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Abstract

The multivariate probit model is a popular choice for modelling correlated binary

responses. It assumes an underlying multivariate normal distribution dichotomized

to yield a binary response vector. Other choices for the latent distribution have been

suggested, but basically all models assume homogeneity in the correlation structure

across the subjects. When interest lies in the association structure, relaxing this

homogeneity assumption could be useful. Here we propose to replace the latent

multivariate normal model by a location and association mixture model defined

by a Dirichlet process. Attention is paid to the parametrization of the covariance

matrix in order to make the Bayesian computations convenient. Our approach is

illustrated on a simulated data set and applied to oral health data from the Signal

Tandmobielr study to examine the hypothesis that caries is mainly a spatially local

disease.

Key Words: Multivariate binomial data, Latent variable representation, Probit

models, Dirichlet process, Markov chain Monte Carlo.

1 Introduction

A popular tool for analyzing correlated binary data involves the introduction of

latent variables. Some examples of this approach include the multivariate probit
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model (Ashford and Sowden 1970; Lesaffre and Molenberghs 1991; Chib and Green-

berg 1998), the bivariate lognormal and t-student models (Albert, 1992), the scale

mixture of normals (Chen and Dey, 1998), the multivariate logit model (O’Brien and

Dunson, 2004) and the multivariate skew-normal model (Chen, 2004). An advantage

of this approach is that the dependency structure can be described parsimoniously

in terms of correlation coefficients of the latent continuous variables. For the esti-

mation of the parameters a Bayesian approach is popular given the computational

complexity involved in these models. Especially the auxiliary variable MCMC al-

gorithms are appealing here since the models are specified in terms of continuous

underlying variables satisfying a linear regression model. This simple structure also

facilitates generalizations to more complicated data structures, such as clustered

data with possibly a mix of continuous and categorical response variables.

An extension of the above models could be to assume a mixture model for the

distribution of the latent variables where the mixture is both in location as well

as in covariance structure. Mixture models have been around in the literature

for a long time (see, e.g., McLachlan and Peel 2000). Finite mixture models can

be one option but, paradoxically, rather than handling the very large number of

parameters resulting from these models with a large number of mixands, it may

be easier to work with an infinite dimensional specification by assuming a random

mixing distribution which is not restricted to a specific parametric family. The

Dirichlet Process (DP) prior (Ferguson, 1973) is the most widely used in this context

(see, e.g., Dey et al., 1998). However, the literature on fully Bayesian inference for

the analysis of correlated categorical data is rather limited. We are only aware

of Kottas et al. (2005), where a similar approach to the present work is adopted.

However, they focussed on multivariate ordinal data and their implementation is

not directly applicable to multivariate binary data.

The objective of this paper is to propose a modelling strategy for the analysis

of correlated binary responses from a nonparametric Bayesian perspective by incor-

porating a Dirichlet process mixture of a normal prior as probability model for the

latent variables. The mixture is with respect to both location and covariance of the

normal kernel and is parameterized such that computations become more tractable.

In particular, the model is stated in terms of covariance matrices constrained with

respect to the conditional variances, avoiding the difficulties associated with mod-

elling correlation matrices. We show that this provides the required flexibility to

accommodate virtually any desired association pattern.



The motivation of this work lies in caries research. In fact, some argue that

caries is a disease that is spatially local in the mouth while others believe that it

affects the mouth globally or as a mixture of both processes, see e.g., Hujoel et al.

(1994) and references therein. In the Signal Tandmobielr study we found a high

association between the spatially remote deciduous molars for the presence/absence

of caries (caries experience (CE)). This association was almost as high as the asso-

ciation between adjacent deciduous molars. This triggered us to verify whether this

association could be explained by other (unmeasured) confounding factors and/or

whether the association structure of CE could differ in certain sub populations of

children.

The rest of the article is organized as follows. In Section 2 we state the model and

discuss its main features. We also describe our simulation-based model fitting and

posterior predictive inference. The methods are illustrated with two examples in

Section 3. The first example is based on an artificial data set which sheds light on the

performance of the model. The second example is based on the first year’s caries

experience data of the Signal Tandmobielr study. We conclude with additional

comments and discussion in Section 4.

2 The Semiparametric Bayesian Approach

2.1 Modelling via latent variables

Assume that for each of n experimental units the values of k binary variables

Yi1, ..., Yik are recorded and let Y i = (Yi1, ..., Yik)T , i = 1, ..., n. A possible rep-

resentation consists of viewing the binary variables as a discretized version of un-

derlying continuous data, i.e. to introduce a k-dimensional latent variable vector

Zi = (Zi1, ..., Zik)T such that,

Yil = I{Zil>0}, 1 ≤ l ≤ k, (1)

and

Zi | β0,β,Σ
ind
∼ f(β0 + X iβ,Σ), (2)

where β0 is a k-dimensional vector of intercepts, β = (βT
1 , . . . ,β

T
k )T , with βl,

l = 1, . . . , k, a p-dimensional column vector of regression coefficients associated to

a p-dimensional vector of covariates of the lth response, xil, X i is a k × (k × p)-

dimensional design matrix given by X i = Ikk⊗xT
i , Ikk is the k×k identity matrix,



⊗ is the Kronecker product, and Σ is a scale matrix. The density f is determined

by the location β0 + Xiβ and the scale matrix Σ.

