).

Remark 2.1

Another way to prove the validity of this transformation is by showing that E(ζ1|X =

x) = E(ζ2|X = x) = m(x) and E(ζη|X = x) = 0. This means that the transformation

(2.3) is a linear combination of the two transformations ζ1 and ζ2 adjusted by the

factor ζη. Both ζ1 and ζ2 are largely used in the censored data literature, the first one

was originally proposed by Koul et al. (1981) and the second one is due to Leurgans

(1987). By allowing the tuning parameter α to range from 0 to 1, we control the balance

between these two methods. η is another user chosen parameter (real function). Taking

η ≡ 0, (2.3) becomes the NC (New Class) transformation proposed by Fan and Gijbels

(1994). By choosing a non-vanishing function η we hope to improve the quality of

our transformation. Ideally, α and η have to be chosen to minimize the variation in

the transformed data. However, it is hard to obtain an analytic formula for such an

optimal theoretical choice. From practical point of view, a data-driven procedure is

needed to make a reasonable choice of these two parameters. This will be discussed in

more detail in Sections 5 and 6 .

From now on we only consider classes of functions φ that satisfy the following con-

ditions:

Assumption (H).

(H1) φ vanishes outside the interval [0, τ x], for some 0 < τx < Tx.

(H2) φ is a bounded non-decreasing function on [0, τ x].
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The function η is also assumed to satisfy these conditions.

Assumption (H1) is needed to address the identifiability issue due to censoring. It

means that instead of estimating, for example, the mean regression function, E(Y |X =

x), we will only estimate the truncated conditional mean E (Y I(Y ≤ τ x)|X = x). Con-

dition (H2) is a technical assumption needed in the proof of Lemma 4.2 below. The

‘non-decreasing’ assumption is not required whenever, in (2.3), we take α = 0 and

η ≡ 0.

3 Estimation of Gx(t)

The transformation Y ∗ given in (2.3) depends on the unknown distribution Gx, which

needs to be estimated, before we can apply this transformation in practice. In the

independent data case, the problem of estimating Gx has been widely studied in the

literature. Beran (1981) proposed to estimate 1−Gx(t) by

1− Ĝx(t) =

n∏

i=1

(
1− (1− δi)I(Zi ≤ t)w̃0i(x)∑n

j=1 I(Yj ≥ Yi)w̃0j(x)

)
,

where

w̃0i(x) =
K0 ((x−Xi)/h0)∑n
j=1K0 ((x−Xj)/h0)

(3.1)

are Nadaraya-Watson (NW) weights, K0 is a symmetric density function (kernel) with

bounded support, say [−1, 1], and with bounded first derivative, and 0 < h0 ≡ h0n →
0 is a bandwidth sequence. Note that this estimator reduces to the Kaplan-Meier

estimator when all weights w̃0i(x) are equal to n−1. Under the i.i.d. assumption, the

asymptotic properties of this estimator have been further studied by Dabrowska (1987),

González-Manteiga and Cadarso-Suarez (1994), Van Keilegom and Veraverbeke (1997),

among others. We show below that in the present setup of strongly mixing processes,

the estimator Ĝx(t) remains uniformly consistent.

Theorem 3.1 Assume (A1) and (A2), given in the Appendix. Let 0 < τ x < Tx, and

suppose n−2ν+7h
−3(2ν+7)
0 (logn)2ν−3 = o(1).

(i) If Hx(t) and H0
x(t) are ulL(J) uniformly in t ≥ 0 and f0 is ulL(J), then

sup
x∈J

sup
t∈[0,τx]

|Ĝx(t)−Gx(t)| = Op(∆
−1/2
n + h0).

(ii) If Ḣx(t) and Ḣ0
x(t) exist and they are ulL(J) uniformly in t ≥ 0 and f ′0 exists and

is ulL(J), then

sup
x∈J

sup
t∈[0,τx]

|Ĝx(t)−Gx(t)| = Op(∆
−1/2
n + h2

0),

where ∆n = nh0/ logn.
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Proof. Using similar arguments as in the proof of Proposition 2.2 in Dabrowska (1987),

one can easily demonstrate that, uniformly in x ∈ J and t ∈ [0, τ x],

|Ĝx(t)−Gx(t)| = O(1)

[
sup
x∈J

sup
t≥0
|Ĥx(t)−Hx(t)|+ sup

x∈J
sup
t≥0
|Ĥ0

x(t)−H0
x(t)|

]
,

where Ĥx(t) =
∑n

i=1 I(Zi ≤ t)w̃0i and Ĥ0
x(t) =

∑n
i=1(1 − δi)I(Zi ≤ t)w̃0i. The result

follows as a direct application to Ĥx(t) and Ĥ0
x(t) of Theorem 7.4 in the Appendix. 2

Note that, under similar assumptions, the same result holds for the Beran estimator

of Fx and also for the conditional hazard function estimator.

4 Estimation of m(x)

Let us start with the case where Gx is known and denote by mG(x) the conditional

mean of Y ∗ given X = x. The LL estimator of mG(x) is given by

m̂G(x) =
n∑

i=1

w̃1i(x)Y ∗i , (4.1)

where

w̃1i(x) =
K1 ((x−Xi)/h1) [Sn,2(x)− (x−Xi)Sn,1(x)]∑n
j=1K1 ((x−Xj)/h1) [Sn,2(x)− (x−Xj)Sn,1(x)]

(4.2)

are local linear (LL) weights, with Sn,l(x) =
∑n

i=1 K1 ((x−Xi)/h1) (x−Xi)
l, l = 0, 1, 2

and where 0 < h1 ≡ h1n → 0 is a bandwidth and K1 is a kernel, assumed to be a

bounded function with bounded support. Unlike the local constant approach, which

cannot adapt to unbalanced design situations and which has adverse boundary effects

that require boundary correction, LL regression is known to have many good statistical

properties that are detailed in the book of Fan and Gijbels (1996).

