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Abstract

We propose a class of locally and asymptotically optimal tests, based on multivariate
ranks and signs, for the homogeneity of scatter matrices in m elliptical populations. Con-
trary to the existing parametric procedures, these tests remain valid without any moment
assumptions, and thus are perfectly robust against heavy-tailed distributions (validity robust-
ness). Nevertheless, they reach semiparametric efficiency bounds at correctly specified den-
sities (efficiency robustness). In most cases, their normal-score version outperforms Schott’s
pseudo-Gaussian test (JSPI 94, 25-36, 2001), which, as we also show, actually is a robustified
version of the traditional Gaussian likelihood ratio test.

AMS 1980 subject classification : 62M15, 62G35.
Key words and phrases : Elliptical densities, Scatter matrices, Multivariate ranks and signs,

Multivariate analysis of variance, Local asymptotic normality, Locally asymptotically most strin-
gent tests.

1 Introduction.

1.1 Homogeneity of variances and covariance matrices.

The assumption of variance homogeneity is central to the theory and practice of univariate
m-sample inference, playing a major role in such models as m-sample location (ANOVA) or
m-sample regression (ANOCOVA). The problem of testing the null hypothesis of variance ho-
mogeneity therefore is of fundamental importance, and for more than half a century has been
a subject of continued interest in the statistical literature. The standard procedure, described
in most textbooks, is Bartlett (1937)’s modified (Gaussian) likelihood ratio test (MLRT). This
test however is well-known to be highly non-robust against violations of Gaussian assumptions,
a fact that gave rise to a large number of “robustified” versions of the likelihood ratio procedure
(Cochran 1941, Bartlett and Kendall 1946, Hartley 1950, Box 1953, to quote only a few). Soon,
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it was noticed that these “robustifications”, if reasonably resistant to nonnormality, unfortu-
nately were lacking power: in the convenient terminology of Heritier and Ronchetti (1994), they
enjoy validity robustness but not efficiency robustness.

In an extensive simulation study, Conover et al. (1981) have investigated the validity-
robustness (against nonnormal densities) and efficiency-robustness properties of 56 distinct tests,
including several (signed) rank-based ones. Their conclusion is that only three out of 56 survive
the examination, and that two of the three survivors are normal-score signed rank tests (adapted
from Fligner and Killeen 1976).

In view of its applications in MANOVA, MANOCOVA, discriminant analysis, etc., the mul-
tivariate problem of testing for homogeneity of covariance matrices is certainly no less important
than its univariate counterpart. The same problem moreover is of intrinsic interest in such fields
as psychometrics or genetics where, for instance, the homogeneity of genetic covariance structure
among species is a classical subject of investigation. Robustness and power issues however are
even more delicate and complex in the multivariate context. So far, only validity robustness
(resistance to violations of joint normality assumptions) has been investigated, leading to var-
ious robustifications of the Gaussian likelihood ratio test—see Section 1.2 for a brief account.
But, although no multivariate equivalent of the Conover et al. (1981) study has been conducted
so far, it is more than likely that those various robustifications also lose most of the power of
the original tests, and thus suffer the same lack of efficiency robustness as in the univariate set-
ting; our own simulations amply confirm this fact for the robustified version of Schott (2001)’s
test—see below for details.

Since rank-based procedures are doing so well in the univariate case, it is tempting to ex-
tend them to the multivariate context. The problem however is that of choosing an adequate
multivariate concept of (signed) ranks. The purpose of this paper is to develop such testing pro-
cedures for the null hypothesis of covariance homogeneity under elliptical distributions, based
on the signs and ranks considered by Hallin and Paindaveine (2005 and 2006a) for one-sample
inference for location, (auto)regression, and shape. Elliptical densities indeed constitute the
most general class of densities under which classical multivariate techniques (after adequate
modification) apply.

Contrary to all existing methods, our tests do not require any moment assumptions, so that
the null hypothesis they address actually is the hypothesis of homogeneous scatter matrices, re-
ducing to more classical homogeneity of covariance matrices under finite second-order moments.
Being asymptotically distribution-free, our tests enjoy validity robustness (against nonnormal
elliptic densities, including the heavy-tailed ones). They reach semiparametric efficiency at cor-
rectly specified densities, and therefore are efficiency-robust; when based on Gaussian scores,
their asymptotic relative efficiency with respect to the various robustifications of the Gaussian
likelihood ratio test is larger than one under almost all elliptical densities (see Section 6 for
details).

1.2 Testing equality of scatter (covariance) matrices.

Denote by (Xi1, . . . ,Xini), i = 1, . . . ,m a collection of m mutually independent samples of i.i.d.
random k-dimensional vectors with location parameters θθθi and scatter (under finite second-order
moments, covariance) matrices ΣΣΣi, i = 1, . . . ,m. The purpose of this paper is to develop a signed
rank-based solution to the problem of testing the null hypothesis H0 : ΣΣΣ1 = . . . = ΣΣΣm of scatter
(covariance) homogeneity against the alternative that the ΣΣΣi’s are not all equal.

The most classical test for this problem is the Gaussian likelihood ratio test (LRT). This
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test, which is based on the additional assumption that Xij ∼ Nk(θθθi,ΣΣΣi), rejects H0 for small
values of

Λ :=

∏m
i=1 |Wi/ni|ni/2

|W/n|n/2
=:

∏m
i=1 |Si|ni/2

|S|n/2
, (1.1)

where n =
∑m

i=1 ni is the total sample size, X̄i := 1
ni

∑ni
j=1 Xij , Wi :=

∑ni
j=1(Xij − X̄i)(Xij −

X̄i)
′, and W :=

∑m
i=1 Wi. Even under Gaussian assumptions, this LRT is actually biased

(see Brown 1939 and Das Gupta 1969), and one therefore usually relies on Bartlett’s modified
likelihood ratio test (MLRT), based on

Λ∗ :=

∏m
i=1 |Wi/ṅi|ṅi/2

|W/ṅ|ṅ/2
=:

∏m
i=1 |Ṡi|ṅi/2

|Ṡ|ṅ/2
, (1.2)

where ṅi := ni − 1 and ṅ :=
∑m

i=1 ṅi = n − m. The MLRT has been shown to be unbiased
by Pitman (1939) for k = 1 and by Perlman (1980) for the general case. Much is known
today about this test: monotonicity of the power function (Anderson and Das Gupta 1964, Das
Gupta and Giri 1973), null and non-null expansions (both for fixed and local alternatives) of the
distributions of Λ∗ or −2 log Λ∗ (Sugiura 1973, Khatri and Srivastava 1974, Srivastava, Khatri,
and Carter 1978), exact distribution of Λ∗ (Gupta and Tang 1984), etc. All authors however
insist on the extreme non-robustness to departures from normality of both the LRT and the
MLRT, which are not even valid under non-Gaussian elliptical densities with finite fourth-order
moments; see, in particular, Tyler (1983), Yanagihara et al. (2005), and Gupta and Xu (2006).

Such a poor resistance to non-normality is not uncommon in the context, and similar prob-
lems arise with most Gaussian likelihood ratio tests in multivariate analysis. In a classical
reference, Muirhead and Waternaux (1980) provide an in-depth study of the problem of turning
standard Gaussian tests about covariance matrices into pseudo-Gaussian ones remaining valid
under elliptical densities (possibly with adequate moment assumptions). They clearly distin-
guish some “easy” cases—tests of sphericity, tests of equality of a subset of the characteristic
roots of the covariance matrix (i.e., subspace sphericity), tests of block-diagonality—and some
“harder” ones, among which the (apparently simpler) one-sample test of the hypothesis that the
covariance matrix ΣΣΣ takes some given value ΣΣΣ0, the two-sample test of equality of covariance
matrices, and the corresponding m-sample test (based on (1.1) or (1.2)). For these “hard” cases,
they conclude that “it is not possible in the more general elliptical case to adjust the (Gaussian
likelihood ratio) test so that its limiting distribution agrees with that obtained under the normal-
ity assumption”; see also Section 3 of Tyler (1983). In particular, for the problem under study,
a recent result of Yanagihara et al. (2005) establishes that the asymptotic null distribution of
−2 log Λ∗/(1 + κk) (where Λ∗ is defined in (1.2) and κk stands for a measure of kurtosis of the
underlying elliptical distribution; see Section 5.2 for a definition) is that of

[
1 +

kκk

2(1 + κk)

]
Y1 + Y2, (1.3)

where Y1 and Y2 are independent chi-square random variables with m − 1 and (m − 1)(k −
1)(k+2)/2 degrees of freedom, respectively. In the multinormal case, κk = 0, and this yields the
well-known Gaussian result that −2 log Λ∗ is asymptotically chi-square with (m − 1)k(k + 1)/2
degrees of freedom under the null hypothesis; but for κ 6= 0, (1.3) is no longer chi-square (see
also Gupta and Xu 2006).

For the sake of comparison, in the problem of testing for sphericity, −2 log Λspher/(1 + κk)
(where Λspher stands for the LRT statistic for sphericity) is asymptotically chi-square with (m−
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1)k(k + 1)/2 degrees of freedom under the null hypothesis, irrespective of the underlying elliptic
distribution (with finite fourth-order moments and kurtosis κk). Consequently, robustifying the
LRT for sphericity is easily achieved by adopting the modified test statistic −2 log Λs/(1 + κ̂k),
where κ̂k is a consistent estimate of κk. Clearly, in view of the null asymptotic distribution of
−2 log Λ∗/(1+κk) in (1.3), such an easy robustification is not possible when testing for covariance
homogeneity.

Other Gaussian testing procedures also have been considered (see Section 5.3); to the best
of our knowledge, they all suffer of the same lack of robustness against violations of Gaussian
assumptions. Quite surprisingly thus, and except for some attempts to bootstrap the classical
MLRT statistic (Goodnight and Schwartz 1997, Zhang and Boos 1992; Zhu et al. 2002), this im-
portant problem of testing for homogeneity of covariance matrices under possibly non-Gaussian
elliptical densities, despite its considerable impact on applications, had remained an open prob-
lem until a recent paper by Schott (2001). In his Section 2.1, Schott first proposes a Gaussian
Wald test based on the vector ((vec(Ṡ1 − Ṡm))′, . . . , (vec(Ṡm−1 − Ṡm))′)′. This test rejects the
null hypothesis for large values of the statistic

Q
(n)
Schott :=

ṅ

2

{
m∑

i=1

λ̇
(n)
i tr

[
(ṠiṠ

−1)2
]−

m∑

i,i′=1

λ̇
(n)
i λ̇

(n)
i′ tr (ṠiṠ

−1Ṡi′ Ṡ
−1)

}
, with λ̇

(n)
i :=

ṅi

ṅ
; (1.4)

this statistic is asymptotically chi-square with (m − 1)k(k + 1)/2 degrees of freedom under
homogeneity of covariance matrices and Gaussian densities. Schott himself stresses the poor

resistance of his test to non-Gaussian densities, and proposes robustifying Q
(n)
Schott by using an

adequate estimate of the underlying asymptotic covariance matrix involved in the Wald statistic.
Letting δ̂1 := 1/(1 + κ̂k) and δ̂2 := κ̂k/((k + 2)κ̂k + 2), the resulting test rejects H0 for large
values of

Q
(n)
Schott∗ := δ̂1

[
Q

(n)
Schott−

ṅδ̂2

2

{
m∑

i=1

λ̇
(n)
i tr2 (ṠiṠ

−1)−
m∑

i,i′=1

λ̇
(n)
i λ̇

(n)
i′ tr (ṠiṠ

−1) tr (Ṡi′ Ṡ
−1)

}]
, (1.5)

the null distribution of which is still asymptotically chi-square with (m−1)k(k+1)/2 degrees of
freedom under the whole family of elliptical distributions with finite fourth-order moments and

homogeneous (across samples) kurtosis value. In that respect, Q
(n)
Schott∗ is fairly robust. Being

based on traditional covariance matrices, however, it remains invalid under heavy tails, and
extremely sensitive to possible outliers.

Schott apparently is not aware of the asymptotic optimality of his test under Gaussian
assumptions: in Section 5.3, we establish the asymptotic equivalence, under the null hypothesis
of homogeneity and any density with finite fourth-order moments, of the MLRT, Nagao, and
Schott (1.4) test statistics. This and the results of Section 5.2 imply that (i) all these tests
share the Gaussian optimality properties of the MLRT, but (ii) only Schott’s modified test
based on (1.5), while asymptotically equivalent to the MLRT under Gaussian densities, remains
valid under finite fourth-order moment non-Gaussian ones, and therefore can be considered a
pseudo-Gaussian test.

Schott’s modified test thus is an important step in the direction of a pseudo-Gaussian ap-
proach to multivariate analysis. Still, this is not entirely satisfactory. Being a multivariate
extension of the univariate tests considered in the Conover et al. (1981) study, Schott’s modified
test is likely to be behave very poorly away from the multinormal case (this is confirmed by the
simulation study of Section 7): validity robustness again is obtained to the detriment of effi-
ciency robustness. The validity of Schott’s modified test moreover is restricted to densities with
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finite fourth-order moments. In contrast with this, the rank-based approach we are developing
here is robust on all counts. Due to the distribution-freeness of multivariate ranks and signs,
our tests are valid under arbitrary elliptical densities while, when based on appropriate scores,
they achieve semiparametric efficiency—the best one can hope for in the presence of unspecified
densities—and almost always quite significantly outperform Schott’s tests.

1.3 Our methodology.

Throughout, we assume that the m distributions are elliptically symmetric. More precisely, for
all i = 1, . . . ,m, the ni observations Xij, j = 1, . . . , ni are assumed to have a probability density
function of the form

fi(x) := ck,f1|ΣΣΣi|−1/2f1

((
(x − θθθi)

′ΣΣΣ−1
i (x − θθθi)

)1/2
)

, x ∈ R
k, (1.6)

for some k-dimensional vector θθθi (location), some positive definite (k× k) matrix ΣΣΣi (the scatter
matrix), and some (duly standardized: see below) function f1 : R

+
0 → R

+ (the radial density).
The null hypothesis considered throughout is the hypothesis H0 : ΣΣΣ1 = . . . = ΣΣΣm of scatter

homogeneity (under finite variances, covariance homogeneity).
Let (throughout ΣΣΣ1/2 denotes the symmetric root of ΣΣΣ)

Uij(θθθi,ΣΣΣi) :=
ΣΣΣ

−1/2
i (Xij − θθθi)

‖ΣΣΣ−1/2
i (Xij − θθθi)‖

and dij(θθθi,ΣΣΣi) := ‖ΣΣΣ−1/2
i (Xij − θθθi)‖. (1.7)

Writing Rij(θθθ1, . . . , θθθm,ΣΣΣ1, . . . ,ΣΣΣm) for the rank of dij(θθθi,ΣΣΣi) among d11(θθθ1,ΣΣΣ1), . . . , dmnm(θθθm,ΣΣΣm),
consider the signed rank scatter matrices

S
˜

K;i :=
1

ni

ni∑

j=1

K

(
Rij(θ̂θθ1, . . . , θ̂θθm, Σ̂ΣΣ, . . . , Σ̂ΣΣ)

n + 1

)
Uij(θ̂θθi, Σ̂ΣΣ)U′

ij(θ̂θθi, Σ̂ΣΣ), (1.8)

where θ̂θθ1, . . . , θ̂θθm are consistent (under H0) estimates of the various location parameters, Σ̂ΣΣ is a
consistent (under H0) estimate of the common null value of the ΣΣΣi’s, and K is some appropriate
score function. The proposed signed rank tests reject the null hypothesis of scatter homogeneity
for large values of

Q
˜

K :=
1

n

∑

1<i<i′<m

(ni + ni′) Q
˜

K;i,i′, (1.9)

where
Q
˜

K;i,i′ :=
nini′

ni + ni′

{
αk,K tr

[
(S
˜

K;i − S
˜

K;i′)
2
]
+ βk,K tr2(S

˜
K;i − S

˜
K;i′)

}
;

αk,K and βk,K are constants depending on the dimension k and the score function K. Although
we derive (1.9) from Le Cam type optimality arguments, we show in Section 5.2 that this test

statistic Q
˜

(n)
K also can be obtained by replacing, in Schott’s robustified test statistic (1.5), the

traditional sample covariance matrices with the signed rank scatter matrices (1.8). Being rank-
based, our tests however remain valid under much broader conditions than Schott’s (no finite
moment requirements) and enjoy much better resistance to outliers.

The use of signed ranks is justified by the invariance principle: H0 indeed is invariant under
groups of affine and (continuous monotone) radial transformations; see Section 3.2 for details.
Beyond affine-invariance (all tests considered in this paper are affine-invariant), our rank tests—
unlike their competitors—are also (asymptotically) invariant with respect to the groups of radial
transformations; validity robustness follows from this latter invariance property.
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As announced, our methodology combines validity and efficiency robustness. We will show
that, for (essentially) any radial density f1, it is possible to define a score function K := Kf1

characterizing a signed rank test which is locally and asymptotically optimal (actually, locally and
asymptotically most stringent, in the Le Cam sense) under radial density f1. In particular, when
based on Gaussian scores, our rank tests achieve the same asymptotic performances as Schott’s
(1.4) and the other Gaussian tests at the multinormal, while enjoying the validity robustness
of (1.5) and even more, since no moment assumption is required. Moreover, the asymptotic
relative efficiencies (AREs) of these normal-score tests are almost always larger than one with
respect to their parametric competitors (see the AREs and simulations in Sections 6 and 7. The
class of tests we are proposing thus in most cases dominates the existing parametric ones, both
in terms of robustness and power.

