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Abstract

We propose a class of locally and asymptotically optimal tests, based on multivariate
ranks and signs, for the homogeneity of scatter matrices in m elliptical populations. Con-
trary to the existing parametric procedures, these tests remain valid without any moment
assumptions, and thus are perfectly robust against heavy-tailed distributions (validity robust-
ness). Nevertheless, they reach semiparametric efficiency bounds at correctly specified den-
sities (efficiency robustness). In most cases, their normal-score version outperforms Schott’s
pseudo-Gaussian test (JSPI 94, 25-36, 2001), which, as we also show, actually is a robustified
version of the traditional Gaussian likelihood ratio test.

AMS 1980 subject classification : 62M15, 62G35.

Key words and phrases : Elliptical densities, Scatter matrices, Multivariate ranks and signs,
Multivariate analysis of variance, Local asymptotic normality, Locally asymptotically most strin-
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1 Introduction.

1.1 Homogeneity of variances and covariance matrices.

The assumption of variance homogeneity is central to the theory and practice of univariate
m-sample inference, playing a major role in such models as m-sample location (ANOVA) or
m-sample regression (ANOCOVA). The problem of testing the null hypothesis of variance ho-
mogeneity therefore is of fundamental importance, and for more than half a century has been
a subject of continued interest in the statistical literature. The standard procedure, described
in most textbooks, is Bartlett (1937)’s modified (Gaussian) likelihood ratio test (MLRT). This
test however is well-known to be highly non-robust against violations of Gaussian assumptions,
a fact that gave rise to a large number of “robustified” versions of the likelihood ratio procedure
(Cochran 1941, Bartlett and Kendall 1946, Hartley 1950, Box 1953, to quote only a few). Soon,
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it was noticed that these “robustifications”, if reasonably resistant to nonnormality, unfortu-
nately were lacking power: in the convenient terminology of Heritier and Ronchetti (1994), they
enjoy walidity robustness but not efficiency robustness.

In an extensive simulation study, Conover et al. (1981) have investigated the validity-
robustness (against nonnormal densities) and efficiency-robustness properties of 56 distinct tests,
including several (signed) rank-based ones. Their conclusion is that only three out of 56 survive
the examination, and that two of the three survivors are normal-score signed rank tests (adapted
from Fligner and Killeen 1976).

In view of its applications in MANOVA, MANOCOVA, discriminant analysis, etc., the mul-
tivariate problem of testing for homogeneity of covariance matrices is certainly no less important
than its univariate counterpart. The same problem moreover is of intrinsic interest in such fields
as psychometrics or genetics where, for instance, the homogeneity of genetic covariance structure
among species is a classical subject of investigation. Robustness and power issues however are
even more delicate and complex in the multivariate context. So far, only validity robustness
(resistance to violations of joint normality assumptions) has been investigated, leading to var-
ious robustifications of the Gaussian likelihood ratio test—see Section 1.2 for a brief account.
But, although no multivariate equivalent of the Conover et al. (1981) study has been conducted
so far, it is more than likely that those various robustifications also lose most of the power of
the original tests, and thus suffer the same lack of efficiency robustness as in the univariate set-
ting; our own simulations amply confirm this fact for the robustified version of Schott (2001)’s
test—see below for details.

Since rank-based procedures are doing so well in the univariate case, it is tempting to ex-
tend them to the multivariate context. The problem however is that of choosing an adequate
multivariate concept of (signed) ranks. The purpose of this paper is to develop such testing pro-
cedures for the null hypothesis of covariance homogeneity under elliptical distributions, based
on the signs and ranks considered by Hallin and Paindaveine (2005 and 2006a) for one-sample
inference for location, (auto)regression, and shape. Elliptical densities indeed constitute the
most general class of densities under which classical multivariate techniques (after adequate
modification) apply.

Contrary to all existing methods, our tests do not require any moment assumptions, so that
the null hypothesis they address actually is the hypothesis of homogeneous scatter matrices, re-
ducing to more classical homogeneity of covariance matrices under finite second-order moments.
Being asymptotically distribution-free, our tests enjoy validity robustness (against nonnormal
elliptic densities, including the heavy-tailed ones). They reach semiparametric efficiency at cor-
rectly specified densities, and therefore are efficiency-robust; when based on Gaussian scores,
their asymptotic relative efficiency with respect to the various robustifications of the Gaussian
likelihood ratio test is larger than one under almost all elliptical densities (see Section 6 for
details).

1.2 Testing equality of scatter (covariance) matrices.

Denote by (Xi1,...,Xin,;), ¢ =1,...,m a collection of m mutually independent samples of i.i.d.
random k-dimensional vectors with location parameters 6; and scatter (under finite second-order
moments, covariance) matrices X;, i = 1,...,m. The purpose of this paper is to develop a signed
rank-based solution to the problem of testing the null hypothesis Hg : 1 = ... = X,,, of scatter
(covariance) homogeneity against the alternative that the ¥;’s are not all equal.

The most classical test for this problem is the Gaussian likelihood ratio test (LRT). This



test, which is based on the additional assumption that X;; ~ Nj(8;,%;), rejects Ho for small

values of
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where n = Y., n; is the total sample size, X; := n% Z?;l Xii, W, = Z?Ll(Xz’j - Xi)(Xi5 —

X;), and W := 3™ W,. Even under Gaussian assumptions, this LRT is actually biased

(see Brown 1939 and Das Gupta 1969), and one therefore usually relies on Bartlett’s modified
likelihood ratio test (MLRT), based on

A= (1.1)
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where n; := n; — 1 and n := >7*; n; = n —m. The MLRT has been shown to be unbiased
by Pitman (1939) for ¥ = 1 and by Perlman (1980) for the general case. Much is known
today about this test: monotonicity of the power function (Anderson and Das Gupta 1964, Das
Gupta and Giri 1973), null and non-null expansions (both for fixed and local alternatives) of the
distributions of A* or —2log A* (Sugiura 1973, Khatri and Srivastava 1974, Srivastava, Khatri,
and Carter 1978), exact distribution of A* (Gupta and Tang 1984), etc. All authors however
insist on the extreme non-robustness to departures from normality of both the LRT and the
MLRT, which are not even valid under non-Gaussian elliptical densities with finite fourth-order
moments; see, in particular, Tyler (1983), Yanagihara et al. (2005), and Gupta and Xu (2006).

Such a poor resistance to non-normality is not uncommon in the context, and similar prob-
lems arise with most Gaussian likelihood ratio tests in multivariate analysis. In a classical
reference, Muirhead and Waternaux (1980) provide an in-depth study of the problem of turning
standard Gaussian tests about covariance matrices into pseudo-Gaussian ones remaining valid
under elliptical densities (possibly with adequate moment assumptions). They clearly distin-
guish some “easy” cases—tests of sphericity, tests of equality of a subset of the characteristic
roots of the covariance matrix (i.e., subspace sphericity), tests of block-diagonality—and some
“harder” ones, among which the (apparently simpler) one-sample test of the hypothesis that the
covariance matrix ¥ takes some given value ¥y, the two-sample test of equality of covariance
matrices, and the corresponding m-sample test (based on (1.1) or (1.2)). For these “hard” cases,
they conclude that “it is not possible in the more general elliptical case to adjust the (Gaussian
likelihood ratio) test so that its limiting distribution agrees with that obtained under the normal-
ity assumption”; see also Section 3 of Tyler (1983). In particular, for the problem under study,
a recent result of Yanagihara et al. (2005) establishes that the asymptotic null distribution of
—2log A*/(1 + ki) (where A* is defined in (1.2) and xj stands for a measure of kurtosis of the
underlying elliptical distribution; see Section 5.2 for a definition) is that of

k:‘ik
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}Yl + Yo, (1.3)
where Y7 and Y, are independent chi-square random variables with m — 1 and (m — 1)(k —
1)(k+2)/2 degrees of freedom, respectively. In the multinormal case, ki = 0, and this yields the
well-known Gaussian result that —2log A* is asymptotically chi-square with (m — 1)k(k +1)/2
degrees of freedom under the null hypothesis; but for x # 0, (1.3) is no longer chi-square (see
also Gupta and Xu 2006).

For the sake of comparison, in the problem of testing for sphericity, —21log Aspher/(1 + Ki)
(where Agpper stands for the LRT statistic for sphericity) is asymptotically chi-square with (m —



1)k(k +1)/2 degrees of freedom under the null hypothesis, irrespective of the underlying elliptic
distribution (with finite fourth-order moments and kurtosis k). Consequently, robustifying the
LRT for sphericity is easily achieved by adopting the modified test statistic —2log As/(1 + &k ),
where Ry is a consistent estimate of k. Clearly, in view of the null asymptotic distribution of
—2log A*/(14kKy) in (1.3), such an easy robustification is not possible when testing for covariance
homogeneity.

Other Gaussian testing procedures also have been considered (see Section 5.3); to the best
of our knowledge, they all suffer of the same lack of robustness against violations of Gaussian
assumptions. Quite surprisingly thus, and except for some attempts to bootstrap the classical
MLRT statistic (Goodnight and Schwartz 1997, Zhang and Boos 1992; Zhu et al. 2002), this im-
portant problem of testing for homogeneity of covariance matrices under possibly non-Gaussian
elliptical densities, despite its considerable impact on applications, had remained an open prob-
lem until a recent paper by Schott (2001). In his Section 2.1, Schott first proposes a Gaussian
Wald test based on the vector ((vec(S1 — Sm)), ..., (vec(Sm—1 — Sim))’). This test rejects the
null hypothesis for large values of the statistic
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this statistic is asymptotically chi-square with (m — 1)k(k 4+ 1)/2 degrees of freedom under
homogeneity of covariance matrices and Gaussian densities. Schott himself stresses the poor
resistance of his test to non-Gaussian densities, and proposes robustifying Qé"d)wtt by using an
adequate estimate of the underlying asymptotic covariance matrix involved in the Wald statistic.
Letting 01 := 1/(1 + &) and by := &y /((k + 2)ix + 2), the resulting test rejects Ho for large
values of
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the null distribution of which is still asymptotically chi-square with (m —1)k(k+1)/2 degrees of
freedom under the whole family of elliptical distributions with finite fourth-order moments and
homogeneous (across samples) kurtosis value. In that respect, Qé"d)wtt* is fairly robust. Being
based on traditional covariance matrices, however, it remains invalid under heavy tails, and
extremely sensitive to possible outliers.

Schott apparently is not aware of the asymptotic optimality of his test under Gaussian
assumptions: in Section 5.3, we establish the asymptotic equivalence, under the null hypothesis
of homogeneity and any density with finite fourth-order moments, of the MLRT, Nagao, and
Schott (1.4) test statistics. This and the results of Section 5.2 imply that (i) all these tests
share the Gaussian optimality properties of the MLRT, but (ii) only Schott’s modified test
based on (1.5), while asymptotically equivalent to the MLRT under Gaussian densities, remains
valid under finite fourth-order moment non-Gaussian ones, and therefore can be considered a
pseudo-Gaussian test.

Schott’s modified test thus is an important step in the direction of a pseudo-Gaussian ap-
proach to multivariate analysis. Still, this is not entirely satisfactory. Being a multivariate
extension of the univariate tests considered in the Conover et al. (1981) study, Schott’s modified
test is likely to be behave very poorly away from the multinormal case (this is confirmed by the
simulation study of Section 7): validity robustness again is obtained to the detriment of effi-
ciency robustness. The validity of Schott’s modified test moreover is restricted to densities with



finite fourth-order moments. In contrast with this, the rank-based approach we are developing
here is robust on all counts. Due to the distribution-freeness of multivariate ranks and signs,
our tests are valid under arbitrary elliptical densities while, when based on appropriate scores,
they achieve semiparametric efficiency—the best one can hope for in the presence of unspecified
densities—and almost always quite significantly outperform Schott’s tests.

1.3 Our methodology.

Throughout, we assume that the m distributions are elliptically symmetric. More precisely, for

alli =1,...,m, the n; observations X;;, j = 1,...,n; are assumed to have a probability density
function of the form
—1/2 1 1/2 k
fi%) = e p[Zi 72 A (-0 (x— ) ), x e RN, (1.6)

for some k-dimensional vector ; (location), some positive definite (k x k) matrix ¥; (the scatter
matrix), and some (duly standardized: see below) function fi : Rj — R* (the radial density).
The null hypothesis considered throughout is the hypothesis Hy : X1 = ... = X, of scatter
homogeneity (under finite variances, covariance homogeneity).
Let (throughout £'/2 denotes the symmetric root of %)
~1/2/xr
Uy (6,5 = X =0

0. D) — INTY2x.. _p.
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Writing R;;(01, . ..,0m,%1,. .., %) for the rank of d;;(8;,X;) among d11(01,%1), . .., dmn,, (0m, ),

consider the signed rank scatter matrices

1 & Rij(#1,...,0,,5,...,%) s e h @
Skii:= p JZ:IK ( 1 U;;(6:,%)U;;(6:, %), (1.8)
where 91, . ,9m are consistent (under Hj) estimates of the various location parameters, Yisa

consistent (under Hy) estimate of the common null value of the ¥;’s, and K is some appropriate
score function. The proposed signed rank tests reject the null hypothesis of scatter homogeneity
for large values of

QK = — Z (nl + ni/) QK;i,i’a (19)
1<i<i’<m
where o
R i1bq o )2 2 L L.
QK - oS {ak,K tr [(§K,z S ki) } + Brx tr°(S Ky — Sk )},

ay, ik and [ g are constants depending on the dimension k and the score function K. Although
we derive (1.9) from Le Cam type optimality arguments, we show in Section 5.2 that this test
statistic @ }{n ) also can be obtained by replacing, in Schott’s robustified test statistic (1.5), the
traditional sample covariance matrices with the signed rank scatter matrices (1.8). Being rank-
based, our tests however remain valid under much broader conditions than Schott’s (no finite
moment requirements) and enjoy much better resistance to outliers.

