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SUMMARY

In preclinical experiments, pharmacokinetic (PK) studies are designed to

analyse the evolution of drug concentration in plasma over time i.e. the PK

profile. Some PK parameters are estimated in order to summarize the com-

plete drug’s kinetic profile : area under the curve (AUC), maximal concentra-

tion (Cmax), time at which the maximal concentration occurs (tmax) and half

life time (t1/2).

Several methods have been proposed to estimate these PK parameters.

A first method relies on interpolating between observed concentrations. The

interpolation method is often chosen linear. Another method relies on com-

partmental modelling. In this case, non linear methods are used to estimate

parameters of a chosen compartmental model. Two problems can arise with

this method. The first one is the difficulty to choose the suitable comparmen-

tal model given the small number of data available in preclinical experiment.

Secondly, non linear methods may fail to converge with sparse data. Hence,

there are some limitations in practice that prevent its use in preclinical PK

studies.

In this paper, we propose a Bayesian nonparametric model based on P-

splines. Simulations show that the proposed method provides better PK pa-

rameters estimations than the interpolation method, both in terms of bias

and precision. We extend the basic model to a hierarchical one that treats the

case where we have concentrations from different subjects. We are then able

to get individual PK parameter estimations. Finally, with Bayesian methods,

we can get easily some uncertainty measures by obtaining crediblity sets for

each PK parameter.
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1. INTRODUCTION

In drug discovery experiments, pharmacokinetic (PK) studies are designed to assess

the systemic exposure of animals to a compound under investigation. This kind of

studies attempts to analyse the evolution of drug concentration in plasma over time

i.e. the PK profile. To do so, blood samples are collected at several time points after

drug administration and some PK parameters are estimated in order to summarize

the complete drug’s kinetic profile. The usual parameters are: area under the curve

(AUC), maximal concentration (Cmax), time at which the maximal concentration

occurs (tmax) and half life time (t1/2). These estimated PK parameters are notably

used for drug screening to rapidly take the decision of droping a compound or of

keeping on working with promising ones.

There are several types of design in animals PK studies. When working with

large animals, a series of blood samples may be taken from each individual such

that the whole PK profile can be characterized on each animal. In this case, we

talk about complete design. For small animals, due to ethical considerations, only

a limited volume of blood can be collected from each subject. A classical approach

is to reduce the sampling frequency per animal and to collect blood from different

blocks of animals across timepoints [1]. The design is then said to be incomplete.

In the extreme case where we only have one observation per animal, we talk about

destructive design [2]. The scope of this work includes both complete and incomplete

designs.

Several methods exist to estimate PK parameters. A first method, named below

the ”traditional method”, is based on interpolating between observed concentra-

tions. Typically, the interpolation is linear in the ascending phase and log-linear in

the descending phase although other interpolation methods have been proposed in

the literature like for example splines interpolation [3]. In an incomplete design, the

traditional method consists of interpolating at each time point, the means of the

observed concentrations and thus, it does not allow to have individual estimations

of PK parameters for each animal.

Compartmental modelling approach is an alternative. One difficulty is to choose

a suitable compartmental model given the limited number of samples available in

preclinical investigations. The nonlinear estimation method often fails to converge

with sparse data. So, even if this method is theoritically attractive, there are

practical limitations that prevent its use in screening PK studies.

In this paper, we propose a Bayesian nonparametric method that improves the
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PK parameters estimation compared to the interpolation method and that has not

the convergence issues of the compartmental method. The idea is to fit individual

PK profile, using penalized splines. With this method, we get quick results and we

do not face the problem of model choice. Furthermore, some comparisons with the

traditional method will show that our approach provides better estimations of the

PK parameters, i.e. smaller bias and higher precision. Finally, with Bayesian meth-

ods, one can easily obtain measures of uncertainty for the estimated PK parameters

using credibility sets.

The plan of the paper is as follows. In Section 2, we present the PK experiments

as well as a brief reminder of the traditional method. Our proposal is presented in

Section 3. Section 4 explains how to estimate PK parameters with the Bayesian

non parametric method and how to get measures of uncertainty. Section 5 gives

the results of some simulations which aim is to compare the performances of our

approach with those of traditional methods. Some applications on real data are

shown in Section 6. We end this paper with a discussion in Section 7.

