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Abstract

We propose an empirical likelihood test that is able to test the goodness-of-fit

of a class of parametric and semiparametric multiresponse regression models. The

class includes as special cases fully parametric models, semiparametric models, like

the multi-index and the partially linear models, and models with shape constraints.

Another feature of the test is that it allows both the response variable and the

covariate be multivariate, which means that multiple regression curves can be tested

simultaneously. The test also allows the presence of infinite dimensional nuisance

functions in the model to be tested. It is shown that the empirical likelihood test

statistic is asymptotically normally distributed under certain mild conditions and

permits a wild bootstrap calibration. Despite that the class of models which can be

considered is very large, the empirical likelihood test enjoys good power properties

against departures from a hypothesized model within the class.
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1 Introduction

Suppose {(Xi, Yi)}ni=1 is an independent and identically distributed random vector, where

Yi is a k-variate response and Xi a d-variate covariate. Let m(x) = E(Yi|Xi = x) =

(m1(x), . . . , mk(x)) be the conditional mean consisting of k regression curves on Rd and

Σ(x) = Var(Yi|Xi = x) be a k × k matrix whose values change along with the covariate.

Let m(·) = m(·, θ, g) = (m1(·, θ, g), . . . , mk(·, θ, g)) be a working regression model of

which one would like to check its validity. The form of m is known up to a finite di-

mensional parameter θ and an infinite dimensional nuisance parameter g. The model

m(·, θ, g) includes a wide range of parametric and semiparametric regression models as

special cases. In the absence of g, the model degenerates to a fully parametric model

m(·) = m(·, θ), whereas the presence of g covers a range of semiparametric models includ-

ing the single or multi-index models and partially linear single-index models. The class

also includes models with qualitative constraints, like additive models and models with

shape constraints. The variable selection problem, the comparison of regression curves

and models for the variance function can be covered by the class of m(·, θ, g) as well.

Multiresponse regression is frequently encountered in applications. In compartment

analysis arising in biological and medical studies as well as chemical kinetics (Atkin-

son and Bogacka, 2002), a multivariate variable is described by a system of differential

equations whose solutions satisfy multiresponse regression (Jacquez, 1996). In response

surface designs, multivariate random vectors are collected as responses of some controlled

variables (covariates) of certain statistical experiments. Khuri (2001) proposed using the

generalized linear models for modeling such kind of data and Ucin̈ski and Bogacka (2005)

studied the issue of optimal designs with an objective for discrimination between two mul-

tiresponse system models. The monographs by Bates and Watts (1988, chapter 4) and

Seber and Wild (1989, chapter 11) contain more examples of multiresponse regression as

well as their parametric inference.

The need for testing multiple curves occurs even in the context of univariate responses

Yi. Consider the following heteroscedastic regression model

Yi = r(Xi) + σ(Xi)ei,

where the ei’s are unit residuals such that E(ei|Xi) = 0 and E(e2
i |Xi) = 1, and r(·) and
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σ2(·) are respectively the conditional mean and variance functions. Suppose r(x, θ, g) and

σ2(x, θ, g) are certain working parametric or semiparametric models. In this case, the

bivariate response vector is (Yi, Y
2
i )T and the bivariate model specification m(x, θ, g) =

(r(x, θ, g), σ2(x, θ, g) + r2(x, θ, g))T .

The aim of the paper is to develop a nonparametric goodness-of-fit test for the hy-

pothesis

H0 : m(·) = m(·, θ, g), (1.1)

for some known k-variate function m(·, θ, g), some finite dimensional parameter θ ∈ Θ ⊂
Rp (p ≥ 1) and some function g ∈ G which is a complete metric space consisting of func-

tions from Rd to Rq (q ≥ 1). We will use two pieces of nonparametric statistical hardware:

the kernel regression estimation technique and the empirical likelihood technique to for-

mulate a test for H0.