Since m(x) = mG(x), (4.1) is also a LL estimator for m(x) based on the transformed

data (Xi, Y
∗
i ), i = 1, . . . , n. Put uj =

∫
ujK(u)du and vj =

∫
vjK2(v)dv and, suppose

that u0 = 1 and u1 = 0. Let G∗x(t) and σ2
∗(x) denote respectively the CDF and the

conditional variance of Y ∗ given X = x. The random sequence (Xt, Y
∗
t ) is strongly

mixing with mixing coefficient α∗(t) ≤ α(t), see e.g. Eberlein and Taqqu (1986). So

by applying Theorem 5 in Masry and Fan (1997) we have the following result.

Lemma 4.1 Assume (A1), (A2) and condition (H) for φ and η. Let h1 = C1n
−γ1, for

some C1 > 0 and 1/5 ≤ γ1 < (ν − 1)/(ν + 1). If f0(.), G∗. (t) and σ2
∗(.) are continuous

on J , then

√
nh1

(
m̂G(x)−m(x)− u2h

2
1m
′′(x)/2

) d−→ N
(
0, v0σ

2
∗(x)/f0(x)

)
,

for each x in J , provided that m′′ exists and is continuous on J .
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Remark 4.1

Assumption (A2) is weaker than condition 2(ii) required in Masry and Fan (1997).

However, using similar techniques as in the proof of Lemma 7.1 in the Appendix, it

can be shown that their result continues to hold under this weaker condition. Note

also that the finite moment conditions in Masry and Fan (1997) are fulfilled in our case

since Y ∗ is bounded.

We next examine the limiting distribution of the regression estimator based on the

estimated transformation. More precisely, we propose to plug-in Beran’s estimator Ĝx

in the formula of Y ∗, see (2.3). We denote by Ŷ ∗ the resulting transformation and by

m̂Ĝ the corresponding LL estimator, i.e.

m̂Ĝ(x) =

n∑

i=1

w̃1i(x)Ŷ ∗i . (4.3)

Note that if in (4.3) we take α = 0 and η ≡ 0 and instead of the LL we use the NW

estimator for the regression function (with bandwidth h0 and kernel K0), the resulting

estimator
∑n

i=1 w̃0i(x)Ŷ ∗i , can be written as

∫
φ(t)dF̂x(t), (4.4)

where F̂x is the Beran estimator of Fx. This is due to the fact that the jumps of F̂x at the

uncensored points Zi are exactly w̃0i(x)/
¯̂
Gx(Zi). This means that our estimator (4.3)

improves the ‘naive’ estimator (4.4) from three points of view: (1) The LL weights

are used instead of the classical NW weights, (2) A more general transformation is

allowed, and (3) The second bandwidth (kernel) used for the regression function does

not need to be the same as the first one used for estimating Gx. This last point is

especially interesting because as we will see in the simulation section, the best results

are typically obtained for h1 << h0.

To state the asymptotic normality of m̂Ĝ(x), we first need to bound the error

induced by approximating the true DF Gx by its Beran estimator Ĝx.

Lemma 4.2 If the conditions of Theorem 3.1(i) hold, the functions φ and η satisfy

condition (H), nh0/ logn→∞ and nh1 →∞, then

m̂Ĝ(x)− m̂G(x) = Op

(
sup

t∈[0,τx]

|Ĝx(t)−Gx(t)|
)
,

for all x ∈ J .

Proof. First note that

∣∣∣m̂Ĝ(x)− m̂G(x)
∣∣∣ ≤ sup

i
|Ŷ ∗i − Y ∗i |

n∑

i=1

|w̃1i(x)|.
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From the definition of w̃1i(x), see (4.2), using Theorem 1 in Masry and Fan (1997),

n∑

i=1

|w̃1i(x)| ≤ 2Sn,2(x)Sn,0(x)

Sn,2(x)Sn,0(x)− S2
n,1(x)

=
2u2 + op(1)

u2 + op(1)
= Op(1).

On the other hand,

|Ŷ ∗i − Y ∗i | ≤ |ζ̂
1

i − ζ1
i |+ |ζ̂

2

i − ζ2
i |+ |ζ̂ηi − ζηi|. (4.5)

We will only show the derivation for the third term on the right hand side of (4.5),

since for the two other terms the development is similar.

|ζ̂ηi − ζηi| ≤
∣∣∣∣∣

∫ Zi

0

(
η(s)
¯̂
Gx(s)

− η(s)

Ḡx(s)

)
dĜx(s)

∣∣∣∣∣+

∣∣∣∣
∫ Zi

0

η(s)

Ḡx(s)
d(Gx(s)− Ĝx(s))

∣∣∣∣

= I1 + I2 (say).

Clearly,

I1 ≤ sup
t∈[0,τx]

|η(t)| sup
t∈[0,τx]

|Ĝx(t)−Gx(t)|
∫ τx

0

dĜx(t)
¯̂
Gx(t)Ḡx(t)

.

By Theorem 3.1(i) we have that supt∈[0,τx] |Ĝx(t) − Gx(t)| = op(1) and since Ḡx(t) ≥
Ḡx(τx) > 0, for all t ∈ [0, τx], it follows that I1 = Op

(
supt∈[0,τx] |Ĝx(t)−Gx(t)|

)
. For

I2, using integration by parts and after some easy algebra, we obtain

I2 ≤ 4
supt∈[0,τx] |η(t)|

Ḡ2
x(τx)

sup
t∈[0,τx]

|Ĝx(t)−Gx(t)|,

which completes the proof. 2

Remark 4.2 (uniform rate)

Let 0 < τ < inf{Tx : x ∈ J}. If φ and η satisfy condition (H) with τ instead of τ x, then

it follows from Theorem 3.1(ii) that supx∈J,t∈[0,τ ] |Ĝx(t)−Gx(t)| = Op((nh0/ logn)−1/2+

h2
0). Now from Corollary 1 in Masry (1996) we have that Sn,j(x)→ f0(x)uj uniformly

on J . Hence, it follows from the proof of Lemma 4.2 that

sup
x∈J
|m̂Ĝ(x)− m̂G(x)| = Op((nh0/ logn)−1/2 + h2

0).