The use of signed ranks is justified by the invariance principle: Hy indeed is invariant under
groups of affine and (continuous monotone) radial transformations; see Section 3.2 for details.
Beyond affine-invariance (all tests considered in this paper are affine-invariant), our rank tests—
unlike their competitors—are also (asymptotically) invariant with respect to the groups of radial
transformations; validity robustness follows from this latter invariance property.



As announced, our methodology combines validity and efficiency robustness. We will show
that, for (essentially) any radial density fi, it is possible to define a score function K := Ky,
characterizing a signed rank test which is locally and asymptotically optimal (actually, locally and
asymptotically most stringent, in the Le Cam sense) under radial density fi. In particular, when
based on Gaussian scores, our rank tests achieve the same asymptotic performances as Schott’s
(1.4) and the other Gaussian tests at the multinormal, while enjoying the validity robustness
of (1.5) and even more, since no moment assumption is required. Moreover, the asymptotic
relative efficiencies (AREs) of these normal-score tests are almost always larger than one with
respect to their parametric competitors (see the AREs and simulations in Sections 6 and 7. The
class of tests we are proposing thus in most cases dominates the existing parametric ones, both
in terms of robustness and power.

1.4 Outline of the paper.

The paper is organized as follows. In Section 2, we collect the main assumptions needed in
the sequel. Section 3.1 discusses semiparametric modelling issues and their relation to group
invariance. Section 4.1 states the uniform local asymptotic normality result (ULAN) on which
our construction of locally and asymptotically optimal tests is based. In Section 4.2, we construct
rank-based versions of the central sequences appearing in this ULAN result. In Section 5.1, we
derive and study the proposed nonparametric (signed-rank) tests (based on (1.9)) for scatter
homogeneity. Section 5.2 presents the parametric Gaussian counterparts of these tests and shows
how they can be turned into pseudo-Gaussian ones; their relation to Schott’s modified tests based
on (1.5) is also studied. In Section 5.3, we investigate the links between these tests and the main
Gaussian procedures available in the literature. Asymptotic relative efficiencies with respect to
the pseudo-Gaussian tests are derived in Section 6. Section 7 provides some simulation results
confirming the theoretical ones. Finally, the appendix collects proofs of asymptotic linearity and
other technical results.

2 Main assumptions.

For the sake of convenience, we are collecting here the main assumptions to be used in the
sequel.
2.1 Elliptical symmetry.

As mentioned before, we throughout assume that all populations are elliptically symmetric. More
precisely, defining the collections F of radial densities and F; of standardized radial densities as

1
F = {f >0 ae :pp_1,r < oo} and Fp = {fl eF : (Nk—l;h)_l/o rk_lfl(r) dr = 1/2},

respectively, where pp.p := [7° 78 f(r) dr, we require the following.

AsSUMPTION (A). The observations X;;, j =1,...,n;, ¢ =1,...,m are mutually independent,
with pdf f;, i =1,...,m, given in (1.6), for some f; € 7.

Clearly, for the scatter matrices ¥; in (1.6) to be well defined, identifiability restrictions are
needed. This is why we impose that f; € Fi, which implies that d;;(8;,X;) defined in (1.7)
has median one and identifies ¥; without requiring any moment assumptions (see Hallin and



Paindaveine 2006a for a discussion). Note however that, under finite second-order moments, ¥;
is proportional to the covariance matrix Xo; of Xj;.

Special instances of elliptical densities are the k-variate multinormal distribution, with ra-
dial density fi(r) = ¢1(r) := exp(—axr?/2), the k-variate Student distributions, with radial
densities (for v € R degrees of freedom) fi(r) = fi () = (1 4+ ap, L2 /v k+”)/2 and the
k-variate power-exponential distributions, with radial densities of the form fi(r) = flm(r) =
exp(—bkmr%), N E Rar; the positive constants ag, a,, and by, are such that f; € F.

The equidensity contours associated with (1.6) are hyper-ellipsoids centered at 6;, whose
shape and orientation are determined by the scatter matrix ;. The multivariate signs U;;(0;,%;)
and standardized radial distances d;;(0;,%;) defined in (1.7) are the (within-group) elliptical
coordinates associated with those ellipsoids: the observation Xj;; then decomposes into 8; +
dijzg/zUij, where the Uy;’s, j = 1,...,n;, @ = 1,...,m are iid. uniform over the unit
sphere in R*, and the d;;’s are i.i.d., independent of the Uj;;, with common density flk(r) =
(,uk_l;fl)_lrk_lfl (1) ;>0 (justifying the terminology standardized radial density for f1) and dis-
tribution function F 1%. In the sequel, the notation gy and ém will be used for the corresponding
functions computed from a standardized radial density g1 (€ Fi).

The derivation of locally and asymptotically optimal tests at radial density f; will be based
on the uniform local and asymptotic normality (ULAN) of the model at given f;. This ULAN
property—the statement of which requires some further preparation and is delayed to Sec-
tion 4.1—only holds under some further mild regularity conditions on fi. More precisely, ULAN
(see Proposition 4.1 below) requires f1 to belong to the collection F, of absolutely continuous
densities in F7 such that, letting ¢ = —fl/fl (with f1 the a.e.-derivative of f1), the integrals

1 -
= [y de and B = [ G ) (E ) du

are finite. The quantities Zy(f1) anf J(f1) play the roles of radial Fisher information for location
and radial Fisher information for shape/scale, respectively (see Hallin and Paindaveine 2006a.).

2.2 Asymptotic behavior of sample sizes.

Although, for the sake of notational simplicity, we do not mention it explicitly, we actually
consider sequences of statistical experiments, with triangular arrays of observations of the form

(Xg 1), .. X(n)(n),Xé 1), .. X(n)(n), . 7X£:LL,)17 .. ,X:)n(n)) indexed by the total sample size n,
(n)

where the sequences n,; ~ satisfy the following assumption.

AssuMPTION (B). For alli=1,...,m, n; = nl(-") — 00 as n — o0.

Note that this assumption is weaker than the corresponding classical assumption in (uni-
variate or multivariate) multisample problems, which requires that n;/n be bounded away from

0 and 1 for all ¢ as n — oo. Letting )\Z(-n) = n(n)/n, it is easy to check that Assumption (B) is
actually equivalent to the Noether conditions

1-A" W
max< ()Z , ’() =o(n) asn — oo, for all i,
P

that are needed for the representation result in Lemma 4.1(i) below. However, the following



reinforcement of Assumption (B) is assumed to hold (mainly, for notational comfort) in the
derivation of asymptotic distributions under local alternatives:

AssumpTiON (B'). For alli =1,...,m, /\En) — A €(0,1), as n — oo.

2.3 Score functions.

The score functions K appearing in the rank-based statistics (1.8) will be assumed to satisfy
the following regularity assumptions.

AssuMPTION (C). The score function K : (0,1) — R (Cl) is a continuous, non-constant,
and square-integrable mapping which (C2) can be expressed as the difference of two monotone
increasing functions, and (C3) satisfies fol K(u)du = k.

Assumption (C3) is a normalization constraint that is automatically satisfied by the score
functions K(u) = Ky, (u) == @z (FH(u)F (u) leading to local and asymptotic optimality
at radial density fi (at which ULAN holds); see Section 4.1. For score functions K, K1, K,
satisfying Assumption (C), let

Te(K1, Ky) == E[K,(U)K3(U)] and Ly(K1, Ks) := Cov[K(U), Ko(U)] = Jp(K1, K3) — k?

(throughout, U stands for a random variable uniformly distributed over (0,1)), with Ji(K) :
Ti(K, K) and Li(K) := Li(K, K). Also, for simplicity, we write J, (K, f1) for E[K(U) Ky, (U)],
Ek(fl, g1) for E[Kfl (U)Ksh(U)] - kz? etc

The power score functions K,(u) := k(a + 1)u® (a > 0) provide some traditional score
functions satisfying Assumption (C), with J3(K,) = k?(a+1)?/(2a+1) and L(K,) = k?a?/(2a+
1): Wilcoxon and Spearman scores are obtained for a = 1 and a = 2, respectively. As for score
functions of the form Ky, , an important particular case is that of van der Waerden or normal
scores, obtained for f; = ¢1. Then, denoting by ¥; the chi-square distribution function with k
degrees of freedom,

Ky () =0 (u), Ti(dr) =k(k+2), and Lp(é1) = 2k.

Similarly, Student densities f; = ff’y yield

k(k + ) G5 (u) L k(k+2)(k+v) ‘ 2k
K1, 0=~ gt W = e AUl =y

where G, denotes the Fisher-Snedecor distribution function with k& and v degrees of freedom.

3 Semiparametric modeling of elliptical families.

3.1 Scatter, scale, and shape.

Consider an observed n-tuple Xy, ...,X,, of i.i.d. k-dimensional elliptical random vectors, with
location 0, scatter ¥, and radial density f; € F; but otherwise unspecified. The family P
of distributions for this observation is indexed by (8, X, f1). As soon as a semiparametric point
of view is adopted, or when rank-based methods are considered, the scatter matrix ¥ naturally
decomposes into ¥ = 02V, where o is a scale parameter (equivariant under multiplication by a
positive constant) and V a shape matriz (invariant under multiplication by a positive constant).



A semiparametric model with specified o and unspecified standardized radial density f; indeed
would be highly artificial, and we therefore only consider the case under which ¢ and f; are
jointly unspecified. This semiparametric setting is also the one that enjoys the group invariance
structure in which the ranks and the signs to be used in our method spontaneously arise from
invariance arguments; see Section 3.2 below.

The concepts of scale and shape however require a more careful definition. Denoting by
Sk the collection of all k x k symmetric positive definite real matrices, consider a function
S : S — R{ satisfying S(AZ) = AS(Z) for all A € RY, £ € S, and define scale and shape as
o := (S(£))"/? and Vg := £/5(X), respectively. Clearly, Vg is the only matrix in Sy, which is
proportional to ¥ and satisfies S(Vg) = 1: denote by V¢ := {V € S, : S(V) = 1} the set of all
possible shape matrices associated with S.

Classical choices of S are

(i) S(2) = (¥)11 (considered in Randles 2000, Hettmansperger and Randles 2002, Hallin and
Paindaveine 2006a, and Hallin et al. 2006);

(i) S(X) = k~'tr(X) (considered in Tyler 1987, Diimbgen 1998, and Ollila et al. 2004);

(iii) S(X) = |B|*/* (considered in Tatsuoka and Tyler 2000, Diimbgen and Tyler 2005, Salibian-
Barrera et al. 2006, and Taskinen et al. 2006).

In practice, all choices of S are essentially equivalent. Although favoring a trace-based
normalization of £, Bickel (1982, Example 4) actually shows that, irrespective of S, the
asymptotic information matrix for Vg in the presence of unspecified § and og is the same, at
any 8 € RF 05 € R}, Vs € V,f and fj, whether f; is specified (parametric model) or not
(semiparametric model): once 6 and og are unspecified, an unspecified f; does not induce any
additional loss for inference about Vg. Paindaveine (2006b) establishes the stronger result that
the information matrix for Vg in the presence of unspecified 8, og and f; is strictly less, at any
0 € RF, og Ra' , Vg € V,f and f1, than in the corresponding parametric model with specified
0, o5 and f1—except for S : X — \2]1/ k_where those two information matrices coincide: under
this determinant-based normalization, thus, the presence of nuisances (6, os, and f1) (resp.,
0, Vg, and f1) asymptotically has no effect on inference about shape (resp., inference about
scale). In both cases, it can be said (adopting a point estimation terminology) that shape can
be estimated adaptively. This Paindaveine adaptivity, where 8, og and f; lie in the nuisance
space of the semiparametric model, is much stronger than Bickel adaptivity where only f; does.
This finding strongly pleads in favor of the determinant-based definition of shape which, with
its block-diagonal information matrix for 8, 0g, and Vg, is also more convenient from the point
of view of statistical inference. Therefore, we throughout adopt S(Z) = |£|'/*, and henceforth
simply write V € V}, and o for the resulting shape and scale.

