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Abstract

This paper proposes a new wavelet-based method for deconvolving a density.

The estimator combines the ideas of nonlinear wavelet thresholding with Meyer

wavelets and estimation by information projection. It is guaranteed to be in the

class of density functions, in particular it is positive everywhere by construction.

The theoretical optimality of the estimator is established in terms of rate of

convergence of the Kullback-Leibler discrepancy over Besov classes. Finite sample

properties is investigated in detail, and show the excellent practical performance

of the estimator, compared with other recently introduced estimators.

Keywords: Deconvolution, Wavelet thresholding, Adaptive estimation, Information projection, Kullback-

Leibler divergence, Besov space

AMS classifications: Primary 62G07; secondary 42C40, 41A29

Affiliations

JÉRÉMIE BIGOT, Laboratoire de Statistique et Probabilités, Université Paul Sabatier, F-31062 Toulouse

Cedex 9, France, Jeremie.Bigot@math.ups-tlse.fr

SÉBASTIEN VAN BELLEGEM, Institut de statistique and CORE, Université catholique de Louvain, Voie

du Roman Pays, 20, B-1348 Louvain-la-Neuve, Belgium, vanbellegem@stat.ucl.ac.be

Ackowledgements

This work was supported by the IAP research network nr P5/24 of the Belgian Government (Belgian

Science Policy). We gratefully ackowledge Yves Rozenholc for providing the Matlab code to compute

the model selection estimator, Marc Raimondo for providing the Matlab code for translation invariant

deconvolution, and Anestis Antoniadis for helpful comments and suggestions.



1 Introduction

Density deconvolution is a widely studied statistical problem that is encountered in

many applied situations. This problem arises when the probability density of a random

variable X has to be estimated from an independent and identically distributed (iid)

sample contaminated by some independent additive noise. Namely, the observations

at hand, denoted by Yi for i = 1, . . . , n, are such that

Yi = Xi + ǫi, i = 1, . . . , n

where Xi are iid variables with unknown density f X , and the added variables ǫi model

the contamination by some noise. The number n represents the sample size and the

contamination variables ǫi are supposed iid with a known density function f ǫ, and

independent from the Xi’s. In this setting, the density function f Y of the observed

sample Yi can be written as a convolution between the density of interest f X, and the

density of the additive noise f ǫ, i.e.

f Y(y) = f X
⋆ f ǫ(y) :=

∫

f X(u) f ǫ(y − u)du, y ∈ R . (1.1)

In data analysis, density estimation from noisy sample plays a fundamental role.

Applications can be found in communication theory (e.g. Masry, 2003), experimental

physics (e.g. Kosarev et al., 2003) or econometrics (e.g. Postel-Vinay and Robin, 2002)

to name but a few. The problem of estimating the probability density f X relates to

classical nonparametric methods of estimation, but the indirect observation of the data

leads to different optimality properties, for instance in terms of rate of convergence.

Among the nonparametric methods of deconvolution, standard methods recently

studied in the statistical literature include estimation by model selection (e.g. Comte,

Rozenholc and Taupin, 2006b), wavelet thresholding (e.g. Fan and Koo, 2002), kernel

smoothing (e.g. Carroll and Hall, 1988) or spectral cut-off (e.g. Carrasco and Florens,

2002). However, a problem frequently encountered with most of these techniques

is that the proposed estimator is not everywhere positive, therefore is not a valid

probability density.

The goal of this paper is to present an estimator that is optimal in terms

of asymptotic rates of convergence, and that benefits from good finite sample

properties. Furthermore, the proposed estimator is automatically a valid density,
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in particular because it is guaranteed to be positive. The proposed solution

uses wavelet thresholding combined with information projection techniques, and is

computationally simple.

The advantage of wavelet methods is their ability in estimating local features of the

density, such as peaks or local discontinuities. In particular, they can estimate irregular

functions (in Besov spaces) with optimal rates of convergence. Wavelet methods for

deconvolution have received a special attention in the recent literature. Optimality of

the nonlinear wavelet estimator has been established in Fan and Koo (2002), but the

given estimator is not computable since it depends on an integral in the frequency

domain that cannot be calculated in practice. The estimator we propose below, in

addition to be a valid density, is fully computable as it only involves finite sums in

finite sample. Other recent wavelet estimators for deconvolution problems include the

work of Johnstone, Kerkyacharian, Picard and Raimondo (2004) or De Canditiis and

Pensky (2006), see also the references theirin.

Our estimator combines wavelet thresholding with information projection that

guaranties the solution to be positive. This technique was studied by Barron and Sheu

(1991) for the approximation of density functions by sequences of exponential families.

An extension of this method to linear inverse problems has been studied in Koo and

Chung (1998) using expansions in Fourier series. In the special case of Poisson inverse

problems, Antoniadis and Bigot (2006) combined this technique with estimation by

wavelet expansions.

It is well-known that the difficulty of the deconvolution problem is quantified

by the smoothness of the noise density f ǫ. If f Y
ℓ

, f X
ℓ

and f ǫ
ℓ

denote the Fourier

coefficients of the densities f Y, f X and f ǫ respectively, then the convolution equation

(1.1) is equivalent to f Y
ℓ

= f X
ℓ
· f ǫ

ℓ
. Depending how fast the Fourier coefficients f ǫ

ℓ

tend to zero, the reconstruction of f X
ℓ

will be more or less accurate. This phenomenon

was systematically studied by Fan (1991), who introduced the following two types of

assumption on the smoothness of f ǫ.

Assumption 1.1 Ordinary smooth convolution: the Fourier coefficients of f ǫ decay in a

polynomial fashion i.e. there exists a constant C and a real ν > 0 such that | f ǫ
ℓ
| ∼ C|ℓ|−ν.

Assumption 1.2 Super smooth convolution: the Fourier coefficients of f ǫ are such that

d1|ℓ|ν0 exp(−|t|ν/d0) 6 | f ǫ
ℓ
| 6 d2|ℓ|ν1 exp(−|t|ν/d0) as |ℓ| → ∞,
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where d0, d1, d2, ν, ν0, ν1 are some positive constants.

In this paper, we also consider these two smoothness assumptions. The optimal rate

of convergence we can expect from a linear or a nonlinear wavelet estimator depends

on these smoothness assumptions and are well-studied in the literature. To summarize,

we know from the work of Pensky and Vidakovic (1999); Fan and Koo (2002) that for

ordinary smooth convolution both linear and nonlinear wavelet estimators achieve

the optimal rate of convergence. This rate is of polynomial order of the sample size n.

However, no adaptive linear estimator are optimal, and only well-calibrated nonlinear

wavelet estimators are adaptive. For the case of super smooth convolution, the optimal

rate of convergence is only of logarithmic order of the sample size, and there is no

difference between the rate of convergence of linear and nonlinear estimators. These

results are recalled in Section 3 below. It is worth mentionning that the estimators we

define in this paper achieve these optimal rates of convergence.