2. PK EXPERIMENT

Pharmacokinetic studies are aimed at studying the absorption, distribution, metabolism

and elimination of a pharmaceutical product. To do so, blood sample are collected

at multiple times after dosing in a panel of animals.

2.1. Incomplete and complete designs

In an incomplete design, animals are sampled at one of possible subsets of predefined

time points. Typically, the time points are assigned to blocks of animals in the

following way. The population of animals (n) is divided into G groups (g = 1, .., G),

containing each ng individuals. The K sampling times tj , j = 1, .., K are distributed

into these groups, so that kg samples are taken from animals in group g, at times

points {ti : i ∈ Ig ⊂ {1, ..., K}} with #Ig = kg. Sampling times are different

between groups. The complete design is a particular case when G = 1 and #Ig = K,

i.e. each animal is sampled at every time point. In this situation, a PK profile may

be straigthforwardly estimated for each subject.

2.2. Parameter definitions

The most familiar non-compartmental PK parameters are the AUC, Cmax, tmax,

t1/2. The Cmax represents the systemic concentration and tmax is the time needed
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to achieve Cmax. AUC is the area under the PK curve. It measures the extend of

systemic exposure. The terminal half-life time, t1/2, is the half-life time associated

with the terminal phase, which is the final log-linear portion of the concentration

versus time curve, for multicompartmental pharmacokinetics.

2.3. Traditional methods

We give here a brief reminder of the most simple and popular way to estimate the

different PK parameters non compartimentally [4,5]. Denote by C(t) the concen-

tration at the observation time t and assume that the concentrations are observed

at K different times. To estimate Cmax, we use :

Ĉmax = max{C(t) : t ∈ {t1, .., tK}}.

tmax is estimated by :

t̂max = argmax{C(t) : t ∈ {t1, .., tK}}.

Several investigators have considered different rules to estimate the AUC [6,7,8,9].

The simplest one is the trapezoidal rule given by :

ÂUC =
K−1∑

i=1

0.5(C(ti+1) + C(ti))(ti+1 − ti).

Methods that use the log-trapezoidal rule instead of the trapezoidal one on the de-

scending portion of the curve were found to improve results with respect to accuracy

while not losing out on statistical precision [7,8,9]. With this method, we estimate

the AUC as :

ÂUC =

j−1∑

i=1

0.5(C(ti+1) + C(ti))(ti+1 − ti)

+

K−1∑

i=j

(C(ti+1) − C(ti))(ti+1 − ti)/ log(C(ti)/C(ti+1)),

where tj is the first observation time in the descending portion of the curve.

To estimate t1/2, there exist several methods, more or less sophisticated [10,

11,12]. In this paper, we shall consider a simple one where we first estimate the

slope λ given by the 2 last observations on the time-log(concentration) scale and

then, we compute :

t̂1/2 = log(2)/λ̂.

In the case of an incomplete design, everything stays the same except that

the first step consists in computing the means of the concentrations at each time
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point. It means that, while we can get individual estimations of PK parameters

in a complete design, only mean PK parameters estimations are available in an

incomplete one. With an incomplete design, we can get uncertainty measures for

the AUC. Indeed, several efforts have been made to get confidence intervals for this

PK parameter [3,2,13,14,15,16]. For the other parameters, obtaining uncertainty

measures is still an issue.

3. BAYESIAN P-SPLINES MODEL

In this section, we present Bayesian models to obtain a nonparametric estimation

of the individual PK profiles for complete and incomplete design. These models are

based on P-splines techniques.

3.1. P-splines definition

To obtain a non parametric fit to a curve, we use penalized B-splines, also named P-

splines by Eilers and Marx [17]. A B-spline of degree q consists of q + 1 polynomial

pieces, each of degree q. These polynomial pieces join at q inner knots of the

experimental domain. Each B-spline is positive on a domain spanned by q+2 knots

and it is zero everywhere else. Figure (1a) presents a B-splines basis of degree 2

with 20 equidistant knots between 0 and 1.
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Figure 1: (a): B-splines basis of degree 2 with 20 knots. (b): Example of a fitted

curve using the B-splines basis.