1.4 Outline of the paper.

The paper is organized as follows. In Section 2, we collect the main assumptions needed in
the sequel. Section 3.1 discusses semiparametric modelling issues and their relation to group
invariance. Section 4.1 states the uniform local asymptotic normality result (ULAN) on which
our construction of locally and asymptotically optimal tests is based. In Section 4.2, we construct
rank-based versions of the central sequences appearing in this ULAN result. In Section 5.1, we
derive and study the proposed nonparametric (signed-rank) tests (based on (1.9)) for scatter
homogeneity. Section 5.2 presents the parametric Gaussian counterparts of these tests and shows
how they can be turned into pseudo-Gaussian ones; their relation to Schott’s modified tests based
on (1.5) is also studied. In Section 5.3, we investigate the links between these tests and the main
Gaussian procedures available in the literature. Asymptotic relative efficiencies with respect to
the pseudo-Gaussian tests are derived in Section 6. Section 7 provides some simulation results
confirming the theoretical ones. Finally, the appendix collects proofs of asymptotic linearity and
other technical results.

2 Main assumptions.

For the sake of convenience, we are collecting here the main assumptions to be used in the
sequel.

2.1 Elliptical symmetry.

As mentioned before, we throughout assume that all populations are elliptically symmetric. More
precisely, defining the collections F of radial densities and F1 of standardized radial densities as

F :=
{
f > 0 a.e. : µk−1;f < ∞

}
and F1 :=

{
f1 ∈ F : (µk−1;f1)

−1
∫ 1

0
rk−1f1(r) dr = 1/2

}
,

respectively, where µℓ;f :=
∫∞
0 rℓf(r) dr, we require the following.

Assumption (A). The observations Xij, j = 1, . . . , ni, i = 1, . . . ,m are mutually independent,
with pdf fi, i = 1, . . . ,m, given in (1.6), for some f1 ∈ F1.

Clearly, for the scatter matrices ΣΣΣi in (1.6) to be well defined, identifiability restrictions are
needed. This is why we impose that f1 ∈ F1, which implies that dij(θθθi,ΣΣΣi) defined in (1.7)
has median one and identifies ΣΣΣi without requiring any moment assumptions (see Hallin and

6



Paindaveine 2006a for a discussion). Note however that, under finite second-order moments, ΣΣΣi

is proportional to the covariance matrix ΣΣΣ0i of Xij.
Special instances of elliptical densities are the k-variate multinormal distribution, with ra-

dial density f1(r) = φ1(r) := exp(−akr
2/2), the k-variate Student distributions, with radial

densities (for ν ∈ R
+
0 degrees of freedom) f1(r) = f t

1,ν(r) := (1 + ak,νr
2/ν)−(k+ν)/2, and the

k-variate power-exponential distributions, with radial densities of the form f1(r) = f e
1,η(r) :=

exp(−bk,ηr
2η), η ∈ R

+
0 ; the positive constants ak, ak,ν, and bk,η are such that f1 ∈ F1.

The equidensity contours associated with (1.6) are hyper-ellipsoids centered at θθθi, whose
shape and orientation are determined by the scatter matrix ΣΣΣi. The multivariate signs Uij(θθθi,ΣΣΣi)
and standardized radial distances dij(θθθi,ΣΣΣi) defined in (1.7) are the (within-group) elliptical
coordinates associated with those ellipsoids: the observation Xij then decomposes into θθθi +

dijΣΣΣ
1/2
i Uij , where the Uij ’s, j = 1, . . . , ni, i = 1, . . . ,m are i.i.d. uniform over the unit

sphere in R
k, and the dij ’s are i.i.d., independent of the Uij , with common density f̃1k(r) :=

(µk−1;f1)
−1rk−1f1(r)I[r>0] (justifying the terminology standardized radial density for f1) and dis-

tribution function F̃1k. In the sequel, the notation g̃1k and G̃1k will be used for the corresponding
functions computed from a standardized radial density g1(∈ F1).

The derivation of locally and asymptotically optimal tests at radial density f1 will be based
on the uniform local and asymptotic normality (ULAN) of the model at given f1. This ULAN
property—the statement of which requires some further preparation and is delayed to Sec-
tion 4.1—only holds under some further mild regularity conditions on f1. More precisely, ULAN
(see Proposition 4.1 below) requires f1 to belong to the collection Fa of absolutely continuous
densities in F1 such that, letting ϕf1 := −ḟ1/f1 (with ḟ1 the a.e.-derivative of f1), the integrals

Ik(f1) :=

∫ 1

0
ϕ2

f1
(F̃−1

1k (u)) du and Jk(f1) :=

∫ 1

0
ϕ2

f1
(F̃−1

1k (u))(F̃−1
1k (u))2 du

are finite. The quantities Ik(f1) anf Jk(f1) play the roles of radial Fisher information for location
and radial Fisher information for shape/scale, respectively (see Hallin and Paindaveine 2006a).

2.2 Asymptotic behavior of sample sizes.

Although, for the sake of notational simplicity, we do not mention it explicitly, we actually
consider sequences of statistical experiments, with triangular arrays of observations of the form

(X
(n)
1,1 , . . . ,X

(n)

1,n
(n)
1

,X
(n)
2,1 , . . . ,X

(n)

2,n
(n)
2

, . . . ,X
(n)
m,1, . . . ,X

(n)

m,n
(n)
m

) indexed by the total sample size n,

where the sequences n
(n)
i satisfy the following assumption.

Assumption (B). For all i = 1, . . . ,m, ni = n
(n)
i → ∞ as n → ∞.

Note that this assumption is weaker than the corresponding classical assumption in (uni-
variate or multivariate) multisample problems, which requires that ni/n be bounded away from

0 and 1 for all i as n → ∞. Letting λ
(n)
i := n

(n)
i /n, it is easy to check that Assumption (B) is

actually equivalent to the Noether conditions

max

(
1 − λ

(n)
i

λ
(n)
i

,
λ

(n)
i

1 − λ
(n)
i

)
= o(n) as n → ∞, for all i,

that are needed for the representation result in Lemma 4.1(i) below. However, the following
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reinforcement of Assumption (B) is assumed to hold (mainly, for notational comfort) in the
derivation of asymptotic distributions under local alternatives:

Assumption (B′). For all i = 1, . . . ,m, λ
(n)
i → λi ∈ (0, 1), as n → ∞.

2.3 Score functions.

The score functions K appearing in the rank-based statistics (1.8) will be assumed to satisfy
the following regularity assumptions.

Assumption (C). The score function K : (0, 1) → R (C1) is a continuous, non-constant,
and square-integrable mapping which (C2) can be expressed as the difference of two monotone
increasing functions, and (C3) satisfies

∫ 1
0 K(u) du = k.

Assumption (C3) is a normalization constraint that is automatically satisfied by the score
functions K(u) = Kf1(u) := ϕf1(F̃

−1
1k (u))F̃−1

1k (u) leading to local and asymptotic optimality
at radial density f1 (at which ULAN holds); see Section 4.1. For score functions K,K1,K2

satisfying Assumption (C), let

Jk(K1,K2) := E[K1(U)K2(U)] and Lk(K1,K2) := Cov[K1(U),K2(U)] = Jk(K1,K2) − k2

(throughout, U stands for a random variable uniformly distributed over (0, 1)), with Jk(K) :=
Jk(K,K) and Lk(K) := Lk(K,K). Also, for simplicity, we write Jk(K, f1) for E[K(U)Kf1(U)],
Lk(f1, g1) for E[Kf1(U)Kg1(U)] − k2, etc.

The power score functions Ka(u) := k(a + 1)ua (a > 0) provide some traditional score
functions satisfying Assumption (C), with Jk(Ka) = k2(a+1)2/(2a+1) and Lk(Ka) = k2a2/(2a+
1): Wilcoxon and Spearman scores are obtained for a = 1 and a = 2, respectively. As for score
functions of the form Kf1 , an important particular case is that of van der Waerden or normal
scores, obtained for f1 = φ1. Then, denoting by Ψk the chi-square distribution function with k
degrees of freedom,

Kφ1(u) = Ψ−1
k (u), Jk(φ1) = k(k + 2), and Lk(φ1) = 2k.

Similarly, Student densities f1 = f t
1,ν yield

Kft
1,ν

(u) =
k(k + ν)G−1

k,ν(u)

ν + kG−1
k,ν(u)

, Jk(f
t
1,ν) =

k(k + 2)(k + ν)

k + ν + 2
, and Lk(f

t
1,ν) =

2kν

k + ν + 2
,

where Gk,ν denotes the Fisher-Snedecor distribution function with k and ν degrees of freedom.

3 Semiparametric modeling of elliptical families.

3.1 Scatter, scale, and shape.

Consider an observed n-tuple X1, . . . ,Xn of i.i.d. k-dimensional elliptical random vectors, with
location θθθ, scatter ΣΣΣ, and radial density f1 ∈ F1 but otherwise unspecified. The family P(n)

of distributions for this observation is indexed by (θθθ,ΣΣΣ, f1). As soon as a semiparametric point
of view is adopted, or when rank-based methods are considered, the scatter matrix ΣΣΣ naturally
decomposes into ΣΣΣ = σ2V, where σ is a scale parameter (equivariant under multiplication by a
positive constant) and V a shape matrix (invariant under multiplication by a positive constant).
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A semiparametric model with specified σ and unspecified standardized radial density f1 indeed
would be highly artificial, and we therefore only consider the case under which σ and f1 are
jointly unspecified. This semiparametric setting is also the one that enjoys the group invariance
structure in which the ranks and the signs to be used in our method spontaneously arise from
invariance arguments; see Section 3.2 below.

The concepts of scale and shape however require a more careful definition. Denoting by
Sk the collection of all k × k symmetric positive definite real matrices, consider a function
S : Sk → R

+
0 satisfying S(λΣΣΣ) = λS(ΣΣΣ) for all λ ∈ R

+
0 , ΣΣΣ ∈ Sk, and define scale and shape as

σS := (S(ΣΣΣ))1/2 and VS := ΣΣΣ/S(ΣΣΣ), respectively. Clearly, VS is the only matrix in Sk which is
proportional to ΣΣΣ and satisfies S(VS) = 1: denote by VS

k := {V ∈ Sk : S(V) = 1} the set of all
possible shape matrices associated with S.

Classical choices of S are

(i) S(ΣΣΣ) = (ΣΣΣ)11 (considered in Randles 2000, Hettmansperger and Randles 2002, Hallin and
Paindaveine 2006a, and Hallin et al. 2006);

(ii) S(ΣΣΣ) = k−1tr(ΣΣΣ) (considered in Tyler 1987, Dümbgen 1998, and Ollila et al. 2004);

(iii) S(ΣΣΣ) = |ΣΣΣ|1/k (considered in Tatsuoka and Tyler 2000, Dümbgen and Tyler 2005, Salibian-
Barrera et al. 2006, and Taskinen et al. 2006).

In practice, all choices of S are essentially equivalent. Although favoring a trace-based
normalization of ΣΣΣ−1, Bickel (1982, Example 4) actually shows that, irrespective of S, the
asymptotic information matrix for VS in the presence of unspecified θθθ and σS is the same, at
any θθθ ∈ R

k, σS ∈ R
+
0 , VS ∈ VS

k and f1, whether f1 is specified (parametric model) or not
(semiparametric model): once θθθ and σS are unspecified, an unspecified f1 does not induce any
additional loss for inference about VS . Paindaveine (2006b) establishes the stronger result that
the information matrix for VS in the presence of unspecified θθθ, σS and f1 is strictly less, at any
θθθ ∈ R

k, σS ∈ R
+
0 , VS ∈ VS

k and f1, than in the corresponding parametric model with specified
θθθ, σS and f1—except for S : ΣΣΣ 7→ |ΣΣΣ|1/k, where those two information matrices coincide: under
this determinant-based normalization, thus, the presence of nuisances (θθθ, σS , and f1) (resp.,
θθθ, VS , and f1) asymptotically has no effect on inference about shape (resp., inference about
scale). In both cases, it can be said (adopting a point estimation terminology) that shape can
be estimated adaptively. This Paindaveine adaptivity, where θθθ, σS and f1 lie in the nuisance
space of the semiparametric model, is much stronger than Bickel adaptivity where only f1 does.
This finding strongly pleads in favor of the determinant-based definition of shape which, with
its block-diagonal information matrix for θθθ, σS , and VS , is also more convenient from the point
of view of statistical inference. Therefore, we throughout adopt S(ΣΣΣ) = |ΣΣΣ|1/k, and henceforth
simply write V ∈ Vk and σ for the resulting shape and scale.

The parameter in our problem then is the L-dimensional vector

ϑϑϑ := (ϑϑϑ′
I ,ϑϑϑ

′
II ,ϑϑϑ

′
III)

′ := (θθθ′1, . . . , θθθ
′
m, σ2

1 , . . . , σ
2
m, (ve

◦

ch V1)
′, . . . , (ve

◦

ch Vm)′)′,

where L = mk(k+3)/2 and ve
◦

ch (V) is characterized by vech(V) =: ((V)11, (ve
◦

chV)′)′: indeed,
ΣΣΣi is entirely determined by σ2

i and ve
◦

ch (Vi). Write ΘΘΘ for the set R
mk × (R+

0 )m × ve
◦

ch (Vk)

of admissible ϑϑϑ values, and P
(n)
ϑϑϑ;f1

or P
(n)
ϑϑϑI ,ϑϑϑII ,ϑϑϑIII ;f1

for the joint distribution of the n observations

under parameter value ϑϑϑ and standardized radial density f1 (always implicitly assumed to belong
to F1, when notation f1 is used).

Finally, note that for any c(ΣΣΣi) > 0, Uij(θθθi,ΣΣΣi) = Uij(θθθi, c(ΣΣΣi)ΣΣΣi) = Uij(θθθi,Vi) and
dij(θθθi,ΣΣΣi) = c1/2(ΣΣΣi)dij(θθθi, c(ΣΣΣi)ΣΣΣi) = σ−1

i dij(θθθi,Vi). It follows that the multivariate signs
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computed from the shape Vi and those computed from the scatter ΣΣΣi coincide. Since, under
null hypothesis H0 of scatter homogeneity, the (nonstandardized) radial distances computed
from the common value V of the shape matrices are proportional to the standardized ones com-
puted from the common value ΣΣΣ of the scatter matrices, the corresponding ranks also coincide.

3.2 Invariance issues.

Denoting by M(ΥΥΥ) the vector space spanned by the columns of some L × r full-rank matrix ΥΥΥ
(r < L), the null hypothesis of scatter homogeneity H0 : σ2

1V1 = . . . = σ2
mVm can be written

as H0 : ϑϑϑ ∈ M(ΥΥΥ), with

ΥΥΥ :=




ΥΥΥI 0 0

0 ΥΥΥII 0

0 0 ΥΥΥIII


 :=




Imk 0 0

0 1m 0

0 0 1m ⊗ IK


 , K :=

k(k + 1)

2
− 1. (3.1)

where 1m := (1, . . . , 1)′ ∈ R
m and Iℓ denotes the ℓ-dimensional identity matrix.

Two distinct invariance structures play a role here. The first one is related with the group

of affine transformations of the observations, which generates the parametric families P(n)
ΥΥΥ,f1

:=
⋃

ϑϑϑ∈M(ΥΥΥ)

{
P

(n)
ϑϑϑ;f1

}
. More precisely, this group is the group Gm,k,◦ of affine transformations of the

form Xij 7→ AXij + bi, where A is a full-rank (k × k) matrix and B := (b1, . . . ,bm) a (k ×m)

matrix. Associated with that group are the transformations ϑϑϑ 7→ g
m,k
A,B(ϑϑϑ) of the parameter

space, where

g
m,k
A,B(ϑϑϑ) :=

(
(Aθθθ1 + b1)

′, . . . , (Aθθθm + bm)′, |A|2/kσ2
1 , . . . , |A|2/kσ2

m,

(ve
◦

ch (AV1A
′))′/|A|2/k, . . . , (ve

◦

ch (AVmA′))′/|A|2/k
)′

.

Clearly, the null hypothesis H0 of scatter homogeneity is invariant under Gm,k,◦—meaning that
g

m,k
A,B(M(ΥΥΥ)) = M(ΥΥΥ) for all gm,k

A,B. Therefore, it is reasonable to restrict to affine-invariant tests
of H0. Beyond their distribution-freeness with respect to the θθθi’s and the common null values σ
and V of the scale and shape parameters, affine-invariant test statistics—that is, statistics Q
such that Q(AX11 + b1, . . . AXmnm + bm) = Q(X11, . . . ,Xm,nm) for all A,b1, . . . ,bm—yield
tests that are coordinate-free.