Modelling then proceeds with the k-dimensional latent vectors Z i. The dis-

tribution of Z i determines the joint distribution of Y i through (1) and (2), and

their scale matrix, Σ, captures the association among the observed variables. This

modelling perspective is both flexible and general. In contrast, attempts to model

the correlation of the binary responses directly may lead to difficulties (see, e.g.,

Garćıa-Zattera et al., 2005). A common distributional assumption is the normality

of the k-dimensional latent variable vector, Z i
ind
∼ Nk (β0 + Xiβ,Σ), leading to the

multivariate probit model. Although other choices for the latent distribution have

been suggested in the literature, the fundamental assumption in all models is the

homogeneity in the association structure across the experimental units.

2.2 The Proposal

We generalize the traditional multivariate probit model by assuming a mixture

of normal distributions model for the latent variable representation. The normal

distributions in the mixture vary with respect to both, location β0 and covariance

matrix Σ. Because it is not immediately clear what mixing distribution G (β0,Σ)

is appropriate, we propose a probability model by assuming a prior probability

model for G. Specifically, denote by F the set of all distribution functions on

R
k × R

k×(k+1)/2, where k and k × (k + 1)/2 is the dimensionality of β0 and of the

vector containing the lower triangular part of the covariance matrix Σ, respectively.

The Dirichlet Process (DP) (Ferguson, 1973) has become the probability measure

most widely used as a prior on this set (see, e.g., Dey et al., 1998).

The DP generates a discrete probability measure,

G =

∞
∑

j=1

ωjδθC
j
,

where ωj are stochastic weights with decreasing expectations, δx is a point mass at

x, and θC
j =

(

βC
0j,Σ

C
j

)

are iid from a baseline probability distribution, G0. See,

Rolin (1992) and Sethuraman (1994), for details. The discrete nature of the DP

provides a useful tool for modelling. Indeed, given a particular set of the covariates,

each point mass
(

β0
C
j ,Σ

C
j

)

in the discrete mixing distribution G corresponds to a

different set of correlations of the binary variables.



In summary, we assume Z i | β
ind
∼ fXi

, with

fXi
(·|β, G) =

∫

φk (· | β0 + Xiβ,Σ) dG (β0,Σ) ,

where φk (·|β0 + Xiβ,Σ) denotes the k-variate normal density. The model can be

thought of as a hierarchical model by introducing, subject-specific, latent variables

θi = (β0i,Σi), i = 1, . . . , n, and breaking the mixture as

Zi | θi,β
ind
∼ Nk (β0i + Xiβ,Σi) , (3)

where θ1, ...,θn is an iid sample of latent variables from the mixing distribution G,

i.e.,

θ1, ...,θn | G
iid
∼ G (4)

and

G | α,G0 ∼ DP (αG0) , (5)

where G ∼ DP (αG0) refers to G being a random distribution generated by a

Dirichlet process with baseline distribution G0 and total mass parameter α. Observe

that G0 represents a baseline distribution and the parameter α controls the deviation

of G from G0 in a stochastic manner. In Section 2.4 we specify the choice of the

baseline distribution, but first we need to determine the dimension of the latent

parameters θi.

2.3 Identification Constrains for the Covariance Matrix

An important issue in the specification of the model relates to the choice of Σi. To

address this issue, we consider the standard multivariate probit model in which case

the intercept vector and the covariance matrix is the same for all i, i.e. θ i ≡ θ.

The generalization of the arguments to our mixture model then follows readily. In

this context, it should be noted that due to the threshold specification in (1) the

scale of the latent variable is not likelihood identified (see, e.g., Chib and Greenberg,

1998). As a normalization, restrictions are usually placed on the covariance matrix.

Most common is to fix the marginal variance of the latent variables to one implying

that the matrix Σ becomes a correlation matrix. However, the positive definite-

ness constraint seriously complicates the choice of the prior probability distribution

(see, e.g., Liechty et al., 2004) and the Bayesian computations. Moreover, typically



the parameter vector corresponding to the correlation matrix is high-dimensional

aggravating the problems.