The next section recalls some general results on wavelet approximation and the

definition of the Meyer wavelet which is used for deconvolution. Then Section 3

defines the linear and nonlinear wavelet estimators by information projection. The

(optimal) rate of convergence of the proposed estimators are stated in Section 4, and

are proved in Section 5. The loss function we consider to calculate this rate is the

Kullback-Leibler divergence. Due to the aforementioned difference with the wavelet

estimator of Fan and Koo (2002), their technique of proof is very different from the

proof presented in this paper. Our proof is actually based on a combinaison of the

Gaussian approximation technique developed in Donoho, Johnstone, Kerkyacharian

and Picard (1995) and other results on Kullback-Leibler divergence by Csiszár (1975)

or Barron and Sheu (1991).

Section 6 addresses the practical issues of the proposed estimation procedure. We

compare the performance of the proposed estimator with two of the most recent

techniques for density deconvolution. The first is deconvolution via cosine series

studied by Hall and Qiu (2005), and the second is the model selection approach of

Comte, Rozenholc and Taupin (2006a). While the estimator by model selection showed

significant small sample improvements against most of the standard techniques

of deconvolution, the proposed wavelet-based estimator by information projection

outperforms the results of Comte et al. (2006a).

We conclude the paper by a small technical appendix, where we adapt some results
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of Barron and Sheu (1991) to the case of estimation by information projection using

Meyer wavelets.

2 Meyer wavelets for deconvolution

In this paper, we assume that the support of f X is compact and included in [0, 1].

The support of f ǫ however can be unbounded, so the support of f Y is in general

unbounded1.

Wavelet systems provide unconditional bases for Besov spaces. Using wavelets,

one can express whether or not f X belongs to a Besov space by a simple requirement

on the absolute value of the wavelet coefficients of f X. More precisely, assume

some scaling and wavelet functions (φ, ψ) that are both in CL(R), with L > s. If

σ = s + (1/2 − 1/p) > 0, define the norm ‖ · ‖s,p,q by

‖ f X‖q
s,p,q =

∞

∑
j=0

(

2jσp
2j−1

∑
k=0

|〈g, ψj,k〉|p
)q/p

.

It can be shown (Meyer, 1992) that this norm is equivalent to the norm in traditional

Besov space Bs
p,q, that is, there exist strictly positive constants A and B such that

A‖g‖s,p,q 6 ‖g‖Bs
p,q 6 B‖g‖s,p,q.

Note that the condition σ > 0 is imposed to ensure that Bs
p,q[0, 1] is a subspace of

L2[0, 1].

The estimator we shall define in the next section is based on the wavelet

decomposition of functions in L2([0, 1]) using Meyer wavelets (Meyer, 1992). Let (φ, ψ)

be the Meyer scaling and wavelet function respectively. Scaling and wavelet functions

at scale j (i.e. resolution level 2j) will be denoted by φλ and ψλ, where the index λ

summarizes both the usual scale and space parameters j and k (e.g. λ = (j, k) and

ψj,k = 2j/2ψ(2j · −k)). The notation |λ| = j will be used to denote a wavelet at scale j,

while |λ| < j denotes some wavelet at scale j′, with 0 6 j′ < j.

For any function g of L2([0, 1]), its wavelet decomposition can be written as:

g = ∑
|λ|=j0

cλφλ +
∞

∑
j=j0

∑
|λ|=j

βλψλ,

1The case where the support of f X is included in [0, T] is handled by adapting the Fourier tranform

(the corresponding exponential orthogonal system is exp(−i2πxℓ/T)).
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where cλ = 〈g, φλ〉 =
∫ 1

0 g(u)φλ(u)du, βλ = 〈g, ψλ〉 =
∫ 1

0 g(u), ψλ(u)du and j0

denotes the usual coarse level of resolution. One reason of using Meyer wavelets

in the context of deconvolution is because they are band limited, i.e. their Fourier

transform have compact support. In particular we have that the support of Fφ is

[−4π/3, 4π/3] and the support of Fψ is [−8π/3,−2π/3] ∪ [2π/3, 8π/3], where F f

denotes the Fourier transform of a function f . Let eℓ(x) = e2πiℓx, ℓ ∈ Z and denote

by fℓ = 〈 f , eℓ〉 =
∫ 1

0 f (u)e−2πiℓudu the Fourier coefficients of a function f ∈ L2([0, 1]).

Then, if we denote the Fourier coefficients of ψλ by ψλ
ℓ

= 〈ψλ, eℓ〉 we obtain with the

Plancherel’s identity that

βλ = 〈 f X , ψλ〉 = ∑
ℓ

f X
ℓ ψλ

ℓ
.

Given that the Meyer wavelets ψλ are band-limited, the above sum only involves a

finite number of terms. Now, if we denote by f ǫ
ℓ

= E(e−2πiℓǫ1) the characteristic

function of the ǫj’s and by f Y
ℓ

= E(e−2πiℓY1) the characteristic function of the Yj’s ,

we have by independence of X1 and ǫ1 that

f Y
ℓ

= E(e−2πiℓY1) = E(e−2πiℓǫ1)E(e−2πiℓX1) = f ǫ
ℓ

f X
ℓ

.

An unbiased estimator of βλ is thus given by

β̂λ = ∑
ℓ

(

ψλ
ℓ

f ǫ
ℓ

)(

1
n

n

∑
j=1

exp(−2πiℓYj)

)

. (2.1)

provided that the f ǫ
ℓ

’s are non-zero and have a sufficiently smooth decay as ℓ tends to

infinity. In (2.1), n−1 ∑
n
j=1 exp(−2πiℓYj) is simply the discrete Fourier transform of the

observations Y1, . . . , Yn.

We define the estimators of the scaling coefficients cλ analogously, with φ instead of

ψ. From these estimators, we contruct in the next section our estimator of the unknown

density function f X.
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3 Estimation by information projection

3.1 Linear and nonlinear wavelet estimators

Based on the wavelet estimators ĉλ and β̂λ, several estimators of the unknown density

f X have been studied. First of all, the linear estimator is such that

f̂ X
L = ∑

|λ|=j0

ĉλφλ +
j1

∑
j=j0

∑
|λ|=j

β̂λψλ

This estimator was first studied by Pensky and Vidakovic (1999), who showed that for

an appropriate scale j1, it achieves the optimal rate of convergence among the class

of linear estimators. In the ordinary smooth situation (Assumption 1.1), the choice

of j1 is such that 2j1 ≈ n
1

2s+2ν+1 if f X belongs to the Sobolev space Hs. Note that this

choice is not adaptive because j1 depends on the unknown smoothness class of f X .

For super smooth convolution (Assumption 1.2), the optimal and adaptive choice is

2j1 ≈ (ln n)1/ν , see Pensky and Vidakovic (1999) or Fan and Koo (2002).