Let b(x) denote the B-spline basis at x for a given equidistant grid of knots. A
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fitted curve ŷ to data {(xi, yi)} is a linear combination ŷ(x) = b(x)′θ̂ where θ̂ is

the estimated vector of B-splines coefficients. Figure(1b) presents an example of a

fitted curve obtained with a linear combination of the B-splines basis presented in

Figure(1a).

When m data points (xi, yi) are available, the least squares estimator θ̂ mini-

mizes the function :

S =

m∑

i=1

{yi − b(xi)
′θ}2.

The parameters estimates are highly dependent on the number of knots and their

location. The fitted curve will show more variation than is justified by the data if

we let the number of knots be relatively large. To make the estimates less sensitive,

Eilers and Marx propose to consider a large set of equidistant knots and to introduce

a penalty term in the objective function :

S =
m∑

i=1

{yi − b(xi)
′θ}2 + λθ′Pθ,

where P = D′D is the penalty matrix and D the rth-order difference matrix,

yielding θ′Pθ =
∑

k(∆rθk)2 where ∆ is the first-order difference operator. Thus,

for r = 2, we have

D =




1 −2 1 0 . . . 0

0 1 −2 1 . . . 0
...

. . .
. . .

. . .
...

0 0 . . . 1 −2 1




By adding the term
∑

k(∆rθk)2, we add a penalty on finite differences of the coeffi-

cients of adjacent B-splines. Parameter λ expresses the weight that we give to this

penalty. If λ is high, the weight is large and we force the coefficients of adjacent

B-splines to be close to each other. It will result in a very smooth fit. In contrary,

if λ is small, the penalty plays a small role and the coefficients of adjacent B-splines

are allowed to be highly different from each other. It will yield a wiggly fit. λ is

usually selected using cross-validation or information criteria.

3.2. Basic Bayesian P-splines model

In terms of likelihood, the penalty appears as a term that we subtract from the

log-likelihood l(y; θ). The penalized likelihood function has the following form :

lpen = l(y; θ) −
λ

2
θ′Pθ.
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We get the same log-posterior in a Bayesian setting with the following model

specification [18, 19]:

(Yx|θ, τ) ∼ N
(
b(x)′θ, τ−1

)

p(θ|τλ) ∝ exp
[
−0.5 τλ θ

′Pθ
]
.

τλ is the roughness penalty parameter and plays the same role as λ in the frequentist

setting. The penalty from the frequentist penalized likelihood approach translates,

in a Bayesian setting, into a prior distribution for the rth order differences of suc-

cessive B-splines parameters, θj .

3.3. Prior definition

There are some hyperparameters for which we have to propose prior distributions.

For τ , the conditional precision of the vector response Yx, it is common to take a

noninformative prior:

p(τ) ∝ τ−1

The prior of the roughness penalty parameter τλ can be conveniently chosen to be

the conditional conjugate prior

τλ ∼ G (a, b) ,

where G (a, b) denotes a gamma distribution with mean a/b and variance a/b2.

Lang & Brezger [18] have recommended using a large variance by setting a equal

to 1 and b equal to a small quantity, or a = b equal to a small quantity.

3.4. Three extentions to the basic Bayesian P-splines model

In this part, we propose some extensions of the basic Bayesian P-splines model to

improve its fit to animal PK data [19].

3.4.1. Preliminary remark

In preclinical PK studies, sampling schedules are often specified to have the two last

times widely separated [15]. This suggests to specify the Bayesian model for log-

transformed data, log(1 + time) and log(1 + concentration). This ensures positive

values for the fitted concentrations and better handles the large interval between

the two last observations.
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3.4.2. First extension : robust prior

Jullion and Lambert [19] have emphasized the sensitivity of the Bayesian fit to the

choice of the prior for τλ in some specific circumstances. In Figure 2, we have fitted

the model of Section 3.2, on simulated sparse PK data with several gamma priors

for τλ corresponding to different values for a and b. We can see the influence of

these hyperparameters on the fit in such a setting. When a = 1, b=0.001, we even

get a straigth line.