An alternative normalization consists in constraining the conditional variances

as follows. Let Σ = TDT t and ∆ = T−1 = {−δjl}k×k be a lower triangular

matrix with 1’s as diagonal entries and D = {djj}k×k is a diagonal matrix with

positive entries. In this representation, the elements of ∆ and D have a statistical

interpretation as was shown by Pourahmadi (1999). The reasoning is repeated here

for completeness. Assume that Z i = Xiβ+ei. The below-diagonal entries of ∆ are

the negative of the regression coefficients of eij on ei1, ..., ei(j−1), and the jth diagonal

entry of D corresponds to the conditional variance of eij given ei1, ..., ei(j−1), i.e.,

djj = V ar
(

eij | ei1, ..., ei(j−1)

)

. It follows that the vector of errors, ei, can be seen

as a transformation of a random vector εi following a standard k-variate normal

distribution. That is ei = TD1/2εi and εi ∼ Nk (0, Ik). The distribution of the

binary vector can be rewritten as,

PXi
(Yi1 = y1, . . . , Yik = yk) = P (β01 + Xi1β1 +

√

d11εi1 ∈ Ay1
,

β02 + Xi2β2 + t21
√

d11εi1 +
√

d22εi2 ∈ Ay2
,

...

β0k + Xikβk +

k−1
∑

j=1

tkj

√

djjεij +
√

dkkεik ∈ Ayk
),

(6)

where Ayj
= (0,+∞) for yj = 1 and Ayj

= (−∞, 0] for yj = 0. From expression (6),

it is clear to see that fixing the conditional variances equal to one, djj = 1, identifies

the model and do not impose unnecessary restrictions upon the parameters. Also,

this normalization permits to sample Σ directly from its conditional distribution

using a proper, for instance, normal prior on the parameters of the vector δ, which

is the stacked vector of the negatives of the below-diagonal entries of ∆.



2.4 Prior Distributions

The random distribution G depends, besides on α, also on the hyperparameters

associated to the baseline or centering distribution, i.e., G0 becomes Gϑ, where ϑ

is the set of hyperparameters. Based on the above reasoning, we assumed for the

parametrized baseline distribution Gϑ a joint distribution of a k-dimensional (β0

parameters) and a k × (k − 1)/2-dimensional (δ parameters) normal distribution.

Specifically, we take

Gϑ (β0,Σ) = Nk

(

β0 | µβ0
,Sβ0

)

Nk×(k−1)/2 (δ | µδ,Sδ) , (7)

where, ϑ = {µβ0
,Sβ0

,µδ,Sδ}, Np (x | ...) indicates a p-dimensional normal distri-

bution for the vector x, µβ0
and Sβ0

is the mean and covariance matrix of the

latent vector β0, respectively, and, µδ and Sδ is the mean and covariance matrix

of the latent vector δ. More formally, the DP prior is

G | α,ϑ ∼ DP (αGϑ) . (8)

To complete the model specification, the model could be extended by assuming

independent hyperpriors

α ∼ Γ (a0, b0) , β ∼ Np (b,B) , (9)

µβ0
∼ Nk (m,Υ) , Sβ0

∼ IWk (γ,Γ) , (10)

and

µδ ∼ Nk×(k−1)/2 (η,Φ) , Sδ ∼ IWk×(k−1)/2 (λ,Ω) , (11)

where Γ and IW refers to the Gamma and inverted Wishart distributions, respec-

tively.

2.5 Prior Specification

The practical implementation of DP mixture model (1), (3), (4), and (8)- (11)

requires adopting values for the hyperparameters a0, b0, b, B, m, Υ, γ, Γ, η,

Φ, λ and Ω. The discrete nature of the DP realizations leads to their well-

known clustering properties. The choice of a0 and b0 needs some careful thought,

as the parameter α directly controls the number of distinct components. When

α → 0+ and α → ∞ parametric models arise as limiting cases of the DP mixture



model (1), (3), (4), and (8)- (11). The former case yields the multivariate probit

model, i.e., Z i
ind
∼ Nk (β0 + Xiβ,Σ) and θ1 = ... = θn = θ ≡ (β0,Σ) with prior

distributions (β0,Σ) | ϑ ∼ Gϑ and β | b,B ∼ Np (b,B). The latter case results

in a parametric exchangeable mixture model, i.e., Z i
ind
∼ Nk (β0i + Xiβ,Σi) and

θ1, ...,θn | ϑ
iid
∼ Gϑ, with θi ≡ (β0i,Σi).

For any other choice of α the result is a DP process that produces a discrete G.