Contrary to the nonlinear estimator, there exists adaptive nonlinear estimators by

wavelet thresholding that can achieve the optimal rate of convergence. The non-linear

estimation by hard-thresholding is defined by

f̂ X
h = ∑

|λ|=j0

ĉλφλ +
j1

∑
j=j0

∑
|λ|=j

δh
τj,n

(β̂λ)ψλ

with threshold δh
τj,n

(x) = x11{|x|>δj,n} and the non-linear estimation by soft-thresholding

is defined by

f̂ X
s = ∑

|λ|=j0

ĉλφλ +
j1

∑
j=j0

∑
|λ|=j

δs
τj,n

(β̂λ)ψλ

where δs
τj,n

(x) = sign(x)(x − δj,n)+. These estimators depend on the coarse level

of approximation j0, the high-frequency cut-off j1 and the threshold τj,n which may

depend on the level of resolution j. The estimators f̂ X
h and f̂ X

s have already been

proposed as estimators of f X. An optimal adaptative estimator is derived with

appropriate choices of scales j0, j1 and threshold. One possible calibration for an

adaptive estimator in ordinary smooth deconvolution is 2j0 ≈ log n, 2j1 ≈ n
1

2ν+1 and

δj,n ≈ 2νj/
√

n (Pensky and Vidakovic, 1999). The choice δj,n ≈ 2νj
√

j/n was also

considered (Fan and Koo, 2002).
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Since all of these estimators are of a form of orthogonal series estimator, they are

not in general in the space of valid densities. In particular, they are not necessarily

positive everywhere. In the next section, we modify the linear and nonlinear estimator

using a projection step to guaranty positivity.

3.2 Information projection to guaranty positivity

To simplify the notations, we write in the following (ψλ)|λ|=j0−1 for the scaling

functions (φλ)|λ|=j0
.

Let j > 0. If θ denotes a vector in R
2j

, then θλ denotes its λ-th component. The

wavelet based exponential family Ej at scale j is defined as the set of functions:

Ej =







f j,θ(.) = exp



 ∑
|λ|<j

θλψλ(.) − Cj(θ)



 , θ = (θλ)|λ|<j ∈ R
2j







,

where

Cj(θ) = log
∫ 1

0
exp



 ∑
|λ|<j

θλψλ(x)dx



 .

The constant Cj(θ) is used to guarantee that f j,θ is integrating to one on [0, 1], and is

thus a probability density function.

Following Csiszár (1975), the density function f j,θ in the exponential family Ej that

is the closest to the true density f X in the Kullback-Leibler sense is characterized as the

unique density function in the family for which

〈 f j,θ , ψλ〉 = 〈 f X , ψλ〉, for all |λ| < j.

It seems therefore natural to estimate the unknown density function f X, by searching

for some θ̂n ∈ R
2j

such that:

〈 f j,θ̂n
, ψλ〉 = ∑

ℓ

(

ψλ
l

f ǫ
l

)(

1
n

n

∑
j=1

exp(−2πiℓYj)

)

:= α̂λ, for all |λ| < j. (3.1)

Note that the notation α̂λ is used to denote both the estimation of the scaling

coefficients ĉλ and the wavelet coefficients β̂λ.

The positive linear and nonlinear wavelet estimator are then defined as follows:
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• The positive linear wavelet estimator is f j,θ̂n
such that 〈 f j,θ̂n

, ψλ〉 = α̂λ for all |λ| < j1

• The positive nonlinear estimator with hard thresholding is f j,θ̂n
such that 〈 f j,θ̂n

, ψλ〉 =

δh
τj,n

for all |λ| < j1

• The positive nonlinear estimator with soft thresholding is f j,θ̂n
such that 〈 f j,θ̂n

, ψλ〉 =

δs
τj,n

for all |λ| < j1

The existence of these estimators is questionnable. This issue is addressed in the

next section and in the technical appendix. We also derive in the next section the rate

of convergence of the estimators.

4 Asymptotic optimality of the estimators

To calculate the rate of convergence of the estimators, we use the loss function given

by the Kullback-Leibler discrepancy between two probability density functions p and

q:

∆(p; q) =
∫ 1

0
p(x) log(

p(x)

q(x)
)du(x).

Let M be some fixed constant and let Fs
p,q(M) denote the set of density functions

such that

Fs
p,q(M) =

{

f ∈ L2[0, 1] is a p.d.f. such that for g = log f , ‖g‖Bs
p,q

6 M
}

.

Note that assuming that f ∈ Fs
p,q(M) implies that f is strictly positive.

4.1 Linear estimation

The following theorem is the general result on the nonadaptive information projection

estimator of the unknown density function.

Theorem 4.1 Assume f X ∈ Fs
2,2(M) with s > 1, and suppose that the convolution kernel

f ǫ satisfies Assumption 1.1 (ordinary smooth convolution). Let j(n) be such that 2−j(n) ≈
n−1/(2s+2ν+1). Then, the information projection estimator f j(n),θ̂n

exists and is such that

E∆
(

f X ; f j(n),θ̂n

)

= O
(

n− 2s
2s+2ν+1

)
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The above estimator therefore converges with the optimal rate for densities in Fs
2,2(M).

However, this estimator is not adaptive since the choice of j(n) depends on the

unknown smoothness class of the function f X . Moreover, the result is only suited for

smooth functions and does not attain the optimal rates when for example g = log( f X)

has singularities. In the next section, we therefore propose another estimator based on

an appropriate nonlinear thresholding procedure.

4.2 Non-linear estimation

Fan and Koo (2002) show that, when the error is supersmooth, optimal rates of

convergence are only of logarithmic order of the sample size. In this case, while the

linear wavelet estimators cannot be optimal, non linear estimators do not provide

much gain for estimating functions in the Besov spaces. For this reason, we only

consider the ordinary smooth case in the following.

In non-linear estimation, we need to define an appropriate thresholding of the

estimated coefficients α̂λ. This threshold is level-dependent and takes the form τj,n =

τj

√

(log n)/n with

τj = 2jν. (4.1)

In what follows, we shall assume that the coarse level of approximation j0 is a fixed

parameter whose choice is left to the statistician. The size of the exponential family

used for the estimation depends on the high-frequency cut-off j1 which is typically

related to the ill-possedness ν of the inverse problem e.g. 2j1 > n1/2ν as in Antoniadis

and Bigot (2006) or 2j1 = O
(

( n
log(n)

)1/(2ν+1)
)

as in Johnstone et al. (2004).

The following theorem indicates that the rate of convergence of the expected

Kullback-Leibler discrepancy for the positive nonlinear estimator by soft thresholding

achieves the optimal rate of convergence provided that the finest resolution level j1 is

an apppropriate function of the degree of smoothness ν of the convolution.

Theorem 4.2 Assume that f ∈ Fs
p,p(M) with 1/p = 1/2 + s/(2ν + 1), and suppose that the

convolution kernel f ǫ satisfies Assumption 1.1 with ν > 1/2 (ordinary smooth convolution).

Moreover, suppose that s > ν + 1/2, that the wavelet ψ is CL with L > s and that ψ has r

vanishing moments with r > s. Then, the above described soft-thresholding estimator satisfies
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the minimax rate (up to logarithmic factors)

E∆( f ; f s
j1(n),θ̂n

) = O
(

(

log n

n

)2s/(2s+2ν+1)
)

,

provided that j1(n) is such that 2j1(n) > n1/2ν.