A second invariance structure is induced by the groups G,◦ := GϑϑϑI ,V,◦ of continuous monotone
radial transformations, of the form

X 7→ Gg(X11, . . . ,Xmnm)

= Gg(θθθ1 + d11(θθθ1,V)V1/2U11(θθθ1,V), . . . , θθθm + dmnm(θθθm,V)V1/2Umnm(θθθm,V))

:= (θθθ1 + g(d11(θθθ1,V))V1/2U11(θθθ1,V), . . . , θθθm + g(dmnm(θθθm,V))V1/2Umnm(θθθm,V)),

where g : R
+→ R

+ is continuous, monotone increasing, and such that g(0) = 0 and limr→∞ g(r)=
∞. For each ϑϑϑ ∈ M(ΥΥΥ), that is, for each ϑϑϑI ,V, this group GϑϑϑI ,V,◦ is a generating group

for the nonparametric family P(n)
ϑϑϑI ,V :=

⋃
σ

⋃
f1

{
P

(n)

ϑϑϑI ,σ21m,1m⊗(ve◦chV);f1

}
. In such families, the

invariance principle suggests basing inference on statistics that are measurable with respect
to the corresponding maximal invariant, namely the vectors (U11, . . . ,Umnm) of signs and the
vectors (R11, . . . , Rmnm) of ranks, where Uij = Uij(θθθi,V), and Rij = Rij(θθθ1, . . . , θθθm,V, . . . ,V).

Such invariant statistics of course are distribution-free under P(n)
ϑϑϑI ,V.
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4 Uniform local asymptotic normality, signs, and ranks.

4.1 Uniform local asymptotic normality (ULAN).

As mentioned in Section 1, we plan to develop tests that are optimal at correctly specified
densities, in the sense of Le Cam’s asymptotic theory of statistical experiments. In this section,
we state the uniform local asymptotic normality (ULAN) result (with respect to location, scale,
and shape parameters, for fixed radial density f1) on which optimality will be based.

Writing

ϑϑϑ(n) = (ϑϑϑ
(n)′
I ,ϑϑϑ

(n)′
II ,ϑϑϑ

(n)′
III )′ = (θθθ

(n)′
1 , . . . , θθθ(n)′

m , σ
2(n)
1 , . . . , σ2(n)

m , (ve
◦

ch V
(n)
1 )′, . . . , (ve

◦

ch V(n)
m )′)′

for an arbitrary sequence of L-dimensional parameter values in ΘΘΘ, consider sequences of “local
alternatives” ϑϑϑ(n) + n−1/2ννν(n)τττ (n), where

τττ (n) = (τττ
(n)′
I , τττ

(n)′
II , τττ

(n)′
III )′ = (t

(n)′
1 , . . . , t(n)′

m , s
2(n)
1 , . . . , s2(n)

m , (ve
◦

ch v
(n)
1 )′, . . . , (ve

◦

chv(n)
m )′)′

is such that supn τττ (n)′τττ (n) < ∞ and where, denoting by ΛΛΛ(n) = (Λ
(n)
rs ) the (m × m) diagonal

matrix with Λ
(n)
ii := (λ

(n)
i )−1/2 (see Section 2.2),

ννν(n) :=




ννν
(n)
I 0 0

0 ννν
(n)
II 0

0 0 ννν
(n)
III


 :=




ΛΛΛ(n) ⊗ Ik 0 0

0 ΛΛΛ(n) 0

0 0 ΛΛΛ(n) ⊗ IK


 (4.1)

(under Assumption (B′), we also write ννν for limn→∞ ννν(n)). Clearly, these local alternatives

do not involve (v
(n)
i )11, i = 1, . . . ,m. It is natural, though, to see that the perturbed shapes

V
(n)
i + n

−1/2
i v

(n)
i remain (up to o(n

−1/2
i )’s) within the family Vk of shape matrices: this leads

to defining (v
(n)
i )11 in such a way that tr((V

(n)
i )−1v

(n)
i ) = 0, i = 1, . . . ,m, which entails |V(n)

i +

n
−1/2
i v

(n)
i |1/k = 1 + o(n

−1/2
i ) (see Hallin and Paindaveine 2006b, Section 4).

The following notation will be used throughout. Write V⊗2 for the Kronecker product V⊗V.
Denoting by eℓ the ℓth vector of the canonical basis of R

k, let Kk :=
∑k

i,j=1(eie
′
j) ⊗ (eje

′
i) be

the k2 × k2 commutation matrix, and put Jk := (vec Ik)(vec Ik)
′. Finally, let Mk(V) be the

(K × k2) matrix such that (Mk(V))′(ve
◦

chv) = (vec v) for any symmetric k × k matrix v such
that tr(V−1v) = 0. As shown in Paindaveine (2006b; Lemma 4.2(v)), Mk(V)(vec V−1) = 0 for
all V ∈ Vk.

We then have the following ULAN result; the proof follows along the same lines as in Theo-
rem 2.1 of Paindaveine (2006b) and hence is omitted.

Proposition 4.1 Assume that (A) and (B) hold, and that f1 ∈ Fa. Then the family P(n)
f1

:=
{
P

(n)
ϑϑϑ;f1

∣∣ϑϑϑ ∈ ΘΘΘ
}

is ULAN, with central sequence

∆∆∆ϑϑϑ;f1
= ∆∆∆

(n)
ϑϑϑ;f1

:=




∆∆∆I
ϑϑϑ;f1

∆∆∆II
ϑϑϑ;f1

∆∆∆III
ϑϑϑ;f1


 , ∆∆∆I

ϑϑϑ;f1
=




∆∆∆I,1
ϑϑϑ;f1

...
∆∆∆I,m

ϑϑϑ;f1


 , ∆∆∆II

ϑϑϑ;f1
=




∆II,1
ϑϑϑ;f1

...
∆II,m

ϑϑϑ;f1


 , ∆∆∆III

ϑϑϑ;f1
=




∆∆∆III,1
ϑϑϑ;f1

...
∆∆∆III,m

ϑϑϑ;f1


,

where (with dij = dij(θθθi,Vi) and Uij = Uij(θθθi,Vi))

∆∆∆I,i
ϑϑϑ;f1

:=
n
−1/2
i

σi

ni∑

j=1

ϕf1

(
dij

σi

)
V

−1/2
i Uij , ∆II,i

ϑϑϑ;f1
:=

n
−1/2
i

2σ2
i

ni∑

j=1

(
ϕf1

(
dij

σi

)
dij

σi
− k

)
,
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∆∆∆III,i
ϑϑϑ;f1

:=
n
−1/2
i

2
Mk(Vi)

(
V⊗2

i

)−1/2
ni∑

j=1

ϕf1

(
dij

σi

)
dij

σi
vec

(
UijU

′
ij

)
,

i = 1, . . . ,m, and full-rank block-diagonal information matrix

ΓΓΓϑϑϑ;f1
:=




ΓΓΓI
ϑϑϑ;f1

0 0

0 ΓΓΓII
ϑϑϑ;f1

0

0 0 ΓΓΓIII
ϑϑϑ;f1


 , (4.2)

where, defining σσσ := diag(σ1, . . . , σm), V := diag(V1, . . . ,Vm), Mk(V) := diag(Mk(V1), . . . ,Mk(Vm)),
and V⊗2 := diag(V⊗2

1 , . . . ,V⊗2
m ), we let

ΓΓΓI
ϑϑϑ;f1

:=
1

k
Ik(f1)

(
σσσ−2 ⊗ Ik

)
V−1, ΓΓΓII

ϑϑϑ;f1
:=

1

4
Lk(f1)σσσ−4,

and

ΓΓΓIII
ϑϑϑ;f1

:=
Jk(f1)

4k(k + 2)
Mk(V)

[
Im ⊗ (Ik2 + Kk)

](
V⊗2

)−1
(Mk(V))′.

More precisely, for any ϑϑϑ(n) = ϑϑϑ + O(n−1/2) and any bounded sequence τττ (n), we have, under

P
(n)

ϑϑϑ(n);f1
,

Λ
(n)

ϑϑϑ(n)+n−1/2ννν(n)τττ (n)/ϑϑϑ(n);f1
:= log

(
dP

(n)

ϑϑϑ(n)+n−1/2ννν(n)τττ (n);f1
/dP

(n)

ϑϑϑ(n);f1

)

= (τττ (n))′∆∆∆
(n)

ϑϑϑ(n);f1
− 1

2
(τττ (n))′ΓΓΓϑϑϑ;f1

τττ (n) + oP(1)

and ∆∆∆
ϑϑϑ(n);f1

L−→ N (0,ΓΓΓϑϑϑ;f1
), as n → ∞.

The classical theory of hypothesis testing in Gaussian shifts (see Section 11.9 of Le Cam 1986)
then provides the general form for locally asymptotically optimal (namely, most stringent) tests
of hypotheses in ULAN models. Such tests, for a null hypothesis of the form ϑϑϑ ∈ M(ΥΥΥ), should
be based on the asymptotically chi-square null distribution of

QΥΥΥ := (∆∆∆ϑϑϑ;f1
)′ ΓΓΓ

−1/2
ϑϑϑ;f1

[
I − proj(ΓΓΓ

1/2
ϑϑϑ;f1

(ννν(n))−1ΥΥΥ)
]
ΓΓΓ
−1/2
ϑϑϑ;f1

∆∆∆ϑϑϑ;f1
,

where proj(ΓΓΓ
1/2
ϑϑϑ;f1

(ννν(n))−1ΥΥΥ) is the matrix projecting R
L onto M(ΓΓΓ

1/2
ϑϑϑ;f1

(ννν(n))−1ΥΥΥ) (with ϑϑϑ replaced

by an appropriate estimator ϑ̂ϑϑ; see Assumption (D) below). Whenever ΓΓΓϑϑϑ;f1
, ννν(n) and ΥΥΥ all

happen to be block-diagonal, which is the case in our problem, this projection matrix clearly is
block-diagonal, with diagonal blocks

proj((ΓΓΓI
ϑϑϑ;f1

)1/2(ννν
(n)
I )−1ΥΥΥI), proj((ΓΓΓII

ϑϑϑ;f1
)1/2(ννν

(n)
II )−1ΥΥΥII), and proj((ΓΓΓIII

ϑϑϑ;f1
)1/2(ννν

(n)
III )−1ΥΥΥIII)

denoting projections in R
mk, R

m, and R
mK , respectively. Since moreover M((ΓΓΓI

ϑϑϑ;f1
)1/2(ννν

(n)
I )−1ΥΥΥI) =

R
mk, proj((ΓΓΓI

ϑϑϑ;f1
)1/2(ννν

(n)
I )−1ΥΥΥI) = Imk, so that QΥΥΥ reduces to

QΥΥΥ = (∆∆∆II
ϑϑϑ;f1

)′ (ΓΓΓII
ϑϑϑ;f1

)1/2
[
I − proj((ΓΓΓII

ϑϑϑ;f1
)1/2(ννν

(n)
II )−1ΥΥΥII)

]
(ΓΓΓII

ϑϑϑ;f1
)1/2∆∆∆II

ϑϑϑ;f1

+(∆∆∆III
ϑϑϑ;f1

)′ (ΓΓΓIII
ϑϑϑ;f1

)1/2
[
I − proj((ΓΓΓIII

ϑϑϑ;f1
)1/2(ννν

(n)
III )−1ΥΥΥIII)

]
(ΓΓΓIII

ϑϑϑ;f1
)1/2∆∆∆III

ϑϑϑ;f1
(4.3)

where ∆∆∆I
ϑϑϑ;f1

does not play any role. Accordingly, in the next section, we proceed with rank-based
analogues of ∆∆∆II

ϑϑϑ;f1
and ∆∆∆III

ϑϑϑ;f1
only.
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4.2 A rank-based central sequence for scale and shape (scatter).

A general result by Hallin and Werker (2003) implies that, in adaptive models for which fixed-f
submodels are ULAN and fixed-ϑϑϑ submodels are generated by a group Gϑϑϑ, invariant versions
of central sequences exist under very general assumptions. In the present context, this result
would imply the existence, for the null values of ϑϑϑ (ϑϑϑ ∈ M(ΥΥΥ)), of central sequences based on
the multivariate signs Uij and the ranks Rij . Although that result does not directly apply here,
it is very likely that it still holds. This fact is confirmed by the asymptotic representation of
Lemma 4.1(i) below.

Consider the signed rank statistic (associated with some score function K satisfying As-
sumption (C)) ∆∆∆

˜
ϑϑϑ;K := ((∆∆∆

˜
II
ϑϑϑ;K)′, (∆∆∆

˜
III
ϑϑϑ;K)′)′ := ((∆

˜
II,1
ϑϑϑ;K)′, . . . , (∆

˜
II,m
ϑϑϑ;K )′, (∆∆∆

˜
III,1
ϑϑϑ;K)′, . . . , (∆∆∆

˜
III,m
ϑϑϑ;K )′)′,

where

∆
˜

II,i
ϑϑϑ;K :=

1

2σ2
i

n
−1/2
i

ni∑

j=1

(
K

(
Rij

n + 1

)
− k

)
(4.4)

and

∆∆∆
˜

III,i
ϑϑϑ;K :=

1

2
n
−1/2
i Mk(Vi)

(
V⊗2

i

)−1/2
ni∑

j=1

K

(
Rij

n + 1

)
vec

(
UijU

′
ij

)
. (4.5)

The following lemma provides (i) an asymptotic representation and (ii) the asymptotic dis-
tribution of ∆∆∆

˜
ϑϑϑ;K (see the appendix for the proof). An immediate corollary of (i) is that

∆∆∆
˜

ϑϑϑ;f1
:= ∆∆∆

˜
ϑϑϑ;Kf1

, with K = Kf1 , actually constitutes a signed-rank version of the scatter part

((∆∆∆II
ϑϑϑ;f1

)′, (∆∆∆III
ϑϑϑ;f1

)′)′ of the central sequence ∆∆∆ϑϑϑ;f1
.

Lemma 4.1 Assume that (A), (B), and (C) hold. Fix ϑϑϑ ∈ M(ΥΥΥ) (with common values σ and V

of the scale and shape parameters). Let Rij be the rank of dij := dij(θθθi,V) among d11, . . . , dmnm ,
and let Uij := Uij(θθθi,V). Then, for all g1 ∈ F1,

(i) ∆∆∆
˜

ϑϑϑ;K = ∆∆∆ϑϑϑ;K;g1
+ oL2(1), under P

(n)
ϑϑϑ;g1

, as n → ∞, where

∆∆∆ϑϑϑ;K;g1
:= ((∆∆∆II

ϑϑϑ;K;g1
)′, (∆∆∆III

ϑϑϑ;K;g1
)′)′ := ((∆II,1

ϑϑϑ;K;g1
)′, . . . , (∆II,m

ϑϑϑ;K;g1
)′, (∆∆∆III,1

ϑϑϑ;K;g1
)′, . . . , (∆∆∆III,m

ϑϑϑ;K;g1
)′)′,

with

∆II,i
ϑϑϑ;K;g1

:=
1

2σ2
n
−1/2
i

ni∑

j=1

(
K

(
G̃1k

(
dij

σ

))
− k

)

and

∆∆∆III,i
ϑϑϑ;K;g1

:=
1

2
n
−1/2
i Mk(V)

(
V⊗2

)−1/2
ni∑

j=1

K

(
G̃1k

(
dij

σ

))
vec

(
UijU

′
ij

)
; (4.6)

(ii) defining Hk(V) := 1
4k(k+2)Mk(V) [Ik2 + Kk]

(
V⊗2

)−1
(Mk(V))′, ∆∆∆ϑϑϑ;K;g1

is asymptoti-
cally normal with mean zero and mean




1
4σ4Lk(K, g1)τττ II

Jk(K, g1)[Im ⊗ Hk(V)]τττ III




under P
(n)
ϑϑϑ;g1

and P
(n)

ϑϑϑ+n−1/2ννν(n)τττ ;g1
, respectively, and covariance matrix

ΓΓΓϑϑϑ;K :=

(
ΓΓΓII

ϑϑϑ;K 0

0 ΓΓΓIII
ϑϑϑ;K

)
:=

(
1

4σ4Lk(K)Im 0

0 Jk(K)[Im ⊗ Hk(V)]

)
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under both (the claim under P
(n)

ϑϑϑ+n−1/2ννν(n)τττ ;g1
further requires g1 ∈ Fa).

As mentioned in the description of the most stringent tests (see the comments after Propo-
sition 4.1), we will need replacing the parameter ϑϑϑ with some estimate. For this purpose, we

assume the existence of ϑ̂ϑϑ := ϑ̂ϑϑ
(n)

satisfying

Assumption (D). The sequence of estimators (ϑ̂ϑϑ
(n)

, n ∈ N) is

(D1) constrained: P
(n)
ϑϑϑ;g1

[
ϑ̂ϑϑ

(n) ∈ M(ΥΥΥ)
]
= 1 for all n, ϑϑϑ ∈ M(ΥΥΥ), and g1 ∈ F1;

(D2) n1/2
(
ννν(n)

)−1
-consistent: for all ϑϑϑ ∈ M(ΥΥΥ), n1/2

(
ννν(n)

)−1
(ϑ̂ϑϑ

(n) − ϑϑϑ) = OP(1), as n → ∞,

under
⋃

g1∈F1
{P(n)

ϑϑϑ;g1
};

(D3) locally asymptotically discrete: for all ϑϑϑ ∈ M(ΥΥΥ) and all c > 0, there exists M =

M(c) > 0 such that the number of possible values of ϑ̂ϑϑ
(n)

in balls of the form {t ∈
R

L : n1/2‖(ννν(n)
)−1

(t − ϑϑϑ)‖ ≤ c} is bounded by M , uniformly as n → ∞, and

(D4) affine-equivariant: denoting by ϑ̂ϑϑ
(n)

(A,B) the value of ϑ̂ϑϑ
(n)

computed from the trans-

formed sample AXij + bi, j = 1, . . . , ni, i = 1, . . . ,m, ϑ̂ϑϑ
(n)

(A,B) = g
m,k
A,B(ϑ̂ϑϑ

(n)
), for all

g
m,k
A,B ∈ Gm,k.