In other words, Z i
ind
∼ Nk (β0i + Xiβ,Σi) and the θi’s will be allowed to cluster

and the clustering depends on α. Therefore, the values of a0 and b0 in the prior

for α affects the number of expected mixtures. Strategies for the specification of

these hyperparameters are often based on approximations of the conditional mean

and conditional variance of the number of clusters, given the precision parameter α

(see, e.g., Kottas et al., 2005). Specifically, denoting by n∗ the number of resulting

clusters, this approach relies on

E (n∗|α) =

n
∑

i=1

α

α+ i− 1
≈ α log

(

α+ n

α

)

(12)

and

V ar (n∗|α) =

n
∑

i=1

α(i − 1)

(α+ i− 1)2
≈ α

{

log

(

α+ n

α

)

− 1

}

. (13)

As noted by Florens et al. (1992), however, the approximation in (12) may be

dangerous when α is considered a function of n. For instance, (12) gives 0

instead of 1 with α = 1
n . Better approximations may be obtained by noting

that E (n∗|α) =
∑n

i=1
α

α+i−1 = α {ψ0(α+ n) − ψ0(α)} (Florens et al., 1992) and

V ar (n∗|α) =
∑n

i=1
α(i−1)

(α+i−1)2
= α {ψ0(α+ n) − ψ0(α)} + α2 {ψ1(α+ n) − ψ1(α)},

where ψ0(.) and ψ1(.) represents the digamma and trigamma function, respectively.

Using these results, an approximation based on a first-order Taylor series expansion,

and the fact that a priori E (α | a0, b0) = a0

b0
and V ar (α | a0, b0) = a0

b2
0

we get

E (n∗) ≈
a0

b0

{

ψ0

(

a0 + nb0
b0

)

− ψ0

(

a0

b0

)}

(14)

and

V ar (n∗) ≈
a0

b0

{

ψ0

(

a0 + nb0
b0

)

− ψ0

(

a0

b0

)}

+
a2

0

b20

{

ψ1

(

a0 + nb0
b0

)

− ψ1

(

a0

b0

)}

+

{

a0

b0

[

ψ1

(

a0 + nb0
b0

)

− ψ1

(

a0

b0

)]

+ψ0

(

a0 + nb0
b0

)

− ψ0

(

a0

b0

)}2 a0

b20
. (15)

Equating these expressions with prior judgement at the mean and variance of n∗

it is possible to obtain the corresponding values for a0 and b0. These expressions



could be used in order to evaluate the robustness of the model to the specification

of prior distribution for the precision parameter.

2.6 Posterior Inference

One of the attractive features of the DP prior is that it allows straightforward pos-

terior inference with MCMC simulation. The computational effort is, in principle,

independent of the dimensionality of θi. Because of its computational simplicity,

the DP is by far the most commonly used prior probability model for random prob-

ability measures. To explore the posterior distribution p (Z,θ, α,β,ϑ|y) we used a

Gibbs sampling approach based on sampling from the appropriate full conditional

distributions. These are obtained by considering the finite dimensional posterior

that arises after integrating out the random measure G,

p (Z,θ, α,β,ϑ|y) ∝

n
∏

i=1

p (Y i|Zi)

n
∏

i=1

p (Zi | θi,β) p (θ | α,ϑ)

p (α) p (ϑ) p (β) , (16)

where p (θ | α,ϑ) arises by exploiting the Polya urn representation of DP (Blackwell

and MacQueen, 1973) and the other factors are defined by expressions (1), (3), (4),

and (8) - (11). Blackwell and MacQueen (1973) discovered a fundamental connection

between the DP and the sampling of balls from an urn. Their result shows that

if G is a DP with base measure αGϑ, then a sample θ1, ...,θn generated from the

following conditional distributions

θi | θ(−i) ∼
α

α+ n− 1
Gϑ +

1

α+ n− 1

n
∑

j=1,j 6=i

δθj
, i = 1, . . . , n, (17)

is a random sample from G. Naturally, the importance of this result is that for com-

putation, reference can be made to a space of finite, rather than infinite, dimensions.

Essentially, the random G has been integrated out.

In the rest of this section, we provide details on some of the resulting conditional

distributions and the implementation of the Gibbs sampler.

2.6.1 Updating Z

To update the latent data vector Z, note that the full conditional distribution of Z i

depends only on Y i, β0i, β, and Σi, and corresponds to a truncated multivariate

normal distribution,

Zi | yi,β0i,Σi,β ∼ Nk (β0i + Xiβ,Σi)
k

∏

j=1

I
{

Zij ∈ Ayij

}

. (18)



These conditional distributions are obtained by considering each of its coordinates,

conditional on the rest (Geweke, 1991). The sampling scheme consists of a cycle of

Gibbs steps through the components of Z i, which have truncated univariate normal

distributions.