The parameter in our problem then is the L-dimensional vector

9=, 9,9, =@, ...0 0% . . 02 (vech Vi), ... (vechV,)),

rYmo rrmo

where L = mk(k+3)/2 and vech (V) is characterized by vech(V) =: ((V)11, (vech V)’)": indeed,
¥, is entirely determined by ¢? and vech (V;). Write © for the set R™F x (R{)™ x vech (V)

of admissible ¥ values, and P(T_L) or P .. for the joint distribution of the n observations
91 V191,91 f1

under parameter value ¥ and standardized radial density f; (always implicitly assumed to belong
to F1, when notation f; is used).

Finally, note that for any C(E,) > 0, Uz](euzz) = UZ](OZ,C(EZ)EZ) = Uz](euvz) and
dij(0:,%:) = c2(2:)d;;(0;,c(E:)E;) = 0; 'd;;(0;, V). Tt follows that the multivariate signs



computed from the shape V,; and those computed from the scatter ¥; coincide. Since, under
null hypothesis Hy of scatter homogeneity, the (nonstandardized) radial distances computed
from the common value V of the shape matrices are proportional to the standardized ones com-
puted from the common value ¥ of the scatter matrices, the corresponding ranks also coincide.

3.2 Invariance issues.

Denoting by M(T) the vector space spanned by the columns of some L x r full-rank matrix T
(r < L), the null hypothesis of scatter homogeneity Ho : 03V = ... = 02,V,;, can be written
as Ho : 9 € M(T), with

Y, 0 0 I, O 0
k(k+1
Y=o r, o |=[ 0 1. o , K= % 1 (3.1)
0 0 Ty 0 0 1,xIk
where 1,, := (1,...,1)" € R™ and I, denotes the ¢-dimensional identity matrix.

Two distinct invariance structures play a role here. The first one is related with the group
of affine transformations of the observations, which generates the parametric families PA(rn}l =

Use M(T) {Pf;;}l }. More precisely, this group is the group G™* , of affine transformations of the
form X;; — AX;; + b;, where A is a full-rank (k x k) matrix and B := (by,...,by,) a (k x m)
matrix. Associated with that group are the transformations ¥ — gzzg('ﬂ) of the parameter
space, where

gap(®) = ((A01 +b1), ..., (AB, +by) AP R62, AP RG2,
(vech (AV1A)) /|A[>*, ... (vech (AVmA’))’/]AP/k)/.

Clearly, the null hypothesis Hg of scatter homogeneity is invariant under G"™* o—meaning that
gZ’g (M(T)) = M(T) for all gZ’g. Therefore, it is reasonable to restrict to affine-invariant tests
of 77'(0. Beyond their distribution-freeness with respect to the 6;’s and the common null values o
and V of the scale and shape parameters, affine-invariant test statistics—that is, statistics @
such that Q(AXyy + bi,... AXpp,, +bn) = Q(Xi1, ..., Xy p,) for all A by,... b, —yield
tests that are coordinate-free.

A second invariance structure is induced by the groups G,. := GV . of continuous monotone
radial transformations, of the form

X = Gy(Xia1y - Xonnyy)
Gg(01 + da (61, VI)V2UL1 (81, V), .. O + dyn,, O, VIV U, (010, V)
= (01 + g(d1 (81, V))V2UL (81, V), .. .00 + g(dny, B, V)IVY2 U, (01, V),

where g: RT— R is continuous, monotone increasing, and such that g(0) = 0 and lim,_,« g(r) =

oo. For each 9 € M(Y), that is, for each ¥;,V, this group G%V. is a generating group

)
,021,1m®@(vech V
invariance principle suggests basing inference on statistics that are measurable with respect

to the corresponding maximal invariant, namely the vectors (Ui, ..., Uy, ) of signs and the
vectors (Ri1,. .., Rmp,,) of ranks, where U;; = U;5(0;, V), and R;; = R;j(01,...,0,,,V,..., V).

Such invariant statistics of course are distribution-free under P,gTIL)V.

for the nonparametric family 771(9?)\, = U,Up {ng ) f1}' In such families, the

10



4 Uniform local asymptotic normality, signs, and ranks.

4.1 Uniform local asymptotic normality (ULAN).

As mentioned in Section 1, we plan to develop tests that are optimal at correctly specified
densities, in the sense of Le Cam’s asymptotic theory of statistical experiments. In this section,
we state the uniform local asymptotic normality (ULAN) result (with respect to location, scale,
and shape parameters, for fixed radial density f1) on which optimality will be based.

Writing

90 = @ 90 9y = 060 62 62 (vech VMY (vech V(MY

9 m )
for an arbitrary sequence of L-dimensional parameter values in ©, consider sequences of “local

alternatives” 9 4+ n=1/2p(M ™) where

() — =(r 5") ¢§I) T&Z)) (tg")/,...,t(")',sf(n),...,s%"),(ve%hvgn))',...,(Veochvgg))')'

m

is such that sup, 707" < oo and where, denoting by A = (A&Z)) the (m x m) diagonal
matrix with Agl) = (/\Z(n))_l/2 (see Section 2.2),

»"oo o A eI, 0 0
vWe=1 o W o |:= 0 A™ 0 (4.1)
o o v\ 0 0 AP @Ik

(under Assumption (B'), we also write v for lim, .., »™). Clearly, these local alternatives

do not involve (v Z("))ll, i =1,...,m. It is natural, though, to see that the perturbed shapes

V( " 4 n; 12 Z(") remain (up to o(ni_l/2)’s) within the family Vj, of shape matrices: this leads
to defining (VZ( ))11 in such a way that tr((Vz("))_lvgn)) =0,i=1,...,m, which entails \Vz(n) +
ni_l/zvgn)ll/k =1+ o(ni_l/2) (see Hallin and Paindaveine 2006b, Section 4).

The following notation will be used throughout. Write V®2 for the Kronecker product V@ V.
Denoting by e, the /th vector of the canonical basis of R, let K, := Zﬁjzl(eie;) ® (eje}) be
the k? x k? commutation matrir, and put Jp := (vecIj)(vecI;)’. Finally, let My(V) be the
(K x k?) matrix such that (My(V))(vechv) = (vecv) for any symmetric k& x k matrix v such
that tr(V~1v) = 0. As shown in Paindaveine (2006b; Lemma 4.2(v)), My (V)(vec V=1) = 0 for
all V € V.

We then have the following ULAN result; the proof follows along the same lines as in Theo-
rem 2.1 of Paindaveine (2006b) and hence is omitted.

Proposition 4.1 Assume that (A) and (B) hold, and that f; € F,. Then the family P}?) =
{P \19 € O} is ULAN, with central sequence

1,1 m,1 1,1
o Ay.p Agf, Aﬁ;fl 9
_ n e I7 I _ . 7 _ T _ .
Aﬂ;fl - Aﬂ;fl T 2%1‘1 ) Aﬂ;fl - : ) Aﬁ;h - : ) Aﬂ;fl - : )
Lm P m r,m
ﬁ;fl A'ﬂ fl A’ﬂ fl Aﬂ,fl

where (’LU’Lth d'j = d,](QZ,VZ) and Uij = U,J(GZ,VZ))
—1/2 n; —1/2 n;

i vo1/2 i i\ d;
Aéfl Zwl( z) i /UZ]7 A‘gfl_ 2 Z(pr1< ]> ]_k)u

0; Z]l o) o)

11



~1/2

i n; o\ —1/2 i\ dij
Aglfl == My (V) (V® ) Z o <—Z> —Vec (U 1) )
1=1,...,m, and full-rank block-diagonal mformatzon matric

Fé;ﬁ 0 0
Fﬂ;h = 0 P197 £ 0 , (4.2)
0 0 I“g;]f1

where, defining g := diag(o1,...,0m), V. :=diag(Vy,..., V), Mp(V) = diag(Mg(V1),...,Mr(Vn)),
and V&2 := diag(V{?, ..., VE2) we let

1 _ _ 1 _
Ly.p = EIk(fl)(Q @)V, Ty, = Zﬁk(fl)g 4,

and
o, . jk(fl)

B e e g M T @ (T + K| (V2) o))

More precisely, for any I =9 + O(n_l/z) and any bounded sequence 7™ we have, under
(n)
Pﬂ(n)?fl’
(n) o (n)
Aﬂ(’”+n*1/2v(n>r<”>/19<”>;f1 = log (dpﬁ(”)—i-n 1/2y(n) 7 (), fl/ de) f)
n n 1 n n
= @OYAR, ST Tt +op(1)

and Aﬂ(n);fl i>./\/'(O,I‘19;f1), as n — oo.

The classical theory of hypothesis testing in Gaussian shifts (see Section 11.9 of Le Cam 1986)
then provides the general form for locally asymptotically optimal (namely, most stringent) tests
of hypotheses in ULAN models. Such tests, for a null hypothesis of the form 9 € M(Y), should
be based on the asymptotically chi-square null distribution of

Qx = (Bg.p,) Ty [1= proj(Tyy (/) 7)|T, 2 Ay,

where proj (I"il,(]%l( ("))=17) is the matrix projecting R” onto ./\/((I‘l/2 (v(™)=17) (with 9 replaced

by an appropriate estimator ¥; see Assumption (D) below). Whenever Ty.y,, v and T all
happen to be block-diagonal, which is the case in our problem, this projection matrix clearly is
block-diagonal, with diagonal blocks

proj((Th. ;)2 @\"™) 1L ,), proj(Th) 2W)) "), and proj(Cg ) @)™ ow)

denoting projections in R™*, R™, and R™ respectively. Since moreover M((T'§, f )2 (uS"))—l“r ;)=
R™k, proj((Pé;f1)1/2(u§"))—1“r1) = Ik, so that Qv reduces to

Qr = (Afp,) (TF.)"2 [T = proj(Tg. )2 wi) 10 n)| (T, ) /2AG,

ALY (Tgl) 2 [T = proj(Tgl ) 2 W) 10 w)| (Tg1)2A%,  (43)

where A{% 7, does not play any role. Accordingly, in the next section, we proceed with rank-based
analogues of Ay, and Ayl only.

12



4.2 A rank-based central sequence for scale and shape (scatter).

A general result by Hallin and Werker (2003) implies that, in adaptive models for which fixed- f
submodels are ULAN and fixed-¥ submodels are generated by a group Gy, invariant versions
of central sequences exist under very general assumptions. In the present context, this result
would imply the existence, for the null values of ¥ (9 € M(TY)), of central sequences based on
the multivariate signs U;; and the ranks R;;. Although that result does not directly apply here,
it is very likely that it still holds. This fact is confirmed by the asymptotic representation of
Lemma 4.1(i) below.

Consider the signed rank statistic (associated with some score function K satisfying As-

sumption (C)) A gk = (A ) (AF)) = (Agw) - (Ag) (A, (A,

where )
mi 1 i R;;

and

Ayl = %”{1/21\4 (Vi) (V®2) ) vec (U,-jugj) . (4.5)

The following lemma provides (i) an asymptotlc representatlon and (ii) the asymptotic dis-
tribution of Ay.x (see the appendix for the proof). An immediate corollary of (i) is that
Ay =Dy "o with K = Ky, , actually constitutes a signed-rank version of the scatter part

((Ag.p,) (Agly,)") of the central sequence Ay, y, .

Lemma 4.1 Assume that (A), (B), and (C) hold. Fiz¥ € M(Y) (with common values o and V
of the scale and shape parameters). Let R;j be the rank of dij = d;j(0;, V) among di1, ..., dmn,, ,
and let U;; :=U;;(0;,V). Then, for all g1 € Fi,

(i) Ay,x = Dy K., +012(1), under ngl, as n — oo, where

Aprigr = (Bgrg))s (Bglic,)) = ((Ag;}l(;gl)/ (Ag?gl) (Aglli gl)/ (Agff’?;bm)/)/v
with _
AH,Z’ L 1 -1/2 - K é' dij i
9, K91 ° W”z ]gl 1k 7 —
and _
g 1 —1/2 ®2 —1/2 A dij 7\ .
Dlig =5 MRV (VE?) ZlK G () ) vee (U, U) (4.6)

j:

(it) defining Hy(V) == gurgyMi(V) [Tz + Ky (VE)TH(MR(V)), Ay, is asymptoti-
cally mormal with mean zero and mean

( ﬁ(ﬁk(K, 91)Tx )
Tk (K7 91)[Im ®@ Hy, (V)]TIII

under PY and P™ E respectively, and covariance matriz

9591 I+n—1/2p(M) 1 g

T e Tyx O | E=L(KL, 0
BT 0 T )T 0 Ti(K) Ly, @ Hy(V)]
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(n)

under both (the claim under P'L9+n*1/21/(”)'r;g1

further requires g1 € Fg).