There are many possible choices for ϑ̂ϑϑ. However, still in order to avoid moment assumptions,
we propose the following estimators, related with the affine-equivariant median proposed by
Hettmansperger and Randles (2002). For each i = 1, . . . ,m, let θ̂θθi and V̂i be characterized by

1

ni

ni∑

j=1

Uij(θ̂θθi, V̂i) = 0 and
1

ni

ni∑

j=1

Uij(θ̂θθi, V̂i)
(
Uij(θ̂θθi, V̂i)

)′
=

1

k
Ik,

with |V̂i| = 1. Then, under ϑϑϑ ∈ M(ΥΥΥ), the common value V of the shape matrices Vi is

consistently estimated (as n → ∞, under
⋃

g1
{P(n)

ϑϑϑ;g1
} and Assumptions (A1) and (B), and

without any moment assumption on g1), at the rate required by Assumption (D2), by the Tyler
estimator V̂ computed from the n data points Xij − θ̂θθi and normalized in such a way that

|V̂| = 1. Under the same conditions, the common scale σ is the median of the i.i.d. radial
distances dij(θθθi,V), so that the empirical median σ̂ of the estimated distances dij(θ̂θθi, V̂) can be
used as an estimator of σ. Consequently, the estimator

ϑ̂ϑϑ := (θ̂θθ
′

1, . . . , θ̂θθ
′

m, σ̂21′
m,1′

m ⊗ (ve
◦

ch V̂)′)′ (4.7)

satisfies (D2) above—except perhaps for the ϑ̂ϑϑII part, which however is not involved in the test
statistics below. This estimator also satisfies (D1) and (D4). As for (D3), it is a purely technical
requirement, with little practical implications (for fixed sample size, any estimator indeed can be
considered part of a locally asymptotically discrete sequence). Therefore, we henceforth assume
that (4.7) satisfies Assumption (D).

The resulting ranks R̂ij := Rij(θ̂θθ1, . . . , θ̂θθm, V̂, . . . , V̂) are usually called aligned ranks. The
following asymptotic linearity result describes the asymptotic behavior of the aligned versions

∆∆∆
˜ ϑ̂ϑϑ;K

of the rank statistics ∆∆∆
˜

ϑϑϑ;K under P
(n)
ϑϑϑ;g1

; see the appendix for the proof.
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Proposition 4.2 Assume that (A), (B), (C), and (D1)-(D3) hold, and that g1 ∈ Fa. Fix
ϑϑϑ ∈ M(ΥΥΥ) (with common values σ and V for the scale and shape parameters). Then,

∆∆∆
˜

II

ϑ̂ϑϑ;K
− ∆∆∆
˜

II
ϑϑϑ;K +

1

4σ4
Lk(K, g1) (ννν

(n)
II )−1n1/2(ϑ̂ϑϑϑϑϑϑϑϑ

(n)

II −ϑϑϑϑϑϑϑϑϑII)

and

∆∆∆
˜

III

ϑ̂ϑϑ;K
− ∆∆∆
˜

III
ϑϑϑ;K + Jk(K, g1) [Im ⊗ Hk(V)] (ννν

(n)
III )−1 n1/2(ϑ̂ϑϑϑϑϑϑϑϑ

(n)

III −ϑϑϑϑϑϑϑϑϑIII)

are oP(1) under P
(n)
ϑϑϑ;g1

, as n → ∞.

5 Optimal tests of scatter homogeneity.

5.1 Optimal rank-based tests.

For all ϑϑϑ ∈ M(ΥΥΥ) (with common values σ and V for the scale and shape parameters), define

(ΓΓΓII
ϑϑϑ;K)⊥ := (ΓΓΓII

ϑϑϑ;K)−1 − (ννν
(n)
II )−1ΥΥΥII

(
ΥΥΥ′

II(ννν
(n)
II )−1ΓΓΓII

ϑϑϑ;K(ννν
(n)
II )−1ΥΥΥII

)−1
ΥΥΥ′

II(ννν
(n)
II )−1

=
4σ4

Lk(K)

[
Im − C(n)]

and

(ΓΓΓIII
ϑϑϑ;K)⊥ := (ΓΓΓIII

ϑϑϑ;K)−1 − (ννν
(n)
III )−1ΥΥΥIII

(
ΥΥΥ′

III(ννν
(n)
III )−1ΓΓΓIII

ϑϑϑ;K(ννν
(n)
III )−1ΥΥΥIII

)−1
ΥΥΥ′

III(ννν
(n)
III )−1

= (Jk(K))−1[Im − C(n)]⊗ (Hk(V))−1,

where C(n) = (C
(n)
ij ) denotes the m×m matrix with entries C

(n)
ij := (λ

(n)
i λ

(n)
j )1/2. The K-score

version φ
˜

(n)
K of the rank-based tests we are proposing rejects H0 : ϑϑϑ ∈ M(ΥΥΥ) as soon as

Q
˜

(n)
K :=

(
∆∆∆
˜

II

ϑ̂ϑϑ;K

)′
(ΓΓΓII

ϑ̂ϑϑ;K
)⊥∆∆∆
˜

II

ϑ̂ϑϑ;K
+
(
∆∆∆
˜

III

ϑ̂ϑϑ;K

)′
(ΓΓΓIII

ϑ̂ϑϑ;K
)⊥∆∆∆
˜

III

ϑ̂ϑϑ;K

=
m∑

i,i′=1

δi,i′ − (λ
(n)
i λ

(n)
i′ )1/2

(nini′)1/2

ni∑

j=1

ni′∑

j′=1

{
1

Lk(K)

(
K

(
R̂ij

n + 1

)
− k

)(
K

(
R̂i′j′

n + 1

)
− k

)

+
k(k + 2)

2Jk(K)
K

(
R̂ij

n + 1

)
K

(
R̂i′j′

n + 1

)(
(Û′

ijÛi′j′)
2 − 1

k

)}
(5.1)

exceeds the α-upper quantile χ2
(m−1)(K+1);1−α of the chi-square distribution with (m−1)(K +1)

degrees of freedom (δi,i′ stands for the usual Kronecker symbol); the explicit form of (Hk(V))−1

allowing for (5.1) can be found in Lemma 5.2 of Hallin and Paindaveine (2006b).

In the sequel, we write φ
˜

(n)
f1

and Q
˜

(n)
f1

for φ
˜

(n)
Kf1

and Q
˜

(n)
Kf1

, respectively.

We are now ready to state the main result of this paper; for the sake of simplicity, asymptotic
powers are expressed under Assumption (B′) and perturbations τττ (n) such that limn→∞ ννν(n)τττ (n) =
ννντττ /∈ M(ΥΥΥ), with νννIIτττ II = (s2

1/
√

λ1, . . . , s
2
m/

√
λm)′ and νννIIIτττ III = ((ve

◦

ch v1)
′/
√

λ1, . . . ,
(ve

◦

chvm)′/
√

λm)′. For any such τττ and any ϑϑϑ ∈ M(ΥΥΥ) (still with common values σ2 and V

of the scale and shape parameters), let

rII
ϑϑϑ,τττ :=

1

σ4
lim

n→∞

{
(τττ

(n)
II )′

[
Im − C(n)]τττ (n)

II

}
=

∑

1≤i<i′≤m

λiλi′

σ4

(
s2
i√
λi

− s2
i′√
λi′

)2
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and

rIII
ϑϑϑ,τττ := 2k(k+2) lim

n→∞

{
(τττ

(n)
III )′

[[
Im−C(n)]⊗Hk(V)

]
τττ

(n)
III

}
=

∑

1≤i<i′≤m

λiλi′ tr
[(

V−1
( vi√

λi
− vi′√

λi′

))2]
;

recall that tr(V−1v
(n)
i ) = 0, i = 1, . . . ,m (see the comments before Proposition 4.1).

Theorem 5.1 Assume that (A), (B), (C), and (D1-D3) hold. Then,

(i) Q
˜

(n)
K is asymptotically chi-square with (m − 1)(K + 1) degrees of freedom under

⋃
ϑϑϑ∈M(ΥΥΥ)

⋃
g1∈Fa

{P(n)
ϑϑϑ;g1

}, and (provided that (B) is reinforced into (B ′)) asymptotically noncentral
chi-square, still with (m − 1)(K + 1) degrees of freedom, but with noncentrality parameter

L2
k(K, g1)

4Lk(K)
rII
ϑϑϑ,τττ +

J 2
k (K, g1)

2k(k + 2)Jk(K)
rIII
ϑϑϑ,τττ (5.2)

under P
(n)

ϑϑϑ+n−1/2ννν(n)τττ (n);g1
, ϑϑϑ ∈ M(ΥΥΥ), ννντττ := limn→∞ ννν(n)τττ (n) /∈ M(ΥΥΥ), and g1 ∈ Fa;

(ii) the sequence of tests φ
˜

(n)
K has asymptotic level α under

⋃
ϑϑϑ∈M(ΥΥΥ)

⋃
g1∈Fa

{P(n)
ϑϑϑ;g1

};

(iii) if f1 ∈ Fa and Kf1 satisfies Assumption (C), the sequence of tests φ
˜

(n)
f1

is locally and asymp-

totically most stringent, still at asymptotic level α, for
⋃

ϑϑϑ∈M(ΥΥΥ)

⋃
g1∈Fa

{P(n)
ϑϑϑ;g1

} against

alternatives of the form
⋃

ϑϑϑ/∈M(ΥΥΥ){P
(n)
ϑϑϑ;f1

}.

See the appendix for the proof.

Of course, provided that Kf1 satisfies (C), (i) holds for Q
˜

(n)
f1

with Lk(K, g1) and Jk(K, g1)

replaced, in (5.2), by Lk(f1, g1) and Jk(f1, g1), respectively. After some algebra, one obtains

Q
˜

(n)
K =

1

n

∑

1≤i<i′≤m

(ni + ni′)Q
˜

(n)
K;i,i′,

where

Q
˜

(n)
K;i,i′ =

nini′

ni + ni′

{
1

Lk(K)



 1

ni

ni∑

j=1

K

(
R̂ij

n + 1

)
− 1

ni′

ni′∑

j′=1

K

(
R̂i′j′

n + 1

)


2

(5.3)

+
k(k + 2)

2Jk(K)

∥∥∥∥∥

[
1

ni

ni∑

j=1

K

(
R̂ij

n + 1

)
vec
(
ÛijÛ

′
ij −

1

k
Ik

)]
−
[

1

ni′

ni′∑

j′=1

K

(
R̂i′j′

n + 1

)
vec
(
Ûi′j′Û

′
i′j′ −

1

k
Ik

)]∥∥∥∥∥

2}

is the test statistic obtained in the two-sample case (for populations i and i′); see Um and
Randles (1998) for a similar decomposition in MANOVA problems. Note that no estimate ϑ̂ϑϑII

of the common scale appears in the test statistics. Also, letting

S
˜

K;i :=
1

ni

ni∑

j=1

K

(
R̂ij

n + 1

)
ÛijÛ

′
ij ,
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the statistics in (5.3) take the simple form

Q
˜

(n)
K;i,i′ =

nini′

ni + ni′

{
1

Lk(K)
tr2(S

˜
K;i − S

˜
K;i′) +

k(k + 2)

2Jk(K)

[
tr
[
(S
˜

K;i − S
˜

K;i′)
2
]
− 1

k
tr2(S

˜
K;i − S

˜
K;i′)

]}

=
nini′

ni + ni′

{
k(k + 2)

2Jk(K)
tr
[
(S
˜

K;i − S
˜

K;i′)
2
]
− k

(Jk(K) − k(k + 2)
)

2Jk(K)Lk(K)
tr2(S

˜
K;i − S

˜
K;i′)

}
.

For Gaussian scores (i.e., for K = Kφ1 ; see Section 2.3), one obtains the van der Waerden
test statistics

Q
˜

(n)
vdW =

1

n

∑

1≤i<i′≤m

(ni + ni′)Q
˜

(n)
vdW;i,i′ , where Q

˜
(n)
vdW;i,i′ =

nini′

2(ni + ni′)
tr
[
(S
˜

vdW;i − S
˜

vdW;i′)
2
]

(5.4)
with S

˜
vdW;i := n−1

i

∑ni
j=1 Ψ−1

k (R̂ij/(n + 1)) ÛijÛ
′
ij . The Student scores (i.e., K = Kf t

1,ν
; see

Section 2.3) yield

Q
˜

(n)
ft
1,ν

=
1

n

∑

1≤i<i′≤m

(ni + ni′)Q
˜

(n)
f t
1,ν ;i,i′

, (5.5)

where

Q
˜

(n)

ft
1,ν ;i,i′

=
nini′

ni + ni′

k + ν + 2

2(k + ν)

{
tr
[
(S
˜

ft
1,ν ;i − S

˜
ft
1,ν ;i′)

2
]
+

1

ν
tr2(S

˜
ft
1,ν ;i − S

˜
ft
1,ν ;i′)

}

with S
˜

f t
1,ν ;i := k(k + ν)n−1

i

∑ni
j=1 G−1

k,ν(R̂ij/(n + 1))/[ν + kG−1
k,ν(R̂ij/(n + 1))] ÛijÛ

′
ij . As for the

tests associated with the usual power score functions Ka (a > 0), they are based on

Q
˜

(n)
Ka

=
1

n

∑

1≤i<i′≤m

(ni + ni′) Q
˜

(n)
Ka;i,i′ , (5.6)

where

Q
˜

(n)
Ka;i,i′ =

nini′

ni + ni′

2a + 1

2a2(a + 1)2k2

×
{
a2k(k + 2)tr

[
(S
˜

Ka;i − S
˜

Ka;i′)
2
]
− (a2k − 4a − 2) tr2(S

˜
Ka;i − S

˜
Ka;i′)

}

with S
˜

Ka;i := k(a + 1)(n + 1)−an−1
i

∑ni
j=1(R̂ij)

aÛijÛ
′
ij .

Corollary 5.1 Assume that the conditions of Theorem 5.1 hold. Then,

(i) provided that g1 ∈ Fa is such that Lk(K, g1) 6= 0 6= Jk(K, g1), φ
˜

(n)
K is consistent under any

local g1-alternative (that is, under any P
(n)

ϑϑϑ+n−1/2ννν(n)τττ (n);g1
, ϑϑϑ ∈ M(ΥΥΥ), limn→∞ ννν(n)τττ (n) /∈

M(ΥΥΥ));

(ii) the same conclusion holds if u 7→ K(u) is differentiable with derivative K ′, and if g1 ∈ Fa

is such that
∫∞
0 K ′(G̃1k(r)) r (g̃1k(r))

2dr > 0 (in particular, if K is non-decreasing).

See the appendix for the proof. This corollary shows that the van der Waerden tests above, as
well as those achieving local asymptotic stringency at prespecified Student or power-exponential
densities, are universally (locally) consistent (since the corresponding score functions are strictly
increasing). Of course, the same holds for the tests associated with the power functions Ka,
a > 0. Non-local consistency results can be obtained along the same lines as in Section 5.2 of
Hallin and Paindaveine (2006a).
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5.2 The optimal pseudo-Gaussian tests.

In this section, we introduce the pseudo-Gaussian counterpart of the rank-based tests defined

in Section 5.1. The parametric Gaussian test φ
(n)
N for H0 follows, in the same way as (4.3),

from classical results on most stringent tests in Gaussian shift experiments. Denoting by

((∆∆∆II
ϑϑϑ;N )′, (∆∆∆III

ϑϑϑ;N )′)′ := ((∆II,1
ϑϑϑ;N )′, . . . , (∆II,m

ϑϑϑ;N )′, (∆∆∆III,1
ϑϑϑ;N )′, . . . , (∆∆∆III,m

ϑϑϑ;N )′)′ the scale and shape com-

ponents of the Gaussian central sequence, where (still with dij := dij(θθθi,Vi); see Section 2.3 for
the definition of ak)

∆II,i
ϑϑϑ;N =

n
−1/2
i

2σ2
i

ni∑

j=1

(
ak

d2
ij

σ2
i

− k

)
and ∆∆∆III,i

ϑϑϑ;N =
akn

−1/2
i

2σ2
i

Mk(Vi)
(
V⊗2

i

)−1/2
ni∑

j=1

d2
ijvec

(
UijU

′
ij

)
,

i = 1, . . . ,m, this parametric Gaussian test is based on a quadratic test statistic of the form

Q
(n)
N :=

(
∆∆∆II

ϑ̂ϑϑ;N

)′
(ΓΓΓII

ϑ̂ϑϑ;N
)⊥∆∆∆II

ϑ̂ϑϑ;N
+
(
∆∆∆III

ϑ̂ϑϑ;N

)′
(ΓΓΓIII

ϑ̂ϑϑ;N
)⊥∆∆∆III

ϑ̂ϑϑ;N
, (5.7)

computed at a sequence of estimators ϑ̂ϑϑ satisfying Assumptions (D1)-(D3), where, for any ϑϑϑ ∈
M(ΥΥΥ) (still with common values σ2 and V of the scale and shape parameters), we let

(ΓΓΓII
ϑϑϑ;N )⊥ :=

2σ4

k
[Im − C(n)] and (ΓΓΓIII

ϑϑϑ;N )⊥ := (k(k + 2))−1[Im − C(n)] ⊗ (Hk(V))−1.