2.6.2 Updating θ and the hyperparameters

Updating the latent mixture parameters θ and the hyperparameters α and ϑ pro-

ceeds with standard posterior simulation methods for DP mixtures (see, e.g., MacEach-

ern and Müller, 1998). The discrete nature of the DP implies positive probabilities

for ties among the θi. Let n∗ ≤ n be the number of different values or clusters among

the θi. Denote the set of different values by θ∗ = (θ∗
1, ...,θ

∗
n∗), let ξ = (ξ1, ..., ξn)

be a vector of configuration indicators with ξi = j if and only if θi = θ∗
j , and let nr

be the size of the rth cluster (the number of ξi = r). Then (θ∗, ξ) is an equivalent

representation of θ, with θi = θ∗
ξi

. Note that under this alternative parametrization

θ∗
1, ...,θ

∗
n∗ are independently drawn from Gϑ. Then the conditional posterior dis-

tribution of θ∗
j is obtained by combining the baseline prior Gϑ with the likelihood

∏

i:ξi=j p(Zi | θ∗
j ,β). That is, it is the posterior based on a random sample of the

latent variables which are drawn from the same θ∗
j . All of the conditional distribu-

tions are straightforward to derive and sample from. More details can be found in

MacEachern and Müller (1998).

2.6.3 The posterior predictive distribution for future discrete re-

sponses

We next turn to the posterior predictive distribution for a future observation vector

Y 0 given X0. Denote by Z0 the associated latent vector. The assumptions of

model (1), (3), (4), and (8)- (11) yield p (Y 0,Z0 | y) = p (Y 0 | Z0) p (Z0 | y),

where p (Z0 | y) is the posterior predictive distribution of Z0 that can be developed

using the structure induced by the DP prior. Let φ = (θ∗, ξ, α,β,ϑ) be the entire

set of parameters, then

p (Z0 | y) =

∫ ∫

p (Z0 | θ0,β) p (θ0 | φ) p (φ | y) dθ0dφ, (19)

where p (Z0 | θ0,β) is a k-variate normal distribution and

θ0 | φ ∼
α

α+ n
Gϑ +

1

α+ n

n∗

∑

r=1

nrδθ∗

r
. (20)



Expressions (19) and (20) readily provide draws from p (Z0 | y) and Monte Carlo

approximations to p (z0 | y) for any grid of values z0. If more general inferences

on the distribution of the latent variables, FXi
, are needed, alternatives approaches

can be used. See, e.g., Guglielmi and Tweedie (2001), Gelfand and Kottas (2002),

Guglielmi et al. (2002), and Regazzini et al. (2002). Note also that expressions (19)

and (20) help to clarify the nature and the amount of learning implied by the model.

The predictive distribution for the latent variable emerges by averaging, with respect

to the posterior distribution of the parameters φ, the distribution

p (Z0 | φ) =
α

α+ n

∫

p (Z0 | θ0,β) dGϑ (θ0) +
1

α+ n

n∗

∑

r=1

nrp
(

Z0 | θ∗

r ,β
)

.

Expression (21) corresponds to a mixture of multivariate normal distributions,

specified by the different locations, β∗
0, and covariance structure, Σ∗, with an addi-

tional term that allows for a new component. The weight for this additional term,

α
α+n , decreases as the sample size increases. This corresponds to an appealing fea-

ture of the model because it is expected that the chance of discovering a new pattern

in a future observation decreases as the amount of observed data increases.

2.6.4 Model Choice

Finally, regarding formal model determination, Basu and Chib (2003) discuss the

use of Bayes factors for the DP mixture model. Alternatively, a cross validation

model comparison criteria could be used. Indeed in the present work we have

adopted the pseudo-Bayes factor (PsBF) (see, e.g., Geisser and Eddy 1979; Gelfand

and Dey 1994) for model comparison. The PsBF for model M1 versus model M2

is defined as PsBFM1,M2
=

∏n
i=1

pM1
(Y i|Y −i)

pM2
(Y i|Y −i)

, where pMr (. | Y −i) is the posterior

predictive distribution under model Mr based on the data vector Y −i that results

after excluding the ith observation Y i. The individual ratio of cross-validation

predictive densities known as conditional predictive ordinates (CPO) have also been

used. The CPOs measure the influence of individual observations and are often used

as predictive model checking tools. The evaluation of these expressions involves the

computation of multivariate normal probabilities, which was carried out here by

using the methodology described in Genz (1993).



3 Applications

In order to evaluate the performance of the semiparametric model (model M1) de-

veloped here, we present results from two data sets in Sections 3.1 and 3.2. We use

the MCMC algorithm of Section 2.6 to fit the models. In addition, we considered

the two parametric models that result as limiting cases of model M1. As discussed

in Section 2.5, these are the multivariate probit model (model M2) and the ex-

changeable mixture model (model M3), under the normalization of the conditional

variances.

As pointed out by Berger and Guglielmi (2001), for appropriate model compar-

ison it is desirable, if possible, to match the prior specifications in the two models,

at least for similar parameters. Here we are going to compare the DP mixture

model (model M1) with alternatives parametric models (models M2 and M3) and

the DP mixture model should be a generalization of the parametric ones. Because

the relevant parametric alternatives (e.g., probit or logit models) do not consider

prior distributions given in expressions (10) and (11), we will consider the DPM

model defined by (1), (3), (4), and (8)- (9).