Moreover, by Theorem 6 in Masry (1996), supx∈J |m̂G(x)−m(x)| = Op((nh1/ logn)−1/2+

h2
1). We conclude that

sup
x∈J
|m̂Ĝ(x)−m(x)| = Op((nh/ logn)−1/2 + h

2
),

where h = min(h0, h1) and h = max(h0, h1), whenever the required assumptions are

fulfilled.
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The following theorem is a direct consequence of Lemma 4.1 and Lemma 4.2.

Theorem 4.1 Assume the conditions of Lemma 4.1 hold. If Ḣx(t) and Ḣ0
x(t) exist

and are ulL(J) uniformly in t ≥ 0, if f ′0 exists and is ulL(J), and if log n/(nh5
0) = O(1)

and n−2ν+7h
−3(2ν+7)
0 (logn)2ν−3 = o(1), then for any x in J ,

√
nh1

(
m̂Ĝ(x)−m(x)− u2h

2
1m
′′(x)/2 +Op(h

2
0)
)

d−→ N (0, v(x)) , (4.6)

with v(x) = v0σ
2
∗(x)/f0(x).

As a consequence of this theorem, m̂Ĝ(x) is a consistent estimator for m(x) with

the asymptotic bias and variance given respectively by h2
1m
′′(x)u2/2 + Op(h

2
0) and

v(x)/(nh1). The extra error term Op(h
2
0) comes from the bias of Ĝx. The asymptotic

variance is also larger than in the familiar case, since σ2
∗(x) ≥ Var(φ(Y )|X = x) ≡

σ2(x). Without censoring, Y ∗ becomes φ(Y ) and so the asymptotic variance reduces

to v0σ
2(x)/f0(x), which is the asymptotic variance for uncensored data. Note also that

our assumptions on h0 and h1 imply that nh5
0 →∞ and nh5

1 = O(1) which means that

h1/h0 = o(1). Therefore, the asymptotic bias of m̂Ĝ(x) is dominated by Op(h
2
0). By

ignoring the bias term, i.e. by assuming that nh1h
4
0 = (h1/h0)nh5

0 → 0, (4.6) becomes

√
nh1

(
m̂Ĝ(x)−m(x)

)
d−→ N (0, v(x)) .

This result may be used to construct an asymptotic confidence interval for m(x).

To do so, σ2
∗(x) = Var(Y ∗|X = x) needs to be estimated. A simple estimator of

σ2
∗(x) is given by

∑n
i=1 w̃1′ i(x)(Ŷ ∗i − m̂Ĝ(Xi))

2, where w̃1′ i(x) is given by (4.2) but

with another bandwidth h
′
1 instead of h1. Using similar arguments as in the proof

of Lemma 4.2, it can be easily shown that this estimator is asymptotically equivalent

to
∑n

i=1 w̃1′ i(x)(Y ∗i − m̂G(Xi))
2, which is the classical LL estimator for the condi-

tional variance for completely observed data. Finally, the results stated above may

also be extended to construct a simultaneous confidence band for m(x). In fact,

as we have done in Lemma 4.1, using some known results from the literature, see

for example Xia (1998), it can easily be shown that, under some regularity condi-

tions,
√
nh1

(
m̂G(x)−m(x)

) d→ Yn(x, h1)σ∗(x)/
√
f0(x) uniformly in x ∈ [0, τ ], where

Yn(x, h1) = h
−1/2
1

∫ 1

0
K1((z−x)h−1

1 )dWn(z) and Wn(z) is a sequence of standard Wiener

processes. Given our Remark 4.2, it is clear that the same result is also available for

m̂Ĝ(x).

5 Numerical study

In this section we present the results of a simulation study, in which the finite sample

performance of the proposed method is investigated. Let Xt have a uniform distribution

on [0, 3], and let Yt = r(Xt) + σ(Xt)εt, where r(x) = 12.5 + 3x − 4x2 + x3, σ(x) =

(x − 1.5)2a0 + a1 and εt is a standard normal random variable. Also, define Ct =
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r̃(Xt) + σ(Xt)ε̃t, with r̃(x) = r(x) + β(x)σ(x), β(x) = (x − 1.5)2b0 + b1, and ε̃t is

also standard normal. The variables Xt, εt and ε̃t are mutually independent. The

parameters b0 and b1 allow to control the percentage of censoring (PC) which is given

by PC(x) = P (Yt > Ct|Xt = x) = 1 − P (εt ≤ β(x) + ε̃t) = 1 − Φ(β(x)/
√

2), where

Φ is the distribution function of a standard normal random variable. Our objective

is to estimate the truncated conditional mean function m(x) =
∫ 12.39

0
tdFx(t). This

corresponds to φ(t) = tI(t ≤ T ), with T = 12.39 which is the 0.98 upper quantile of

the DF Hx for x = 1.5. Different values of x were investigated but we only show here

the results for x = 1.5. Four cases are studied :

(1) b1 = 0.95, b0 = 0: PC is constant and is equal to 25%.

(2) b1 = 0.95, b0 = −0.27: PC is convex with minimum, 25%, at x = 1.5.

(3) b1 = 0, b0 = 0: PC is constant and is equal to 50%.

(4) b1 = 0, b0 = −0.238: PC is convex with minimum, 50%, at x = 1.5.

The parameters a0 and a1 allow to control the variation in the generated data. Three

values for a0 are investigated : a0 = 0, a0 = −0.25 and a0 = 0.25. The first one

corresponds to a homoscedastic regression model. In the second (third) case, σ(x) is

concave (convex) with maximum (minimum) at x = 1.5. Finally, we chose two values

for a1 : a1 = 0.5 and a1 = 1.

To generate a mixing process Xt with uniform distribution on [0, 3], we first consider

an ARMA time series of the form Et =
∑

i δiEt−i+
∑

i γiυt−i+υt, where the υt are i.i.d.

N (0, 1). By an appropriate choice of δi’s and γi’s, the resulting Et is a strongly mixing

Gaussian process, with α(n) → 0 at an exponential rate (see Pham and Tran (1985)

and Bougerol and Picard (1992)). Then, in order to get an explanatory variable that is

α-mixing and has the required distribution, we use the probability integral transform

method (see Hoel et al. (1971)). Three situations are considered :

• Model 1: Xt is generated from an AR(1), with γ1 = 0.5, εt and ε̃t are i.i.d.