In the case of a single regression curve (i.e. k = 1), the nonparametric kernel approach

has been widely used to construct goodness-of-fit tests for the conditional mean or variance

function. Eubank and Spiegelman (1990), Eubank and Hart (1992), Härdle and Mammen

(1993), Hjellvik and Tjøstheim (1995), Fan and Li (1996), Hart (1997), Hjellvik, Yao and

Tjøstheim (1998) develop consistent tests for a parametric specification by employing the

kernel smoothing method based on a fixed bandwidth. Horowitz and Spokoiny (2001)

propose a test based on a set of smoothing bandwidths in the construction of the kernel

estimator. Its extensions are considered in Chen and Gao (2006) for time series regression

models and in Rodŕıguez-Póo, Sperlich and Vieu (2005) for semiparametric regression

models. Other related references can be found in the books by Hart (1997) and Fan and

Yao (2003).

The empirical likelihood (EL) (Owen, 1988, 1990) is a technique that allows the con-

struction of a nonparametric likelihood for a parameter of interest in a nonparametric or

semiparametric setting. Despite that it is intrinsically nonparametric, it possesses two

important properties of a parametric likelihood: the Wilks’ theorem and the Bartlett

correction. Qin and Lawless (1994) establish EL for parameters defined by estimating

equations, which is the widest framework for EL formulation. Chen and Cui (2006) show

that the EL admits a Bartlett correction under this general framework. Hjort, McKeague

and Van Keilegom (2005) consider the properties of the EL in the presence of both finite
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and infinite dimensional nuisance parameters as well as when the data dimension is high.

See Owen (2001) for a comprehensive overview of the EL method and references therein.

Goodness-of-fit tests based on the EL have been proposed in the literature, which in-

clude Li (2003) and Li and Van Keilegom (2002) for survival data, Einmahl and

McKeague (2003) for testing some characteristics of a distribution function, Chen, Härdle

and Li (2003) for conditional mean functions with dependent data. Fan and Zhang (2004)

propose a sieve EL test for testing a general varying-coefficient regression model that ex-

tends the generalized likelihood ratio test of Fan, Zhang and Zhang (2001). Tripathi and

Kitamura (2003) propose an EL test for conditional moment restrictions.

One contribution of the present paper is the formulation of a test that is able to test

a set of multiple regression functions simultaneously. Multiple regression curves exist

when the response Yi is genuinely multivariate, or when Yi is in fact univariate but we are

interested in testing the validity of a set of feature curves, for example the conditional mean

and conditional variance, at the same time. EL is a natural device to formulate goodness-

of-fit statistics to test multiple regression curves. This is due to EL’s built-in feature to

standardize a goodness-of-fit distance measure between a fully nonparametric estimate

of the target functional curves and its hypothesized counterparts. The standardization

carried out by the EL uses implicitly the true covariance matrix function, say V (x) of

the kernel estimator m(·), to studentize the distance between m̂(·) and the hypothesized

model m(·, θ, g), so that the goodness-of-fit statistic is an integrated Mahalanobis distance

between the two sets of multivariate curves m̂(·) and m(·, θ, g). This is attractive as we

avoid estimating V (x), which can be a daunting task when k is larger than 1. When

testing multiple regression curves, there is an intrinsic issue regarding how much each

component-wise goodness-of-fit measure contributes to the final test statistic. The EL

distributes the weights naturally according to V −1(x). And most attractively, this is done

without requiring extra steps of estimation since it comes as a by-product of the internal

algorithm.

Another contribution of the proposed test is its ability to test a large class of regres-

sion models in the presence of both finite and infinite dimensional parameters. The class

includes as special cases fully parametric models, semiparametric models, like the multi-

index and the partially linear models, and models with shape constraints, like monotone
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regression models. It is shown that the EL test statistic is asymptotically normally dis-

tributed under certain mild conditions and permits a wild bootstrap calibration. Despite

the fact that the class of models which can be considered by the proposed test is very

large, the test enjoys good power properties against departures from a hypothesized model

within the class.