The proof of Theorem 4.2 is to be found in the next section.

Remark 4.1 For the nonlinear estimator based on hard thresholding, similar results can be

obtained using for instance the maxiset theorems given in Johnstone et al. (2004). The threshold

is also level-dependent and the choice of j1(n) depends on ν. Similar adaptive results are then

obtained with 2j1(n) = O( n
log(n)

)1/(2ν+1) and the same choice for the threshold as the one given

by equation (4.1).

5 Proof of the theorems

The proof of the two theorems is based on a decomposition of the relative entropy

between the true and the estimated density function into the sum of two terms which

correspond to approximation error and estimation error (bias and variance in a familiar

mean squared error analysis). This decomposition is given by

∆( f X ; f j,θ̂n
) = ∆( f X ; f j,θ∗j

) + ∆( f j,θ∗j
; f j,θ̂n

) (5.1)

where f j,θ∗j
denotes the closest function of Ej to the true density f X for the Kullback-

Leibler divergence. This identity comes from the Pythagorian Theorem derived

in Csiszár (1975) and recalled in Lemma A.1 of the appendix. It allows in

particular to write the risk E∆( f X ; f j(n),θ̂n
) as the sum of an approximation error term

∆( f X ; f j(n),θ∗
j(n)

) and an estimation error term E∆( f j(n),θ∗
j(n)

; f j(n),θ̂n
).

The control of the approximation error term is similar for the linear and the

nonlinear estimators. Below, we first prove the existence and uniqueness of f j,θ∗j
.

Based on some inequalities derived in Barron and Sheu (1991), we show that the

approximation error is controlled by the norms ‖g − Pjg‖L2 and ‖g − Pjg‖∞, where

g = log( f X) and Pjg = ∑|λ|<j〈g, ψλ〉ψλ. Bounds for these norms are derived in the

technical appendix below.
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The control of the estimation error term differs for the linear or the nonlinear

estimators. In the linear case, it simply relates to the control of the risk E‖α̂n − α0‖2
2

(using Lemma A.6 from the technical appendix). In the nonlinear situation, we use that

our density deconvolution problem is not too far from a usual Gaussian white noise

model. This allows to use standard results in the Gaussian setting on soft-threholding

estimators with a level-dependent threshold. This reasoning follows the technique

initially proposed by Donoho, Johnstone, Kerkyacharian and Picard (1996, Section 6),

and adapted to the case of Poisson inverse problems by Cavalier and Koo (2002) and

Antoniadis and Bigot (2006). Below we adapt the technique to density deconvolution

with Meyer wavelets.

5.1 Proof of Theorem 4.1

This proof concerns the linear, non adaptative estimator.

We first control the approximation error term ∆( f X ; f j(n),θ∗
j(n)

). Let g = log( f X) =

∑
∞
j=−1 ∑|λ|=j βλψλ, and for all |λ| < j, define the wavelet coefficients αj,λ =

〈exp(Pjg), ψλ〉 and αλ = 〈 f X , ψλ〉. The Bessel’s inequality gives ‖αj − α‖2
2 6 ‖ f X −

exp(Pjg)‖2
L2 . Therefore, Lemma A.4 implies

‖αj − α‖2
2 6 M1

∫ ( f X − exp(Pjg))2

f X
dµ.

Now, using Lemma 2 of (Barron and Sheu, 1991), we can write

‖αj − α‖2
2 6 M1e2‖g−Pjg‖∞

∫

f X(g − Pjg)2dµ 6 M2
1e2γj D2

j .

where Dj = ‖g − Pjg‖L2 and γj = ‖g − Pjg‖∞.

Define ǫj = 2M2
1e2γj+1DjAj. Lemma A.2 with θ0,λ = βλ, αλ = 〈 f X , ψλ〉 for all

|λ| < j and b = exp{‖ log(exp(Pjg))‖∞} implies that θ∗j = θ(α) exists provided

that M1eγj Dj 6 (2ebAj)
−1. This last condition is fulfilled if ǫj 6 1 because

‖ log(exp(Pjg))‖∞ 6 log M1 + γj.

From Lemma A.1 we can write ∆( f X ; f j,θ∗j
) 6 ∆( f X ; exp(Pjg)). Thence, by Lemma

1 of Barron and Sheu (1991),

∆( f X ; f j,θ∗j
) 6

1
2

exp(‖g − Pjg‖∞)
∫

f X(g − Pjg)2dµ

6
1
2

M1eγj D2
j (5.2)
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Now let j(n) be such that 2j1(n) > n1/2ν. As f X ∈ Fs
2,2(M) with s > 1 by assumption,

it follows from the bounds on Aj, Dj and γj given in Lemma A.5 that γj(n) → 0

as n → ∞ and so ǫj = ǫj(n) = O(Aj(n)∆j(n)) = O(2−j(n)(s−1)). Since ǫj(n) → 0 as

n → ∞, equation (5.2) implies that for n sufficiently large, there exists some θ∗
j(n) such

that 〈 f X , ψλ〉 = 〈 f j(n),θ∗
j(n)

, ψλ〉 for all |λ| < j(n) which satisfies

∆( f X ; f j(n),θ∗
j(n)

) = O
(

2−2j(n)s
)

. (5.3)

We now turn to the estimation error term. For all |λ| < j(n), define α0,λ =

〈 f X , ψλ〉 = 〈 f j,θ∗j
, ψλ〉 and let α̂n,λ = ∑l

(

ψλ
l

f ǫ
l

)

(

1
n ∑

n
j=1 e−2πilYj

)

. To prove the existence

of a vector θ̂n ∈ R
2j(n)

such that

〈 f j,θ̂n
, ψλ〉 = α̂n,λ, for all |λ| < j(n),

we need to control the term ‖α̂n − α0‖2
2 = ∑|λ|<j(n)(α̂n,λ − α0,λ)2 and then to apply

Lemma A.2 with θ0 = θ∗
j(n), α = α̂n and b = exp{‖ log( f j(n),θ∗

j(n)
)‖∞}. Given our

assumption on f X and f ǫ we have that | f Y
l | 6 C|l|−(s+ν) with s + ν > 1, and we

can therefore apply Lemma A.6 to obtain that

E‖α̂n − α0‖2
2 6

C

n
2j(n)(2ν+1)

Note we have that

‖ log( f j(n),θ∗
j(n)

/ exp(Pj(n)g))‖∞ 6 ǫj(n)

and so b 6 M1eǫj(n)+γj(n). Hence, if we set δj(n) = 2M1eǫj(n)+γj(n)+1Aj(n)2
j(n)(ν+1/2)/

√
n,

we can write δj(n) = O(2j(n)(ν+3/2)/
√

n) = O(2−j(n)(s−1)) → 0 as n → ∞. Hence, by

Lemma A.6 we have that for n sufficiently large, θ̂n exists and is such that

E

(

∆( f j(n),θ∗
j(n)

; f j(n),θ̂n
)
)

= O
(

2−2j(n)s
)

, (5.4)

The result of the theorem now follows from the control of the approximation and

estimation error terms, using the identity (5.1). �

5.2 Proof of Theorem 4.2

We consider in this proof the nonlinear, adaptative estimator, and first control the

approximation error term in a very similar way than in the preceeding proof. By

12



proceeding as in the proof of Theorem 4.1, we easily show that for n sufficiently large

∆( f X ; f j1(n),θ∗
j1(n)

) = O
(

2−4j1(n)s ν
2ν+1

)

,

using the notations from the proof of Theorem 4.1 for f j1(n),θ∗
j1(n)

. Now, one obtains the

optimal order n−2s/(2s+2ν+1) provided j1(n) is large enough so that 2−j1(n) 6 n− ν+1/2
ν2s+2ν+1 .