Turning this Gaussian test φ
(n)
N into a pseudo-Gaussian one φ

(n)
N∗ will be possible under the

existence of finite fourth-order moments only. This requirement, under P
(n)
ϑϑϑ;g1

, is satisfied iff

Ek(g1) := σ−4
i Eϑϑϑ;g1

[d4
ij(θθθi,Vi)] =

∫ 1
0 (G̃−1

1k (u))4du is finite, that is, iff

g1 ∈ F (4)
a :=

{
g1 ∈ Fa :

∫ ∞

0
rk+3g1(r) dr < ∞

}
;

for all g1 ∈ F (4)
a , let Dk(g1) := σ−2

i Eg1[d
2
ij(θθθi,Vi)] =

∫ 1
0 (G̃−1

1k (u))2du. For Gaussian densities

(g1 = φ1), one easily obtains Ek(φ1) = a−2
k k(k + 2) and Dk(φ1) = a−1

k k.

The problem with φ
(n)
N under non-Gaussian densities g1 is that, whereas ∆∆∆III,i

ϑϑϑ;N remains cor-

rectly centered under any P
(n)
ϑϑϑ;g1

, the expectation of ∆∆∆II,i
ϑϑϑ;N under non-Gaussian g1 is not zero

anymore, which induces for ∆∆∆II

ϑ̂ϑϑ;N
the same type of shift as a perturbation of the σi’s. To

remedy this, define, for g1 ∈ F (4)
a ,

T II,i
ϑϑϑ;g1

:= ∆∆∆II,i
ϑϑϑ;N −Eϑϑϑ;g1

[
∆∆∆II,i

ϑϑϑ;N

]
=

akn
−1/2
i

2σ2
i

ni∑

j=1

(
d2

ij

σ2
i

−Dk(g1)

)
and T

III,i
ϑϑϑ;g1

:= ∆∆∆III,i
ϑϑϑ;N , i = 1, . . . ,m.

Since g1 in practice remains unspecified, the T II,i
ϑϑϑ;g1

’s cannot be computed from the data; this
however will be taken care of later on. The asymptotic distribution, under H0 and local alter-
natives, of Tϑϑϑ;g1

:= ((TII
ϑϑϑ;g1

)′, (TIII
ϑϑϑ;g1

)′)′ := (T II,1
ϑϑϑ;g1

, . . . , T II,m
ϑϑϑ;g1

, (TIII,1
ϑϑϑ;g1

)′, . . . , (TIII,m
ϑϑϑ;g1

)′)′, is provided
in the following lemma (see the appendix for the proof).

Lemma 5.1 Assume that (A) and (B) hold, and that g1 ∈ F (4)
a . Fix ϑϑϑ ∈ M(ΥΥΥ) (with common

values σ2 and V for the scale and shape parameters, respectively). Then, letting Ck(g1) :=
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σ−4
i Varϑϑϑ;g1

[d2
ij(θθθi,Vi)] = Ek(g1) − D2

k(g1), Tϑϑϑ;g1
is asymptotically normal with mean zero and

mean 


ak
2σ4 Dk(g1)τττ II

ak(k + 2)Dk(g1)
[
Im ⊗ Hk(V)

]
τττ III




under P
(n)
ϑϑϑ;g1

and P
(n)

ϑϑϑ+n−1/2ννν(n)τττ ;g1
, respectively, and covariance matrix

ΓΓΓN
ϑϑϑ;g1

:=

(
ΓΓΓN ,II

ϑϑϑ;g1
0

0 ΓΓΓN ,III
ϑϑϑ;g1

)
:=

(
a2

k
4σ4 Ck(g1) Im 0

0 a2
kEk(g1)

[
Im ⊗ Hk(V)

]
)

under both.

Note that, under Gaussian g1, Tϑϑϑ;g1
coincides with the Gaussian central sequence ∆∆∆ϑϑϑ;N ,

and ΓΓΓN
ϑϑϑ;g1

with the Gaussian information matrix ΓΓΓϑϑϑ;N .
The effect on Tϑϑϑ;g1

of a non-specification of ϑϑϑ is dealt with in a similar way as for the
rank-based statistics in Section 5.1. More precisely, the following parametric Gaussian analog
of Proposition 4.2 can be established (the proof follows along the same lines and is omitted).

Proposition 5.1 Assume that (A), (B), (D2), and (D3) hold, and that g1 ∈ F (4)
a . Fix ϑϑϑ ∈

M(ΥΥΥ) (with common values σ2 and V of the scale and shape parameters, respectively). Then,

TII

ϑ̂ϑϑ;g1
− TII

ϑϑϑ;g1
+

ak

2σ4
Dk(g1) (ννν

(n)
II )−1n1/2(ϑ̂ϑϑϑϑϑϑϑϑ

(n)

II −ϑϑϑϑϑϑϑϑϑII)

and

TIII

ϑ̂ϑϑ;g1
− TIII

ϑϑϑ;g1
+ ak(k + 2)Dk(g1)

[
Im ⊗ Hk(V)

]
(ννν

(n)
III )−1 n1/2(ϑ̂ϑϑϑϑϑϑϑϑ

(n)

III −ϑϑϑϑϑϑϑϑϑIII)

are oP(1) under P
(n)
ϑϑϑ;g1

, as n → ∞.

Under P
(n)
ϑϑϑ;g1

, with ϑϑϑ ∈ M(ΥΥΥ) and g1 ∈ F (4)
a , the pooled regular covariance matrix S :=

1
n

∑m
i=1

∑ni
j=1(Xij −X̄i)(Xij −X̄i)

′ is a root-n consistent estimator of k−1Dk(g1)σ
2V, and there-

fore

ϑ̂ϑϑ
(n)

g1
:= (X̄′

1, . . . , X̄
′
m, k(Dk(g1))

−1|S|1/k1′
m,1′

m ⊗ (ve
◦

ch (S/|S|1/k))′)′ (5.8)

is an estimator satisfying (after due discretization) Assumptions (D1)-(D3), so that Proposi-

tion 5.1, under P
(n)
ϑϑϑ;g1

, applies.

Replacing ∆∆∆
ϑ̂ϑϑ;N

with T
ϑ̂ϑϑg1 ;g1

and ΓΓΓ
ϑ̂ϑϑ;N

with ΓΓΓN
ϑ̂ϑϑg1 ;g1

in the Gaussian test statistic (5.7) yields

Q
(n)
N ,g1

:=
(
TII

ϑ̂ϑϑg1 ;g1

)′
(ΓΓΓN ,II

ϑ̂ϑϑg1 ;g1
)⊥ TII

ϑ̂ϑϑg1 ;g1
+
(
TIII

ϑ̂ϑϑg1 ;g1

)′
(ΓΓΓN ,III

ϑ̂ϑϑg1 ;g1
)⊥ TIII

ϑ̂ϑϑg1 ;g1
,

where (σ2 and V still stand for the common null values of the scale and shape parameters
under ϑϑϑ)

(ΓΓΓN ,II
ϑϑϑ;g1

)⊥ =
4σ4

a2
kCk(g1)

[Im −C(n)] and (ΓΓΓN ,III
ϑϑϑ;g1

)⊥ = (a2
kEk(g1))

−1[Im − C(n)] ⊗ (Hk(V))−1.

Writing d̂ij , Ûij , and σ̂2
g1

for the quantities

d̂ij := dij(X̄i,S/|S|1/k), Ûij := Uij(X̄i,S/|S|1/k), and σ̂2
g1

:= k(Dk(g1))
−1|S|1/k
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computed from ϑ̂ϑϑg1 given in (5.8), Q
(n)
N ,g1

can be reformulated as

Q
(n)
N ,g1

=
m∑

i,i′=1

δi,i′ − (λ
(n)
i λ

(n)
j )1/2

(nini′)1/2

ni∑

j=1

ni′∑

j′=1

{
1

Ck(g1)

(
d̂2

ij

σ̂2
g1

− Dk(g1)

)( d̂2
i′j′

σ̂2
g1

− Dk(g1)

)

+
k(k + 2)

2Ek(g1)

d̂2
ij d̂

2
i′j′

σ̂4
g1

(
(Û′

ijÛi′j′)
2 − 1

k

)}
,

or

Q
(n)
N ,g1

=
1

n

∑

1≤i<i′≤m

(ni + ni′)Q
(n)
N ,g1;i,i′

, (5.9)

with

Q
(n)
N ,g1;i,i′

=
nini′

(ni + ni′)

1

σ̂4
g1

{
1

Ck(g1)

[(
1

ni

ni∑

j=1

d̂2
ij

)
−
(

1

ni′

ni′∑

j′=1

d̂2
i′j′

)]2

+
k(k + 2)

2Ek(g1)

∥∥∥∥∥

[
1

ni

ni∑

j=1

d̂2
ijvec

(
ÛijÛ

′
ij −

1

k
Ik

)]
−
[

1

ni′

ni′∑

j′=1

d̂2
i′j′vec

(
Ûi′j′Û

′
i′j′ −

1

k
Ik

) ]∥∥∥∥∥

2}
.

In terms of the intragroup covariance matrices Si := 1
ni

∑ni
j=1(Xij − X̄i)(Xij − X̄i)

′, this can still
be written as

Q
(n)
N ,g1;i,i′

=
nini′

(ni + ni′)

D2
k(g1)

k2

{
1

Ck(g1)
tr2 (S−1(Si − Si′))

+
k(k + 2)

2Ek(g1)

[
tr
[
(S−1(Si − Si′))

2
]
− 1

k
tr2 (S−1(Si − Si′))

]}

=
nini′

ni + ni′

1

2(1 + κk(g1))

{
tr
[
(S−1(Si − Si′))

2
]
− κk(g1)

(k + 2)κk(g1) + 2
tr2 (S−1(Si − Si′))

}
,

where κk(g1) := kEk(g1)/((k+2)D2
k(g1))−1 is the kurtosis common to the m elliptic populations

under P
(n)
ϑϑϑ;g1

(see, e.g., page 54 of Anderson 2003). Note that, at the multinormal case (g1 = φ1),
this reduces to

Q
(n)
N ,φ1

=
1

n

∑

1≤i<i′≤m

(ni + ni′)Q
(n)
N ,φ1;i,i′

, with Q
(n)
N ,φ1:i,i′

=
nini′

2(ni + ni′)
tr
[
(S−1(Si − Si′))

2
]
,

(5.10)
which coincides with Q

(n)
N in (5.7) provided that ϑ̂ϑϑ := ϑ̂ϑϑg1 (see (5.8)).

Clearly, in order to obtain a genuine test statistic Q
(n)
N∗ (that is, a statistic that does not

depend on g1 anymore) which nevertheless, under any P
(n)
ϑϑϑ;g1

(with g1 ∈ F (4)
a ), is asymptotically

equivalent to Q
(n)
N ,g1

, it is sufficient to replace κk(g1) with a consistent (still under P
(n)
ϑϑϑ;g1

, g1 ∈ F (4)
a )

estimator. An obvious choice is

κ̂k :=
k

(k + 2)

(
n−1∑m

i=1

∑ni
j=1 d̂4

ij

)

(
n−1

∑m
i=1

∑ni
j=1 d̂2

ij

)2 − 1.
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The resulting pseudo-Gaussian test φ
(n)
N∗ then rejects the null hypothesis (at asymptotic level α)

as soon as

Q
(n)
N∗ =

1

n

∑

1≤i<i′≤m

(ni + ni′)Q
(n)
N∗;i,i′ > χ2

(m−1)(K+1);1−α (5.11)

where, with S and Si, i = 1, . . . ,m as above,

Q
(n)
N∗;i,i′ :=

nini′

ni + ni′

1

2(1 + κ̂k)

{
tr
[
(S−1(Si − Si′))

2
]
− κ̂k

(k + 2)κ̂k + 2
tr2 (S−1(Si − Si′))

}
.

This test statistic is clearly affine-invariant; the following theorem summarizes its asymptotic
properties (see the appendix for the proof).

Theorem 5.2 Assume that (A) and (B) hold. Then,

(i) Q
(n)
N∗ is asymptotically chi-square with (m − 1)(K + 1) degrees of freedom under

⋃
ϑϑϑ∈M(ΥΥΥ)⋃

g1∈F
(4)
a

{P(n)
ϑϑϑ;g1

}, and (provided that (B) is reinforced into (B ′)) asymptotically noncentral

chi-square, still with (m − 1)(K + 1) degrees of freedom but with noncentrality parameter

k

(k + 2)κk(g1) + 2
rII
ϑϑϑ,τττ +

1

2(1 + κk(g1))
rIII
ϑϑϑ,τττ (5.12)

under P
(n)

ϑϑϑ+n−1/2ννν(n)τττ (n);g1
, with ϑϑϑ ∈ M(ΥΥΥ), ννντττ := limn→∞ ννν(n)τττ (n) /∈ M(ΥΥΥ)), and g1 ∈ F (4)

a ;

(ii) the sequence of tests φ
(n)
N∗ has asymptotic level α under

⋃
ϑϑϑ∈M(ΥΥΥ)

⋃
g1∈F

(4)
a

{P(n)
ϑϑϑ;g1

};

(iii) the pseudo-Gaussian tests φ
(n)
N∗ are asymptotically equivalent, under

⋃
ϑϑϑ∈M(ΥΥΥ){P

(n)
ϑϑϑ;φ1

} and

under contiguous alternatives, to the optimal parametric Gaussian tests φ
(n)
N based on (5.7);

hence, the sequence φ
(n)
N∗ is locally and asymptotically most stringent, still at asymptotic

level α, for
⋃

ϑϑϑ∈M(ΥΥΥ)

⋃
g1∈F

(4)
a

{P(n)
ϑϑϑ;g1

} against alternatives of the form
⋃

ϑϑϑ/∈M(ΥΥΥ){P
(n)
ϑϑϑ;φ1

}.

We conclude this section by showing that the pseudo-Gaussian test φ
(n)
N∗ is essentially the ro-

bustified Schott test based on (1.5). Indeed, since
m∑

i=1

λ̇
(n)
i tr

[
(ṠiṠ

−1)2
]
=

m∑

i,i′=1

λ̇
(n)
i λ̇

(n)
i′ tr

[
(ṠiṠ

−1)2
]
,

we obtain

Q
(n)
Schott =

ṅ

2

∑

1≤i6=i′≤m

λ̇
(n)
i λ̇

(n)
i′

[
tr
[
(ṠiṠ

−1)2
]−tr(ṠiṠ

−1Ṡi′Ṡ
−1)
]

=
ṅ

2

∑

1≤i<i′≤m

λ̇
(n)
i λ̇

(n)
i′ tr

[
(Ṡ−1(Ṡi−Ṡi′))

2
]
.

Working along exactly the same lines yields

ṅ

2

[ m∑

i=1

λ̇
(n)
i tr2 (ṠiṠ

−1)−
m∑

i,i′=1

λ̇
(n)
i λ̇

(n)
i′ tr(ṠiṠ

−1)tr (Ṡi′ Ṡ
−1)
]

=
ṅ

2

∑

1≤i<i′≤m

λ̇
(n)
i λ̇

(n)
i′ tr2 (Ṡ−1(Ṡi−Ṡi′)).

Hence, Q
(n)
Schott∗ =

1

ṅ

∑

1≤i<i′≤m

(ṅi + ṅi′)Q
(n)
Schott;i,i′ , where

Q
(n)
Schott;i,i′ :=

ṅiṅi′

ṅi + ṅi′

1

2(1 + κ̂k)

{
tr
[
(Ṡ−1(Ṡi − Ṡi′))

2
]
− κ̂k

(k + 2)κ̂k + 2
tr2 (S−1(Si − Si′))

}
.
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Comparing with (5.11), this clearly relates our pseudo-Gaussian test φ
(n)
N∗ to Schott’s test φ

(n)
Schott∗

based on Q
(n)
Schott∗ in the same way the LRT is related to the MLRT, that is, by replacing ni, n,

Si, and S by ṅi, ṅ, Ṡi, and Ṡ, respectively—a replacement which obviously has no impact on
asymptotics. Therefore, Theorem 5.2 also holds for Schott’s test; this not only establishes the
exact optimality properties of the latter, but also provides its local powers (such results do not
follow from Schott’s original derivation).