The paper is organized as follows. In the next section we introduce some notations and

formulate the EL test statistic. Section 3 is concerned with the main asymptotic results,

namely the asymptotic distribution of the test statistic both under the null hypothesis

and under a local alternative, and the consistency of the bootstrap approximation. In

Section 4 we focus on a number of particular models and apply the general results of

Section 3 to these models. Simulation results are reported in Section 5. We conclude the

paper by giving in Section 6 the assumptions and the proofs of the main results.

2 The Test Statistic

Let Yi = (Yi1, . . . , Yik)
T and m(x) = (m1(x), . . . , mk(x))T where ml(x) = E (Yil|Xi = x)

is the l-th regression curve for l = 1, . . . , k. Let εi = Yi − m(Xi) be the i-th residual

vector. Define σlj(x) = Cov (εil, εij|Xi = x) which is the conditional covariance between

the l-th and j-th component of the residual vector. Then, the conditional covariance

matrix Σ(x) = Var(Yi|Xi = x) = (σlj(x))k×k.

Let K be a d-dimensional kernel with a compact support on [−1, 1]d. Without loss

of generality, K is assumed to be a product kernel based on a univariate kernel k, i.e.

K(t1, · · · , td) =
∏d
i=1 k(ti) where k is a r-th order kernel supported on [−1, 1] and

∫
k(u)du = 1,

∫
ulk(u)du = 0 for l = 1, · · · , r − 1 and

∫
urk(u)du = kr 6= 0

for an integer r ≥ 2. Define Kh(u) = h−dK(u/h). The Nadaraya-Watson (NW) kernel

estimator of ml(x), l = 1, . . . , k, is

m̂l(x) =

∑n
i=1 Khl(x−Xi)Yil∑n
t=1 Khl(x−Xt)

,

where hl is the smoothing bandwidth for curve l. Different bandwidths are allowed to

smooth different curves which is sensible for multivariate responses. Then

m̂(x) = (m̂1(x), . . . , m̂k(x))T
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is the kernel estimator of the multiple regression curves. We assume throughout the paper

that hl/h→ βl as n→∞, where h represents a baseline level of the smoothing bandwidth

and c0 ≤ minl{βl} ≤ maxl{βl} ≤ c1 for finite and positive constants c0 and c1 free of n.

Under the null hypothesis (1.1),

Yi = m(Xi, θ0, g0) + εi, i = 1, . . . , n, (2.1)

where θ0 is the true value of θ in Θ, g0 is the true function in G, and ε1, . . . , εn are

independent and identically distributed, so that E(εi|Xi = x) = 0 and Var(εi|Xi = x) =

Σ(x).

Let θ̂ be a
√
n-consistent estimator of θ0 and ĝ be a consistent estimator of g0 under

a norm ‖ · ‖G defined on the complete metric space G. We suppose ĝ is a kernel estimator

based on a kernel L of order s ≥ 2 and a bandwidth sequence b, most likely different

from the bandwidth h used to estimate m. We will require that ĝ converges to g0 faster

than (nhd)−1/2, the optimal rate in a completely d-dimensional nonparametric model. As

demonstrated in Section 4, this can be easily satisfied since g is of lower dimensional than

the saturated nonparametric model for m.

Each ml(x, θ̂, ĝ) is smoothed by the same kernel K and bandwidth hl as in the kernel

estimator m̂l(x), in order to prevent the bias of the kernel regression estimators entering

the asymptotic distribution of the test statistic (see also Härdle and Mammen, 1993):

m̃l(x, θ̂, ĝ) =

∑n
i=1 Khl(x−Xi)ml(Xi, θ̂, ĝ)

∑n
t=1 Khl(x−Xt)

.

for l = 1, . . . , k. Let m̃(x, θ̂, ĝ) = (m̃1(x, θ̂, ĝ), . . . , m̃k(x, θ̂, ĝ))T .