• Model 2: Xt is generated from an AR(1), with γ1 = −0.5, εt and ε̃t are i.i.d.

• Model 3: Xt, εt and ε̃t are generated from an AR(1), with γ1 equal to 0.8, 0.5

and 0.5, respectively.

The mutual independence of Xt, εt and ε̃t, implies that (Xt, εt, ε̃t) is a strongly mixing

process, and hence this is also the case for the sequences (Xt, Yt, Ct). The sample size

is taken equal to n = 350. For all the data analyzed, the Epanechnikov kernel, which

is known to have certain optimal properties, K(x) = (3/4)(1 − x2)I(−1 ≤ x ≤ 1),

is used for both the Beran estimator of Gx and for the LL smoother of m(x). To

calculate the transformed data, we first need to choose the tuning parameter α and the

‘adjustment’ function η. In this study, five values of the parameter α are investigated,

α = 0, 0.25, 0.5, 0.75, 1, and two functionals η are considered, namely η ≡ 0 and η = φ.

For all scenarios, the results using the second choice are considerably better than those

obtained with the zero adjustment function. Therefore, we restrict attention here to

showing the results for η = φ. To evaluate m̂Ĝ(x) we also need the two bandwidths
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h0 and h1. In this study the value of h0 and h1 ranges from 0.2 to 3 by steps of

0.04. To avoid instability of the transformed data and following the idea of Fan and

Gijbels (1994), we do not transform the data points for which Zi > T . For each

scenario, the bias, the empirical variance and the mean squared error are calculated

over 1500 replications. The results are summarized in Tables 1-4. Each entry in the

table represents the result for which the MSE is minimal, obtained over all possible

values of h0, h1 and α. The tables also show the values of these parameters, for which

the best result is obtained.

We first discuss the findings for the bandwidths h0 and h1. Almost in all situations

the optimal value of h0 is larger than the optimal value of h1. This is not surprising,

since intuitively, to correctly calculate the LL estimator one may need only a ‘small’

portion of the transformed data, which already contain some information from the

neighborhood. This also confirms the theoretical fact that h1/h0 must converge to 0

(see Section 4). Interestingly, regarding the proportion of censoring in the simulated

data, h0 and h1 behave differently. In fact as the PC increases, h1 becomes larger

but, globally, this is not the case for h0. The behavior of h1 can be attributed to the

increase in the variation of the transformed data due to censoring. For h0, remember

that this bandwidth is only used to estimate the conditional distribution function Gx

of the censoring variables. Estimating Gx becomes easier in the presence of highly

censored data, so, in this case, h0 tends to be smaller. It seems that the bandwidths

are also influenced by the heteroscedasticity in the random samples.

The second finding is about the α parameter. Clearly for low censoring rate, the

transformation ζ1 corresponding to α = 0 in (2.3), works better for all cases. But

once censoring becomes higher, the value of α increases. One also needs a large value

of α, at least 0.5, to obtain reasonable results when a high censoring proportion is

combined with a large variance (see Table 4). Now, concerning the MSE, in general

our method leads to satisfactory results even with heteroscedastic dependent residuals

(see Table 3), but the finite sample performance gets worse as the degree of dependency

in the data increases. Another factor that clearly acts on the quality of the resulting

estimator is the variance of the residuals. Globally, better results are obtained when

the variance remains constant (a0 = 0). Also, when increasing the value of a1, we find

that the performance of m̂Ĝ decreases (compare Table 1 and Table 4). As it can be

seen from Tables 1 and 2, the impact of the sign of the autocorrelation parameter γ1

in the simulations is not clear. However, with high proportion of censoring, it seems

that our estimator shows better performance with γ1 = −0.5. It is also obvious from

the tables that the MSE is mainly due to the variance component of the estimator.

Finally, as we said before, we found that the adjustment function η = φ (see (2.3))

has a good effect on the resulting estimator. Actually, when we take η ≡ 0, the MSE

increases for all simulations, typically in the range of 2% to 5%. In this case, we also

noted that the optimal value of α is not the same as for the case η = φ. In fact, in

contrast to the results shown in Table 1-4, the optimal value of α is often larger than

0.5 in that case.
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a0 b1 b0 α h0 h1 MSE Bias Var

-0.25 0.95 0 0 2.76 0.72 0.0072 0.0155 0.0070

-0.27 0 2.96 0.80 0.0079 0.0226 0.0074

0 0 0.25 1.68 0.96 0.0189 0.0118 0.0188

-0.238 0.25 1.68 1.08 0.0192 0.0154 0.0190

0 0.95 0 0 2.92 0.72 0.0069 0.0120 0.0068

-0.27 0 2.68 0.80 0.0081 0.0120 0.0080

0 0 0.25 1.96 1.04 0.0182 0.0117 0.0181

-0.238 0.25 2.24 1.28 0.0186 0.0121 0.0185

0.25 0.95 0 0 2.96 0.76 0.0070 0.0172 0.0067

-0.27 0 3 0.84 0.0084 0.0145 0.0082

0 0 0.25 2.04 1.36 0.0165 0.0106 0.0164

-0.238 0.25 3 3 0.0289 -0.0900 0.0208

Table 1: Optimal results for Model 1 and for a1 = 0.5.

a0 b1 b0 α h0 h1 MSE Bias Var

-0.25 0.95 0 0 2.76 0.72 0.0076 0.0170 0.0073

-0.27 0 2.84 0.80 0.0082 0.0232 0.0077

0 0 0.25 2.88 0.72 0.0119 0.0119 0.0118

-0.238 0.25 2.76 0.88 0.0117 0.0112 0.0116

0 0.95 0 0 2.72 0.72 0.0074 0.0121 0.0073

-0.27 0 2.76 0.84 0.0084 0.0250 0.0078

0 0 0.25 2.76 0.92 0.0117 0.0101 0.0116

-0.238 0.25 2.80 1.20 0.0126 0.0046 0.0126

0.25 0.95 0 0 2.84 0.76 0.0075 0.0171 0.0072

-0.27 0 2.24 0.88 0.0089 0.0234 0.0084

0 0 0.25 3 1.24 0.0123 0.0101 0.0122

-0.238 0.25 3 3 0.0264 -0.0916 0.0180

Table 2: Optimal results for Model 2 and for a1 = 0.5.
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a0 b1 b0 α h0 h1 MSE Bias Var