0 5 10 15 20 25
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300

400

500

600

700

800

900

 

 
true curve
a=1,b=0.001
a=b=0.01
a=b=0.001
a=b=0.0001
a=b=0.00001

Figure 2: Influence of the prior distribution on the estimated profile.

To deal with this issue, Jullion and Lambert [19] propose to consider as prior

distribution for τλ a weigthed sum of M Gamma distributions with different values

for b. In this case, a is fixed to 1. This gives the prior :

(τλ|p) ∼
M∑

m=1

pmG (a, bm)

p ∼ D(u)

where {b1, ..., bM} is a set of prespecified values. For instance, we may consider a

grid of 33 values, logarithmically equally spaced between 10−5 to 103. D stands

for the Dirichlet distribution, and u′ = {u1, . . . , uM} is a set of (small and equal)

hyperprior parameters expressing our likely prior ignorance about the optimal choice

for b. We use for instance the value 0.01 for each ui.
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3.4.3. Second extension : adaptive penalties

We provide even more flexibility to the model by allowing the roughness penalty to

change in a progressive way along the x axis. Adapting penalties can be integrated

into the previous model as follows:

p(θ|τλ, Λ) ∝ exp
[
−0.5 τλ θ

′D′ΛDθ
]

λk ∼ G (ω, ω) when k > r + 1 ; λr+1 = 1

where

Λ = diag
(
λ(r+1), . . . , λ(K)

)

λ(k) =

k∏

l=r+1

λl

Instead of having a single penalty τλ, we now have a penalty parameter τλλ(k) for

each rth-order difference between successive components of θ. The penalty parame-

ters are obtained sequentially by multiplying the previous one by a Gamma random

variable with mean 1 and an (arbitrarily large) variance ω−1. That construction

yields a progressive evolution of the penalty parameters with x (see Appendix 1).

For more details, we refer to [19].

3.4.4. Third extension : concavity condition

One could further constrain θ through its prior. Indeed, a general information

about a PK profile with oral dosing is its global shape. As Gibadli expresses in [20],

kinetic profiles after oral administration of a drug, first show a continuous increase

in drug concentration in the blood stream, then, after having reached a peak, drug

concentration slowly decreases over time, following a negative exponential elimina-

tion curve. We can constraint the estimated profile to have this global shape by

imposing a concavity condition on the fitted curve. In the Gibbs sampler (see Sec-

tion 4), this would translate by a rejection of a θ generated in the unconstrained

specification if it does not meet the concavity condition.

In Figure 3, the thick solid line is the true PK profile. The dashed line is

estimated with basic Bayesian P-splines model combined with the robust prior while

the thin solid line is estimated with the model also having the adaptive penalties

and the concavity condition. The fit is markedly improved.
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Figure 3: Profile estimation with the basic P-splines model (dashed curve) and with

the extended model (solid line). The thick solid line is the true curve.

3.5. Hierarchical model

The above model allows the fit of an individual time curve. In this section, we adapt

it to the case where we have several subjects such that we can get an estimate of

the mean PK profile but also individual PK profiles for each subject. The following

model is then suitable to incomplete designs. Considering that we have ns subjects,

we define the vector of parameters :

θ = [θ′
0, θ′

1, .... ,θ′
ns

]′

where the coefficient vector θ0 yields the mean PK profile and the coefficient vectors

θj , j = 1, ..., ns enable to correct θ0, to get the spline parameters for subject j. We

denote by K the number of B-splines in the basis. In order to force the above

interpretation for θ0, we specify for the first and last B-splines coefficients θj1 and

θj,K , j = 1, ..., ns, a normal prior distribution with mean 0 and a variance η−1 :

(θj1|η) ∼ N
(
0, η−1

)
∀j = 1,...,ns

(θjK |η) ∼ N
(
0, η−1

)
∀j = 1,...,ns

By combining the previous equations with the usual smoothness prior:

p(θj |τj) ∝ exp
[
−0.5 τj θj

′D′Dθj

]
∀j = 1,...,ns,
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we get the following prior distribution for θj :

(θj |η, τj) ∼ N (0, Σj) ∀j = 1,...,ns

with

Σ−1
j = τjD

′D + ηdiag(1, 0, .., 0, 1)

The complete model specification is given in Appendix 2.