3.1 A Simulated Data Set

We tested our DP mixture model using a simulated data for the underlying latent

variables. We set k = 2 and generated n = 200 latent observations from a mixture

of two bivariate normals, with equal weights. The mean vectors are (−0.75,−0.75)

and (0.5, 0.5) and the covariance matrices are




1.000 −0.375

−0.375 1.000



 and





0.500 0.175

0.175 0.500



 .

Additionally, we included a discrete covariate uniformly distributed between -0.5

to 0.5 with intervals of 0.1. The values for the associated regression coefficients were

β11 = β12 = 1.5. For each of the models, the respective MCMC scheme was run

with four independent chains, with randomly chosen starting points and a burn-in

period of length 20,000. Samples were saved every 20 iterations until completing

a Monte Carlo sample of size 2,500 in all cases. Convergence was assessed using

standard criteria (Cowles and Carlin, 1996) as implemented in the BOA package

(Smith, 2005).

Posterior inference was quite robust to different values of prior hyperparameters.

Figure 1 shows the posterior predictive density p (z0 | y,x0), for a subject with



average covariates, under four alternative Gamma priors for the precision parameter

α. Specifically, with (a0, b0) = (2.0, 1.8), (2.0, 3.5), (5.0, 5.5) and (15, 7.5). The

predictive p (z0 | y,x0) is estimated as an average over conditional predictives,

p (z0 | y,x0) =

∫ ∫

p (z0 | θ0,β,x0) p (θ0,β | y) dθ0dβ

≈
1

T

T
∑

t=1

p
(

z0 | θt
0,β

t,x0,y
)

,

where (θt
0,β

t) are the imputed values after t scans of the Gibbs sampler scheme.

The four prior settings yielded an expected (sd) prior number of clusters of 6.3 (3.9),

4.0 (2.5), 5.5 (2.7), and 9.8 (3.3), respectively. The corresponding (0.05, 0.50, 0.95)

posterior percentiles for n∗ were (3, 6, 13), (2, 5, 11), (3, 6, 10), and (5, 9, 14), showing

that the posterior inference on n∗ is informative and consistent across alternative

priors. In all cases, the posterior for n∗ indicates the need for at least two compo-

nents in the mixture model.

For the other hyperparameters, we took b = µβ0
= (0, 0)T , µδ = 0, Sβ0

= cI2,

Sδ = c, with c = 1, and B = diag(10.0, 10.0). A sensitivity analysis for the choice

of the hyperparameters revealed robustness of the posterior results. Specifically, we

took B = diag(1000000, 1000000) and the results were basically the same. The pos-

terior variance of the hyperparameters (not shown) indicated that the prior choices

were indeed vague (the ratio posterior over prior variance was lower than 0.05). The

DP mixture model successfully captures the bimodal underlying distribution of the

latent variables as can be seen in Figure 1. Clustering in terms of the dependence

structure is illustrated in Figure 2, where the association between the binary vari-

ables is assessed via the correlation coefficient of the latent variables. The posterior

predictive distribution of ρ0 is bimodal with modes at -0.739 and 0.755. The pos-

terior means of the individual correlation coefficients range from -0.46 to -0.12 for

140 pairs, from -0.04 to 0.00 for 7 pairs, and from 0.15 to 0.26 for 53 cases.

Figures 1 and 2 provide evidence in favor of the DP mixture model. Moreover,

we evaluated CPO (Mr) = n−1
∑n

i=1 log pMr (Y i | Y −i). Since CPO (M1) = −1.18,

CPO (M2) = −1.28 and CPO (M3) = −1.27 the cross validation criterion favors

M1. The same is true for the PsBF , calculated on the base of the posterior pre-

dictive distributions. Indeed, the 2 log10 PsBF for model M1 versus model M2 and

M3 was 17.98 and 14.69, respectively.

Finally, we computed the posterior estimate and the 95% highest posterior den-

sity (HPD) intervals for the regression coefficients of the continuous covariate. The
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Figure 1: Simulated data set. Posterior predictive density p (z0 | y, x0) results for

the mixture model with a Gamma(2.0,1.8), Gamma(2.0,3.5), Gamma(5.0,5.5), and

Gamma(15,7.5) prior for α (panels (a)-(d), respectively), and the parametric limiting

cases of the DPM model when α → 0+ (panel(e)) and α → ∞ (panel(f)). In all cases,

p (z0 | y, x0) is overlaid on a plot of the realizations of the latent variables.
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Figure 2: Simulated data set. Posterior predictive distribution for the correlation coeffi-

cient under the DP mixture model with a Gamma(2.0,1.8) prior for α.

results are shown in Table 1. While the significance of the regression coefficients

is consistent across the models and the 95% HPD intervals overlap, the regression

coefficients for the probit model (model M2) were much lower than the DP mixture

model.