5.3 Links with existing Gaussian tests.

In the previous section, we have derived optimal Gaussian and pseudo-Gaussian tests, and shown

that our pseudo-Gaussian test φ
(n)
N∗ essentially coincides with Schott’s modified test φ

(n)
Schott∗. The

relation to other Gaussian tests in the literature is less obvious; in this section, we investigate
the behavior under non-Gaussian elliptical densities of the LRT/MLRT tests based on −2 log Λ

and −2 log Λ⋆ (see (1.1) and (1.2), respectively), the Schott unrobustified test based on Q
(n)
Schott

(see (1.4)), the Gaussian (“non-pseudo” or “unrobustified”) most stringent test φ
(n)
N based on

Q
(n)
N = Q

(n)
N ,φ1

(see (5.10)), and the Nagao (1973) test—another popular Gaussian method. The
latter is based on a result by Sugiura (1969) stating that, under Gaussian assumptions, as
n → ∞,

n−1/2
(
− 2 log Λ∗ + 2 log

∏m
i=1 |ΣΣΣ0i|ni/2

|ΣΣΣ0|n/2

)
L→ N

(
0, 2

m∑

i=1

λi tr
[
(ΣΣΣ0iΣΣΣ

−1
0 − Ik)

2]) (5.13)

where ΣΣΣ0i := Var[Xij ], i = 1, . . . ,m and ΣΣΣ0 :=
∑m

i=1 λi ΣΣΣ0i (throughout this section, the quan-

tities λ
(n)
i and λi are as in Assumption (B′); the notation Ṡi and Ṡ is used as in Section 5.2).

The Nagao (1973) test then rejects the null hypothesis for large values of

Q
(n)
Nagao :=

1

2

m∑

i=1

ṅi tr
[
(ṠiṠ

−1 − Ik)
2
]
.

The following result establishes the asymptotic equivalence, under Gaussian assumptions, of all
these statistics with the optimal Gaussian statistic (which entails their optimality in the Le
Cam sense at the multinormal), and explains why none of them qualifies as a pseudo-Gaussian
procedure. The proof is given in the appendix; Part (ii) actually is a direct consequence of
Part (i) and a more general result by Yanagihara et al. (2005).

Proposition 5.2 (i) Under any null distribution with finite fourth-order moments, −2 log Λ,

−2 log Λ⋆, Q
(n)
Schott, and Q

(n)
Nagao all are asymptotically equivalent to the Gaussian most stringent

test statistics Q
(n)
N ,φ1

(hence inherit the optimality properties of the latter). (ii) For any g1 ∈ F (4)
a ,

the asymptotic distribution, under
⋃

ϑϑϑ∈M(ΥΥΥ){P
(n)
ϑϑϑ;g1

}, of these test statistics is that of

(1 + κk)

{[
1 +

kκk(g1)

2(1 + κk(g1))

]
Y1 + Y2

}
, (5.14)

where Y1 and Y2 are independent chi-square random variables, with m−1 and (m−1)K degrees
of freedom, respectively.

Clearly, (5.14) does not yield a chi-square distribution unless κk(g1) = 0, that is, when g1

has Gaussian kurtosis.
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6 Asymptotic relative efficiencies.

The asymptotic relative efficiencies of the rank-based tests φ
˜

(n)
K with respect to their Gaussian

counterparts φ
(n)
N∗ (equivalently, with respect to Schott’s tests based on Q

(n)
Schott∗) directly follow

as the ratios of the noncentrality parameters in the asymptotic distributions of the various test
statistics under local alternatives (see Theorems 5.1 and 5.2).

Proposition 6.1 Assume that (A), (B ′), (C), and (D) hold, and that g1 ∈ F (4)
a . Then, the

asymptotic relative efficiency of φ
˜

(n)
K with respect to the pseudo-Gaussian test φ

(n)
N∗, when testing

P
(n)
ϑϑϑ;g1

against P
(n)

ϑϑϑ+n−1/2ννν(n)τττ (n);g1
(with ϑϑϑ ∈ M(ΥΥΥ) and ννντττ := limn→∞ ννν(n)τττ (n) /∈ M(ΥΥΥ)), is

AREϑϑϑ,τττ,k,g1
(φ
˜

(n)
K /φ

(n)
N∗) = (1 − ξ)ARE

(scale)
k,g1

(φ
˜

(n)
K /φ

(n)
N∗) + ξ ARE

(shape)
k,g1

(φ
˜

(n)
K /φ

(n)
N∗), (6.1)

where

ARE
(scale)
k,g1

(φ
˜

(n)
K /φ

(n)
N∗) :=

((k + 2)κk(g1) + 2)L2
k(K, g1)

4kLk(K)
, (6.2)

ARE
(shape)
k,g1

(φ
˜

(n)
K /φ

(n)
N∗) :=

(1 + κk(g1))J 2
k (K, g1)

k(k + 2)Jk(K)
, (6.3)

and ξ := ξϑϑϑ,τττ ,k,g1
:= ((k + 2)κk(g1)+ 2)rIII

ϑϑϑ,τττ/[2k(1+ κk(g1))r
II
ϑϑϑ,τττ + ((k + 2)κk(g1)+ 2)rIII

ϑϑϑ,τττ ] ∈ [0, 1].

The “shape AREs” in (6.3) do coincide with those obtained in problems involving shape
only—for instance, testing null hypotheses of the form H0 : V = V0 for some fixed V0 (see
Hallin and Paindaveine 2006a). Proposition 6.1 shows that the AREs, with respect to the
pseudo-Gaussian tests of Section 5.2, of the rank tests proposed in Section 5.1 are convex linear
combinations of these “shape AREs” and the “scale AREs” in (6.2).

Numerical values of (6.2) and (6.3), for various values of the space dimension k and various
radial densities (Student, Gaussian, and power-exponential), are given in Table 1 for the van der

Waerden test φ
˜

(n)
vdW, the Wilcoxon test φ

˜
(n)
K1

, and the Spearman test φ
˜

(n)
K2

(the score functions Ka,

a > 0 were defined in Section 2.3). These ARE values are uniformly large (with the exception,
possibly, of univariate scale Wilcoxon AREs), particularly so under heavy tails, as often in
rank-based inference.

Also note that the AREs of the proposed van der Waerden tests with respect to the para-
metric Gaussian tests are larger than or equal to one for all distributions considered in Table 1.
For pure shape alternatives, Paindaveine (2006a) has shown that a Chernoff-Savage property

holds, that is, infg1 ARE
(shape)
k,g1

(φ
˜

(n)
vdW/φ

(n)
N∗) = 1.One may wonder whether this uniform domi-

nance property of van der Waerden tests extends to the present situation. Although it does for
all usual distributions, including all Student and power-exponential ones, the general answer un-
fortunately is negative; see Section 4 of Paindaveine 2006a for a (pathological) counterexample.

7 Simulations.

We conducted two simulations, one for pure scale alternatives and another one for pure shape
alternatives, both in dimension k = 2. More precisely, starting from two sets of i.i.d. bivariate
random vectors εεε1j (j = 1, . . . , n1 = 100) and εεε2j (j = 1, . . . , n2 = 100) with spherical densities
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(the standard bivariate normal and bivariate t-distributions with .5, 2, and 5 degrees of freedom,
respectively) centered at 0, we considered independent samples obtained from

X1j = A1εεε1j + θθθ1, j = 1, . . . , n1, and X2j = A2,m εεε2j + θθθ2, j = 1, . . . , n2,

where A2,mA′
2,m = (1 + ms2)(A1A

′
1 + mv) (v a symmetric (k × k) matrix with tr(v) = 0),

m = 0, 1, 2, 3. The values of m allow to produce distributions under the null (m = 0) and
increasingly heterogeneous alternatives (m = 1, 2, 3); all tests being affine-invariant, there is no
loss of generality in letting A1 = I2 and θθθ1 = θθθ2 = 0.

In the first simulation (pure scale alternatives), we generated N = 2, 500 independent sam-
ples, with v = 0 and s2 = .30, .44, .56, and 1.50 under Gaussian, t5, t2, and t0.5 alternatives,
respectively; these values of s2 have been chosen in order to obtain rejection probabilities of the
same order under those various densities. In the second simulation (pure shape alternatives), we
similarly generated N = 2, 500 independent samples, with s2 = 0 and ve

◦

ch v = (0, .18)′, (0, .20)′,
(0, .21)′, and (0, .22)′ under Gaussian, t5, t2, and t0.5 alternatives, respectively, still with the
same objective of obtaining comparable powers under the various densities considered.

In each of these samples, we performed the following nine tests (all at asymptotic level
α = 5%): (a) the Gaussian LRT φLRT based on (1.1); (b) its modified version φMLRT based
on (1.2); (c) the parametric Gaussian test φN based on (5.10) (equivalently, Schott’s original
test φSchott, based on (1.4)); (d) its pseudo-Gaussian version φN∗, based on (5.11) (equivalently,
the robustified Schott test φSchott∗, based on (1.5)); (e) the van der Waerden test φ

˜
vdW (based

on (5.4)); (f)-(h) tν-score tests φ
˜

ft
1,ν

with ν = 5, 2, and .5 (based on (5.5)), as well as (i) the

Spearman test (based on Q
˜

K2 in (5.6)). It can be checked that the Wilcoxon test Q
˜

K1, in this
bivariate case, coincides with φ

˜
ft
1,2

.

Rejection frequencies are reported in Table 2 for pure scale alternatives, and in Table 3
for pure shape alternatives. The corresponding individual confidence intervals (for N = 2, 500
replications), at confidence level .95, have half-widths .0044, .0080, and .0100, for frequencies of
the order of .05 (.95), .20 (.80), and .50, respectively.

A glance at Tables 2 and 3 indicates that the rank tests, when based on their asymptotic chi-
square critical values, are conservative and significantly biased at this moderate sample size (100
observations in each group). In order to remedy this, we also implemented bias-corrected versions
of each of the rank procedures, by estimating the (distribution-free) quantile of the test statistic
under known location θ and known common null value of the shape. These quantiles, just as
the asymptotic chi-square quantile, are consistent approximations of the corresponding exact
quantiles under the null. They were obtained, for each of the five rank tests under consideration
in (e)-(i) above, as the empirical 0.05-upper quantiles q.95 of the corresponding rank-based test
statistics in a collection of 105 simulated multinormal samples, yielding q.95 = 7.2117, 7.6351,
7.7473, 7.7636, and 7.6773, respectively. These bias-corrected critical values all are smaller than
the corresponding asymptotic chi-square one (three degrees of freedom) χ2

3;.95 = 7.8147. The
resulting tests therefore are uniformly less conservative than the original ones. The corresponding
rejection frequencies are given in parentheses in Tables 2 and 3.

Inspection of Tables 2 and 3 confirms the fact that the parametric Gaussian tests φN , con-
trary to the pseudo-Gaussian ones φN∗, are invalid under non-Gaussian densities (culminating,
under t0.5, with a size of .9992). However, even the pseudo-Gaussian tests φN∗, though resisting
non-Gaussian densities with finite fourth-order moments, are collapsing under the heavy-tailed
t0.5 and t2 distributions (with power less than 10−4 under t0.5). In sharp contrast with this, all
rank-based tests appear to satisfy the 5% probability level constraint. They are conservative
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in their original versions (particularly so for van der Waerden scores), but seem to be reason-
ably unbiased (for sample sizes n1 = n2 = 100) after bias-correction: maximal bias-corrected
size we obtain is 0.0616 for φ

˜
ft
1,.5

under the very heavy tailed t0.5). Empirical power rankings

are essentially consistent with the corresponding ARE values; in order to allow for meaningful
comparisons also under infinite fourth-order moments,we also provide AREs with respect to the
van der Waerden rank test.

A Appendix.

A.1 Proofs of Lemma 4.1, Theorem 5.1, and Corollary 5.1.

Proof of Lemma 4.1. (i) Fix r ∈ {1, . . . ,m}. Clearly, ∆
˜

II,r
ϑϑϑ;K = ∆II,r

ϑϑϑ;K;g1
+ oL2(1) under P

(n)
ϑϑϑ;g1

iff
m∑

i=1

ni∑

j=1

c
(n)
ij;r K

(
Rij

n + 1

)
=

m∑

i=1

ni∑

j=1

c
(n)
ij;r K

(
G̃1k

(
dij

σ

))
+ oL2(1), (A.1)

under P
(n)
ϑϑϑ;g1

, where c
(n)
ij;r := n

−1/2
i δi,r. For ϑϑϑ ∈ M(ΥΥΥ), the Rij’s are the ranks of the dij/σ’s,

which under P
(n)
ϑϑϑ;g1

are i.i.d. with distribution function G̃1k. The asymptotic equivalence (A.1)
thus follows from Hájek’s classical projection result for linear rank statistics (see, e.g., Puri and

Sen 1985, Chapter 2), since (a) the c
(n)
ij;r’s are not all equal and (b) the Noether condition

maxi,j

(
c
(n)
ij;r − n−1 ∑

i,j c
(n)
ij;r

)2
∑

i,j

(
c
(n)
ij;r − n−1

∑
i,j c

(n)
ij;r

)2 = n−1 max
( 1 − λ

(n)
r

λ
(n)
r

,
λ

(n)
r

1 − λ
(n)
r

)
= o(1), as n → ∞

holds (see the comments after Assumption (B)).

Similarly, for the shape part, ∆∆∆
˜

III,r
ϑϑϑ;K = ∆∆∆III,r

ϑϑϑ;K;g1
+ oL2(1) under P

(n)
ϑϑϑ;g1

iff

n−1/2
r Mk(V)

(
V⊗2

)−1/2
nr∑

j=1

[
K

(
Rrj

n + 1

)
− K

(
G̃1k

(
drj

σ

))]
J⊥

k vec
(
UrjU

′
rj

)
= oL2(1)

(where J⊥
k := Ik2 − 1

kJk satisfies Mk(V)(V⊗2)−1/2J⊥
k = Mk(V)(V⊗2)−1/2 and is such that

J⊥
k vec(UrjU

′
rj) is exactly centered), or equivalently iff, for all ℓ ∈ {1, 2, . . . , k2},

T
(n)
r;l :=

m∑

i=1

ni∑

j=1

c
(n)
ij;r

[
K

(
Rij

n + 1

)
− K

(
G̃1k

(
dij

σ

))][
J⊥

k vec
(
UijU

′
ij

) ]

ℓ
= oL2(1), (A.2)

still under P
(n)
ϑϑϑ;g1

. Now,

E

[(
T

(n)
r;ℓ

)2
]

= Cℓ,k

m∑

i=1

ni∑

j=1

(
c
(n)
ij;r

)2
E

[(
K

(
Ri

n + 1

)
− K

(
G̃1k

(
di

σ

)))2
]

where, denoting by Uij,s the sth component of Uij , Cℓ,k = Var[U2
11,1] = 2(k − 1)/(k2(k + 2)) for

ℓ ∈ Lk := {mk + m + 1, m = 0, 1, . . . , k − 1} and Cℓ,k = Var [U11,1U11,2] = 1/k2 for ℓ /∈ Lk.
Here, the Hájek projection result for linear signed rank statistics (see, e.g., Puri and Sen 1985,

Chapter 3) yields (A.2), since maxi,j
(
c
(n)
ij;r

)2
/
∑

i,j

(
c
(n)
ij;r

)2
= n−1

r = o(1), as n → ∞.
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As for (ii), the result straightforwardly follows, under P
(n)
ϑϑϑ;g1

with ϑϑϑ ∈ M(ΥΥΥ), from the
multivariate CLT. The result under local alternatives is obtained as usual, by establishing the

joint normality under P
(n)
ϑϑϑ;g1

of ∆∆∆ϑϑϑ;K;g1
and Λ

(n)

ϑϑϑ+n−1/2ννν(n)τττ/ϑϑϑ;g1
, then applying Le Cam’s third

Lemma; the required joint normality follows from a routine application of the classical Cramér-
Wold device. �

Proof of Theorem 5.1. (i) Using successively the continuity of the mapping ϑϑϑ 7→ ΓΓΓϑϑϑ;K ,

Proposition 4.2 (jointly with Assumption (D1) and the fact that [Im − C(n)](ΛΛΛ(n))−11m = 0),
and Lemma 4.1(i), we obtain that

Q
˜

(n)
K =

(
∆∆∆
˜

II
ϑϑϑ;K

)′
(ΓΓΓII

ϑϑϑ;K)⊥ ∆∆∆
˜

II
ϑϑϑ;K +

(
∆∆∆
˜

III
ϑϑϑ;K

)′
(ΓΓΓIII

ϑϑϑ;K)⊥ ∆∆∆
˜

III
ϑϑϑ;K + oP(1)

=
(
∆∆∆II

ϑϑϑ;K;g1

)′
(ΓΓΓII

ϑϑϑ;K)⊥∆∆∆II
ϑϑϑ;K;g1

+
(
∆∆∆III

ϑϑϑ;K;g1

)′
(ΓΓΓIII

ϑϑϑ;K)⊥ ∆∆∆III
ϑϑϑ;K;g1

+ oP(1) (A.3)

under P
(n)
ϑϑϑ;g1

, ϑϑϑ ∈ M(ΥΥΥ) (and therefore, also under the contiguous sequence P
(n)

ϑϑϑ+n−1/2ννν(n)τττ (n);g1
).

Now, since (ΓΓΓII
ϑϑϑ;K)1/2 (ΓΓΓII

ϑϑϑ;K)⊥(ΓΓΓII
ϑϑϑ;K)1/2 is a symmetric idempotent matrix with rank m−1, it

follows from Lemma 4.1(ii) that the first term in (A.3) is asymptotically chi-square with m − 1

degrees of freedom under P
(n)
ϑϑϑ;g1

, ϑϑϑ ∈ M(ΥΥΥ), and asymptotically noncentral chi-square, still with
m − 1 degrees of freedom, but with noncentrality parameter

(Lk(K, g1)

4σ4

)2

lim
n→∞

{
(τττ

(n)
II )′(ΓΓΓII

ϑϑϑ;K)⊥ τττ
(n)
II

}
(A.4)

under P
(n)

ϑϑϑ+n−1/2ννν(n)τττ (n);g1
. Evaluation of the limit in (A.4) yields the first term in (5.2).