As mentioned in the description of the most stringent tests (see the comments after Propo-
sition 4.1), we will need replacing the parameter ¥ with some estimate. For this purpose, we

assume the existence of 9 := 19(n) satisfying

AssuMPTION (D). The sequence of estimators (19(n), n € N) is

(D1) constrained: Pf,rf;l ['{9(n) e M(YT)] =1 for all n, ¥ € M(Y), and g1 € Fy;

(D2) nl'/? (V(”))_l—consistent: for all 9 € M(T), n'/? (l/(”))_l(@(n)
under Uglg_-l{Pg:zh};

(D3) locally asymptotically discrete: for all 9 € M(Y) and all ¢ > 0, there exists M =
M(c) > 0 such that the number of possible values of {9(“) in balls of the form {t €
RE : n1/2||(1/("))_1(t —9)|| < ¢} is bounded by M, uniformly as n — oo, and

—19) = Op(1), as n — o0,

(D4) affine-equivariant: denoting by '[9<n) (A,B) the value of '[9<n) computed from the trans-

formed sample AX;; +b;, j =1,...,n;, i =1,...,m, @(n)(A,B) = gzzg('{?(n)), for all

k
gZ,B c gm,k'

There are many possible choices for 9. However, still in order to avoid moment assumptions,
we propose the following estimators, related with the aﬂine—eqpivariant median proposed by
Hettmansperger and Randles (2002). For each i = 1,...,m, let §; and V; be characterized by
;1

_Ikv

1 & P 1 & P PN
— ij(0i, Vi) = — ij(0i, Vi) (U505, V;
niszleyw )=0 and nijZ:leyw )(Ui;(6:, Vi) = +

with [V;| = 1. Then, under ¥ € M(T), the common value V of the shape matrices V; is
consistently estimated (as n — oo, under Ugl{ngl} and Assumptions (Al) and (B), and
without any moment assumption on gi1), at the rate required by Assumption (D2), by the Tyler
estimator V computed from the n data points X;; — 9, and normalized in such a way that
V| = 1. Under the same conditions, the common scale o is the median of the i.i.d. radial
distances d;;(0;, V), so that the empirical median & of the estimated distances d;; (6;, V) can be
used as an estimator of 0. Consequently, the estimator

9:=(0,....0, 61 1 © vechV)) (4.7)
satisfies (D2) above—except perhaps for the 1911 part, which however is not involved in the test
statistics below. This estimator also satisfies (D1) and (D4). As for (D3), it is a purely technical
requirement, with little practical implications (for fixed sample size, any estimator indeed can be
considered part of a locally asymptotically discrete sequence). Therefore, we henceforth assume
that (4.7) satisfies Assumption (D). X
The resulting ranks }?ij = Ri;(01,. .. 0., V, ... ,V) are usually called aligned ranks. The
following asymptotic linearity result describe)s the asymptotic behavior of the aligned versions
A n

A 5. of the rank statistics Ay, under P1(9'g1; see the appendix for the proof.
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Proposition 4.2 Assume that (A), (B), (C), and (D1)-(D3) hold, and that ¢ € F,. Fix
¥ € M(T) (with common values o and V for the scale and shape parameters). Then,
AT AT 4 LE (K )(V("))—l 1/2(t§(n) —9,)
= ‘lA9;K =K Aot k » g1 big n Jig big
and )
éng - ég,[K + jk(K, 91) [Im ® Hk(V)] (VSZ))_l n1/2(’9m _’,IH)

are op (1) under P’l(;'L.;l’ as m — oo.

5 Optimal tests of scatter homogeneity.

5.1 Optimal rank-based tests.

For all ¥ € M(Y) (with common values o and V for the scale and shape parameters), define

n)y\— n)y— n)\— -1 n)\—
Chx)" = Cgr) ™ = @) (T, 0) " Th i) ') ) !
40t
= — 1, —-Cc®
£k(K)[ ]
and
n)y— n)y— n)\ — -1 n)\—
O3t = O30~ = @)™ (C i) T ) ) T 0!

= (Je(K) " I — CM] @ (He(V)) 7,

where C(") = (C’Z(jn )) denotes the m x m matrix with entries C’Z(Jn )= (/\Z(n))\g»n))l/ 2. The K-score

version Q&?) of the rank-based tests we are proposing rejects Ho : ¥ € M(T) as soon as

0 (45, T 8, (a3 50 8

- ~ K ~ ~ %K
§~ i — A S S <K < Ry > B k) (K < Ry ) ) k)
i,i'=1 (n’ini/)l/2 i=1=1 Ek(K) n—+ 1 n -+ 1
EPXATS K(n+ D) EG ) ((UgUe)™ — 4 (5.1)

exceeds the a-upper quantile X%m_l)(KH),l_a

of the chi-square distribution with (m —1)(K +1)
degrees of freedom (6; 7 stands for the usual Kronecker symbol); the explicit form of (Hy(V))~!
allowing for (5.1) can be found in Lemma 5.2 of Hallin and Paindaveine (2006b).

In the sequel, we write QSJI) and @ ;1") for Qg?;l and @ [((7; )1, respectively.

We are now ready to state the main result of this paper; for the sake of simplicity, asymptotic
powers are expressed under Assumption (B’) and perturbations 7 such that lim,,_, . v 7 =
vr ¢ M(Y), with vyry = (s3/VA1, .., 85/VAm) and vty = ((vechvy) /v, ...,
(vechv,,,)' /v/Am)'. For any such 7 and any ¥ € M(T) (still with common values ¢? and V
of the scale and shape parameters), let

1 n N (n M (82 s2\?
o= o (VI - o)) = 3 TR (e )
1<i<i’'<m i i
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and

rif = 2k(k+2) lim { (737 |[Ln—C™)wH(V)| 717 | = L2 At [(V_l(%‘\%)ﬂ

recall that tr(V_lvgn)) =0,i=1,...,m (see the comments before Proposition 4.1).
Theorem 5.1 Assume that (A), (B), (C), and (D1-D8) hold. Then,

(i) Qgg) is asymptotically chi-square with (m —1)(K + 1) degrees of freedom under Uge aq(r)

Ugier. {ngl}, and (provided that (B) is reinforced into (B')) asymptotically noncentral
chi-square, still with (m — 1)(K + 1) degrees of freedom, but with noncentrality parameter

E%(K,gl) I j]?(K7gl) 1

ALLE) O k(K + 2)Tk(K) O (5:2)

under P(")

B /2y gy O € ML), w7 = limy o v ¢ M(Y), and g1 € F,;

(ii) the sequence of tests Q%L) has asymptotic level o under Uge pr) Uglefa{Pa(;;L;l}f

(111) if fi € Fq and Ky, satisfies Assumption (C), the sequence of tests ngf) 1s locally and asymp-
totically most stringent, still at asymptotic level «, for U,geM(T) Uglefa{ngl} against
alternatives of the form U0¢M(T){P1(97~l}1}-

See the appendix for the proof.

Of course, provided that Ky, satisfies (C), (i) holds for QSCT) with Li(K,¢1) and Ji(K, g1)
replaced, in (5.2), by Li(f1,91) and Jx(f1, 1), respectively. After some algebra, one obtains

n 1 n
Qi =— X (utn)Ql

- n
1<i<i’<m

i 1 2% »
i nZK Rij _ 1 Z K Ri/j/
nij_ n+1 T, =1 n+1

=1 /
~ A 2

1 Ry N 1 1 & Ry N 1

et 000t - 0] - 3 (G 00t )

is the test statistic obtained in the two-sample case (for populations ¢ and i'); see Um and
Randles (1998) for a similar decomposition in MANOVA problems. Note that no estimate 9
of the common scale appears in the test statistics. Also, letting

2

(5.3)

Q(n) N n;n; 1
X Kiia T n; + ny ﬁk(K)

k(k + 2)

2T (K)

1 Rij \ ¢ v
Sk = — Y K[ 0,00,
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the statistics in (5.3) take the simple form

(n) n;mn; 1 2 k‘(k’ + 2) |: 2 1 2 ]
) r2(S g — S o) 4+ VD L 108 g — S e)2] — = 602(S jeos — S peor
ey nz‘+m/{£k(F') r°(S ki — Sky) + 27 () I‘[(NK, S ki) } Lt (Skii— Skir)

o ngng {k‘(k’+2) (jk( ) (k+2))
T onitng | 20k(K) 2Tk (K) L1 (K)

For Gaussian scores (i.e., for K = Ky, ; see Section 2.3), one obtains the van der Waerden
test statistics

tr {(§K; - §K;i’)2} - (S ki — §K;z”)} -

ngng

Quaw = n > (nitng )deWz o where: Quawyir = 2(n; +ny)

1<i<i’<m

tr {( S vawsi — §VdW;i’)2}

. A (5.4)
with Syaw, == n; ' PO U (Rij/(n+ 1)) ijUj;. The Student scores (i.e., K = Ky ; see
Section 2.3) yield ’

m) _ 1 o™

Qfl v Z (nl + n’l/) fo,u;iJ” (55)

n
1<i<i! <m

(n) B n;mny; k+V+2 o 2 1 2 o
Qﬁvv;i’i/ Cni+ny 2(k+v) " {(gffvy;i §ff,u?i') } * Vtr (§f1t,y%i §ff,uﬂ")

with 8 e = k(k+v)n; 00, Gy (Rig/(n+1))/[v + kG (Rij/(n + 1)) U Uy, As for the
tests assoc1ated with the usual power score functions K, (a > 0), they are based on

n 1 n
Ql({a) = Z (n; +ny) QI((“);Z-,Z-,, (5.6)
1<i<i'<m
where
n N 2a + 1
Qs =

n; +ny 2a2(a + 1)2k2
x {cﬂk(k + 2)tr [(gm - §Ka;i,)2] — (a®k — 4a — 2) tr2(S g, — §Kaﬂ.,)}

with S i == k(a+1)(n+ 1)~%n; " Y1 (Ry;)*U; U},

Corollary 5.1 Assume that the conditions of Theorem 5.1 hold. Then,

(1) provided that g1 € Fq is such that Li(K,g1) # 0 # Tk(K, q1), Q%L) is consistent under any
;9 € M(T), lim, oo v™7() ¢

local gi1-alternative (that is, under any Pgﬁn 12y (n)7(n) gy
M(T));

(i1) the same conclusion holds if u+— K (u) is differentiable with derivative K', and if g1 € F,
is such that [° K'(Gix(r))r (§ux(r))%dr > 0 (in particular, if K is non-decreasing).

See the appendix for the proof. This corollary shows that the van der Waerden tests above, as
well as those achieving local asymptotic stringency at prespecified Student or power-exponential
densities, are universally (locally) consistent (since the corresponding score functions are strictly
increasing). Of course, the same holds for the tests associated with the power functions K,
a > 0. Non-local consistency results can be obtained along the same lines as in Section 5.2 of
Hallin and Paindaveine (2006a).
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5.2 The optimal pseudo-Gaussian tests.

In this section, we introduce the pseudo-Gaussian counterpart of the rank-based tests defined
in Section 5.1. The parametric Gaussian test ¢§\7) for Hy follows, in the same way as (4.3),
from classical results on most stringent tests in Gaussian shift experiments. Denoting by

(Agn), (Agy)) = ((AH ) (AR o) (Am LY glﬁl)/)’ the scale and shape com-
ponents of the Gaussian central sequence, where (stlll with d;; := d;;(0;, V;); see Section 2.3 for
the definition of ay)

o2 ~1/2
g;’}v— 07 Z(ak—z— ) and Agly —MM/AV)(V@) i ZdQ vec (U U')

2
20 P
1 =1,...,m, this parametric Gaussian test is based on a quadratic test statistic of the form
(n) ._ jig gyt 1A m ' pmr \L A
QW = (Ag) @ )AL+ (A ) @ )AL (5.7)

computed at a sequence of estimators ] satisfying Assumptions (D1)-(D3), where, for any ¥ €
M(T) (still with common values o2 and V of the scale and shape parameters), we let

(Chp)* = %Im —C™] and ()" = (k(k +2) 7 L — €)@ (H (V)

Turning this Gaussian test ¢§\7) into a pseudo-Gaussian one ¢(Nni will be possible under the
existence of finite fourth-order moments only This requirement, under Pg_gl, is satisfied iff
Ei(q1) == 07, "Eg.y, [d4 0;,V,) fo u))*du is finite, that is, iff

916}—54) 916}_ / dr<oo}

for all g; € FO let Di(q1) = 0; *Ey, [d?j(Gi,V,-)] = fol(é'l_kl(u))2du. For Gaussian densities
(91 = #1), one easily obtains Ex(¢1) = ay, 2k(k + 2) and Dy(¢1) = a;, k.