3.2 The Signal Tandmobielr Study

The Signal Tandmobielr study is a 6-year longitudinal oral health study, involving

4468 children, conducted in Flanders (Belgium) between 1996 and 2001. Dental

data were collected on gingival condition, dental trauma, tooth decay, presence of

restorations, missing teeth, stage of tooth eruption, orthodontic treatment need,

etc. All by using established criteria. Further, information on oral hygiene and

dietary behavior was collected from a questionnaire filled-in by the parents. The

children were examined annually during their primary school time by one of sixteen

trained and half yearly calibrated dental examiners. The average age of the children

at entry was 7.1 years (sd=0.4). More details on the Signal Tandmobielr study can

be found in Vanobbergen et al. 2000.

In this study one of the response of interest is caries experience (CE), which



Table 1: Simulated data set. Bayesian posterior estimates for the regression coefficients.

Model Coefficient Mean Std Dev Median 95% HPD Interval

M1 β11 1.877 0.647 1.790 (0.685 - 3.120)

β12 1.286 0.482 1.222 (0.433 - 2.268)

M2 β11 0.939 0.235 0.945 (0.481 - 1.389)

β12 0.861 0.226 0.857 (0.418 - 1.297)

M3 β11 1.459 0.356 1.453 (0.750 - 2.137)

β12 1.098 0.297 1.097 (0.530 - 1.694)

is defined as a binary variable indicating whether a tooth is decayed, filled, or

missing due to caries. This information was recorded for each tooth and for each

child, leading to clustered binary data (teeth within mouth). It is of interest to

assess the associations in the different teeth for CE because it can help the dentists

in optimizing their clinical examination and will direct them in preventive and

restorative actions. From a scientific viewpoint, the exploration of CE patterns in

the mouth is useful for refining the understanding of the etiology of the disease.

Indeed, at present, it is still not yet established whether caries is a spatially local

disease in the mouth or not.

Based on the first year’s data of the Signal Tandmobielr study, Garćıa-Zattera

et al. (2005) examined the associations in the eight deciduous molars for CE. At first

sight, the results were puzzling since, besides a high association between adjacent

and contra-lateral molars, there was also a high association between vertically op-

ponent and diagonally opponent molars. The first two associations are known and

relatively easy to explain from a dental point of view (Psoter et al., 2003). However,

the third and especially the fourth association is more difficult to understand. In

fact, the association between diagonally opponent teeth was believed to be the result

of omitting important child-specific covariates and/or the (assumed) transitivity of

the associations.

For ease of exposition we have restricted our attention to the CE in the adjacent

molars: tooth 54 (fourth molar in upper right corner of mouth) and tooth 55 (fifth

molar in upper right corner of mouth), and diagonal opponent second deciduous

molars, tooth 55 and tooth 75 (fifth molar in lower left corner of mouth), according



to the European notation. While we wish to evaluate the effect of covariates on the

probability of developing caries, the emphasis is on the evaluation of the association

structure. In particular, we wish to know whether caries of one tooth increases

the likelihood of caries on another tooth (not necessarily adjacent), and if there is

a unique common association structure for the different teeth combinations. The

covariates included in the model are age (in years) (Age), gender (boys versus girls)

(Gender), age at start of brushing (in years) (Startbr), regular use of fluoridated

supplements (yes versus no) (Sysfl), daily use of sugar containing drinks (no versus

yes) (Drinks), number of between-meal snacks (two or less than two a day versus

more than two a day) (Meals) and frequency of tooth brushing (once or more a day

versus less than once a day) (Freqbrus).

The priors for the hyperparameters and the MCMC specifications were the same

as in Section 3.1. In addition, we have taken a Gamma(15,10) prior for α, which

yields a expected (sd) prior number of cluster of 12.1 (4.1). Experimentation with

other prior choices for the hyperparameters revealed robustness of the posterior

results. The results of fitting the DPM model are shown in Table 2. The regular

use of fluoridated supplements and the consumption of sugar containing drinks, were

significant for the three teeth. These results imply that the probability of developing

caries is higher for children who took sugar drinks in-between meals and who did

not use fluoridated supplements. The age at start brushing had a significant impact

on CE in teeth 54 and 75.

In Figure 3 the posterior predictive distribution p(z0 | y,x0) and in Figure 4

the posterior predictive distribution for the correlation coefficient p(ρ0 | y) is shown

for the two pairs of molars and for two models, i.e. the DP mixture model and the

conventional probit model. The conventional bivariate probit models show a similar

behavior for the adjacent pair of deciduous molars (54 and 55) and the diagonally

opponent deciduous molars (55 and 75). As mentioned before, this is difficult to

understand from a dental point of view. In contrast, the DP mixture model identifies

two components with respect to the location and with respect to the correlation

coefficient for the adjacent pair of teeth (54 and 55). Further, even though two

clusters dominate the inference, note that the posterior predictive distribution is

concentrated on the positive support. For the diagonally opponent second deciduous

molars (55 and 75), the picture was completely different. In this case, one cluster

dominates the posterior inference (see Figure 3(c)) and the posterior predictive

distribution of the correlation coefficient looks less informative (see Figure 4(c)) with



Table 2: Signal Tandmobielr study: Posterior mean (95% HPD) of the multiple regression

model coefficients fitted to teeth 54, 55 and 75 using the DP mixture model.