As for the shape part, using again Lemma 4.1(ii) and the fact that (ΓΓΓIII
ϑϑϑ;K)1/2 (ΓΓΓIII

ϑϑϑ;K)⊥(ΓΓΓIII
ϑϑϑ;K)1/2

is symmetric and idempotent with rank K(m − 1), we obtain similarly that the second term

in (A.3) is asymptotically chi-square with K(m− 1) degrees of freedom under P
(n)
ϑϑϑ;g1

, ϑϑϑ ∈ M(ΥΥΥ),
and asymptotically noncentral chi-square, still with K(m − 1) degrees of freedom but with
noncentrality parameter

(Jk(K, g1)
)2

lim
n→∞

{
(τττ

(n)
III )′[Im ⊗ Hk(V)](ΓΓΓIII

ϑϑϑ;K)⊥[Im ⊗ Hk(V)]τττ
(n)
III

}
(A.5)

under P
(n)

ϑϑϑ+n−1/2ννν(n)τττ (n);g1
. Evaluation of the limit in (A.5) yields the second term in (5.2). As the

two terms in (A.3) are asymptotically uncorrelated (see Lemma 4.1(ii) again), they can indeed
be treated separately.

(ii) The fact that φ
˜

(n)
K has asymptotic level α directly follows from the asymptotic null

distribution in part (i) and the classical Helly-Bray theorem.
(iii) Optimality is a consequence of the asymptotic equivalence (A.3), under g1 = f1 satisfying

Assumption (A2), of Q
˜

(n)
f1

and the locally asymptotically optimal test statistic QΥΥΥ, as described

in (4.3). �

Proof of Corollary 5.1. (i) Fix g1 ∈ Fa, with Lk(K, g1) 6= 0 6= Jk(K, g1). Clearly, φ
˜

(n)
K is

consistent under P
(n)

ϑϑϑ+n−1/2ννν(n)τττ (n);g1
, ϑϑϑ ∈ M(ΥΥΥ) iff the corresponding non-centrality parameter

in (5.2) is non-zero. Assume the latter is zero. Then, the assumptions on g1 imply that s2
i /
√

λi =
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s2
i′/

√
λi′ and

tr
[(

V−1/2
( vi√

λi
− vi′√

λi′

)
V−1/2

)2]
, (A.6)

for all (i, i′). Now, since tr (A2) = 0 implies that A = 000 for any symmetric k × k matrix A, it
follows from (A.6) that vi/

√
λi = vi′/

√
λi′ for all (i, i′). This is possible only for ννντττ ∈ M(ΥΥΥ),

which establishes the result.
(ii) Going back to the definition of g1 7→ Jk(K, g1), we have

Jk(K, g1) =

∫ ∞

0
K(G̃1k(r)) r ϕg1(r) g̃1k(r) dr =

1

µk−1;g1
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0
K(G̃1k(r)) (−ġ1(r)) rk dr.

Integrating by parts yields
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[
kK(G̃1k(r))+K ′(G̃1k(r))rg̃1k(r)

]
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0
K ′(G̃1k(r))r(g̃1k(r))2 dr,

so that
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0 K ′(G̃1k(r)) r (g̃1k(r))

2 dr > 0 guarantees that Lk(K, g1) = Jk(K, g1)−k2 > 0. Part (i)
of the corollary therefore yields the result. �

A.2 Proof of Proposition 4.2.

Consider an arbitrary value ϑϑϑ = (ϑϑϑ′
I ,ϑϑϑ

′
II ,ϑϑϑ

′
III)

′ = (θθθ′1, . . . , θθθ
′
m, σ21′

m,1′
m ⊗ (ve

◦

ch V)′)′ ∈ M(ΥΥΥ)
of the parameter and a (bounded) sequence of corresponding local perturbations ϑϑϑ(n) := ϑϑϑ +
n−1/2ννν(n)τττ (n), where

τττ (n) = (τττ
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I , τττ

(n)′
II , τττ

(n)′
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(n)′
1 , . . . , t(n)′

m , s
2(n)
1 , . . . , s2(n)

m , (ve
◦

ch v
(n)
1 )′, . . . , (ve

◦

chv(n)
m )′)′

is such that ϑϑϑ(n) ∈ M(ΥΥΥ) for all n. To prove Proposition 4.2, it is sufficient to show that,

under P
(n)
ϑϑϑ;g1

(where g1 is as in Proposition 4.2),

∆∆∆
˜

II

ϑϑϑ(n);K
− ∆∆∆
˜

II
ϑϑϑ;K +

Lk(K, g1)

4σ4
τττ

(n)
II (A.7)

and
∆∆∆
˜

III

ϑϑϑ(n);K
− ∆∆∆
˜

III
ϑϑϑ;K + Jk(K, g1)

[
Im ⊗ Hk(V)

]
τττ

(n)
III (A.8)

are oP(1) as n → ∞, since the local discreteness of ϑ̂ϑϑ (see, e.g., Kreiss 1987, Lemma 4.4) allows to
replace the nonrandom quantity ϑϑϑ(n) with the random one ϑ̂ϑϑ in (A.7) and (A.8) above. Note that
the constraintness of ϑ̂ϑϑ indeed allows us to restrict to local perturbations ϑϑϑ(n) ∈ M(ΥΥΥ). Looking
at block i (i ∈ {1, . . . ,m}), this implies that Proposition 4.2 is a corollary of the following result.

Proposition A.1 Assume that (A), (B), and (C) hold, and that g1 ∈ Fa. Fix ϑϑϑ ∈ M(ΥΥΥ) and
a sequence ϑϑϑ(n) ∈ M(ΥΥΥ) as above. Then, for all i = 1, . . . ,m,

∆
˜

II,i

ϑϑϑ(n);K
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4σ4
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ϑϑϑ;K + Jk(K, g1)Hk(V) (ve
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are oP(1) under P
(n)
ϑϑϑ;g1

, as n → ∞.

27



Proof of Proposition A.1. In this proof, we let θθθn
i := θθθi +n

−1/2
i t

(n)
i , Vn := V+n

−1/2
i v

(n)
i ,

and σ2
n := σ2 + n

−1/2
i s

2(n)
i (since ϑϑϑ,ϑϑϑ(n) ∈ M(ΥΥΥ), σ2

n and Vn do not depend on i, which
explains the notation). Accordingly, let Z0

ij := V−1/2(Xij − θθθi), d0
ij := ‖Z0

ij‖, U0
ij := Z0

ij/d
0
ij ,

Zn
ij := (Vn)−1/2(Xij − θθθn

i ), dn
ij := ‖Zn

ij‖, and Un
ij := Zn

ij/d
n
ij .

Following an argument that goes back to Jurečková (1969), consider the following truncation
of the score function K: for all ℓ ∈ N0, define

K(ℓ)(u) := K

(
2

ℓ

)
ℓ

(
u − 1

ℓ

)
I[ 1

ℓ
<u≤ 2

ℓ
] + K(u) I[ 2

ℓ
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ℓ
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+K
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1 − 2
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)
ℓ

((
1 − 1

ℓ

)
− u

)
I[1− 2

ℓ
<u≤1− 1

ℓ
],

where IA denotes the indicator function of A. Since u 7→ K(u) is continuous, the functions
u 7→ K(ℓ)(u) are also continuous on (0, 1). It follows that the truncated scores K(ℓ) are bounded
for all ℓ. Clearly, it can safely be assumed that K is a monotone increasing function (rather
than the difference of two monotone increasing functions), so that there exists some L such that
|K(ℓ)(u)| ≤ |K(u)| for all u ∈ (0, 1) and all ℓ ≥ L.

We start with the proof that (A.9) is oP(1) under P
(n)
ϑϑϑ;g1

. For the shape part ∆∆∆
˜

III
ϑϑϑ;K , the result

is a straightforward m-sample extension of the corresponding result in Hallin et al. (2006); details
are left to the reader. Turning to scale, Lemma 4.1(i) shows that ∆
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We prove that C
(n)
i = oP(1) (thus completing the proof that (A.9) is oP(1) under P

(n)
ϑϑϑ;g1

) by

establishing that D
(n;ℓ)
i1 and D
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i2 are oP(1) under P
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, as n → ∞, for fixed ℓ, and that
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(n;ℓ)
i3 are oP(1) under the same sequence of hypotheses, as ℓ → ∞, uniformly

in n. For the sake of convenience, these three results are treated separately (Lemmas A.1, A.2,
and A.3).

Lemma A.1 For any fixed ℓ, E0

[∣∣D(n;ℓ)
i1

∣∣2] = o(1) as n → ∞.

Lemma A.2 For any fixed ℓ, D
(n;ℓ)
i2 = o(1) as n → ∞.

Lemma A.3 As ℓ → ∞, uniformly in n,
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,
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for n sufficiently large,
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Proof of Lemma A.1. First note that
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[∣∣D(n;ℓ)

i1

∣∣2] = Var0
[
D

(n;ℓ)
i1

]
=

1

4σ4
Var0

[
T

(n;ℓ)
i1

] ≤ 1

4σ4
E0
[∣∣T(n;ℓ)

i1

∣∣2],
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and it only remains to show that

E0

[∣∣T(n;ℓ)
i1

∣∣2] = E0

[(
K(ℓ)(G̃1k(dn

i1/σn)) − K(ℓ)(G̃1k(d
0
i1/σ))

)2]
= o(1) (A.12)

as n → ∞. Now, |dn
i1/σn − d0

i1/σ| ≤ |dn
i1 − d0

i1|/σn + |σ−1
n − σ−1|d0

i1 is oP(1) under P
(n)
ϑϑϑ;g1

since

|dn
i1 − d0

i1| is oP(1) under P
(n)
ϑϑϑ;g1

; see Lemma A.1 in Hallin et al. (2006). This and the continuity

of K(ℓ)
◦ G̃1k imply that K(ℓ)(G̃1k(dn

i1/σn)) − K(ℓ)(G̃1k(d
0
i1/σ)) = oP(1) under P

(n)
ϑϑϑ;g1

, as n → ∞.

Since K(ℓ) is bounded, this convergence to zero also holds in quadratic mean, which establishes
the convergence in (A.12). �

Proof of Lemma A.2. Letting

B
(n;ℓ)
i1 :=

1

2σ2
n
−1/2
i

ni∑

j=1

(
K(ℓ)(G̃1k(d0

ij/σ)) − E
[
K(ℓ)(U)

])

one can show that, under P
(n)
ϑϑϑ;g1

, as n → ∞,

B
(n;ℓ)
i1

L−→ N
(
0,

1

4σ4
Var[K(ℓ)(U)]

)
. (A.13)

Under the sequence of local alternatives P
(n)

ϑϑϑ(n);g1
, as n → ∞,

B
(n;ℓ)
i1 − Lk(K

(ℓ), g1)

4σ4
s
2(n)
i

L−→ N
(
0,

1

4σ4
Lk(K

(ℓ))

)
.

Defining B
(n;ℓ)
i2 := 1

2σ2 n
−1/2
i

∑ni
j=1

(
K(ℓ)(G̃1k(dn

ij/σn))−E
[
K(ℓ)(U)

])
, it follows from ULAN that,

under P
(n)
ϑϑϑ;g1

, as n → ∞,

B
(n;ℓ)
i2 +

Lk(K
(ℓ), g1)

4σ4
s
2(n)
i

L−→ N
(
0,

1

4σ4
Lk(K

(ℓ))

)
. (A.14)

Now, from (A.13) and the fact that, under P
(n)
ϑϑϑ;g1

, D
(n;ℓ)
i1 = B

(n;ℓ)
i2 −B

(n;ℓ)
i1 −E0

[
B

(n;ℓ)
i2

]
= oP(1)

as n → ∞ (Lemma A.1), we obtain that

B
(n;ℓ)
i2 − E0

[
B

(n;ℓ)
i2

] L−→ N
(
0,

1

4σ4
Lk(K

(ℓ))

)
, (A.15)

as n → ∞, under P
(n)
ϑϑϑ;g1

. The result then follows by comparing (A.14) and (A.15). �

We now complete the proof that (A.9) is oP(1) under P
(n)
ϑϑϑ;g1

by proving Lemma A.3.

Proof of Lemma A.3. (i) In view of the independence of the d0
ij ’s (under P

(n)
ϑϑϑ;g1

), we obtain,
for all n,

E0
[|R(n;ℓ)

i1 |2] =
1

4σ4
n−1

i

ni∑

j=1

E0

[[(
K(G̃1k(d0

ij/σ)) − k
)
−
(
K(ℓ)(G̃1k(d

0
ij/σ)) − E

[
K(ℓ)(U)

])]2]

=
1

4σ4
Var

[
K(U) − K(ℓ)(U)

]
≤ 1

4σ4
E
[
(K(U) − K(ℓ)(U))2

]

=
1

4σ4

∫ 1

0

[
K(u) − K(ℓ)(u)

]2
du. (A.16)
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Clearly, K(ℓ)(u) converges to K(u), for all u∈ (0, 1). Also, since |K(ℓ)(u)| is bounded by |K(u)|,
for all ℓ ≥ L, the integrand in (A.16) is bounded (uniformly in ℓ) by 4 |K(u)|2, which is integrable

on (0, 1). The Lebesgue dominated convergence theorem thus implies that E0
[|R(n;ℓ)

i1 |2] = o(1),
as ℓ → ∞. This convergence is of course uniform in n.

(ii) The claim in (ii) is the same as in (i), except that dn
ij/σn replaces d0

ij/σ. Accordingly, (ii)

holds under P
(n)

ϑϑϑ(n);g1
. That it also holds under P

(n)
ϑϑϑ;g1

follows from Lemma 3.5 in Jurečková (1969).

(iii) Note that |Lk(K, g1) − Lk(K
(ℓ), g1)|2 = |Cov[K(U) − K(ℓ)(U),Kg1(U)]|2 ≤ Lk(g1)

×Var
[
K(U) − K(ℓ)(U)

]
, which is o(1) as ℓ → ∞ (see (i) above). The result then follows from

the boundedness of (s
2(n)
i ). �

A.3 Proofs of Lemma 5.1, Theorem 5.2, and Proposition 5.2.

Proof of Lemma 5.1. As in the proof of Lemma 4.1, the result under P
(n)
ϑϑϑ;g1

follows from the
multivariate CLT, and under contiguous alternatives from Le Cam’s third Lemma. �

Proof of Theorem 5.2. (i) The consistency of κ̂k, the continuity of the mapping ϑϑϑ 7→ ΓΓΓN
ϑϑϑ;g1

,

Lemma 5.1 (jointly with Assumption (D1)), and the fact that [Im−C(n)](ΛΛΛ(n))−11m = 0) entail

Q
(n)
N∗ =

(
TII

ϑϑϑ;g1

)′
(ΓΓΓN ,II

ϑϑϑg1 ;g1
)⊥ TII

ϑϑϑ;g1
+
(
TIII

ϑϑϑ;g1

)′
(ΓΓΓN ,III

ϑϑϑ;g1
)⊥ TIII

ϑϑϑ;g1
+ oP(1) (A.17)

under P
(n)
ϑϑϑ;g1

, ϑϑϑ ∈ M(ΥΥΥ), hence also under the contiguous alternatives P
(n)

ϑϑϑ+n−1/2ννν(n)τττ (n);g1
.

The result then follows along the same lines as for Theorem 5.1, by noting that
(ΓΓΓN ,II

ϑϑϑ;g1
)1/2 (ΓΓΓN ,II

ϑϑϑ;g1
)⊥(ΓΓΓN ,II

ϑϑϑ;g1
)1/2 is a symmetric idempotent matrix with rank m − 1, which ensures

(see Lemma 5.1) that the first term in (A.17) is asymptotically chi-square with m − 1 degrees

of freedom under P
(n)
ϑϑϑ;g1

, ϑϑϑ ∈ M(ΥΥΥ), and asymptotically noncentral chi-square, still with m − 1
degrees of freedom but with noncentrality parameter

(
akDk(g1)

2σ4

)2

lim
n→∞

{
(τττ

(n)
II )′(ΓΓΓN ,II

ϑϑϑ;g1
)⊥ τττ

(n)
II

}
(A.18)

under P
(n)

ϑϑϑ+n−1/2ννν(n)τττ (n);g1
. Evaluation of (A.18) yields the first term in (5.12).

As for the shape part, using again Lemma 5.1 and the fact that (ΓΓΓN ,III
ϑϑϑ;g1

)1/2 (ΓΓΓN ,III
ϑϑϑ;g1

)⊥(ΓΓΓN ,III
ϑϑϑ;g1

)1/2

is symmetric and idempotent with rank K(m − 1), we obtain similarly that the second term

in (A.17) is asymptotically chi-square with K(m−1) degrees of freedom under P
(n)
ϑϑϑ;g1

, ϑϑϑ ∈ M(ΥΥΥ),
and asymptotically noncentral chi-square, still with K(m − 1) degrees of freedom but with
noncentrality parameter

a2
k(k + 2)2D2

k(g1) lim
n→∞

{
(τττ

(n)
III )′[Im ⊗ Hk(V)](ΓΓΓN ,III

ϑϑϑ;g1
)⊥[Im ⊗ Hk(V)]τττ

(n)
III

}
(A.19)

under P
(n)

ϑϑϑ+n−1/2ννν(n)τττ (n);g1
. A straightforward evaluation of (A.19) yields the second term in (5.12).