The problem with QS(N") under non-Gaussian densities g; is that, whereas Af,HAZ/ remains cor-

(n)

rectly centered under any Py o the expectation of Ag-’j\/ under non-Gaussian g; is not zero
anymore, which induces for A% IN the same type of shift as a perturbation of the o;’s. To

remedy this, define, for g1 € fC(L ),

2
i . Al i) agn; d; moi . AL .
Ty = Bon— Eggl{ ﬂN} WE (U Dk(gl)) and Ty, =Bgpsi=1...,m.
i j=1

Since g; in practice remains unspecified, the Té“ 's cannot be computed from the data; this

however will be taken care of later on. The asymptotic distribution, under Hy and local alter-
1,1 Jig 11,1 I

natives, of Tg,4, := ((Tyg,,) (Tgl,,)") == (Ty,,. - Ty, ;ln (Ty.,) 7...,(Tﬁ;gzn)’)’, is provided

in the following lemma (see the appendix for the proof)

Lemma 5.1 Assume that (A) and (B) hold, and that g1 € FY . Pz e M(Y) (with common
values o® and V for the scale and shape parameters, respectively). Then, letting Cy(g1) :=
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4Var19 g1[ (0:,Vi)] = Ex(g1) — Di(q1), Ty, is asymptotically normal with mean zero and
mean

( 261 Di(g1) Tu )
ak(k + 2)Dk(gl) [Im ® Hk(V)} Tm

under PY and P™ E respectively, and covariance matriz

%91 9+n—1/2p(n)1g
N, 11 a2
ry, - ( Pour 0 ) — ( () T 0 )
. 0 Ty 0 a3 By (1) [Ln @ Hy (V)]
under both.

Note that, under Gaussian g;, Ty, coincides with the Gaussian central sequence Ay,
and I’ Q;fm with the Gaussian information matrix Iy,

The effect on Ty, of a non-specification of ¥ is dealt with in a similar way as for the
rank-based statistics in Section 5.1. More precisely, the following parametric Gaussian analog
of Proposition 4.2 can be established (the proof follows along the same lines and is omitted).

Proposition 5.1 Assume that (A), (B), (D2), and (D3) hold, and that g1 € FY. Fizd e
M(Y) (with common values o and V of the scale and shape parameters, respectively). Then,

a
ngl Tg;gl""ﬁD (91)( ()) ! 1/2(’9 —’911)

and
n o (1)
nggl o Tg{gl + (Ik(k‘ + Q)Dk(gl) [Im & Hk(V)} (VEUI)) 1/2(’9111 - ’9111)

are op(1) under Pfﬁ;l, as n — oo.

Under P,(,fl;l, with 9 € M(T) and ¢g; € ]-'54), the pooled regular covariance matrix S :=
Ly, D (X —X;)(X;; —X;) is a root-n consistent estimator of k™! Dy (g1)0?V, and there-
fore

A( ) v Y o

3 = (R, Ky, K(Dy(91)) " SIVF 1L, 10, @ (veich (/185 (5.5)
is an estimator satisfying (after due discretization) Assumptions (D1)-(D3), so that Proposi-
tion 5.1, under PI(JL; , applies.

Replacing Ay,  With Ty - and T, A With Y in the Gaussian test statistic (5.7) yields
g1 39

"991 391

! !
NI\ L it 11 N1\ | moir
= (¥ ) ™ T! +(TA ) AR T
QN91 ( ¥gy591 ( 1991;91) Vg1301 V501 ( 1991;91) Vgy591°

where (02 and V still stand for the common null values of the scale and shape parameters

under 99)

VoL — 4o’ (n) Vo 2 —1 (n) -1
(Cog )™ = 7@2@(91)[% —C™] and  (Ty, )" = (aiEx(91)) L — C™] @ (Hk(V)) "
k

A~

Writing Jij, U;j, and o a for the quantities

dij = di;(X:,S/|S|VF), Uy = Uj(X,,S/IS[VF), and 62, == k(Dg(g1))~}|S|/*
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computed from '{991 given in (5.8), Q%,)gl can be reformulated as

m 5 — WA 2 ey g 2.,
(n) _ 5t ? J i iy
QN,g1 - Z (nini’)1/2 Z Z Ck(gl) (5’2 Dk(gl)) < 52 Dk(gl))

ii'=1 j=1j/=1 g1

k(k +2) ddi ( e o 1)
YmG) o, U )

or

n 1 n
Q=7 > (ui+n)Q, (5.9)
1<i<i/ <m
with
1 1 T TR ?
o o mny 1 <_ sz.) - (_ @2 >

OVt ™ T ) 7, {c,xgl) [ w2 %) G 2

k(k +2) - 1 ?

m |: Z d ;vec (UijU;j - k‘ ) ] |: Z dZ ]/VeC ( i ]/U k? Ik> :| }

In terms of the intragroup covariance matrices S; := n% Z;‘;l(Xij — Xi)(Xij —X;)’, this can still

be written as

n nin; D? 1 _
Qﬁ\/?gl;i,i’ CEE k;fgl){ck(gl) tr* (S7(Si — Sw))
+Z(Ekk7—(1tq12)) tr [(S7(Si - 8¢))?] - %tr2 (S7H(S; — Si/))] }
o nyny 1 g g, B ki (g1) 2igl(g g,
‘ni+m/2<1+nk<gn>{“[(8 L Ol B e P E A SZ))}’

where i (g1) = kEy(g1)/((k+2)D%(g1))—1 is the kurtosis common to the m elliptic populations

under Pf,rf;l (see, e.g., page 54 of Anderson 2003). Note that, at the multinormal case (g1 = ¢1),
this reduces to

m _ 1 (n) _
A== 2 (it m)Qg i With Q0 =
1<i<i’ <m

n;n;
T tr[(STY(S; — Sy))?
o G )%,
. . (5.10)
which coincides with Q(Nn) in (5.7) provided that ¥ :=,, (see (5.8)).

Clearly, in order to obtain a genuine test statistic QE\% (that is, a statistic that does not

)

depend on g; anymore) which nevertheless, under any Pffgl (with g1 € .7-"54)), is asymptotically

equivalent to Q%?gl, it is sufficient to replace kg (g1) with a consistent (still under Pf,?;l, g€ f£4))
estimator. An obvious choice is

k ( _121 12] 1 zy)
(k+2)( Ly oy )
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The resulting pseudo-Gaussian test qﬁ(Nni then rejects the null hypothesis (at asymptotic level «)
as soon as

n 1 n
Qﬁ\/i == > (ni+ny) Qﬁ\/i;m’ > X%m—l)(K-i—l);l—a (5.11)
n._ =
1<i<i’<m
where, with S and S;, i = 1,...,m as above,
n;ny; 1 _ I‘%k _
= tr [(S7HS; —Si))?| — ——=—— 2 (S7H(S; — Sy)) b
QN*’Z’Z n; + Ny 2(1 + /%k) { ' [( ( )) } (k + 2)!‘%k + 2 : ( ( ))

This test statistic is clearly affine-invariant; the following theorem summarizes its asymptotic
properties (see the appendix for the proof).

Theorem 5.2 Assume that (A) and (B) hold. Then,

(i) Q(Nni is asymptotz’cally chi-square with (m — 1)(K + 1) degrees of freedom under Usem(r)
U er {Pﬂ 91
chi-square, still with (m — 1)(K + 1) degrees of freedom but with noncentrality parameter

k II 1 III
R S—: 5.12
G D) 12" T A g (5:12)

}, and (provided that (B) is reinforced into (B’)) asymptotically noncentral

under P , with® € M(T), v1 := lim,, . v 7 & M(T)), and g1 € .7-"(4)

I4+n— 1/2y(n)p(n). g1
(ii) the sequence of tests qﬁN* has asymptotic level o under Uge apr) Ug1€.7:¢§4){P'l9§gl}7
(iii) the pseudo-Gaussian tests ¢(Nni are asymptotically equivalent, under | Jge M(T){Pz(;;l} and

under contiguous alternatives, to the optimal parametric Gaussian tests gbf\?) based on (5.7);

hence, the sequence qﬁ(Nni 1s locally and asymptotically most stringent, still at asymptotic

level a, for Uge m(r) Ug1€.7:(4){P’(;§L;1} against alternatives of the form U%M(T){szl}.

We conclude this section by showing that the pseudo—Gaussian test ¢ Nn* is essentially the ro-

bustified Schott test based on (1.5). Indeed, smceZ)\(n tr [(S;S7! Z )\ )\(n) tr [(S;:S71)%],
i=1 i,i'=1
we obtain
. n () < (m o e n () < (n P
Qe =5 > AN [0[(887)2 -85S, = 5 > AP e [(87M8-$0))?].
1<i#i'<m 1<i<i'<m

Working along exactly the same lines yields

N e (n Lo LR, oo n < (n) : (n o
§[ZA§ )42 (8,87 1) — > AR (887 (84871 = 3 > A 62 (§1(8,-8,)).

=1 0,4/ =1 1<i<i’<m
Hence, Q1) = . Z (7 —H’z-/)Q(") .., where

» % Schottx n - v v Schott;é,i’?
1<i<i’<m
(n) T 1 g & 2] Rk 2(9-1(S. _ S,
Oschortsiit = i + i 2(1 + Rg) {tr [(S (5s = 5e)) } (k +2)kg + 2 o (878 = ))}
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Comparing with (5.11), this clearly relates our pseudo-Gaussian test ¢ Nn* to Schott’s test (bsnchott*
based on QSChott* in the same way the LRT is related to the MLRT, that is, by replacing n;, n,
S;, and S by n;, 1, S;, and S, respectively—a replacement which obviously has no impact on
asymptotics. Therefore, Theorem 5.2 also holds for Schott’s test; this not only establishes the
exact optimality properties of the latter, but also provides its local powers (such results do not
follow from Schott’s original derivation).

5.3 Links with existing Gaussian tests.

In the previous section, we have derived optimal Gaussian and pseudo-Gaussian tests, and shown
that our pseudo-Gaussian test qﬁ(Nni essentially coincides with Schott’s modified test gbé"d)wtt*. The
relation to other Gaussian tests in the literature is less obvious; in this section, we investigate
the behavior under non-Gaussian elliptical densities of the LRT/MLRT tests based on —2 log A
and —2log A* (see (1.1) and (1.2), respectively), the Schott unrobustified test based on QSchott
(see (1.4)), the Gaussian (“non-pseudo” or “unrobustified”) most stringent test gb N based on
QE\?) = Q(Nn?m (see (5.10)), and the Nagao (1973) test—another popular Gaussian method. The

latter is based on a result by Sugiura (1969) stating that, under Gaussian assumptions, as
n — oo,

7y B0/ S

n—1/2< — 2log A* + 2log %) A N(o, 2 Nitr [(BeZ " - Ik)Q]) (5.13)
0 i=1

where 3¢, := Var[Xy;], i = 1,...,m and ¥y := >/, \; Bo; (throughout this section, the quan-

tities )\Z(-n) and \; are as in Assumption (B'); the notation S; and S is used as in Section 5.2).

The Nagao (1973) test then rejects the null hypothesis for large values of

QNagao == antr [ (S;S7H—1p) }
i=1
The following result establishes the asymptotic equivalence, under Gaussian assumptions, of all
these statistics with the optimal Gaussian statistic (which entails their optimality in the Le
Cam sense at the multinormal), and explains why none of them qualifies as a pseudo-Gaussian
procedure. The proof is given in the appendix; Part (ii) actually is a direct consequence of
Part (i) and a more general result by Yanagihara et al. (2005).

Proposition 5.2 (i) Under any null distribution with finite fourth-order moments, —2log A,
—2log A~ Qé"d)wtt, and QI(\?anO all are asymptotically equivalent to the Gaussian most stringent
test statistics Q%)qbl (hence inherit the optimality properties of the latter). (ii) For any g1 € .7-",54),

the asymptotic distribution, under UﬁeM(T){ngl}’ of these test statistics is that of

(1+Kk){[1+2(1]fk—l%]n+n}, (5.14)

where Y1 and Yy are independent chi-square random variables, with m —1 and (m — 1)K degrees
of freedom, respectively.

Clearly, (5.14) does not yield a chi-square distribution unless k;(g1) = 0, that is, when g;
has Gaussian kurtosis.
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6 Asymptotic relative efficiencies.

The asymptotlc relatlve efficiencies of the rank-based tests <;5 b ) with respect to their Gaussian
counterparts gb N* (equivalently, with respect to Schott’s tests based on QSchott*) directly follow
as the ratios of the noncentrality parameters in the asymptotic distributions of the various test
statistics under local alternatives (see Theorems 5.1 and 5.2).