We note in passing that the dimension of the response Yi does not contribute to the

curse of dimensionality. Rather, it is the dimension of the covariate Xi that contributes,

since Xi is the direct target of smoothing. Hence, as far as the curse of dimensionality is

concerned, testing multiple curves is the same as testing a single regression curve.

To formulate the empirical likelihood ratio test statistics, we first consider a fixed

x ∈ Rd and then globalize by integrating the local likelihood ratio over a compact set

S ⊂ Rd in the support of X. For each fixed x ∈ S, let

Q̂i(x, θ̂) =
(
Kh1(x−Xi)

(
Yi1 − m̃1(x, θ̂, ĝ)

)
, . . .Khk(x−Xi)

(
Yik − m̃k(x, θ̂, ĝ)

))T
(2.2)
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which is a vector of local residuals at x and its mean is approximately zero.

Let {pi(x)}ni=1 be nonnegative real numbers representing empirical likelihood weights

allocated to {(Xi, Yi)}ni=1. The minus 2 log empirical likelihood ratio for the multiple

conditional mean evaluated at m̃(x, θ̂, ĝ) is

`{m̃(x, θ̂, ĝ)} = −2
n∑

i=1

log{npi(x)}

subject to pi(x) ≥ 0,
∑n
i=1 pi(x) = 1 and

∑n
i=1 pi(x)Q̂i(x, θ̂) = 0. By introducing a vector

of Lagrange multipliers λ(x) ∈ Rk, a standard empirical likelihood derivation (Owen,

1990) shows that the optimal weights are given by

pi(x) =
1

n
{1 + λT (x)Q̂i(x, θ̂)}−1, (2.3)

where λ(x) solves
n∑

i=1

Q̂i(x, θ̂)

1 + λT (x)Q̂i(x, θ̂)
= 0. (2.4)

Integrating `{m̃(x, θ̂, ĝ)} against a weight function π supported on S, gives

Λn(~h) =
∫
`{m̃(x, θ̂, ĝ)}π(x)dx,

which is our EL test statistic based on the bandwidth vector ~h = (h1, . . . , hk)
T .

Let ˆ̄Q(x, θ̂) = n−1∑n
i=1 Q̂i(x, θ̂), R(t) =

∫
K(u)K(tu)du and

V (x) = f(x)
(
β−dj R(βl/βj)σlj(x)

)
k×k

,

where f(x) is the density of X. We note in particular that R(1) = R(K) =:
∫
K2(u)du

and that β−dj R(βl/βj) = β−dl R(βj/βl) indicating that V (x) is a symmetric matrix.

Derivations given in Section 6 show that

Λn(~h) = nhd
∫

ˆ̄QT (x, θ0)V −1(x) ˆ̄Q(x, θ0)π(x) dx+ op(h
d/2),

where hd/2 is the stochastic order of the first term on the right hand side if d < 4r.

Here r is the order of the kernel K. Since ˆ̄Q(x, θ0) = f(x){m̂(x)− m̃(x, θ0, ĝ)}{1+op(1)},
ˆ̄Q(x, θ0) serves as a raw discrepancy measure between m̂(x) = (m̂1(x), . . . , m̂k(x)) and the

hypothesized model m(x, θ0, ĝ). There is a key issue on how much each m̂l(x)−m̃l(x, θ0, ĝ)
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contributes to the final statistic. The EL distributes the contributions according to

nhdV −1(x), the inverse of the covariance matrix of ˆ̄Q(x, θ0) which is the most natural

choice. The nice thing about the EL formulation is that this is done without explicit

estimation of V (x) due to its internal standardization. Estimating V (x) when k is large

can be challenging if not just tedious.