Note that for n > 1, n−1/(2ν) 6 n
− ν+1/2

ν(2s+2ν+1) . Therefore, if 2j1(n) > n1/(2ν),

∆( f X ; f j1(n),θ∗
j1(n)

) = O
(

n−2s/(2s+2ν+1)
)

We can now consider the estimation error term. Define α̂n,λ and αλ as in the proof

of Theorem 4.1. Note that

E‖δs
τj,n

(α̂n)− α0‖2 = ∑
|λ|=j0−1

E(α̂n,λ − αλ)2 + ∑
j06|λ|<j1(n)

E(δs
τj,n

(α̂n,λ) − αλ)2

Given our assumptions on f X and the fact that the space Bs
p,p is continuously

embedded in Ht whenever t 6 s + 1/2 − 1/p = 2νs/(2ν + 1) we have that | f Y
l | 6

C|l|−2νs/(2ν+1)−ν. Given the fact that s > ν + 1/2 and ν > 1/2, we have that

2νs/(2ν + 1) + ν > 1 and we can then apply Lemma A.6 to show that

∑
|λ|=j0−1

E(α̂n,λ − αλ)2 6 C2j0(2ν+1)/n (5.5)

We will now derive an upper bound for the risk E‖δs
τj,n

(α̂n,λ) − αλ‖2. As | f ǫ
l | ∼ |l|−ν

we have that

∑
j06|λ|<j1(n)

E(δs
τj,n

(α̂n,λ)− αλ)2 6 C ∑
j06|λ|<j1(n)

22|λ|ν
E(δs

τj,n
(α̂∗

n,λ)− α∗
λ)2 (5.6)

where α∗
λ = ∑l ψλ

l f Y
l and α̂∗

n,λ = n−1 ∑
n
j=1 ∑l ψλ

l e−2πilYj

To bound equation (5.6) we define a suitable Gaussian approximation of α̂∗
n,λ,

following the construction in Section 6 of Donoho et al. (1996). We first note that

Eα̂∗
n,λ = α∗

λ and Varα̂∗
n,λ = n−1σ2

λ with σ2
λ 6 C (by Lemma A.6 using again the

fact that | f Y
l | 6 C|l|−2νs/(2ν+1)−ν). The normalized statistic

Uj =
∑l ψλ

l exp(−2πilYj)− α∗
λ

σλ

is such that |Uj| 6 C2−|λ|/2/σλ. Now define the Gaussian process γ̂λ = α∗
λ + Zλσλ/

√
n

where Zλ are independant standard normal variables. If σ2
λ > C2|λ|(log3 n)/n, then

13



U2
i 6 Cn/(log3 n) and from Lemma 2 of (Donoho et al., 1996), we get E(α̂∗

n,λ − γ̂λ)2 6

C2|λ|/n2. If σ2
λ < C2|λ|(log3 n)/n, then E(α̂∗

n,λ − γ̂λ)2 ≤ 2Var(α̂∗
n,λ) + 2σ2

λ/n 6

C2|λ|(log3 n)/n2 . We finally get for all λ, T, and for all σ2
λ,

E
(

α̂∗
n,λ − γ̂λ

)2
6 C2|λ|

log3 n

n2 .

If r(δs
τj,n

, σλ/
√

n; α∗
λ) denotes the mean square error for the Gaussian model

E(δs
τj,n

(γ̂λ)− α∗
λ)2, then we can write

E(δs
τj,n

(α∗
λ)− α∗

λ)2 ≤ 2E(δs
τj,n

(α̂∗
n,λ)− δs

τj,n
(γ̂λ))2 + 2r(δs

τj,n
, σλ/

√
n; α∗

λ) .

Using that the mapping y → δs
τj,n

(y) is a contraction, the first term is bounded by

2E(α̂∗
n,λ − γ̂λ) and thus bounded by C2|λ|n−2 log3 n. Moreover, as σλ 6 C, we use

Lemma 3 of Donoho et al. (1996) to bound the second term by 4r(δs
τj,n

, C/
√

n; α∗
λ).

Finally, we obtain that

∑
j06|λ|<j1(n)

E(δs
τj,n

(α̂n,λ)− αλ)2

6 C ∑
j06|λ|<j1(n)

2|λ|(2ν+1)n−2 log3 n + 4r(δs
τj,n

, C2ν|λ|/
√

n; 2ν|λ|α∗
λ)

Lemma A.7 below shows that the sequence α∗
λ are the wavelet coefficients of a

function in Bs+ν
p,p(M̃)

for some some finite constant M̃. Then, using the level dependent

threshold τj,n = 2νjn−1/2
√

| log n| and the fact that 2j1(n) > n1/(2ν) we obtain the final

rate from standard results in the Gaussian setting on soft wavelet thresholding (e.g.

Donoho et al., 1995) and level-dependent thresholding estimators (e.g. Cohen, DeVore

and Hochmuth, 2000). �

6 Simulations

In this section we report the result of simulations, and compare our procedure with

other deconvolution methods recently introduced in the literature.

Given a density f X with variance σ2
X and a noise density f ǫ with variance σ2

ǫ we

generate observations Yi, i = 1, . . . , n from the additive model Yi = Xi + ǫi, where

Xi (resp. ǫi) are independent realisations from f X (resp. f ǫ). Important quantities

14



in the simulations are the sample size n and the root signal-to-noise ratio defined by

s2n := σX/σǫ.

For the sake of conciseness, we only consider for fǫ the Laplace density function,

given by

f ǫ(x) =
1√
2σǫ

exp
(

−
√

2
|x|
σǫ

)

, x ∈ R.

The Fourier coefficients of this density are given by

f ǫ
ℓ

=
1

1 + 2σ2
ǫ π2ℓ2 , ℓ = 0,±1,±2, . . .

This noise density corresponds to the case of ordinary smooth deconvolution with

ν = 2.