Proposition 6.1 Assume that (A), (B’), (C), and (D) hold, and that g1 € FO. Then, the
asymptotic relative efficiency of Q&?) with respect to the pseudo- Gaussz’an test qﬁ(Nni, when testing

(with ® € M(Y) and v := lim,_oo v™7) ¢ M(T)), is

Py 0 against P19+n 1/2()r(n) g,

AREg g, (6% /65) = (1 — ) ARES™ (62 /650)) + € ARES™ (60 /00)),  (6.1)

uhere (s + 2ralor) + 2)L3(K 1)
(scale) (n) (n)y . + 2)kE(g1) + g1
ARES) (0 /60 TS , (6.2)
(shape) , , (n) , ,(n)y (1 + Hk(gl)) J2(K,q1)

and & 1= &9 r kg = (b +2)kk(91) +2)rg0 /[2k(1 + ki (91))rg - + (B +2)kk(91) +2)rgh] € [0, 1].

The “shape AREs” in (6.3) do coincide with those obtained in problems involving shape
only—for instance, testing null hypotheses of the form Hy : V = Vg for some fixed V( (see
Hallin and Paindaveine 2006a). Proposition 6.1 shows that the AREs, with respect to the
pseudo-Gaussian tests of Section 5.2, of the rank tests proposed in Section 5.1 are convex linear
combinations of these “shape AREs” and the “scale AREs” in (6.2).

Numerical values of (6.2) and (6.3), for various values of the space dimension k and various
radial densities (Student, Gaussian, and power-exponential), are given in Table 1 for the van der
Waerden test gbvdw, the Wilcoxon test ¢ [({"1 ), and the Spearman test ¢ I({nz ) (the score functions K,
a > 0 were defined in Section 2.3). These ARE values are uniformly large (with the exception,
possibly, of univariate scale Wilcoxon AREs), particularly so under heavy tails, as often in
rank-based inference.

Also note that the AREs of the proposed van der Waerden tests with respect to the para-
metric Gaussian tests are larger than or equal to one for all distributions considered in Table 1.
For pure shape alternatives, Paindaveine (2006a) has shown that a Chernoff-Savage property

holds, that is, inf,, ARE,(:;?pe) (@@w / (bﬁ\?i) = 1.0ne may wonder whether this uniform domi-

nance property of van der Waerden tests extends to the present situation. Although it does for
all usual distributions, including all Student and power-exponential ones, the general answer un-
fortunately is negative; see Section 4 of Paindaveine 2006a for a (pathological) counterexample.

7 Simulations.

We conducted two simulations, one for pure scale alternatives and another one for pure shape
alternatives, both in dimension k& = 2. More precisely, starting from two sets of i.i.d. bivariate
random vectors €1; (j = 1,...,n1 = 100) and &y; (j = 1,...,n2 = 100) with spherical densities
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(the standard bivariate normal and bivariate ¢t-distributions with .5, 2, and 5 degrees of freedom,
respectively) centered at 0, we considered independent samples obtained from

le = A—lslj +017 j = 17 , N1, and X2] == A27m62j +027 j - 17 , N2,

where Ag Ay, = (1+ ms?)(A1A] + mv) (v a symmetric (k x k) matrix with tr(v) = 0),
m = 0,1,2,3. The values of m allow to produce distributions under the null (m = 0) and
increasingly heterogeneous alternatives (m = 1,2, 3); all tests being affine-invariant, there is no
loss of generality in letting A; = Iy and 8; =605 = 0.

In the first simulation (pure scale alternatives), we generated N = 2,500 independent sam-
ples, with v = 0 and s = .30, .44, .56, and 1.50 under Gaussian, ts, to, and tg5 alternatives,
respectively; these values of s? have been chosen in order to obtain rejection probabilities of the
same order under those various densities. In the second simulation (pure shape alternatives), we
similarly generated N = 2,500 independent samples, with s> = 0 and vech v = (0,.18)’, (0,.20)’,
(0,.21)", and (0,.22)" under Gaussian, t5, t, and tg5 alternatives, respectively, still with the
same objective of obtaining comparable powers under the various densities considered.

In each of these samples, we performed the following nine tests (all at asymptotic level
a = 5%): (a) the Gaussian LRT ¢rrr based on (1.1); (b) its modified version ¢yprr based
on (1.2); (c) the parametric Gaussian test ¢ based on (5.10) (equivalently, Schott’s original
test dsehott, based on (1.4)); (d) its pseudo-Gaussian version @ar«, based on (5.11) (equivalently,
the robustified Schott test ¢scnottx, based on (1.5)); (e) the van der Waerden test ¢ yaw (based
on (5.4)); (f)-(h) ty-score tests ¢y with v =5, 2, and .5 (based on (5.5)), as well as (i) the
Spearman test (based on Qf, in (56)) It can be checked that the Wilcoxon test Qk,, in this
bivariate case, coincides with ¢ o

Rejection frequencies are reported in Table 2 for pure scale alternatives, and in Table 3
for pure shape alternatives. The corresponding individual confidence intervals (for N = 2,500
replications), at confidence level .95, have half-widths .0044, .0080, and .0100, for frequencies of
the order of .05 (.95), .20 (.80), and .50, respectively.

A glance at Tables 2 and 3 indicates that the rank tests, when based on their asymptotic chi-
square critical values, are conservative and significantly biased at this moderate sample size (100
observations in each group). In order to remedy this, we also implemented bias-corrected versions
of each of the rank procedures, by estimating the (distribution-free) quantile of the test statistic
under known location 6 and known common null value of the shape. These quantiles, just as
the asymptotic chi-square quantile, are consistent approximations of the corresponding exact
quantiles under the null. They were obtained, for each of the five rank tests under consideration
in (e)-(i) above, as the empirical 0.05-upper quantiles g 95 of the corresponding rank-based test
statistics in a collection of 10° simulated multinormal samples, yielding q.g5 = 7.2117, 7.6351,
7.7473, 7.7636, and 7.6773, respectively. These bias-corrected critical values all are smaller than
the corresponding asymptotic chi-square one (three degrees of freedom) X§;95 = 7.8147. The
resulting tests therefore are uniformly less conservative than the original ones. The corresponding
rejection frequencies are given in parentheses in Tables 2 and 3.

Inspection of Tables 2 and 3 confirms the fact that the parametric Gaussian tests ¢ar, con-
trary to the pseudo-Gaussian ones ¢y, are invalid under non-Gaussian densities (culminating,
under £g 5, with a size of .9992). However, even the pseudo-Gaussian tests ¢, though resisting
non-Gaussian densities with finite fourth-order moments, are collapsing under the heavy-tailed
to.5 and ty distributions (with power less than 10~* under #(5). In sharp contrast with this, all
rank-based tests appear to satisfy the 5% probability level constraint. They are conservative
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in their original versions (particularly so for van der Waerden scores), but seem to be reason-
ably unbiased (for sample sizes n; = na = 100) after bias-correction: maximal bias-corrected
size we obtain is 0.0616 for ¢ s under the very heavy tailed ¢y 5). Empirical power rankings
are essentially consistent with the corresponding ARE values; in order to allow for meaningful

comparisons also under infinite fourth-order moments,we also provide AREs with respect to the
van der Waerden rank test.

A Appendix.

A.1 Proofs of Lemma 4.1, Theorem 5.1, and Corollary 5.1.

Proof of Lemma 4.1. (i) Fix r € {1,...,m}. Clearly, A,,K = Ag;{g + 072(1) under Pf,rf;l

iff
m n; . m n; d
SN K ( 1) S (le ( )) +op2(1), (A1)
i—1 =1 n+ i—1 =1

under Pg; , where ng)r = n;1/25i7r. For 4 € M(Y), the R;;’s are the ranks of the d;;/o’s,

which under P1(9 )1 are i.i.d. with distribution function Gy;. The asymptotic equivalence (A.1)
thus follows from Hajek’s classical projection result for linear rank statistics (see, e.g., Puri and

Sen 1985, Chapter 2), since (a) the ™5 are not all equal and (b) the Noether condition

ig;r

1A A
AT

_ 2
maxl] (c(" ! Z @] zg 7’) -1

2 =N max
S T (

)

):0(1), as n — oo

holds (see the comments after Assumption (B)).
Similarly, for the shape part, égf o AgIKT ot or2(1) under ngl iff

nY2ML (V) (V®2)—1/2 i [K<an1> <G1k <d >)] I vec (UMU ) = 072(1)

J=1

(where Jj = I> — 1J), satisfies My (V)(VE2)~1/2JL = M (V)(V®2)~1/2 and is such that
Jt Vec(UTjU;j) is exactly centered), or equivalently iff, for all £ € {1,2,...,k?},

ii ) [ <nR+ 1) - K (le <%ﬂ>) ] [T vee (UyUL) | =o02(1),  (A2)

i=17=1

still under ngf Now,

g [(122)] = e 353 () e (1 (55) - o (6 (£))) ]

where, denoting by Uj; s the sth component of U;;, Cyp ) = Var[Ull =2k —1)/(k?*(k +2)) for
4 € Sk = {mk:—l—m+1 m = 0,1,..., — 1} and Cgk = Var[UnlUng] = 1/k‘2 for ¢ ¢ Sk
Here, the Hajek projection result for linear signed rank statistics (see, e.g., Puri and Sen 1985,
Chapter 3) yields (A.2), since max; j (CE;L)T)Z/Z” (c@ )2 =n-1=0(1), as n — oo.

ig;r
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As for (ii), the result straightforwardly follows, under Pf,rf;l with 9 € M(Y), from the
multivariate CLT. The result under local alternatives is obtained as usual, by establishing the

joint normality under ng of Ay.k.5, and AW , then applying Le Cam’s third

9+n—1/20() 7 /9;91
Lemma,; the required joint normality follows from a routine application of the classical Cramér-

Wold device. O

Proof of Theorem 5.1. (i) Using successively the continuity of the mapping ¥ — Ty,
Proposition 4.2 (jointly with Assumption (D1) and the fact that [I,, — C™](A™)~11,, = 0),
and Lemma 4.1(i), we obtain that

/ /
Q%) = (ég;K) (Fg;K)l A+ (égIK) (Fg;IK)L Agik +op(l)

= (A'g;K;gl) ( H )lAﬁK;gl—i_ (Ag;[K;gh) ( IH )J_A'ﬂ K;g1+OP(1) (A3)

g:n 12 pn) gy )
Now, since (L', )2 (T o)t Ty, x)/? is a symmetric idempotent matrix with rank m — 1, it
follows from Lemma 4.1(ii) that the first term in (A.3) is asymptotically chi-square with m — 1
degrees of freedom under P(n) , ¥ € M(T), and asymptotically noncentral chi-square, still with
— 1 degrees of freedom, but Wlth noncentrality parameter

(SI00)" i {0y ) (A4)

under PE;_L;I, 9 € M(Y) (and therefore, also under the contiguous sequence p!

404 n—00

under Pf9 Jzn 12 (m)g () g, . Evaluation of the limit in (A.4) yields the first term in (5.2).

As for the shape part, using again Lemma 4.1(ii) and the fact that (T'y!x )1/2 Ty )= (T )2
is symmetric and idempotent with rank K(m — 1), we obtain similarly that the second term
in (A.3) is asymptotically chi-square with K (m — 1) degrees of freedom under P , 9 e M(T),

and asymptotically noncentral chi-square, still with K(m — 1) degrees of freedom but with
noncentrality parameter

(Tk(K, 1)) Tim {75 [T © H(V)](C5) L @ HL (V)] 745} (A.5)
under P

Sm—1/2m () g . Evaluation of the limit in (A.5) yields the second term in (5.2). As the
two terms in (A.3) are asymptotically uncorrelated (see Lemma 4.1(ii) again), they can indeed
be treated separately.

(ii) The fact that Qg?) has asymptotic level « directly follows from the asymptotic null
distribution in part (i) and the classical Helly-Bray theorem.

(#4i) Optimality is a consequence of the asymptotic equivalence (A.3), under g1 = f; satisfying
Assumption (A2), of Q}?) and the locally asymptotically optimal test statistic Qy, as described
n (4.3). O

Proof of Corollary 5.1. (i) Fix g1 € F,, with Lx(K,g1) # 0 # Jp(K,g1). Clearly, Q&?) is

(n)
consistent under P19+n L2y (n) () gy

in (5.2) is non-zero. Assume the latter is zero. Then, the assumptions on g; imply that s?/v/\; =

, ¥ € M(T) iff the corresponding non-centrality parameter
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s%/v/ Ay and

e [(V2( = - %)v—wﬁ, (A.6)

for all (i,4'). Now, since tr (A?) = 0 implies that A = 0 for any symmetric k x k matrix A, it
follows from (A.6) that v;/v/A; = vi/// Ay for all (i,i'). This is possible only for v € M(Y),
which establishes the result.

(ii) Going back to the definition of g; — Ji (K, g1), we have

90 = [ KGO0 1)ty dr = = [T K (Gualr) (in(r)

Integrating by parts yields

Tl g0) = [ (K (Ganlr)+ K/ (Ganlr)run (1) aunlr) dr = K24 [ K (Goar) (@)

so that [° K'(G1(r)) 7 (§1x(r))? dr > 0 guarantees that Lx (K, g1) = Ji (K, g1)—k* > 0. Part (i)
of the corollary therefore yields the result. O

A.2 Proof of Proposition 4.2.