-0.25 0.95 0 0 2.88 0.76 0.0112 0.0249 0.0106

-0.27 0 2.84 0.84 0.0123 0.0308 0.0114

0 0 0.25 1.24 1.28 0.0338 0.0185 0.0335

-0.238 0.25 1.6 1.16 0.0350 0.0234 0.0345

0 0.95 0 0 2.64 0.76 0.0110 0.0180 0.0107

-0.27 0 2.84 0.84 0.0126 0.0195 0.0122

0 0 0.25 1.56 1.24 0.0331 0.0154 0.0329

-0.238 0.25 2 1.36 0.0367 0.0118 0.0366

0.25 0.95 0 0 2.84 0.80 0.0110 0.0221 0.0105

-0.27 0 2.56 0.92 0.0130 0.0284 0.0122

0 0 0.25 2 1.4 0.0322 0.0068 0.0322

-0.238 0.25 3 3 0.0548 -0.0983 0.0451

Table 3: Optimal results for Model 3 and for a1 = 0.5.

a0 b1 b0 α h0 h1 MSE Bias Var

-0.25 0.95 0 0 2.76 1.04 0.0137 0.0121 0.0136

-0.27 0 1.4 1.16 0.0201 0.0278 0.0193

0 0 0.5 1.28 1.84 0.0475 0.0757 0.0418

-0.238 0.5 1.24 0.24 0.0994 0.0488 0.0970

0 0.95 0 0 2.84 1.08 0.0130 0.0092 0.0129

-0.27 0 1.40 1.24 0.0177 0.0241 0.0171

0 0 0.5 1.24 1.12 0.0408 0.0413 0.0391

-0.238 0.5 1.52 1.04 0.0487 0.0511 0.0461

0.25 0.95 0 0 2.88 1.12 0.0122 0.0057 0.0122

-0.27 0 1.44 1.4 0.0163 0.0247 0.0157

0 0 0.5 1.24 1.56 0.0356 0.0441 0.0337

-0.238 0.5 1.76 1.48 0.0357 0.0439 0.0338

Table 4: Optimal results for Model 1 and for a1 = 1.
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6 Parameters selection

In practice, η, α, h0 and h1 need to be chosen in some data driven way, in order to

obtain satisfactory results. From our simulation study, it becomes clear that an appro-

priate value of those parameters is very important since they influence the behavior of

the estimator. Especially the choice of the bandwidths h0 and h1 requires more atten-

tion as those parameters control the amount of smoothing inherent to the process. It is

known that undersmoothing leads to a large variance and oversmoothing increases the

bias. For this reason several methods (e.g. plug-in, cross-validation, bootstrap, ...) for

selecting smoothing parameters, based on the observed data, have been proposed and

studied by many researchers. Much effort in this area has been made, assuming the

data are independent and completely observed. For dependent but uncensored obser-

vations, the results are sparser. See for example Härdle and Vieu (1992), Quintela del

Ŕıo and Vilar Fernández (1992) and Hall et al. (1995). Because of the technical difficul-

ties encountered when working with censored data, the bandwidth selection problem

becomes really problematic in this case. To the best of our knowledge, no optimal rule

has been proposed in the literature for this type of data. In this section we will discuss

this problem from a practical point of view and we propose some guidelines that might

help in selecting a reasonable value for the parameters needed to calculate m̂Ĝ.

For its simplicity and consistency the cross-validation (CV) is one of the most used

methods in the literature. It aims at minimizing the mean square of the prediction

error which is, in our case, given by n−1
∑

(m̂Ĝ(Xi) − Yi)2. Let us start by assuming

that Gx is known. In this case, one may use the following local ‘leave block out’ CV

criterion :

CV (x, h1) = n−1
k

∑

j∈Jk

(
m̂G
r (Xj)− Y ∗j

)2
, (6.1)

where, for some 0 < k ≤ 1, Jk is the set of the nk = bnkc nearest neighbor points

to x and m̂G
r (Xj) is the LL estimator of m at Xj without the observations (Xi, Y

∗
i ),

i = 1, . . . , n, for which |i− j| ≤ r, i.e.

m̂G
r (Xj) = m−1

j

∑

|i−j|>r
w̃1i(Xj)Y

∗
i , (6.2)

where mj = # {i = 1, . . . , n : |i− j| > r} and r is a given integer satisfying 2r+ 1 <<

n. By leaving out more than one observation (r > 0), we attempt to drop from the

sample all the data points that are close in ‘time’ to (Xj, Y
∗
j ). In other words, we

omit the observations that are ‘susceptible’ to be highly correlated with (Xj, Y
∗
j ). The

local modification of the CV method allows the adaptation to the concentration of the

data, the variation of the noise level and the local behavior of the underlying regression

function. Of course, the function (6.1) can be used only if Gx is known, which is not

the case in real data analysis. However, when the censoring variable is independent

of the covariate, Gx(t) = P (C ≤ t|X = x) = P (C ≤ t) can be estimated by the
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Kaplan-Meier estimator, and so (6.1) can still be used by pluging-in this estimator in

(6.1). When C and X are correlated, an easy solution would be to select h0 and h1 by

simultaneously minimizing

CV (x, h0, h1) = n−1
k

∑

j∈Jk

(
m̂Ĝ
r (Xj)− Ŷ ∗j

)2

, (6.3)

where m̂Ĝ
r (Xj) is like (6.2) but with Ŷ ∗i instead of Y ∗i . We have checked this method

via a simulation study, and the obtained results were globally unsatisfactory. For this

reason we propose a modification of this approach. The idea behind our proposal is the

following. We know that E(ζ1|X = x)−E(ζ2|X = x) = E(ζη|X = x) = 0, so for a good

choice of h0 and h1, we should get a small value for both |n−1
∑n

i=1 w̃1i(x)(ζ̂
1

i − ζ̂
2

i )| =
∆1n(x, h0, h1) and |n−1

∑n
i=1 w̃1i(x)ζ̂ηi| = ∆2n(x, h0, h1). This suggests to adjust (6.3)

by including ∆1n(x, h0, h1) and ∆2n(x, h0, h1) in the calculation procedure. A simple

way to do this is via the following calibrated CV criterion :