As for the density of interest f X, we consider the five following situations:

1. Uniform distribution: f (x) = 511[0.4,0.6](x).

2. Exponential distribution: f (x) = 10e−10(x−0.2)11[0.2,+∞[(x)

3. Laplace distribution: f (x) = 10e−20|x−0.5|

4. Gaussian distribution: X ∼ N(µ, σ2) with µ = 0.5 and σ = 0.1.

5. MixtGauss distribution (mixture of two Gaussian variables): X ∼ π1N(µ1, σ2
1 ) +

π2N(µ2, σ2
2 ) with π1 = 0.4, π1 = 0.6, µ1 = 0.4, µ2 = 0.6 and σ1 = σ2 = 0.05.

The five densities f X are displayed in Figure 6.1, where we can observe that

they show various types of smoothness. The Uniform distribution is a piecewise

constant function with two jumps, the Exponential disitbution is a piecewise smooth

function with a single jump, the Laplace density is a continuous function with a

cusp at x = 0.5 and is thus non-differentiable at this point, whereas the Gaussian

and the MixtGauss densities are very smooth signals (analytical functions). Due to

the excellent localization properties of the wavelets for the reconstruction of irregular

signals, it is expected that our wavelet-based estimator is well-adapted to these types of

irregularity. Although all these distributions are not necessarily compactly supported

on [0, 1], they have been chosen so that their mass is essentially concentrated on [0, 1]

and it is therefore very unlikely to have observations Xi outside the interval [0, 1].
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Figure 6.1: Test densities: (a) Uniform, (b) Exponential, (c) Laplace, (d) Gaussian, (e)

MixtGauss (mixture of two Gaussian)

6.1 Computation of the estimators

In the following, we describe in detail the computation algorithm of the wavelet

deconvolution by information projection described in the previous sections. We also

introduce two competitors, the estimator by model selection studied by Comte et al.

(2006a) and cosine series deconvolution of Hall and Qiu (2005). These two procedures

have been recently introduced in the literature and their properties on finite samples

have been well studied.

In all simulations, we used the Matlab program and the wavelet toolbox Wavelab

(see Buckheit, Chen, Donoho and Johnstone, 1995).

6.1.1 Wavelet deconvolution

For ℓ = −n/2 + 1, . . . , n/2 we compute the coefficients

f̂ X
ℓ = n−1

n

∑
j=1

exp(−2πiℓYj)/ f ǫ
ℓ

.
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This gives an estimation of the Fourier coefficients of the unknown function f X, and

we then use the efficient algorithm of Kolaczyk (1994) to compute the Meyer wavelet

coefficients of a discrete signal. This algorithm only requires O(n(log(n))2) operations

to compute the empirical wavelet coefficients from a sample of size n.

According to Theorem 4.2, the high-frequency cut-off j1(n) must be chosen such

that j1(n) > (2ν)−1 log2(n). In practice the optimal level (2ν)−1 log2(n) is too small,

and in our simulations we have therefore investigated the choices j1 = 3 to j1 =

log2(n) − 1. For any of these choices, the optimal theoretical level is always smaller

than j1 and introducing a higher level of resolution may only introduce some instability

in our estimator (for instance when a large wavelet coefficient due to the noise at a fine

scale is erroneously kept by the thresholding procedure). This behavior has also been

noticed by Johnstone et al. (2004). As we shall see in the simulation results, the best

empirical level j1 depends on the amount of noise and is proportional to the signal to

noise ratio. For all the simulations and all test densities, the coarse level j0 is equal to

3.

For a non-linear wavelet estimator, the results of Theorem 4.2 suggest to take a

threshold of the form

τj,n = Cτj

√

(log n)/n,

where C > 1 is a tuning constant and τj = 2jν. Based on extensive simulations, we

have found that the best results were obtained with the choice C =
√

2 rather than

C = 1. In the context of Meyer wavelet-based deconvolution in a regression setting,

Johnstone et al. (2004) use the same type of level-dependent thresholding but the scale

parameter τj depends on the noise distribution f ǫ and on the support of the Meyer

wavelet in the Fourier domain. It is given by

τ̃j =
1

|Cj| ∑
ℓ∈Cj

| f ǫ
ℓ
|−2,

where Cj denotes the set of of non-zero Fourier coefficients ψλ
ℓ

at scale |λ| = j (recall

that the Meyer wavelets are band-limited) and |Cj| = 4π2j is the cardinal of Cj. As it

can be seen from the proof of Lemma A.6, the choise τj = 2jν comes from the bound

τ̃2
j =

1
|Cj| ∑

ℓ∈Cj

| f ǫ
ℓ
|−2 = O(22jν)
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under the assumption of ordinary smooth deconvolution. It is not clear whether the

scale parameters τj and τ̃j yield to similar estimators. In our simulations, we have

therefore chosen to compare the results obtained from the “theoretical” scale parameter

τj and from the “distribution dependent” scale parameter τ̃j.

Finally, once we have computed the thresholded coefficients δs
τj,n

(α̂λ) for all |λ| < j1,

it remains to compute the empirical version of the information projection estimate

f s
j1,θ̂n

. To do so, we use a Newton-Raphson type algorithm as described in Antoniadis

and Bigot (2006).

6.1.2 Density deconvolution via model selection

The adaptive density deconvolution estimator of Comte et al. (2006a) is based

on penalized contrast minimization over a collection of model Sm, m ∈ Mn =

{1, . . . , mn} where Sm is the space of square integrable functions with Fourier transform

supported included in [−lm, lm] with lm = m∆, ∆ > 0. The adaptive estimator by

model selection is therefore a band-limited function f̂ ∈ Sm̂ where m̂ is the model

selected by minimization of an appropriate penalized criteria based on the Yi’s and

the Fourier transform of the error distribution f ǫ, see Comte et al. (2006a). Based

on extensive simulations with various sample sizes and signal to noise ratios, Comte

et al. (2006a) show that the model selection procedure performs very well for finite

samples, compared with the standard estimators. This estimator outperforms the

kernel estimator, even when the bandwidth parameter is selected in a data-driven

way. In consequence, we see this procedure as the most challenging competitor in

our simulations.

6.1.3 Cosine series deconvolution

As an alternative competitor, we also consider the deconvolution estimator recently

introduced by Hall and Qiu (2005). The estimator if based on the cosine-series

expansion

f̂ (x) = 1 +
m

∑
j=1

2âj cos(jπx)

where âj is an estimator of the cosine coefficient aj =
∫ 1

0 f (x) cos(jπx)dx and m > 1 is

an integer defining a high frequency cut-off. Since the Laplace density is symmetric
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about its mean 0 (recall that this is our choice for the error distribution for all the

simulations), a simple estimator of the cosine coefficient aj is given by

âj =
b̂j

αj
δτn(|b̂j|)

where αj = E(cos(jπǫ1)), and δτn(|b̂j|) = 11|b̂j|>τn
is a simple hard-thresholding rule

with τn = C
√

log(n)/(2n) and C is a tuning constant. Slight modifications of this

threholding rule are also considered in Hall and Qiu (2005), but these modifications

have the same theoretical and empirical properties as those based on δτn . Moreover,

the simulations carried out by Hall and Qiu (2005) have shown that the simple choice

m = n and C = 2 leads to satisfactory results and that there is not much to be gained

by employing cross-validation to choose m and C. So, in all the simulations presented

in this paper we take m = n and C = 2.