3 Main Results

Let

ωl1,l2,j1,j2(β,K) =
∫ ∫ ∫

β−dl2 K(u)K(v)K{(βj2z + βl1u)/βl2}K (z + βj1v/βj2) dudvdz,

(γlj(x))k×k =
(
(β−dj R(βl/βj)σlj(x))k×k

)−1
, and

σ2(K,Σ) = 2
k∑

l1,l2,j1,j2

β−dl2 ωl1,l2,j1,j2(β,K)
∫
γl1j1(x)γl2j2(x)σl1l2(x)σj1j2(x)π2(x)dx

which is a bounded quantity under assumption (A.1) and (A.4) given in Section 6.

Theorem 3.1 Under the assumptions (A.1)-(A.6) and (B.1)-(B.5) given in Section 6,

and under H0,

h−d/2{Λn(~h)− k} d→ N(0, σ2(K,Σ))

as n→∞.

Remark 3.1 (equal bandwidths) If h1 = . . . = hk = h, that is β1 = . . . = βk = 1,

then ωl1,l2,j1,j2(β,K) = K(4)(0) where K(4) is the convolution of K(2), and K(2) is the

convolution of K, that is

K(2)(u) =
∫
K(v)K(u+ v)dv.

Since V (x) = f(x)R(K)Σ(x) in the case of equal bandwidths,
∑k
l=1 γlj1σlj2(x) = I(j1 =

j2)R−1(K) where I is the indicator function. Therefore, σ2(K,Σ) = 2kK(4)(0)

R−2(K)
∫
π2(x)dx, which is entirely known upon given the kernel function. Hence, the

EL test statistic is asymptotically pivotal.
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Remark 3.2 (unequal bandwidths) If the bandwidths are not all the same, the asymp-

totic variance of Λn(~h) may depend on Σ(x), which means that the EL test statistic is

no longer asymptotically pivotal. However, the distribution of Λn(~h) is always free of the

design distribution of Xi.

Let qnα be the upper α-quantile of the distribution of h−d/2{Λn(~h) − k} for a signif-

icance level α ∈ (0, 1). Theorem 3.1 assures that qnα → zα, the upper α quantile of

N(0, σ2(K,Σ)). However, the convergence can be slow. There is also an issue of estimat-

ing σ2(K,Σ) when different bandwidths are used. For these reasons we prefer to use a

bootstrap approximation to calibrate the quantile qnα.

Remark 3.3 (bootstrap) Let ε̂i = Yi − m̂(Xi) be the estimated residual vectors for

i = 1, . . . , n and G be a multivariate k-dimensional random vector such that E(G) = 0,

Var(G) = Ik and G has bounded fourth order moments. To facilitate simple construction

of the test statistic, and faster convergence, we propose the following bootstrap estimate

of qnα.

Step 1: For i = 1, . . . , n, generate ε∗i = ε̂iGi where G1, . . . , Gn are independent and

identical copies of G, and let Y ∗i = m(Xi, θ̂, ĝ) + ε∗i . Re-estimate θ and g based on

{(Xi, Y
∗
i )}ni=1 and denote them as θ̂∗ and ĝ∗.

Step 2: compute the EL ratio at m̃(x, θ̂∗, ĝ∗) based on {(Xi, Y
∗
i )}ni=1, denote it as

`∗{m̃(x, θ̂∗, ĝ∗)} and then obtain the bootstrap version of the test statistic Λ∗n(~h) =
∫
`∗{m̃(x, θ̂∗, ĝ∗)}π(x)dx and let ξ∗ = h−d/2{Λ∗n(~h)− k}.

Step 3: Repeat Steps 1 and 2 N times, and obtain ξ∗1 ≤ . . . ≤ ξ∗N without loss of

generality.

The bootstrap estimate of qnα is then q̂nα =: ξ∗[Nα]+1.

The proposed EL test with α-level of significance rejects H0 if h−d/2{Λn(~h)−k} > q̂nα.