4. POSTERIOR AND PARAMETER ESTIMATION

In this section, we shall explain how to explore the posterior distribution using

MCMC techniques and, from this, how to derive estimates and credibility sets for

the PK parameters in the Bayesian P-splines model.

4.1. Exploring the posterior using MCMC

Markov Chain Monte Carlo (MCMC) technique is a powerful method to generate

samples from posterior distributions in a Bayesian framework [21]. The Gibbs

sampler [22] is a MCMC sampler by which each component is updated conditionally

on the last available updates for the other components.

In our case, for each presented model, all the conditional posterior distributions

can be identified. Thus, we can use the Gibbs sampler to generate random samples

from the posterior distribution. We give here the conditional posterior distributions

for the basic Bayesian P-splines model of Section 3.2. :

(θ|τ, τλ; y) ∼ N (τ ΣθB
′y, Σθ)

(τ |other; y) ≡ (τ |θ; y) ∼ G (0.5 n, 0.5 (y − Bθ)′(y − Bθ))

(τλ|other; y) ≡ (τλ|θ; y) ∼ G
(
a + 0.5 ρ(P ), b + 0.5 θ′Pθ

)

where ρ(P ) is the rank of P and

B = [b(x1), . . . , b(xn)]′, and Σ−1
θ = τB′B + τλP

and ‘other’ generically denotes all the other parameters from the joint distribution.

The conditional posterior distributions for the extended P-splines model and for

the hierarchical one are given in Appendix 3.

4.2. Estimation of PK parameters

At each iteration of the MCMC sampler, a vector θ is generated yielding a chain

of vectors {θ(1), ..., θ(M)} (see Section 4.1). For each θ(m), the predicted concen-

trations are calculated over a detailed grid of time points and PK parameters are
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derived as follows. The estimate for Cmax is the maximal predicted concentration

on the detailed grid and the estimate for tmax is the time at which that maximum

occurs. An estimate for the AUC can be computed using trapeze integration based

on this grid. To obtain t1/2, even if more sophisticated methods could be used, like

for instance by using linear regression [10 11], we simply compute t1/2 as log(2)/λ

where λ is the slope formed by the predicted values at the two last time points.

PK parameters are so obtained for each generated θ(m), yielding a MCMC

sample of size M for each PK parameter. The posterior median of these chains is

used to estimate the PK parameters and 95% credibility sets are obtained by taking

the 2.5 and 97.5 percentiles of the chains.

5. SIMULATIONS

In this part, we perform some simulations to compare the performances of the

extended Bayesian P-splines model and of the traditional method for complete and

incomplete designs.

For the complete design, we consider that we have one animal sampled at the

following time points: 0, 0.25h, 0.5h, 0.75h, 1h, 2h, 4h, 6h, 7h, 24h, post dosing.

The choice of the design is important when using traditional methods. Indeed, the

estimated values for Cmax and tmax highly depend on the choice of the observed

time points.

At each time point ti, we generate concentration yi using :

y(ti) = µ(ti)(1 + σǫi) (1)

µ(ti) = −1555 exp[− exp(−0.45)ti] + {1600 exp[− exp(−1.8)ti]}, (2)

where ǫ ∼ N (0, 1). We consider 3 different values for σ : σ = 0.1, 0.3 and 0.9

which correspond to a low, medium and high level of noise in the data. We have

generated 1000 simulations in each case.

For the incomplete case, we consider a design with two animals sampled at

times (0.25h, 1h, 5h), two at times (0.5h, 2h, 7h) and two at times (0.75h, 3h, 24h).

We use the same PK model as the one used in the complete design but with an

extra inter-animal variability : we generate a different curve µj(t), (j = 1, ..., 6) for

each subject by adding to each of the numerical values in Equation (2), a normal

perturbation with standard deviation equal to 80,0.2,40,0.1 respectively. For each

of the generated curves, we generate an observation at the three time points selected

by the design as done previously.
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Figures 4 and 5 summarize the results of the simulations. It gives, for each PK

parameter, the boxplot of the relative bias for the incomplete and complete designs

(for 3 different values of σ in the latter case); results based on the Bayesian model

are given on the left part and the ones obtained with the traditional method are

shown on the right.