6.2 Results of the simulations

We present results for sample sizes n = 128, 256 and 512 (respectively a small,

moderate and large sample size) and s2n = 100, 10, 3 (respectively a very low, a

moderate and a high level of noise). Note that for s2n = 100, as the variance of the

noise is extremely low, we are therefore very close to the direct density estimation

problem with uncontaminated data. For each combination of these factors, we

simulate 100 independent samples of size n, and for each sample the quality of an

estimator f̂n of the test density f is measured by the empirical mean square error (MSE)

defined as

MSE =
1
n

n

∑
i=1

(

f̂n(ti)− f (ti)
)2

where ti = i/n, i = 0, . . . , n − 1. In Figure 6.2, we illustrate the performance of each

method and show typical reconstructions of the test densities f X for n = 256 and

s2n = 10. Note that for the sake a better visual quality, we only plot the positive part

of the estimators.

Our wavelet estimator is by construction a probability density function. It is

therefore visually much more satisfactory than the model selection estimator and the

cosine series estimator which may take negative values. For the three non-smooth
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densities (Uniform, Exponential and Laplace distribution) the reconstruction of the

singularities (discontinuities and cusp) of the signals is much better with our wavelet

estimator. For the two smooth densities (Gauss and MixtGauss), the model selection

estimator performs slightly better than the two other methods.

By inspecting the first column in Figure 6.2 we see that the wavelet estimator is

affected by pseudo-Gibbs phenomena. A possible remedy to this defect is to use

a translation invariant (TI) procedure such as the one suggested by Donoho and

Raimondo (2004) for Meyer wavelet-based deconvolution in a regression setting.

Their algorithm yields thresholded coefficients δs
τj,n

(α̂λ) (for all |λ| < j1) invariant

to translation that can be used to calculate a TI information projection estimate. In

the second column of Figure 6.2 is displayed the TI version of the wavelet estimators

plotted in the first column. One can see that the TI estimators are visually much better

since they exhibit very small oscillations while preserving a good reconstruction of

the singularities of the non-smooth densities. However, from the overall simulations,

we have found that the TI version of our wavelet estimator does not yield significant

improvements in terms of MSE. Therefore we only present results for the comparison

between our wavelet estimator (non-TI version) and the two alternative methods by

Comte et al. (2006a) and Hall and Qiu (2005).

In Figures 6.3 to 6.7, we depict for each test f X density the boxplot of the MSE

over the 100 replications. All combinations of sample sizes and signal-to-noise

ratios are considered. For wavelet deconvolution, we give boxplots for each type

of thresholding, either with the scale parameter τj (abbreviated as wavtheo) or τ̃j

(abbreviated as wavemp). We also indicate the level j1 which gives the best result in

term of averaged MSE over the 100 simulations. As it can be observed from these

boxplots, our wavelet approach outperforms the other methods for all type of non-

smooth densities f X. It confirms the superiority of wavelet-based positive estimators

over those based on Fourier decompositions for the reconstruction of signals with

local singularities. The wavelet thresholding with the scale parameter τj = 22jν gives

generally better results. For the Gaussian distribution, the wavelet approach with

scale parameter τ̃j yields generally better results, in particular for a small sample sizes

(n = 128). With sample sizes n = 256 or n = 512, the results obtained with the

three methods are very similar. Finally, for the MixtGauss distribution, the wavelet

approach is clearly better for n = 128 while the model selection procedure is slightly
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Figure 6.2: Typical reconstructions for one realization of simulations by: wavelet

thresholding with j1 = 5 and the “distribution dependent” scale parameter τ̃j (first

column the non-TI version, second column the TI version), model selection (third

column) and cosine series (fourth column) for the five test densities: Uniform,

Exponential, Laplace, Gaussian and MixtGauss. The dotted lines show the true

densities and the solide lines correspond to the various estimators (n = 256 and

s2n = 10)
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better than wavelet thresholding for n = 256 and n = 512. Note that the fine level j1

which gives the best results is generally quite low and depends on the signal to noise

ratio. For almost all combinations of the factors, the choices j1 = 3, 4 yield to the best

results. This observation is consistent with the condition of Theorem 4.2 that suggests

a smaller j1 for ill-posed inverse problems than in the direct case. It also confirms that

introducing higher level of resolution does not necessarily improve the quality of the

estimator.
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Figure 6.3: Uniform distribution: graphical display (boxplots) of the MSE with 100

repetitions for each method and all combination of the factors n and s2n.
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Figure 6.4: Exponential distribution: graphical display (boxplots) of the MSE with 100

repetitions for each method and all combination of the factors n and s2n.
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Figure 6.5: Laplace distribution: graphical display (boxplots) of the MSE with 100

repetitions for each method and all combination of the factors n and s2n.
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Figure 6.6: Gaussian distribution: graphical display (boxplots) of the MSE with 100

repetitions for each method and all combination of the factors n and s2n.
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Figure 6.7: MixtGaussian distribution: graphical display (boxplots) of the MSE with

100 repetitions for each method and all combination of the factors n and s2n.
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A Appendix

The estimation of density function based on information projection has been studied by Barron

and Sheu (1991). To apply this method in our context of density deconvolution using Meyer

wavelets, we need to recall and to adapt a set of results that are useful to prove the optimality

of our estimator.

The first lemma derives a Pythagorian-like identity for the Kullback-Leibler divergence

onto Ej. This result is proved in Csiszár (1975).

Lemma A.1 Let α ∈ R
2j

. Assume that there exists some θ(α) ∈ R
2j

such that for all |λ| < j:

〈 f j,θ(α), ψλ〉 = αλ.

Then, for any density function f ∈ L2([0, 1]) such that 〈 f , ψλ〉 = αλ and for all θ ∈ R
2j

, the identity

∆( f ; f j,θ) = ∆( f ; f j,θ(α)) + ∆( f j,θ(α), f j,θ).

holds true.

Note that the divergence ∆( f ; g) is stricly positive, unless f = g almost everywhere.

Therefore, the Lemma of Csiszár (1975) implies that θ(α) (if it exists) uniquely minimizes

∆( f ; f j,θ) for θ ∈ R
2j

.

The next lemma is a key result which gives sufficient conditions for the existence of the

vector θ(α) as defined in Lemma A.1. This lemma also relates distances between the densities

in the parametric family to distance between the corresponding wavelet coefficients. Its proof

relies upon a series of lemmas on bounds within exponential families for the Kullback-Leibler

distance and can be found in Barron and Sheu (1991, Lemma 5).