Remark 3.4 (bandwidth selection) Each bandwidth hl used in the kernel regression

estimator m̂l(x) can be chosen by a standard bandwidth selection procedure for instance

the cross-validation (CV) method. The range in term of order of magnitude for all the k

bandwidths {hl}kl=1 covers the order of n−1/(d+2r) which is the optimal order that minimizes

the mean integrated squared error in the estimation of ml and is also the asymptotic order

of the bandwidth selected by the CV method. We also note that once {hl}kl=1 are chosen,
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the same set of bandwidths will be used in formulating the bootstrap version of the test

statistic Λ∗n(~h).

Theorem 3.2 Under assumptions (A.1)-(A.6) and (B.1)-(B.5) given in Section 6, and

under H0,

P
(
h−d/2{Λn(~h)− k} ≥ q̂nα

)
→ α,

as min(n,N)→∞.

Theorem 3.2 maintains that the proposed test has asymptotically correct size.

We next consider the power of the test under a sequence of local alternatives. First,

consider the following local alternative hypothesis:

H1n : m(·) = m(·, θ0, g0) + cnΓn(·), (3.1)

where cn = n−1/2h−d/4 and Γn(x) =
(
Γn1(x), · · · ,Γnk(x)

)T
for some bounded functions

Γnl(·) (l = 1, . . . , k).

Theorem 3.3 Under the assumptions (A.1)-(A.7) and (B.1)-(B.5) given in Section 6,

and under H1n,

h−d/2{Λn(~h)− k} d→ N(β(f,K,Σ,Γ), σ2(K,Σ))

as n→∞, where

β(f,K,Σ,Γ) =
k∑

l,j=1

∫
Γl(x)Γj(x)γlj(x)f(x)π(x) dx

=
∫

ΓT (x)V −1(x)Γ(x)f 2(x)π(x)dx

and Γ(x) = limn→∞ Γn(x) assuming such a limit does exists.

Remark 3.5 (power) The asymptotic mean of the EL test statistic is given by
∫

ΓT (x)V −1(x)Γ(x)f 2(x)π(x)dx, which is bounded away from zero since V (x) is posi-

tive definite with smallest eigen-function uniformly bounded away from zero. As a result,

the EL test has a non-trivial asymptotic power

Φ
[
{zα − β(f,K,Σ,Γ)}/σ(K,Σ)

]
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where Φ is the distribution function of the standard normal distribution. We note here

that the above power is attained for any Γ(x) without requiring specific directions in

which H1 deviates from H0. This indicates the proposed test is able to test consistently

any departure from H0.

By repeating the derivation of Theorem 3.3, it can be seen that if the order of cn

is larger than n−1/2h−d/4, then β(f,K,Σ,Γ) will converge to infinity, which then implies

that the power of the EL test will converge to 1. If otherwise cn converges to zero faster

than n−1/2h−d/4, then β(f,K,Σ,Γ) will degenerate to zero and hence the power of the

test will degenerate to the significance level α.

4 Examples

In this section we will apply the general results obtained in Section 3 on a number of

particular models: partially linear models, single index models, additive models, mono-

tone regression models, the selection of variables, and the simultaneous testing of the

conditional mean and variance. These six examples form a representative subset of the

more complete list of examples listed in the introduction section. For the other examples

not treated here, the development is quite similar.

4.1 Partially linear models

Consider the model

Yi = m(Xi, θ0, g0) + εi (4.1)

= θ00 + θ01Xi1 + . . .+ θ0,d−1Xi,d−1 + g0(Xid) + εi,

where Yi is a one-dimensional response variable (k = 1), d > 1, E(εi|Xi = x) = 0

and Var(εi|Xi = x) = Σ(x) (1 ≤ i ≤ n). For identifiability reasons we assume that

E(g0(Xid)) = 0. This testing problem has been studied in Yatchew (1992), Whang and

Andrews (1993) and Rodŕıguez-Póo, Sperlich and Vieu (2005), among others. For any