Covariate T54 T55 T75

Age 0.056 -0.030 -0.105

(years) (-0.051 ; 0.161) (-0.123 ; 0.060) (-0.189; 0.024)

Gender 0.022 0.010 0.119

(girls versus boys) (-0.081 ; 0.124) (-0.086 ; 0.109) ( 0.027 ; 0.205)

Regular use of fluoridated 0.164 0.183 0.271

supplements (no versus yes) (0.052 ; 0.265) ( 0.079 ; 0.282) ( 0.171 ; 0.365)

Daily consumption of sugar 0.257 0.240 0.171

containing drinks (yes versus no) ( 0.145 ; 0.367) ( 0.133 ; 0.347) ( 0.073 ; 0.266)

Intake of in-between-meals 0.114 0.081 0.040

(> 2 versus ≤ 2 a day) ( 0.000 ; 0.222) (-0.029 ; 0.184) (-0.054 ; 0.136)

Frequency of brushing 0.003 0.056 0.069

(< 1 versus ≥ 1 a day) (-0.149 ; 0.147) (-0.089 ; 0.190) (-0.058 ; 0.192)

Age at start brushing 0.061 0.031 0.119

(years) ( 0.009 ; 0.106) (-0.016 ; 0.075) ( 0.074 ; 0.161)
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Figure 3: The Signal Tandmobielr study. Posterior predictive density p (z0 | y, x0) results

for the DP mixture model for adjacent and diagonally opponent molars (panels (a) and

(c), respectively), the conventional probit model (panels (b) and (d), respectively)

a positive probability of being negative. Indeed, the posterior predictive probability

P (ρ0 < 0 | y) = 0.224.

In both pairs of teeth, the results supported the departure of the normality as-

sumption of the latent variable distribution. The cross validation model comparison

criteria preferred the DP mixture model. The PsBF calculated on the base of the

posterior predictive distributions, strongly confirmed this. The 2 log10 PsBF for

the DP mixture model versus the bivariate probit model was 153.09 and 93.60 for

the adjacent and diagonally opponent pair, respectively.

Note also that in both pairs the posterior predictive distribution of the cor-

relation coefficient under the bivariate probit model overestimates the association

structure (see Figures 4(b) and 4(d)), suggesting that the high association in the
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Figure 4: The Signal Tandmobielr study. Posterior predictive density p(ρ0 | y) results

for the DP mixture model for adjacent and diagonally opponent molars (panels (a) and

(c), respectively), the conventional probit model (panels (b) and (d), respectively)



bivariate probit model is partly due to ignoring unobserved confounders and effect

modifiers defining subpopulations of individuals with different spatial patterns in

CE, even after adjusting for the effects of the known covariates. Although the exis-

tence of groups could be due to the multifactorial etiology of caries, note that this

is just a convenient explanation to justify the use of a mixture model. In any case,

the ability to identify individual CE patterns raises issues for further investigation.

Moreover, the results suggest that inference under the usual normality assumption

of latent variable could be misleading.

4 Concluding remarks

We have proposed a semiparametric Bayesian approach to model multivariate binary

data. The core of the nonparametric component is the introduction of a Dirichlet

process mixture model for latent variables defining classification groups with respect

to the location and the correlation coefficients.

The approach has been successfully applied to the examples of this paper, favor-

ing the DP mixture model over the conventional multivariate probit (and logit, but

not shown) specification. By specifying the mixture with respect to both the loca-

tion and the association of the normal kernel, our approach can also be a useful tool

for handling and detection of outliers in multivariate binomial data. In this context,

Aitkin and Wilson (1980) first suggested using a finite mixture model as a way of

handling data with multiple outliers, especially when some of the outliers group

into clumps. Unlike to this approach and other model-based clustering applications

(see, e.g., Dasgupta and Raftery, 1998), our approach does not require choosing a

number of groups in advance. As the proposed model combines both, regression pa-

rameter estimation and the construction of clusters, its robustness against outliers

and model misspecification is expected. This is subject of ongoing research.

The model can be extended in several ways. For example, to analyse multivariate

binary data jointly with ordinal and/or continuous variables. Alternatively, the DP

mixture specification could also include the regression coefficient vector associated

to covariates. This would allow that the effect of the covariables could be different

across the clusters. These and other extensions are the subject of the current work.
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