Consider an arbitrary value ¥ = (9,,9,,9",) = (0},...,0.,,0%1.,, 1" @ (vech V)') € M(T)
of the parameter and a (bounded) sequence of correspondlng local perturbations I =9+

n~ 12y where

R L e R

T To T

Lt si(n), ..., 52" (vech vgn))', ..., (vech vy
is such that 9 ¢ M(Y) for all n. To prove Proposition 4.2, it is sufficient to show that,
(n)

under Pﬂ;g1 (Where g1 is as in Proposition 4.2),

ﬁk K7 n
ég(n);K - é'g,K (40_4 ) gI) (A?)
and
A i = Bglk + Te(K, 1) [Ln @ Hy(V)] 73] (A8)

are op(1) as n — o0, since the local discreteness of ? (see, e.g., Kreiss 1987, Lemma 4.4) allows to
replace the nonrandom quantity 9™ with the random one 9 in (A.7) and (A 8) above. Note that
the constraintness of 9 indeed allows us to restrict to local perturbations 9™ € M(Y). Looking
at block i (i € {1,...,m}), this implies that Proposition 4.2 is a corollary of the following result.

Proposition A 1 Assume that (A), (B), and (C) hold, and that ¢; € F,. Fix ¥4 € M(T) and
a sequence I € M(Y) as above. Then, for all i = 1,...,m,

i i ﬁk(K,gl) 2(n
ég(m K égk Tt s; " (A.9)
and '
A5 o = Djlic + Tu(K, g1) Hy(V) (vech vi") (A.10)

(n)

are op(1) under Py -, as n — oo.
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Proof of Proposition A.1. In this proof, we let 8} := 6, +ni_1/2tz(~n), V? = V+n;1/2v§"),
and 02 = 0% + ni_l/2s?(") (since 9,9 € M(Y), 02 and V" do not depend on i, which
explains the notation). Accordingly, let Z?j = VU3(X;; - 0,), d?j = HZ%H, U?j = Z?j/d?j,
Zy = (V) VA(XG; - 07), df o= |23, and U, = 27 /d7.

Following an argument that goes back to Jureckova (1969), consider the following truncation

of the score function K: for all £ € Ny, define

2 1
K(Z)(U) =K (Z) l <u — Z) I[%<u§%] + K(u) I[%<u§1—%}

2 1
#i (1=7) ((1-5) ~ ) fopesron

where I4 denotes the indicator function of A. Since u — K(u) is continuous, the functions
u — K (u) are also continuous on (0, 1). It follows that the truncated scores K) are bounded
for all £. Clearly, it can safely be assumed that K is a monotone increasing function (rather
than the difference of two monotone increasing functions), so that there exists some L such that
|K© (u)| < |K(u)]| for all u € (0,1) and all £ > L.

We start with the proof that (A.9) is op(1) under ngzl. For the shape part A7y, the result
is a straightforward m-sample extension of the corresponding result in Hallin et al. (2006); details

are left to the reader. Turning to scale, Lemma 4.1(i) shows that ég% — Ag_’;{,gl is op(1), under

)

Pé?;l. Similarly, the difference ég(’i); K Ag(’i); Kion is op(1) as n — oo, under Pg?n);glfhence,
from contiguity, also under Pg;)”. Consequently, (A.9) is asymptotically equivalent, under Pi(,?;l,
to
; ; Lr(K,g1) 2(n)
1, i ) n
A'L‘)(”);K;gl TR0k T dgh i (A.11)
Now, %ni_lm PO (K(le(dZ/an)) —k), under sz,)l) o is asymptotically normal as n — oo,
91
with mean zero and variance 1L, (K), so that $(Z% — 0—12)71;1/2 PO (K (Gri(ds/om)) — k) is

1(9?’)”;91’ as well as under Pgl)
(n)

asymptotically equivalent, under P . g1 O

op(1), as n — oo, under P (by contiguity). Consequently, (A.11) is

91

n 1 i = 1 1 - L (K, n
O = g S (K Gl ) —K) g 2D (K (Grulay o))~y + L) 20
J=1 j=1

Decompose CZ(") into CZ(-n) = Dg“é) + DE; o _ Rg”z) + Rg o4 Rg”z) where, denoting by Eg
(n)

expectation under Py, g
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DG i L 2SS (KOGl o) — EIKO@)))

o 'Y
20 =

= LS (KOG o) - BIKO @)

202"

202" — ’
mo 1 _ipn | 0A (m ¢ Le(KY, g1) am)
D;, = ﬁ”i Eo L:l (K( )(le(dij/o’n)) - E[K( )(U)]) 104 )
n;l 1 - -
R = g [(K<G1k<d%/a>> — k) = (KO (Gu(dly /o)) - B[K “’(U)])},
j=1
n; 1 i ~
R§2 9 = 552" 12 [(K(le(dm/an)) - k‘) (K(Z)(le(dz]/an)) [K(Z)(U)])},
j=1
and 1
R = P (ﬁk(K, g1) — L(K¢ ),91)) o
We prove that C(n) = op(1) (thus completing the proof that (A.9) is op(1) under Pg;;l) by

establishing that D(n 9 and D(";Z) are op(1) under Pf;b;l, as n — oo, for fixed ¢, and that

REI g RE;L ) and Rgs Y are op(1) under the same sequence of hypotheses, as £ — oo, uniformly
in n. For the sake of convenience, these three results are treated separately (Lemmas A.1, A.2,
and A.3).

Lemma A.1 For any fized ¢, EOHDE?;Z)F] =o0(1) as n — oo.
Lemma A.2 For any fized ¢, Dg”z) =o0(1) as n — oo.

Lemma A.3 As ¢ — oo, uniformly in n,

(i) R%;Z) is op(1) under ngﬂ
(ii) Rg 9 s op(1) under P for n sufficiently large,
(iii) R ds o(1).
Proof of Lemma A.1l. First note that

Dg?;azin,—mi[ (150 _ o [r97]

252" = ij ij
where T(n;é) =K (le(d" Jon)) — (le(do /o)), j =1,...,n; are i.i.d. Writing Varg for
variances under Pf9 ;1
n;l) |2 n;l 1 n;l 1 n;l) |2
Bo ([P [2] = Varo[D§] = 2oy Varo [T < 17 B [T,
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and it only remains to show that

n;l) |2 ~ n ~ 2
Eo[| T[] = Eo[(KW(Gm(dﬂ/on)) — KOGl /o) | =o1) (A1)
as n — oo. Now, |dY /o, — d¥y/o| < |dY — dY|/on + ot — o tdY is op(1) under P1(9721 since
|d? — dY,| is op(1) under P( ) ; see Lemma A.1 in Hallin et al. (2006). This and the continuity

of K, Gy, imply that K¢ (le(d Jon)) — KO(G11(dY /o)) = op(1) under P1(9721’ as n — oo.
Since K is bounded, this convergence to zero also holds in quadratic mean, which establishes
the convergence in (A.12). O

Proof of Lemma A.2. Letting

BGY o= ony V2§ (KO(Gaeldb, /o)) — BEO@)])

j=1
one can show that, under Pg_gl, as n — 00,
" 1
B0 £, N(o, 474va1~[1r(<f>(zf)]). (A.13)

Under the sequence of local alternatives P,(;(LBL) o as n — 00,
91

0 LKW g1) 2
404 !

C 1
- N(o, 474@(}{“))).

Defining BE;L;Z) = 5, >0 (K(Z)(élk(d%/m@)) —E[KOU)] )7 it follows from ULAN that,

1

Li(KO g1) 20

N4
BE;L ) + 40.4 7

£, N(o . (K@)) (A14)

Now, from (A.13) and the fact that, under Pa(;;;p DE{“Z) = BZ(-;”Z) —BZ({”Z) —Eo [BZ(.;L;Z)] = op(1)
as n — oo (Lemma A.1), we obtain that

n; 1
B — o[BG 5 N(o, @Ek(K(Z)))7 (A.15)
as n — oo, under Pf;b;l. The result then follows by comparing (A.14) and (A.15). O
We now complete the proof that (A.9) is op(1) under Pé?;l by proving Lemma A.3.

Proof of Lemma A.3. (i) In view of the independence of the d?j’s (under ngl), we obtain,
for all n,

Bo[[R{™[2) = ﬁn?iEO[[(K@m(d%/a»—k)—( (Gudy /o) ~ EKOW)))]']
j=1
_ %,war[f((U)—K“)(U)} < FLEUK(U)‘K“)(UW
= %‘4 /0 1 [K(u)_K“)(u)]zdu. (A.16)



Clearly, K (u) converges to K (u), for all ue (0,1). Also, since |[K¥(u)| is bounded by |K (u)],
for all £ > L, the integrand in (A.16) is bounded (uniformly in ¢) by 4 | K (u)|?, which is integrable

n (0,1). The Lebesgue dominated convergence theorem thus implies that E0[|R§?;Z)|2} =o(1),
as £ — oo. This convergence is of course uniform in n.

(i) The claim in (ii) is the same as in (i), except that df; /oy, replaces df; /0. Accordingly, (i)

holds under Pé(i) . That it also holds under Pé;;l follows from Lemma 3.5 in Jureckové (1969).

(iii) Note that [L(K,01) — L(KY,g1)* = |Cov[K(U) — K(U), K (U)]]> < Li(g1)
x Var[K (U) — K®)(U)], which is o(1) as £ — oo (see (i) above). The result then follows from
the boundedness of (s (n)) O

A.3 Proofs of Lemma 5.1, Theorem 5.2, and Proposition 5.2.
n)

Proof of Lemma 5.1. As in the proof of Lemma 4.1, the result under P( 901 follows from the
multivariate CLT, and under contiguous alternatives from Le Cam’s third Lemma. (]

Proof of Theorem 5.2. (i) The consistency of iy, the continuity of the mapping ¥ — T' Q/; g
Lemma 5.1 (jointly with Assumption (D1)), and the fact that [L, — C™](A™)~11,, = 0) entail

n N, N,
QW) = (T4, ) @y g, + (Ta,) T T, +op(1) (A17)

under Pfﬁ;l, ¥ € M(T), hence also under the contiguous alternatives Pf9 JZ /2 () gy

The result then follows along the same lines as for Theorem 5.1, by noting that

(I"Q/ 911])1/ 2 (I"Q/ 9111) (I‘ﬁNgf)l/ 2 is a symmetric idempotent matrix with rank m — 1, which ensures

(see Lemma 5.1) that the first term in (A.17) is asymptotically chi-square with m — 1 degrees

of freedom under P1(9 9 € M(T), and asymptotically noncentral chi-square, still with m — 1

degrees of freedom but w1th noncentrality parameter

(aka(gl)) lim {(T%)) (AL Tgln)} (A18)

20—4 n—oo 9591

under PéJZn 12y () g, . Evaluation of (A.18) yields the first term in (5.12).

As for the shape part, using again Lemma 5.1 and the fact that (I"N 111)1/ 2 (I"Q/gllH) (I"Q_/;lﬂ)l/ 2
is symmetric and idempotent with rank K(m — 1), we obtain 51m11arly that the second term
in (A.17) is asymptotically chi-square with K (m —1) degrees of freedom under ngl, 9 e M(T),
and asymptotically noncentral chi-square, still with K(m — 1) degrees of freedom but with

noncentrality parameter

af(k+2)*Di(g1) Tim { (7)) M @ HL (V) L, @ Hy(V)] 745} (A.19)
under P . A straightforward evaluation of (A.19) yields the second term in (5.12).

19—|—n 1/21/(")1'(”) 391
As the two terms in (A.17) are asymptotically uncorrelated (see Lemma 5.1 again), they can be

treated separately; the result follows.