θ ∈ Rd and x ∈ R, let

ĥ(x, θ) =
n∑

i=1

Win(x, b)[Yi − θ0 − θ1Xi1 − . . .− θd−1Xi,d−1] (4.2)
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ĝ(x, θ) = ĥ(x, θ)− 1

n

n∑

i=1

ĥ(Xid, θ), (4.3)

where

Win(x, b) =
L
(
x−Xid
b

)

∑n
j=1 L

(
x−Xjd

b

) ,

b is a univariate bandwidth sequence and L a kernel function. Next, define

θ̂ = argminθ∈Rd
n∑

i=1

[
Yi − θ0 − θ1Xi1 − . . .− θd−1Xi,d−1 − ĝ(Xid, θ)

]2
.

Then, θ̂ − θ0 = Op(n
−1/2), see Härdle, Liang and Gao (2000, Chapter 2), and

|m(Xi, θ0, ĝ)−m(Xi, θ0, g0)| = |ĝ(Xi, θ0)− g0(Xi)|
= Op{(nb)−1/2 log(n)} = op{(nhd)−1/2 log(n)},

uniformly in 1 ≤ i ≤ n, provided hd/b → 0. This is the case when h ∼ n−1/(d+4) and

b ∼ n−1/5. Hence, condition (B.1) is satisfied. Conditions (B.2) and (B.3) obviously hold,

since
∂m(Xi, θ0, g)

∂θ
= (1, Xi1, . . . , Xi,d−1)T and

∂2m(Xi, θ0, g)

∂θ∂θT
= 0

for any g. Finally, when the order of the kernel L equals 2,

E{ĝ(x, θ0)} = g0(x) +O(b2),

uniformly in x; and O(b2) is o(h2) provided b/h → 0, which is satisfied for the above

choices of h and b. Hence, (B.4) is satisfied for r = 2.

4.2 Single index models

In single index models it is assumed that

Yi = m(Xi, θ0, g0) + εi = g0(θT0 Xi) + εi, (4.4)

where k (the dimension of Yi) equals 1, θ0 = (θ01, . . . , θ0d)
T , Xi = (Xi1, . . . , Xid)

T for some

d > 1, E(εi|Xi = x) = 0 and Var(εi|Xi = x) = Σ(x) (1 ≤ i ≤ n). In order to identify the

model, set ‖θ0‖ = 1. See e.g. Xia, Li, Tong and Zhang (2004), Stute and Zhu (2005) and
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Rodŕıguez-Póo, Sperlich and Vieu (2005) for procedures to test this single index model.

For any θ ∈ Θ and u ∈ R, let

ĝ(u, θ) =
n∑

i=1

Lb(u− θTXi)∑n
j=1 Lb(u− θTXj)

Yi.

Then, the estimator of θ0 is defined by

θ̂ = argminθ:‖θ‖=1

n∑

i=1

[Yi − ĝ(θTXi, θ)]
2.

Härdle, Hall and Ichimura (1993) showed that θ̂ − θ0 = Op(n
−1/2). Obviously, from

standard kernel regression theory we know that

max
i
|m(Xi, θ0, ĝ)−m(Xi, θ0, g0)| ≤ sup

u
|ĝ(u, θ0)− g0(u)|

= Op{(nb)−1/2 log(n)} = op{(nhd)−1/2 log(n)},

max
i

∣∣∣
∂

∂θ
m(Xi, θ0, ĝ)− ∂

∂θ
m(Xi, θ0, g0)

∣∣∣ ≤ C sup
u
|ĝ′(u, θ0)− g′0(u)|

= Op{(nb3)−1/2 log(n)} = op(1),

max
i

∣∣∣
∂2

∂θ∂θT
m(Xi, θ0, ĝ)

∣∣∣ ≤ C sup
u
|ĝ′′(u, θ0)|

= C sup
u
|g′′0(u)|+Op{(nb5)−1/2 log(n)} = op(n

1/2),

and

sup
u
|E{ĝ(u, θ0)} − g0(u)| = O(b2) = o(h2),

for some C > 0, provided hd/b → 0 and nb3 log−2(n) → ∞, which is the case, as for the

partially linear model, when e.g. h ∼ n−1/(d+4) and b ∼ n−1/5.