For AUC, the relative bias is always smaller with the Bayesian method. The

precision of this method is larger for the complete design and a little bit smaller

for the incomplete design. For tmax, the Bayesian method provides better results,

both in terms of bias and precision. For Cmax, the precision is always larger with

the Bayesian method. The relative bias of the Bayesian method is markedly smaller

when the level of noise is high (σ = 0.3 and σ = 0.9). Finally, the relative bias

for t1/2 (see Figure 4 and a zoomed version in Figure 5) is comparable for the 2

methods but the precision is larger with the Bayesian one.
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Figure 4: Simulation results : boxplots of the relative bias computed for each PK

parameter, in the case of incomplete and complete designs (with 3 values for σ in

the latter case). Boxplots for the Bayesian (resp. traditional) method are given on

the left (resp. right) side of each case.

In the incomplete design case, we have the possibility to fit a separate PK profile

for each subject with the hierarchical Bayesian model. To evaluate the quality of

these estimations, we have reported in Figure 6, the boxplots of the relative bias,

computed for each subject at each simulation. The model provides good estimates
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Figure 5: Simulation results : boxplots of the relative bias computed for t1/2, in

the case of incomplete and complete designs (with 3 values for σ in the latter case).

Boxplots for the Bayesian (resp. traditional) method are given on the left (resp.

right) side of each case. The scale has been truncated to [-1.5,3].

of individual PK parameters.

6. APPLICATION

6.1. Complete design

We present an application of the Bayesian model (see Section 3.4) on real data

observed on a single subject (see Table 1).

Figure 7 shows the estimated PK profile with 95% crediblity sets for it. To

obtain these curves, we estimate at each MCMC generation, the concentrations

over a detailed grid of time. Then, we take the quantiles 2.5%, 50% and 97.5%

of the MCMC chain of the concentration estimated at each time point. Table 2

reports the estimations of each PK parameter with 95% credibility set.

6.2. Incomplete design

Table 3 gives PK data for 6 rats observed in an incomplete design.

Figure 8 shows the fitted mean PK profile (thick solid line) and the individual

PK profiles. The estimated PK parameters are given in Table 4 with 95% credibility

sets. Thanks to the hierarchical model, we can get some information on the inter-

animal variability.
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Figure 6: Simulation results : individual fits

7. DISCUSSION

We have presented a Bayesian method based on P-plines to estimate the PK profile

and derive PK parameters. We have shown that the proposed Bayesian P-splines

model is superior to the traditional non-compartmental methods to estimate PK

parameters in complete and incomplete sampling designs. Individual predictions

are also available in incomplete sparse designs.

Like the traditional non-compartmental method, the Bayesian estimation is fast

to compute and does not require the assumptions of a compartmental model. The

advantages of the Bayesian method over the traditional one are shown with the

simulations where we get more accurate and more precise estimates for the PK

parameters, both in the complete and incomplete designs. Furthermore, as we work

in a Bayesian setting, we can get uncertainty measures through the credibility sets

obtained using MCMC.

The presented hierarchical model offers the advantage to fit an individual profile

for each subject even when the design is incomplete. For our datasets, we do not

notice any influence of the choice of the hyperparameters in the prior distribution

for η (see Appendix 3.2) on the fitted curves. However, the sensitivity of the results

to such a choice has been reported with some hierarchical models [23]. If necessary,

a mixture prior can be used (as with τλ in Section 3.4.2).

The hierarchical model can be extended to analyse repeated IV/oral dosing,

dose proportionality studies, or to perform group comparisons for instance.
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Figure 7: Estimated PK profile with credibility sets.