Lemma A.2 Let θ0 ∈ R
2j

, α0,λ = 〈 f j,θ0 , ψλ〉 and α ∈ R
2j

a given vector. Let b = exp(‖ log( f j,θ0)‖∞)

and e = exp(1). If ‖α − α0‖2 6 1
2ebAj

, then the solution θ(α) to

〈 f j,θ(α), ψλ〉 = αλ for all |λ| < j

exists and satisfies:

‖θ(α) − θ0‖2 6 2eb‖α − α0‖2 (A.1)

‖ log(
f j,θ(α0)

f j,θ(α)
)‖∞ 6 2ebAj‖α − α0‖2 (A.2)

∆( f j,θ(α0); f j,θ(α)) 6 2eb‖α − α0‖2
2. (A.3)
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We conclude the appendix by a set of technical lemmas that are needed for the proof of our

main results. These lemmas are an adaptation of similar results in Barron and Sheu (1991) or

Antoniadis and Bigot (2006) to the case of periodoc, Meyer wavelets on L2[0, 1]. We start with

some definitions. For f ∈ Fs
p,q(M), let g = loge( f ) and define

Dj = ‖g − Pjg‖L2 and γj = ‖g − Pjg‖∞.

The scaling Meyer functions (φλ)|λ|=j span a finite dimensional space Vj within a

multiresolution hierarchy V0 ⊂ V1 ⊂ . . . ⊂ L2([0, 1]), such that dim(Vj) = 2j (see e.g.

Meyer, 1992). In the following results, we use the inequalities ‖φλ‖∞ = ‖φ‖∞2|λ|/2 and

‖ψλ‖∞ = ‖ψ‖∞2|λ|/2, and assume that there exists some constant Aj < ∞ such that for all

v ∈ Vj:

‖v‖∞ 6 Aj‖v‖L2 .

In the following, C denotes a generic constant whose value may change from line to line.

Lemma A.3 Let v ∈ Vj , then ‖v‖∞ 6 C2j‖v‖L2 .

PROOF: Let v = ∑|λ|=j βλψλ. By the Cauchy-Schwartz inequality and by the fact that

‖ψλ‖∞ 6 C2j/2, we obtain that uniformly in x ∈ [0, 1]

|v(x)|2 6 ∑
|λ|=j

|ψλ(x)|2 ∑
|λ|=j

|βλ|2 6 C22j‖β j‖2
2

which establishes the result. �

Lemma A.4 Assume that f ∈ Fs
p,q(M) with p 6 2. If s > 1/p + 1/2, then there exists a constant

M1 such that

0 <
1

M1
6 f 6 M1 < ∞.

PROOF: Let g = log( f ) = ∑
∞
j=−1 ∑|λ|=j βλψλ. Since ‖g‖Bs

p,q
6 M, we can write

‖β j‖p
p = ∑

|λ|=j

|βλ|p 6 M2−jps′ ,

where s′ = s + (1/2 − 1/p). As p 6 2, we also get

‖β j‖2 6 ‖β j‖p 6 C2−js′ . (A.4)

Therefore, Lemma A.3 implies

‖g‖∞ 6

∞

∑
j=−1

‖ ∑
|λ|=j

βλψλ‖∞ 6

∞

∑
j=0

C2j‖β j‖2 6 C
∞

∑
j=0

2j(1−s′) 6 C
∞

∑
j=0

2−j(s−1/p−1/2).
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Since s > 1/p + 1/2, ∑
∞
j=0 2−j(s−1/p−1/2) < ∞ and therefore there exists some constant M1 > 1

such that ‖g‖∞ = ‖ log f‖∞ 6 log M1. �

The next lemma derive bounds for Aj, Dj and γj.

Lemma A.5 The inequality

Aj 6 C2j

holds true. Moreover, assume that f ∈ Fs
p,q(M) with p 6 2. If s > 1/p + 1/2, then

Dj 6 C2−j(s+1/2−1/p)

γj 6 C2−j(s−1/p−1/2)

PROOF: The result for Aj immediately follows from Lemma A.3. Note that from equation (A.4),

D2
j = ∑

j′>j

‖β j′‖2
2 6 C ∑

j′>j

2−2j′(s+1/2−1/p) = O(2−2j(s+1/2−1/p)).

By definition, γj = ‖g − Pjg‖∞ 6 AjDj 6 C2−j(s−1/p−1/2), which completes the proof. �

The following lemma controls the mean square error for α̂n,λ − αλ where α̂n,λ =

∑l

(

ψλ
l

f ǫ
l

) (

1
n ∑

n
j=1 e−2πilYj

)

and αλ = ∑l
ψλ

l
f ǫ
l

f Y
l .

Lemma A.6 Assume that the Fourier coefficients of f Y are such that | f Y
l | 6 C|l|−u with u > 1. Then,

E(α̂n,λ − αλ)2 6
C

n
22|λ|ν

PROOF: For |λ| = j, let Cj = {ℓ : ψλ
ℓ
6= 0}. Since the Meyer wavelets are band-limited,

Cj = {ℓ : 2j 6 |l| 6 2j+r} for some fixed r > 0. To simplify the notation, we shall assume

that Cj = {ℓ : 2j 6 l 6 2j+r} noticing that all the bounds below also hold for negative values

of ℓ. Then, using the fact that under Assumption 1.1, | f ǫ
ℓ
| ∼ |ℓ|−ν, that ψλ

ℓ
6 C2−|λ|/2 and the

independence of the Yi’s, we get the bound

E(α̂n,λ − αλ)2 6
C

n
22|λ|ν2−|λ|

2|λ|+r

∑
ℓ,ℓ′=2|λ|

Ee−2πi(ℓ−ℓ′)Y1 6
C

n
22|λ|ν +

C

n
22|λ|ν2−|λ| ∑

ℓ 6=ℓ′
f Y
ℓ−ℓ′

As | f Y
ℓ
| 6 C|ℓ|−u with u > 1, the double sum ∑ℓ 6=ℓ′ f Y

ℓ−ℓ′ in the equation above is bounded

which yields the result. �

Lemma A.7 Let f X ∈ Bs
p,q[0, 1], f ǫ such that | f ǫ

ℓ
| ∼ |ℓ|−ν for ν > 1/2 (ordinary smooth error) and

f Y = f X ⋆ f ǫ. Consider the sequence dλ = ∑ℓ f Y
ℓ

ψλ
ℓ

defined with Meyer wavelets ψλ. Then there exists

a function of Bs+ν
p,q [0, 1] with wavelet coefficients dλ.
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PROOF: Consider the function f ǫ⋆ in L2[0, 1] such that f ǫ⋆
ℓ

= f ǫ
ℓ

for all ℓ. This function

exists because, using that f ǫ
ℓ
∼ |ℓ|−ν, the norm ‖ f ǫ⋆‖L2[0,1] = ∑ℓ( f ǫ⋆

ℓ
)2 is finite provided that

ν > 1/2. Now, consider the function f Y⋆ = f X ⋆ f ǫ⋆ in L2[0, 1]. By construction, we have that

∑ℓ ψλ
ℓ

f Y
ℓ

= 〈 f Y⋆, ψλ〉L2[0,1] and f Y⋆ ∈ Bs+ν
p,q [0, 1] because f X ∈ Bs

p,q[0, 1] and f ǫ⋆
ℓ

∼ |ℓ|−ν. �
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