CCV (x, h0, h1) =
√
CV (x, h0, h1) + ∆

(1−s)
1n (x, h0, h1)∆s

2n(x, h0, h1), (6.4)

with typically s = 0, s = 1 or s = 1/2. This is just one of many possible corrections

that we have tested, the other ones like
√
CV +∆1n+∆2n, do not seem to work as good

as (6.4). One can also plan to include α and η in this selection procedure, but doing so

will make the computation somewhat complicated and may also increase the instability

of the proposed CV function. Given our conclusions in the previous section we decide

to run this procedure with α = 0 for small proportions of censoring, say less than 50%,

and with α = 0.5 for large proportions of censoring. For the function η, we restrict

our analysis to the case η = φ. Due to the amount of calculations required by this CV

procedure, we only run 500 Monte Carlo simulations with data of size n = 350 generated

according to Model 1 with both a1 = 0.5 and a1 = 1. For each simulated data set, using

k = 0.25 and r = 2, we select the pair (h0, h1) ∈ {0.2, 0.24, . . . , 3} × {0.2, 0.24, . . . , 3}
that minimizes (6.4). Table 5 shows the mean of the squared error obtained over the 500

replications using s = 0 and s = 1 for low and high censoring respectively. Comparing

these results with those of Table 1 and Table 4, we observe that globally this approach

leads to reasonable results. In some cases, especially with small PC and small variance,

the MSE that we obtain using our automatic bandwidth selection criterion is better

than the coresponding MSE evaluated with the optimal fixed bandwidths. However,

as censoring and/or variance increase, the results become worse.
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b1 0.95 0

b0 0 -0.27 0 -0.238

a1 = 0.5

a0 -0.25 0.0051 0.0047 0.0498 0.0512

0 0.0049 0.0047 0.0490 0.0504

0.25 0.0046 0.0053 0.0480 0.0499

a1 = 1

a0 -0.25 0.0863 0.0419 0.0475 0.0745

0 0.0472 0.0242 0.0491 0.0795

0.25 0.0265 0.0152 0.0573 0.0733

Table 5: MSE under Model 1, obtained using CCV to select h0 and h1.

7 Appendix

In this appendix, we establish a uniform consistency rate for a kernel type estimator

of a conditional functional. The results that are shown here are of general interest

and can be used for many other estimation problems associated with strong mixing

conditions.

Let (Xi, Yi) be a strictly stationary α-mixing process, having the same distribution

as the random vector (X, Y ), with mixing coefficient α(i) ≤ φi−ν (i → ∞) for some

ν > 2 and φ > 0, joint density f(x, y), marginal DF F0 and marginal density f0 for X.

The support of X is denoted by J and is supposed to be an interval in R that may be

infinite. We require that {Xi} satisfies :

Assumption (A).

(A1) 0 < m1 ≤ f0(x) ≤M1 <∞, for all x ∈ J .

(A2) f0j(u, v) ≤ M∗ < ∞ for each j ≥ j∗ and u, v ∈ J : |u − v| ≤ ε for some ε > 0

and j∗ ≥ 1 , where f0j denotes the joint density function of (X1, Xj+1).

(A3) f0(.) is uniformly locally Lipschitz (ulL) on J ; i.e., for some δ > 0 and M <∞,

sup
x,x′∈J,|x−x′|≤δ

|f0(x)− f0(x′)| ≤M |x− x′| .

Let I ⊂ R and denote by {βt, t ∈ I} a family of real-valued measurable functions and

let rt(x) be the conditional expectation of βt(Y ) given that X = x. We denote by rtn
the NW estimator of rt(x), that is

rtn(x) =
n−1

∑n
i=1 βt(Yi)Kh (x−Xi)

n−1
∑n

i=1 Kh (x−Xi)
≡ dtn(x)

fn(x)
, (7.1)
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where Kh(.) = 1/hK(./h), K is a symmetric density that has a bounded support with

a bounded first derivative and 0 < h ≡ hn → 0.

We will show, in Theorem 7.3 below, that if assumption (A) holds, and if {βt, t ∈ I}
and hn satisfy certain regularity conditions, then

sup
t∈I,x∈J

|rtn(x)− rt(x)| = Op

(√
log n

nh
+ h

)

This is the main result of this Appendix. It is a generalization of the result of Härdle

et al. (1988) to the dependent case. Our proofs follow the same methodology. We

therefore omit certain derivations and refer to their paper for more details.

In a first step we develop a general result for a class of functions {γt, t ∈ I}, that

satisfies the following assumptions. Later on we will take β t equal to a linear combi-

nation of these γt-functions.

Assumption (B).

(B1) supt∈I,x∈J
∫
γ2
t (y)f(x, y)dy = M ∗

0 <∞.

(B2) 0 ≤ γt(y) ≤ γt′(y), t < t′ ∈ I, y ∈ R.

(B3) Dt(.) :=
∫
γt(y)f(., y)dy is ulL on J , uniformly in t ∈ I; i.e., for some δ > 0 and

M <∞,

sup
t∈I

sup
x,x′∈J,|x−x′|≤δ

|Dt(x)−Dt(x
′)| ≤M |x− x′| .

(B4) Eγt(Y ) is a continuous function of t in I.

(B5) The limit functions γt∗ = limt→t∗ γt and γt∗ = limt→t∗ γt exist and are finite a.s.

(w.r.t. the DF of Y), where t∗ = inf I and t∗ = sup I.

(B6) ‖γt∗(Y )‖λ = Mλ < ∞, for some 2(ν − 1)/(ν − 2) < λ ≤ ∞, where ‖ · ‖λ is the

Lλ-norm.