We have not disputed the added value of parametric models such as non linear

mixed effect models to estimate PK profiles. These methods are performant pro-

vided that sufficient data are available to validate the underlying compartmental

model and that the estimation algorithm converges in this nonlinear context. The

Bayesian method proposed in this paper is a good alternative in drug discovery

when one or both of these 2 conditions are not met.
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Figure 8: Application to real data for the incomplete case. The thick solid line

is the mean profile, the thin dashed one is the profile for rat1 (circles), the thin

dotted one for rat2 (plus), the thin dashed dotted one for rat3 (diamonds), the

thick dashed-dotted one for rat4 (stars), the thick dashed one for rat 5 (triangles)

and the thin solid one for rat 6 (full circles).
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Times (in hours) 0 0.25 0.5 0.75 1 1.5 2 4 6 24

Concentrations (in mg/l ) 0 2 10 13 35 84 102 38 16 2

Table 1: Data observed on a single subject
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PK parameter Median 95% Credibility set

tmax 2.03 [1.36,2.86]

Cmax 78.57 [45.60,123.63]

AUC 399.08 [274.04,650.08]

t1/2 4.21 [2.43,6.40]

Table 2: Estimated PK parameters with credibility sets
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Time 0 0.25 0.5 0.75 1 2 3 5 7 24

Rat 1 0 5.4 6.76 8.69

Rat 2 0 3.56 8.54 8.36

Rat 3 0 3.59 13.1 3.07

Rat 4 0 21 18.2 4.68

Rat 5 0 14 28.5 1

Rat 6 0 7.79 12.3 1

Table 3: Observed concentrations (in mg/l) in 6 rats under an incomplete design
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tmax Cmax AUC t1/2

Global 2.15 [1.03;3.40] 11.84 [8.23;18.29] 130.52 [101.33;182.91] 5.96 [3.76;9.22]

Rat1 2.19 [ 1.01;3.64] 11.37 [ 7.41;17.99] 127.20[94.06;181.24] 6.03 [ 3.74;9.61 ]

Rat2 2.15 [1.03;3.49] 12.12 [8.18;20.24] 132.59 [100.86;186.74] 5.92[3.78;9.36]

Rat3 2.05[0.99;3.26] 10.51 [6.96;18.3] 109.65 [79.58;154.51] 6.59 [3.32;13.08]

Rat4 1.36[0.82;2.51] 22.76 [10.94;39.41 149.81 [109.38;222.99] 5.93 [2.84;13.37]

Rat5 3.18 [2.05;4.61] 25.95 [14.52;44.42] 231.14[133.99;414.81] 4.69 [3.28;7.60]

Rat6 2.43 [1.46;5.06] 12.32 [8.67;19.20] 134.62 [100.24;197.28] 5.89 [3.74;9.32]

Table 4: Estimated PK parameters
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APPENDIX 1

Model specification with the 2 extensions :

(Yx|θ, τ) ∼ N
(
b(x)′θ, τ−1

)

p(τ) ∝ τ−1

p(θ|τλ, Λ) ∝ exp
[
−0.5 τλ θ′D′ΛDθ

]

λk ∼ G (ω, ω) when k > r + 1 ; λr+1 = 1

(τλ|p) ∼
M∑

m=1

pmG (a, bm)

p ∼ D(u)

APPENDIX 2

The model specification for the hierarchical model is the following :

(Y |θ, τ) ∼ N
(
Mθ, τ−1In

)

p(θ0|τ0, Λ) ∝ exp
[
−0.5 τ0 θ0

′D′ΛDθ0

]

(θj |τn, τλ) ∼ N (0, Σj) ∀j = 1, ..., ns

λk ∼ G (ω, ω) when k > r + 1 ; λr+1 = 1

p(τ) ∝ τ−1

(τ0|p0) ∼
M∑

m=1

p0,mG (a, bm)

p0 ∼ D(u)

(τj |pj) ∼
M∑

m=1

pj,mG (a, bm) ∀j = 1, ..., ns

pj ∼ D(u) ∀j = 1, ..., ns

τn ∼ G (an, bn)

with

Σ−1
j = τjD

′D + τndiag(1, 0, .., 0, 1) ∀j = 1, ..., ns

We give here an example of matrix M for 6 subjects with 4 observations per

subject. B is the B-splines basis for the 24 observations with 9 knots. The matrix
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M is given by :