(ii) The fact that ¢§\7) has asymptotic level « directly follows from the asymptotic null
distribution given in part (i) of the theorem and the classical Helly-Bray theorem.
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(iii) As observed in the comments that follow (5.10), the consistency of & entails the asymp-
totic equivalence, under Gaussian densities, of Q(Nni with Q%)qbl (hence with QE\?)), which has
been derived from the general form of locally asymptotically optimal tests based on (4.3). O

Proof of Proposition 5.2. (i) We proceed by showing that the various test statistics are
asymptotically equivalent to

1 _
QW = = . tr|(S7(Si - 80))?; (A.20)
1<i<i’<m
see (5.10). The same calculation as that used to show that the first term in Qé"d)wtt* is asymp-
totically equivalent to the corresponding term in QE\% (see Page 21) establishes that Qé"d)wtt is
asymptotically equivalent to Q%)qbl. Now, for the Nagao (1973) test, we have that

m

W = ‘i r[878 -9 = thr[slz%(si—sm?}

r=1

| —

- 2n2 Z Ty tr [S 1(SZ - ST)S_l(Sz - Ss)}

i,r,s=1

Splitting S; — S, into (S; — S,) + (S, — Ss) then yields

Nagao = o0 Z My tr[ S - S )) } QNagao’

zrl

which establishes that Ql(\?ggao = QE\?,)qbl +op(1l), as n — oo. As for the LRT (equivalently,

the MLRT) test statistics, letting 2(1)/2Z2-2(1)/2 = ng/z(Si -3 = nl-l/220Yi (same notation as
n (5.13)), in view of the fact that log I + A| = tr A — Ltr (A2) + o(||A[?), as [|[A| — 0, we
have that

—2logA = —Znilog|Si|+nlog|S| anlogmo—l—EoY|+nlog}20—|—20( an Z)
i=1 i=1
= 1{Zn2tr Y2 ——tr{(ZnZ Z) }}—1—01:(1),
=1

as n — oo, under any null distribution with finite fourth-order moments. This establishes the
result, since

1{27%tr v _—tr[(Zn, ) }} Zn,tr[( ( Z”r ) }

i=1

gj r[(250 (Si - 8))?] =

still as n — oo, under any null dlstrlbutlon with finite fourth-order moments.

l\DI»—\
l\DI»—\

i i tr { S 2 I Ik) } + OP( ) QNagao +OP(1)7

(ii) For any ¢g; € ]-'54), the result readily follows from Part (i) and Corollary 3.4.2 of Yanagi-

hara et al. (2005) (8 there, under Pg,gl, ¥ € M(T), coincides with 1 + ki (g1) in our notation).
U
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underlying density
ts tg t12 N e €3 €5
2.321 1.230 1.082 1.000 1.151 1.376 1.822

2,501 1.280 1.102 1.000 1.115 1.296 1.669
2204 1.215 1.078 1.000 1.129 1.308 1.637
2,732 1.322 1.120 1.000 1.092 1.241 1.558
2270 1.233 1.086 1.000 1.108 1.259 1.536
2.881 1.358 1.136 1.000 1.077 1.202 1.475
2326 1.249 1.093 1.000 1.093 1.223 1.462
3.108 1.416 1.163 1.000 1.067 1.151 1.361
2413 1.275 1.106 1.000 1.072 1.174 1.363
3.403 1.498 1.204 1.000 1.037 1.099 1.239
2531 1.312 1.126 1.000 1.050 1.121 1.254
4586 1.894 1.446 1.000 1.000 1.000 1.000
3.000 1.500 1.250 1.000 1.000 1.000 1.000

1.993 0.939 0.769 0.608 0.519 0.509 0.517

vdW | 4

2.604 1.185 0.959 0.750 0.694 0.703 0.743
2258 1.174 1.001 0.844 0.789 0.804 0.842
2929 1304 1.045 0811 0.775 0.795 0.854
2.386 1.246 1.068 0.913 0.897 0.933 1.001
3.140 1.377 1.096 0.844 0.820 0.844 0.911
2432 1273 1.094 0945 0.955 1.006 1.095
3.407 1.467 1.156 0.879 0.866 0.892 0.961
2451 1.283 1.105 0.969 1.008 1.075 1.188
3.685 1.560 1.216 0.908 0.903 0.925 0.984
2426 1.264 1.088 0.970 1.032 1.106 1.233
4323 1.794 1.374 0.955 0.955 0.955 0.955
2.250 1.125 0.938 0.750 0.750 0.750 0.750

2333 1.126 0935 0.760 0.705 0.724 0.774

2,737 1289 1.063 0.868 0.868 0.924 1.038
2301 1.230 1.067 0.934 0.965 1.042 1.168
2913 1.348 1.105 0.904 0.924 0.993 1.136
2277 1225 1.070 0.957 1.033 1.141 1.317
3.016 1.378 1.125 0.920 0.949 1.020 1.170
2.225 1.200 1.051 0.956 1.067 1.179 1.383
3.137 1.410 1.142 0.932 0.966 1.032 1.176
2,128 1.146 1.007 0.936 1.067 1.189 1.414
3.2565 1.438 1.154 0.937 0.969 1.022 1.139
2.001 1.068 0.936 0.891 1.017 1.144 1.365
3.507 1.503 1.176 0.895 0.895 0.895 0.895
1.667 0.833 0.694 0.556 0.556 0.556 0.556

10

W~
— O OROFROFRORORO|IFOROROFRORORFROROD|IFRPOROROROROROR O|M

Table 1: AREs, for £ = 0 (pure scale alternatives) and £ = 1 (pure shape alternatives), of the
van der Waerden (vdW), Wilcoxon (W), and Spearman (SP) rank-based tests with respect to
the pseudo-Gaussian tests, under k-dimensional Student (with 5, 8, and 12 degrees of freedom),
normal, and power-exponential densities (with parameter n = 2,3,5), for k = 2, 3, 4, 6, 10, and
k — oo.
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m

test 0 1 2 3 AREN. | AREyqw
$LRT .0512 3168 7932 9776 1.000 1.000
HMLRT .0500 .3100 7876 9772 1.000 1.000
N .0464 .3008 7760 9756 1.000 1.000
DN« .0472 .2944 7568 9736 1.000 1.000
@ vaw .0348 (.0472) 2388 (.2932)  .6912 (.7316)  .9520(.9676) 1.000 1.000
bt N | .0444 (.0496)  .2604(.2724)  .7080 (.7200)  .9552 (.9600) 0.918 0.918
by, =K, .0516 (.0524)  .2180(.2248) .6360(.6404) .9004(.9016) 0.750 0.750
[ 0476 (.0492) 1224 (.1248)  .3252(.3260) .5692(.5724) 0.360 0.360
¢ K .0432(.0480)  .2448(.2572) .6956(.7060)  .9480 (.9508) 0.868 0.868
PLRT .3288 .6308 9168 9872 ND ND
HMLRT .3244 .6260 .9144 .9868 ND ND
N .3160 .6208 .9092 L9856 ND ND
DN« .0300 .1896 5268 7892 1.000 0.392
& vaw .0320 (.0444) 2500 (.2956)  .7068(.7468) .9396(.9560) 2.551 1.000
b5t ts | .0428 (.0480)  .3004 (.3152)  .7740 (.7812)  .9636 (.9676) 2.778 1.089
by, =K, .0488 (.0512)  .2916 (.2980)  .7456 (.7520)  .9528 (.9544) 2.604 1.021
[ .0512(.0516)  .1824 (.1848)  .4916 (.4972)  .7556 (.7612) 1.543 0.605
bKy .0448 (.0484)  .3068 (.3184)  .7720(.7828)  .9644 (.9656) 2.737 1.073
OLRT 8728 9164 9496 9712 ND ND
OMLRT .8696 .9156 .9496 9700 ND ND
N .8648 .9120 .9480 .9684 ND ND
DN« .0120 .0300 L0672 1276 ND ND
@ vaw .0428 (.0568)  .1880 (.2264)  .5368 (.5816)  .7988 (.8324) ND 1.000
bt ta | .0536 (.0592) .2532(.2644)  .6592 (.6704)  .9000 (.9072) ND 1.250
byt =K, .0508 (.0532)  .2732 (.2816)  .6912 (.6964)  .9212 (.9236) ND 1.333
gsfft .0496 (.0500)  .2116(.2136)  .5404 (.5468)  .8128 (.8144) ND 1.000
¢ Ky .0572 (.0588)  .2568 (.2652)  .6632 (.6708)  .9036 (.9080) ND 1.250
OLRT .9992 .9996 .9996 9988 ND ND
OMLRT .9992 .9996 .9996 9988 ND ND
N .9992 .9996 .9988 .9988 ND ND
DN+ 0 0 0 0 ND ND
@ vaw .0388 (.0520)  .1464 (.1764)  .3096 (.3572)  .4608 (.5188) ND 1.000
b gt to.s | 0496 (.0524) .2328 (.2452)  .5000 (.5132)  .6920 (.7044) ND 1.543
byt =0, .0508 (.0528)  .3076 (.3136)  .6404 (.6448)  .8276 (.8316) ND 2.083
gsf‘ i .0604 (.0616)  .3928(.3972)  .7572 (.7600)  .9208 (.9212) ND 2.778
DKy L0488 (.0524)  .2136(.2228)  .4728 (0.4840)  .6672(.6792) ND 1.435

Table 2: Rejection frequencies (out of N = 2,500 replications), under the null and various scale
alternatives (see Section 7 for details), of the Gaussian LRT (¢rrr), its modified version (¢mrrr),
the parametric Gaussian test (¢nr), its pseudo-Gaussian version (¢py), and the signed-rank
van der Waerden (¢vqw), t,-score (¢ V= 5, 2, 5), Wilcoxon-type (¢x,), and Spearman-
type (¢x,) tests, respectively. Sample’ sizes are n; = ng = 100. ARE values are provided
with respect to the parametric pseudo-Gaussian (AREj/,) and van der Waerden rank tests
((AREn+)); “ND” means “not defined” (this occurs as soon as one the tests involved is not
valid under the distribution under consideration).
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m

test 0 ) 2 3 AREx, | AREyaqywy
GLRT 0512 1564 16032 -9668 1.000 1.000
PMLRT .0500 1532 5984 9656 1.000 1.000
N 0464 1484 5900 9640 1.000 1.000
PN« 0472 1444 5812 9648 1.000 1.000
¢ vaw 0348(.0472) 1212 (.1464)  .5248(.5828)  .9488(.9632) | 1.000 1.000
b g N | 0444 (.0496) 1452 (.1536)  .5456(.5596)  .9464 (.9496) | 0.945 0.945
b = 0516 (.0524)  .1364(.1392)  .4928 (.5004) .9272 (.9276) | 0.844 0.844
[T 0476 (.0492)  .1120(.1140)  .3996 (.4036)  .8356(.8388) | 0.648 0.648
bKs 0432 (.0480)  .1440(.1508)  .5420(.5512)  .9460(.9488) | 0.934 0.934
GLRT 3288 4632 7840 9808 ND ND
PMLRT 3244 4600 7816 .9800 ND ND
N 3160 4512 7728 9796 ND ND
e .0300 11020 4204 8552 1.000 0.454
¢ vaw 0320 (.0444) 1268 (.1592)  .5320(.5816)  .9576(.9692) | 2.204 1.000
@5 ts | .0428(.0480)  .1572(.1676)  .5928 (.6036) .9720 (.9740) | 2.333 1.059
@5 =0x, 0488 (.0512)  .1608(.1632)  .5876 (.5916)  .9684(.9692) | 2.258 1.024
S g 0512 (.0516) .1376 (.1388)  .5088(.5132)  .9312(.9332) | 1.896 0.860
Yo 0448 (.0484)  .1612(.1704)  .5860(.5976)  .9700(.9716) | 2.301 1.044
SLRT 8728 8912 9376 9768 ND ND
PMLRT 8696 8892 9364 9768 ND ND
N 8648 8864 19332 9764 ND ND
e 0120 0224 .0808 2380 ND ND
$ vaw 0428(.0568)  .1180(.1488)  .4596(.5120)  .9216 (.9416) ND 1.000
@ s ty | .0536(.0592)  .1488 (.1560)  .5460(.5572)  .9576 (.9616) ND 1.147
@5 =0x, 0508(.0532)  .1584(.1612)  .5640(.5668)  .9668 (.9668) ND 1.185
S e 0496 (.0500)  .1508(.1524)  .5212(.5256)  .9412(.9420) ND 1.089
SKs .0572(.0588)  .1440(.1500)  .5288(.5420)  .9516(.9564) ND 1111
SLRT 19992 9988 9992 19992 ND ND
PMLRT 19992 19988 19992 19992 ND ND
N 19992 19988 19992 19992 ND ND
BAr+ 0 0 .0004 .0008 ND ND
é vaw .0388(.0520)  .0964(.1208)  .3328(.3792)  .7960 (.8328) ND 1.000
@ tos | 0496 (.0524)  .1280(.1356)  .4288(.4408)  .8928(.9004) ND 1.254
@5 =0x, 0508(.0528)  .1396(.1440)  .4840(.4880)  .9360(.9380) ND 1.418
S g 0604 (.0616) .1644 (.1648)  .5356(.5388)  .9560(.9568) ND 1.543
Sy 0488(.0524) 1208 (.1272)  .3968(.4064)  .8624(.8704) ND 1.138

Table 3: Rejection frequencies (out of N = 2,500 replications), under the null and various shape
alternatives (see Section 7 for details), of the Gaussian LRT (¢rrr), its modified version (¢mrrr),
the parametric Gaussian test (¢nr), its pseudo-Gaussian version (¢py), and the signed-rank
van der Waerden (¢vqw), t,-score (¢ V= 5, 2, 5), Wilcoxon-type (¢x,), and Spearman-
type (¢x,) tests, respectively. Sample’ sizes are n; = ng = 100. ARE values are provided
with respect to the parametric pseudo-Gaussian (AREj/,) and van der Waerden rank tests
((AREn+)); “ND” means “not defined” (this occurs as soon as one the tests involved is not
valid under the distribution under consideration).
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