(B7) ∃ε > 0 and j∗ ≥ 1 such that for each j ≥ j∗,

supu,v∈J,|u−v|≤ε
∫
γt∗(u

′)γt∗(v
′)fj(u, v, u′, v′)du′dv′ ≤M∗ <∞,

where fj denotes the joint density function of (X1, Xj+1, Y1, Yj+1).

Remark 7.1

Assumptions (B1)-(B6) correspond, respectively, to assumptions (B2), (A3)-(A6) and

(A7), with λ > 2, in Härdle et al. (1988). In the case λ = ∞, i.e., γt is bounded,

assumption (B7) reduces to the assumption (A2) given above. In the case that γ t ≡ 1,

i.e., Dt(x) = f0(x), assumption (B3) reduces to the assumption (A3) given above.

Assumptions (A1) and (B1) imply that

sup
t∈I,x∈J

∫
γ2
t (y)f(y|x)dy ≤M ∗

0 /m1 ≡M0, (7.2)

where f(y|x) is the conditional density of Y given X.
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Let Dtn(x) = c−1
n [Gtn(x + c′n)−Gtn(x− c′′n)], c′n and c′′n are positive sequences tending

to 0, cn = c′n + c′′n and Gtn(x) = n−1
∑n

i=1 γt(Yi)I(Xi ≤ x).

Theorem 7.1 Assume (A1) and (B). Let cn satisfy (i) 0 < cn → 0 and

(ii) n(4ν−2)λ−1−(2ν−7)c
2λ−1−(2ν+7)
n (log n)−2(2ν+1)λ−1+(2ν−3) → 0. Then,

sup
t∈I,x∈J

|Dtn(x)−Dt(x)| = Op(∆
−1/2
n + cn),

with ∆n = ncn/ logn.

Further, in the case λ = ∞, for each B > 0 there exists a constant CB > 0 such that,

for n sufficiently large,

P

(
sup

t∈I,x∈J
|Dtn(x)−Dt(x)| ≥ B∆−1/2

n +Mcn

)
≤ CB

[
n−2ν+7c−2ν−7

n (log n)2ν−3
]1/4

.

Remark 7.2

• Condition (ii) implies that (iii) cn (n/ logn)1−2/λ →∞, which itself implies that (iv)

∆n →∞ and (v) c−1
n < (n/ logn)1−2/λ (n→∞).

• If instead of (B3) we assume: (B3’)
∂Dt(x)

∂x
exists and is ulL on J uniformly in

t ∈ I, then by taking c′n = c′′n, we get, instead of Theorem 7.1,

sup
t∈I,x∈J

|Dtn(x)−Dt(x)| = Op(∆
−1/2
n + c2

n).

• In the case that γt ≡ 1, assumption (B3’) reduces to the assumption (A3’) f ′0(x)

exists and is ulL on J .

The proof of Theorem 7.1 can be split in two parts. In the first part one can check

sup
t∈I,x∈J

|EDtn(x)−Dt(x)| ≤Mcn, (7.3a)

by using (B3), Taylor’s Theorem and the fact that EGtn(x) =
∫ x
−∞Dt(z)dz := Gt(x)

and G
′
t(x) = Dt(x). The second step is to show that

sup
t∈I,x∈J

|Dtn(x)− EDtn(x)| = Op(∆
−1/2
n ). (7.3b)

The crucial ingredient to prove this is Lemma 7.1 below.

Put an = ∆
−1/2
n cn, Qn = Mλa

−1/(λ−1)
n , wn =

⌊
2Qn∆

1/2
n + 1

⌋
. For a given t ∈ I,

v ∈ [0, 1], r = −wn,−wn + 1, . . . , wn and j = 1, . . . , n, define

Ztrj(v) = γt(Yj)I (γt(Yj) ≤ Qn) [I (F0(Xj) ≤ ηrv)− I (F0(Xj) ≤ v)] ,

with ηrv = v + rM1cn/wn. Let

Z̃trj(v) = Ztrj(v)− EZtrj(v) and ξtrn(v) =

∣∣∣∣∣n
−1

n∑

j=1

Z̃trj(v)

∣∣∣∣∣ .

When no confusion is possible, we will write Zj, Z̃j and ξn instead of Ztrj(v), Z̃trj(v)

and ξtrn(v), respectively.
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Lemma 7.1 Assume (A1), (B1), (B7). Let cn satisfy (i) and (iii) from Theorem 7.1

and Remark 7.2. For each B > 0 there exists a constant CB > 0 such that, for n

sufficiently large,

P (ξtrn(v) ≥ Ban) ≤ CBna
− λ

2(λ−1)
n qν+1

n , (7.4)

with qn = ∆
−1/2
n a

− 1
λ−1

n .

Proof. First note that |Z̃j| ≤ 2Qn and EZ̃j = 0. Using (7.2),

VarZ̃j ≤ EZ2
j ≤M0M1cn. (7.5a)

Put Cj = Cov
(
Z̃1, Z̃j+1

)
. From (7.5a) and using the Cauchy-Schwartz inequality, we

obtain for 1 ≤ j ≤ n,

|Cj| ≤M0M1cn. (7.5b)

Also, note that |Cj| ≤ E|Z1Zj+1|+ (E|Z1|)2. For a positive r, we have by (B7),

E|Z1Zj+1| ≤ M∗

[∫
I (v < F0(x) < ηrv) dx

]2

≤ M∗(M1/m1)2c2
n for j ≥ j∗,

where, in the last inequality, we have used (A1) and applied the mean-value theorem.

On the other hand, by (7.2),

E|Z1| ≤
∫
E (γt(Y )|X = x) I (v < F0(x) < ηrv) f0(x)dx

≤M
1/2
0 P (v < F0(X) < ηrv)

≤M
1/2
0 M1cn.