As the two terms in (A.17) are asymptotically uncorrelated (see Lemma 5.1 again), they can be
treated separately; the result follows.

(ii) The fact that φ
(n)
N has asymptotic level α directly follows from the asymptotic null

distribution given in part (i) of the theorem and the classical Helly-Bray theorem.
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(iii) As observed in the comments that follow (5.10), the consistency of κ̂ entails the asymp-

totic equivalence, under Gaussian densities, of Q
(n)
N∗ with Q

(n)
N ,φ1

(hence with Q
(n)
N ), which has

been derived from the general form of locally asymptotically optimal tests based on (4.3). �

Proof of Proposition 5.2. (i) We proceed by showing that the various test statistics are
asymptotically equivalent to

Q
(n)
N ,φ1

=
1

2n

∑

1≤i<i′≤m

nini′ tr
[
(S−1(Si − Si′))

2
]
; (A.20)

see (5.10). The same calculation as that used to show that the first term in Q
(n)
Schott∗ is asymp-

totically equivalent to the corresponding term in Q
(n)
N∗ (see Page 21) establishes that Q

(n)
Schott is

asymptotically equivalent to Q
(n)
N ,φ1

. Now, for the Nagao (1973) test, we have that

Q
(n)
Nagao =

1

2

m∑

i=1

ṅi tr
[
(Ṡ−1(Ṡi − Ṡ))2

]
=

1

2

m∑

i=1

ṅi tr
[
(Ṡ−1

m∑

r=1

ṅr

ṅ
(Ṡi − Ṡr))

2
]

=
1

2ṅ2

m∑

i,r,s=1

ṅiṅrṅs tr
[
Ṡ−1(Ṡi − Ṡr)Ṡ

−1(Ṡi − Ṡs)
]
.

Splitting Ṡi − Ṡs into (Ṡi − Ṡr) + (Ṡr − Ṡs) then yields

Q
(n)
Nagao =

1

2ṅ

m∑

i,r=1

ṅiṅr tr
[
(Ṡ−1(Ṡi − Ṡr))

2
]
− Q

(n)
Nagao,

which establishes that Q
(n)
Nagao = Q

(n)
N ,φ1

+ oP(1), as n → ∞. As for the LRT (equivalently,

the MLRT) test statistics, letting ΣΣΣ
1/2
0 ZiΣΣΣ

1/2
0 = n

1/2
i (Si − ΣΣΣ0) = n

1/2
i ΣΣΣ0Yi (same notation as

in (5.13)), in view of the fact that log |Ik + A| = tr A − 1
2 tr (A2) + o(‖A‖2), as ‖A‖ → 0, we

have that

−2 log Λ = −
m∑

i=1

ni log |Si| + n log |S| = −
m∑

i=1

ni log |ΣΣΣ0 + ΣΣΣ0Yi| + n log
∣∣∣ΣΣΣ0 + ΣΣΣ0

( 1

n

m∑

i=1

niYi

)∣∣∣

=
1

2

{ m∑

i=1

ni tr
[
Y2

i

]− 1

n
tr
[( m∑

i=1

niYi

)2]}
+ oP(1),

as n → ∞, under any null distribution with finite fourth-order moments. This establishes the
result, since

1

2

{ m∑

i=1

ni tr
[
Y2

i

]− 1

n
tr
[( m∑

i=1

niYi

)2]}
=

1

2

m∑

i=1

ni tr
[(

Yi −
( 1

n

m∑

r=1

nrYr

))2]

=
1

2

m∑

i=1

ni tr
[
(ΣΣΣ−1

0 (Si − S))2
]

=
1

2

m∑

i=1

ni tr
[
(SiΣΣΣ

−1
0 − Ik)

2
]
+ oP(1) = Q

(n)
Nagao + oP(1),

still as n → ∞, under any null distribution with finite fourth-order moments.

(ii) For any g1 ∈ F (4)
a , the result readily follows from Part (i) and Corollary 3.4.2 of Yanagi-

hara et al. (2005) (β there, under P
(n)
ϑϑϑ;g1

, ϑϑϑ ∈ M(ΥΥΥ), coincides with 1 + κk(g1) in our notation).
�
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underlying density
k ξ t5 t8 t12 N e2 e3 e5

1 0 2.321 1.230 1.082 1.000 1.151 1.376 1.822
1 —— —— —— —— —— —— ——

2 0 2.551 1.280 1.102 1.000 1.115 1.296 1.669
1 2.204 1.215 1.078 1.000 1.129 1.308 1.637

3 0 2.732 1.322 1.120 1.000 1.092 1.241 1.558
1 2.270 1.233 1.086 1.000 1.108 1.259 1.536

vdW 4 0 2.881 1.358 1.136 1.000 1.077 1.202 1.475
1 2.326 1.249 1.093 1.000 1.093 1.223 1.462

6 0 3.108 1.416 1.163 1.000 1.057 1.151 1.361
1 2.413 1.275 1.106 1.000 1.072 1.174 1.363

10 0 3.403 1.498 1.204 1.000 1.037 1.099 1.239
1 2.531 1.312 1.126 1.000 1.050 1.121 1.254

∞ 0 4.586 1.894 1.446 1.000 1.000 1.000 1.000
1 3.000 1.500 1.250 1.000 1.000 1.000 1.000

1 0 1.993 0.939 0.769 0.608 0.519 0.509 0.517
1 —— —— —— —— —— —— ——

2 0 2.604 1.185 0.959 0.750 0.694 0.703 0.743
1 2.258 1.174 1.001 0.844 0.789 0.804 0.842

3 0 2.929 1.304 1.045 0.811 0.775 0.795 0.854
1 2.386 1.246 1.068 0.913 0.897 0.933 1.001

W 4 0 3.140 1.377 1.096 0.844 0.820 0.844 0.911
1 2.432 1.273 1.094 0.945 0.955 1.006 1.095

6 0 3.407 1.467 1.156 0.879 0.866 0.892 0.961
1 2.451 1.283 1.105 0.969 1.008 1.075 1.188

10 0 3.685 1.560 1.216 0.908 0.903 0.925 0.984
1 2.426 1.264 1.088 0.970 1.032 1.106 1.233

∞ 0 4.323 1.794 1.374 0.955 0.955 0.955 0.955
1 2.250 1.125 0.938 0.750 0.750 0.750 0.750

1 0 2.333 1.126 0.935 0.760 0.705 0.724 0.774
1 —— —— —— —— —— —— ——

2 0 2.737 1.289 1.063 0.868 0.868 0.924 1.038
1 2.301 1.230 1.067 0.934 0.965 1.042 1.168

3 0 2.913 1.348 1.105 0.904 0.924 0.993 1.136
1 2.277 1.225 1.070 0.957 1.033 1.141 1.317

SP 4 0 3.016 1.378 1.125 0.920 0.949 1.020 1.170
1 2.225 1.200 1.051 0.956 1.057 1.179 1.383

6 0 3.137 1.410 1.142 0.932 0.966 1.032 1.176
1 2.128 1.146 1.007 0.936 1.057 1.189 1.414

10 0 3.255 1.438 1.154 0.937 0.969 1.022 1.139
1 2.001 1.068 0.936 0.891 1.017 1.144 1.365

∞ 0 3.507 1.503 1.176 0.895 0.895 0.895 0.895
1 1.667 0.833 0.694 0.556 0.556 0.556 0.556

Table 1: AREs, for ξ = 0 (pure scale alternatives) and ξ = 1 (pure shape alternatives), of the
van der Waerden (vdW), Wilcoxon (W), and Spearman (SP) rank-based tests with respect to
the pseudo-Gaussian tests, under k-dimensional Student (with 5, 8, and 12 degrees of freedom),
normal, and power-exponential densities (with parameter η = 2, 3, 5), for k = 2, 3, 4, 6, 10, and
k → ∞.
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m
test 0 1 2 3 AREN∗ AREvdW

φLRT .0512 .3168 .7932 .9776 1.000 1.000
φMLRT .0500 .3100 .7876 .9772 1.000 1.000

φN .0464 .3008 .7760 .9756 1.000 1.000
φN∗ .0472 .2944 .7568 .9736 1.000 1.000

φ
˜

vdW .0348 (.0472) .2388 (.2932) .6912 (.7316) .9520(.9676) 1.000 1.000
φ
˜ ft

1,5

N .0444 (.0496) .2604(.2724) .7080 (.7200) .9552 (.9600) 0.918 0.918
φ
˜ ft

1,2

= φ
˜

K1
.0516 (.0524) .2180(.2248) .6360(.6404) .9004(.9016) 0.750 0.750

φ
˜ ft

1,.5
.0476 (.0492) .1224 (.1248) .3252(.3260) .5692(.5724) 0.360 0.360

φ
˜

K2
.0432(.0480) .2448(.2572) .6956(.7060) .9480 (.9508) 0.868 0.868

φLRT .3288 .6308 .9168 .9872 ND ND
φMLRT .3244 .6260 .9144 .9868 ND ND

φN .3160 .6208 .9092 .9856 ND ND
φN∗ .0300 .1896 .5268 .7892 1.000 0.392

φ
˜

vdW .0320 (.0444) .2500 (.2956) .7068(.7468) .9396(.9560) 2.551 1.000
φ
˜ ft

1,5

t5 .0428 (.0480) .3004 (.3152) .7740 (.7812) .9636 (.9676) 2.778 1.089
φ
˜ ft

1,2
= φ
˜

K1
.0488 (.0512) .2916 (.2980) .7456 (.7520) .9528 (.9544) 2.604 1.021

φ
˜ ft

1,.5

.0512(.0516) .1824 (.1848) .4916 (.4972) .7556 (.7612) 1.543 0.605
φ
˜

K2
.0448 (.0484) .3068 (.3184) .7720(.7828) .9644 (.9656) 2.737 1.073

φLRT .8728 .9164 .9496 .9712 ND ND
φMLRT .8696 .9156 .9496 .9700 ND ND

φN .8648 .9120 .9480 .9684 ND ND
φN∗ .0120 .0300 .0672 .1276 ND ND

φ
˜

vdW .0428 (.0568) .1880 (.2264) .5368 (.5816) .7988 (.8324) ND 1.000
φ
˜ ft

1,5
t2 .0536 (.0592) .2532(.2644) .6592 (.6704) .9000 (.9072) ND 1.250

φ
˜ ft

1,2

= φ
˜

K1
.0508 (.0532) .2732 (.2816) .6912 (.6964) .9212 (.9236) ND 1.333

φ
˜ ft

1,.5

.0496 (.0500) .2116(.2136) .5404 (.5468) .8128 (.8144) ND 1.000
φ
˜

K2
.0572 (.0588) .2568 (.2652) .6632 (.6708) .9036 (.9080) ND 1.250

φLRT .9992 .9996 .9996 .9988 ND ND
φMLRT .9992 .9996 .9996 .9988 ND ND

φN .9992 .9996 .9988 .9988 ND ND
φN∗ 0 0 0 0 ND ND

φ
˜

vdW .0388 (.0520) .1464 (.1764) .3096 (.3572) .4608 (.5188) ND 1.000
φ
˜ ft

1,5

t0.5 .0496 (.0524) .2328 (.2452) .5000 (.5132) .6920 (.7044) ND 1.543
φ
˜ ft

1,2

= φ
˜

K1
.0508 (.0528) .3076 (.3136) .6404 (.6448) .8276 (.8316) ND 2.083

φ
˜ ft

1,.5
.0604 (.0616) .3928(.3972) .7572 (.7600) .9208 (.9212) ND 2.778

φ
˜

K2
.0488 (.0524) .2136(.2228) .4728 (0.4840) .6672(.6792) ND 1.435

Table 2: Rejection frequencies (out of N = 2, 500 replications), under the null and various scale
alternatives (see Section 7 for details), of the Gaussian LRT (φLRT), its modified version (φMLRT),
the parametric Gaussian test (φN ), its pseudo-Gaussian version (φN∗), and the signed-rank
van der Waerden (φ

˜
vdW), tν-score (φ

˜
ft
1,ν

, ν = .5, 2, 5), Wilcoxon-type (φ
˜

K1), and Spearman-

type (φ
˜

K2) tests, respectively. Sample sizes are n1 = n2 = 100. ARE values are provided

with respect to the parametric pseudo-Gaussian (AREN∗) and van der Waerden rank tests
((AREN∗)); “ND” means “not defined” (this occurs as soon as one the tests involved is not
valid under the distribution under consideration).
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m
test 0 1 2 3 AREN∗ AREvdW

φLRT .0512 .1564 .6032 .9668 1.000 1.000
φMLRT .0500 .1532 .5984 .9656 1.000 1.000

φN .0464 .1484 .5900 .9640 1.000 1.000
φN∗ .0472 .1444 .5812 .9648 1.000 1.000

φ
˜

vdW .0348(.0472) .1212 (.1464) .5248(.5828) .9488(.9632) 1.000 1.000
φ
˜ ft

1,5

N .0444 (.0496) .1452 (.1536) .5456(.5596) .9464 (.9496) 0.945 0.945
φ
˜ ft

1,2

= φ
˜

K1
.0516 (.0524) .1364(.1392) .4928 (.5004) .9272 (.9276) 0.844 0.844

φ
˜ ft

1,.5
.0476 (.0492) .1120(.1140) .3996 (.4036) .8356(.8388) 0.648 0.648

φ
˜

K2
.0432 (.0480) .1440(.1508) .5420(.5512) .9460(.9488) 0.934 0.934

φLRT .3288 .4632 .7840 .9808 ND ND
φMLRT .3244 .4600 .7816 .9800 ND ND

φN .3160 .4512 .7728 .9796 ND ND
φN∗ .0300 .1020 .4204 .8552 1.000 0.454

φ
˜

vdW .0320 (.0444) .1268 (.1592) .5320(.5816) .9576(.9692) 2.204 1.000
φ
˜ ft

1,5

t5 .0428(.0480) .1572(.1676) .5928 (.6036) .9720 (.9740) 2.333 1.059
φ
˜ ft

1,2
= φ
˜

K1
.0488 (.0512) .1608(.1632) .5876 (.5916) .9684(.9692) 2.258 1.024

φ
˜ ft

1,.5

.0512 (.0516) .1376 (.1388) .5088(.5132) .9312(.9332) 1.896 0.860
φ
˜

K2
.0448 (.0484) .1612(.1704) .5860(.5976) .9700(.9716) 2.301 1.044

φLRT .8728 .8912 .9376 .9768 ND ND
φMLRT .8696 .8892 .9364 .9768 ND ND

φN .8648 .8864 .9332 .9764 ND ND
φN∗ .0120 .0224 .0808 .2380 ND ND

φ
˜

vdW .0428(.0568) .1180(.1488) .4596(.5120) .9216 (.9416) ND 1.000
φ
˜ ft

1,5
t2 .0536(.0592) .1488 (.1560) .5460(.5572) .9576 (.9616) ND 1.147

φ
˜ ft

1,2

= φ
˜

K1
.0508(.0532) .1584(.1612) .5640(.5668) .9668 (.9668) ND 1.185

φ
˜ ft

1,.5

.0496 (.0500) .1508(.1524) .5212(.5256) .9412(.9420) ND 1.089
φ
˜

K2
.0572(.0588) .1440(.1500) .5288(.5420) .9516(.9564) ND 1.111

φLRT .9992 .9988 .9992 .9992 ND ND
φMLRT .9992 .9988 .9992 .9992 ND ND

φN .9992 .9988 .9992 .9992 ND ND
φN∗ 0 0 .0004 .0008 ND ND

φ
˜

vdW .0388(.0520) .0964(.1208) .3328(.3792) .7960 (.8328) ND 1.000
φ
˜ ft

1,5

t0.5 .0496 (.0524) .1280(.1356) .4288(.4408) .8928(.9004) ND 1.254
φ
˜ ft

1,2

= φ
˜

K1
.0508(.0528) .1396(.1440) .4840(.4880) .9360(.9380) ND 1.418

φ
˜ ft

1,.5
.0604 (.0616) .1644 (.1648) .5356(.5388) .9560(.9568) ND 1.543

φ
˜

K2
.0488(.0524) .1208 (.1272) .3968(.4064) .8624(.8704) ND 1.138

Table 3: Rejection frequencies (out of N = 2, 500 replications), under the null and various shape
alternatives (see Section 7 for details), of the Gaussian LRT (φLRT), its modified version (φMLRT),
the parametric Gaussian test (φN ), its pseudo-Gaussian version (φN∗), and the signed-rank
van der Waerden (φ

˜
vdW), tν-score (φ

˜
ft
1,ν

, ν = .5, 2, 5), Wilcoxon-type (φ
˜

K1), and Spearman-

type (φ
˜

K2) tests, respectively. Sample sizes are n1 = n2 = 100. ARE values are provided

with respect to the parametric pseudo-Gaussian (AREN∗) and van der Waerden rank tests
((AREN∗)); “ND” means “not defined” (this occurs as soon as one the tests involved is not
valid under the distribution under consideration).
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