M =




B(1, :) B(1, :) 0 0 0 0 0

B(2, :) B(2, :) 0 0 0 0 0

B(3, :) B(3, :) 0 0 0 0 0

B(4, :) B(4, :) 0 0 0 0 0

B(5, :) 0 B(5, :) 0 0 0 0

B(6, :) 0 B(6, :) 0 0 0 0

B(7, :) 0 B(7, :) 0 0 0 0

B(8, :) 0 B(8, :) 0 0 0 0

B(9, :) 0 0 B(9, :) 0 0 0

B(10, :) 0 0 B(10, :) 0 0 0

B(11, :) 0 0 B(11, :) 0 0 0

B(12, :) 0 0 B(12, :) 0 0 0

B(13, :) 0 0 0 B(13, :) 0 0

B(14, :) 0 0 0 B(14, :) 0 0

B(15, :) 0 0 0 B(15, :) 0 0

B(16, :) 0 0 0 B(16, :) 0 0

B(17, :) 0 0 0 0 B(17, :) 0

B(18, :) 0 0 0 0 B(18, :) 0

B(19, :) 0 0 0 0 B(19, :) 0

B(20, :) 0 0 0 0 B(20, :) 0

B(21, :) 0 0 0 0 B(21, :)

B(22, :) 0 0 0 0 0 B(22, :)

B(23, :) 0 0 0 0 0 B(23, :)

B(24, :) 0 0 0 0 0 B(24, :)




We summarize the matrix M with this notation :

M = [M 0, M1, M 2, ..., Mns
].

APPENDIX 3

1. EXTENDED P-SPLINES MODEL

The conditional posterior distributions are:

(θ|other; y) ≡ (θ|τ, τλλ; y) ∼ N
(
τ ΣθB

′y, Σθg

)

(τ |other; y) ≡ (τ |θ; y) ∼ G (0.5 n, 0.5 (y − Bθ)′(y − Bθ))
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(λl|other; y) ≡ (λl|θ, τλ, λ−l; y)
l>r+1
∼ G

(
ω +

K − l + 1

2
, ω +

τλ

2

K∑

k=l

λ(k)

λl
(∆rθk)2

)

(τλ|other; y) ≡ (τλ|θ, λ, p; y) ∼
M∑

m=1

pmG
(
a + 0.5 ρ(P ), bm + 0.5 θ′D′ΛDθ

)

(p|other; y) ≡ (p|τλ; y) ∝
M∑

m=1

cm∑M
k=1 ck

D(u1, ..., um + 1, ...uM )

where

cm = exp(−τλbm)ba
m

∑M
k=1 uk

um

Σ−1
θg

= τB′B + τλD′ΛD

2. HIERARCHICAL MODEL

The conditional distributions are :

(τ |θ; y) ∼ G (0.5 n, 0.5 (y − Mθ)′(y − Mθ))

(τ0|θ0, p0; y) ∼
M∑

m=1

p0,mG
(
a + 0.5 ρ(P ), bm + 0.5 θ′

0D
′ΛDθ0

)

(p0|τ0; y) ∝
M∑

m=1

c0,m∑M
j=1 c0,j

D(u1, ..., um + 1, ..., uM )

(τj |θj , pj ; y) ∼
M∑

m=1

pj,mG
(
a + 0.5 ρ(P ), bm + 0.5 θ′

jD
′Dθj

)
∀j = 1, ..., ns

(pj |τj ; y) ∝
M∑

m=1

cj,m∑M
k=1 cj,k

D(u1, ..., um + 1, ..., uM )

(θ0|τ, τ0, θj ; y) ∼ N (µ0, Σ0)

(θj |τ, τj , θg; y) ∼ N
(
µj, Σp,j

)
∀j = 1, ..., ns

(τn|θj1, θjK , y) ∼ G


an + ns, bn + 0.5

∑

j

(θ2
j1 + θ2

jK)




where

µ0 = τΣ0B
′W

µj = τΣp,jB
′Wj

Σ−1
0 = τB′B + τ0D

′ΛD

Σ−1
p,j = τB′B + Σj ∀j = 1, ..., ns

W = y −
ns∑

i=1

Miθi

Wj = y − M0θ0 −
ns∑

i=1,i6=j

Miθi ∀j = 1, ..., ns
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cj,m = exp(−τjbm)ba
m

∑M
k=1 uk

um

c0,m = exp(−τ0bm)ba
m

∑M
k=1 uk

um
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