So we have shown that

|Cj| ≤ M2
1 (M∗m

−2
1 +M0)c2

n for j ≥ j∗, and r = 0, . . . , wn. (7.5c)

The same inequality remains true for r = −wn, . . . , 0. Now, by Billingsley’s inequality,

see e.g. Corollary 1.1 in Bosq (1998),

|Cj| ≤ 4φQ2
nj
−ν (j →∞). (7.5d)

Let 0 < kn → ∞. From (7.5) it follows that, for each m > 1 and for n sufficiently

large,

σ2
m := Var

(
m∑

j=1

Z̃j

)
= mVarZ̃1 + 2m

m∑

j=1

(1− j/m)Cj

≤ mM0M1cn + 2m

(
j∗∑

j=1

|Cj|+
kn∑

j=j∗+1

|Cj|+
∑

j≥kn+1

|Cj|
)

≤ mM0M1cn + 2m

(
j∗M0M1cn +M2

1 (M∗m
−2
1 +M0)knc

2
n +

4φ

ν − 1
Q2
nk

1−ν
n

)
,
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where, in the last inequality, we have used the fact that
∑∞

j=kn+1 j
−ν ≤ k1−ν

n /(ν − 1).

Taking kn = bc−1
n c yields

σ2
m ≤ m

(
M0M1 + 2j∗M0M1 + 2M2

1 (M∗m
−2
1 +M0) +

8φ

ν − 1
Q2
nc
ν−2
n

)
cn.

Using (v) and the fact that ν > 2 and λ > 2(ν − 1)/(ν − 2), one can check that

Q2
nc
ν−2
n ≤M2

λ (n→∞). This shows that, for n sufficiently large,

σ2
m ≤ Cλmcn for m > 1, (7.6)

with Cλ = M0M1 + 2j∗M0M1 + 2M2
1 (M∗m

−2
1 +M0) +

8φ

ν − 1
M2

λ . By applying Theo-

rem 1.3 in Bosq (1998), we have that for each ε > 0 and 0 < q ≤ 1,

P (ξtrn(v) ≥ ε) ≤ 4 exp

(
− ε2n

32qσ2
bq−1c + 16Qnq−1ε

)
+ 11

(
1 +

8Qn

ε

)1/2

nqα
(⌊
q−1
⌋)
.

(7.7)

Taking ε = Ban (B > 0) and qn = ∆
−1/2
n a

− 1
λ−1

n , using (7.6) after some development,

(7.7) can be written as (7.4).2

Note that in Theorem 7.1, assumptions (B2) and (B4)-(B6) are required to show

that the supremum over I and J in (7.3b) can be reduced to maxt∈In maxv∈J̃n max|r|≤wn
ξtrn(v), where In and J̃n are finite sets corresponding to some suitable partitions of I

and [0, 1], respectively. For a detailed justification, see pages 1444-1447 in Härdle et al.

(1988). Once this is done, some easy elaborations lead to the result in Theorem 7.1.

Theorem 7.1 has many applications. Here we will restrict ourselves to the case

where βt may be written as

βt(y) =
i0∑

i=1

qiγti(y), y ∈ R, t ∈ I, (7.8)

with fixed and finite i0,q1, . . . , qi0 and with {γti, t ∈ I, 1 ≤ i ≤ i0} satisfying assump-

tions (B1)-(B7), with common λ =∞ in (B6).

Theorem 7.2 Let dt(x) =
∫
βt(y)f(x, y)dy with {βt, t ∈ I} having representation

(7.8). Let dtn(x) be defined by (7.1). Assume (A1) and (A2). If n−2ν+7(log n)2ν−3

h
−3(2ν+7)
n → 0, then

sup
t∈I,x∈J

|dtn(x)− dt(x)| = Op(∆
−1/2
n + hn),

with ∆n = nhn/ logn.

This theorem follows from Theorem 7.1 by using similar techniques as in the proof

of Theorem 2.3 in Härdle et al. (1988). The key idea here is to first consider only a
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discrete kernel, say Kn, for which Theorem 7.1 can directly be applied. The second step

is to extend the result to the smooth kernel K by uniformly controling the remaining

term |dtn(x,Kn)− dtn(x,K)|. To do so the bandwidth hn needs to be chosen carefully.

This explains in part the 3 that appears in h
−3(2ν+7)
n above.

In the case where βt ≡ 1, dt and dtn become f0 and fn, respectively, and we have :

Corollary 7.1 Let fn(x) be defined by (7.1). Assume (A). If n−2ν+7(log n)2ν−3

h
−3(2ν+7)
n → 0, then

sup
x∈J
|fn(x)− f0(x)| = Op(∆

−1/2
n + hn).

As a direct consequence of Corollary 7.1 and Theorem 7.2 we obtain our main theorem

given below.

Theorem 7.3 Let rt(x) = E (βt(Y )|X = x) with {βt, t ∈ I} having representation

(7.8). Let rtn(x) be defined by (7.1). Assume (A). If n−2ν+7(log n)2ν−3

h
−3(2ν+7)
n → 0, then

sup
t∈I,x∈J

|rtn(x)− rt(x)| = Op(∆
−1/2
n + hn).

From Remark 7.2 it is clear that in the results given above, hn may be replaced by

h2
n if we substitute (A3) and (B3) by (A3’) and (B3’) respectively. As an application

of this theorem, let us take βt(y) = I(y ≤ t). In this case rt(x) becomes the CDF of

Y given X, i.e. F (t|x), and rtn(x) becomes the NW estimator of F (t|x) that we shall

denote by Fn(t|x).

Theorem 7.4 Suppose that the marginal distribution function of Y is continuous and

that n−2ν+7(logn)2ν−3h
−3(2ν+7)
n → 0. Assume (A1) and (A2).

(i) If (A3) holds, and F (t|.) is ulL on J uniformly in t ∈ R, then

sup
t∈R,x∈J

|Fn(t|x)− F (t|x)| = Op(∆
−1/2
n + hn).

(ii) If (A3’) holds, ∂F (t|x)/∂x := Ḟ (t|x) exists and Ḟ (t|.) is ulL on J uniformly in

t ∈ R, then

sup
t∈R,x∈J

|Fn(t|x)− F (t|x)| = Op(∆
−1/2
n + h2

n).
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Györfi, L., W. Härdle, P. Sarda, and P. Vieu (1989). Nonparametric Curve Estimation

from Time Series, Volume 60 of Lecture Notes in Statistics. Springer, New York.

23



Hall, P., S. N. Lahiri, and Y. K. Truong (1995). On bandwidth choice for density

estimation with dependent data. Ann. Statist. 23 , 2241–2263.
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