4.3 Additive models

We suppose now that the model is given by

Yi = m00 +m10(Xi1) + . . .+md0(Xid) + εi, (4.5)
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where k = 1, d > 1, E(εi|Xi = x) = 0, Var(εi|Xi = x) = Σ(x) and E(mj0(Xij)) = 0

(1 ≤ i ≤ n; 1 ≤ j ≤ d). The estimation of the parameter m00 and of the functions mj0(·)
(1 ≤ j ≤ d) has been considered in e.g. Linton and Nielsen (1995) (marginal integration),

Opsomer and Ruppert (1997) (backfitting), Mammen, Linton and Nielsen (1999) (smooth

backfitting). Using e.g. the covering technique to extend pointwise convergence results

to uniform results (see e.g. Bosq, 1998), it can be shown that the estimators m̂j(·)
(j = 1, . . . , d) considered in these papers satisfy the following properties:

sup
x
|m̂j(x)−mj0(x)| = Op{(nb)−1/2 log(n)}

sup
x
|E{m̂j(x)} −mj0(x)| = O(b2),

where b is the bandwidth used for either of these estimators. Hence, assumptions (B.1)-

(B.5) hold true provided hd/b → 0 and b/h → 0, which is the case when e.g. h and b

equal the optimal bandwidths for kernel estimation in dimension d respectively 1, namely

h ∼ n−1/(d+4) and b ∼ n−1/5 (take r = s = 2).

4.4 Monotone regression

Consider now the following model

Yi = m0(Xi) + εi, (4.6)

where Xi and Yi are one-dimensional, and where we assume that m0 is monotone. An

overview of nonparametric methods for estimating a monotone regression function, as well

as testing for monotonicity is given in Gijbels (2005). Let m̂(x) be an estimator of m0(x)

under the assumption of monotonicity, that is based on a bandwidth sequence b and a

kernel L of order s, and that satisfies

sup
x
|m̂(x)−m0(x)| = Op{(nb)−1/2 log(n)}

sup
x
|E{m̂(x)} −m0(x)| = O(bs)

(as for the additive model, the uniformity in x can be obtained by using classical tools

based on e.g. the covering technique). Then, the required regularity conditions on m̂(x)

are satisfied provided h/b → 0 and bs/hr → 0, i.e. when e.g. s = 3, r = 2, b = Kn−1/5

and h = b log−1(n).
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4.5 Selection of variables

In this example we apply the general testing procedure on the problem of selecting ex-

planatory variables in regression. Let Xi = (X
(1)T
i , X

(2)T
i )T be a vector of d = d1 + d2

(d1, d2 ≥ 1) explanatory variables. We like to test whether the vector X
(2)
i should or

should not be included in the model. See Delgado and González Manteiga (2001) for

other nonparametric approaches to this problem. Our null model is

Yi = m0(X
(1)
i ) + εi. (4.7)

Hence, under the hypothesized model the regression function m(x(1), x(2)) is equal to a

function m0(x(1)) only. In our testing procedure we estimate the regression function m0(·)
by

m̂(x(1)) =
n∑

i=1

Lb(x
(1) −X (1)

i )
∑
j Lb(x(1) −X (1)

j )
Yi,

where L is a d1-dimensional kernel function of order s = 2 and b a bandwidth sequence.

It is easily seen that this estimator satisfies the regularity conditions provided hd/bd1 → 0

and b/h → 0 (take r = 2). As before, the optimal bandwidths for estimation, namely

h ∼ n−1/(d+4) and b ∼ n−1/(d1+4) satisfy these constraints.

4.6 Simultaneous testing of the conditional mean and variance

Let Zi = r(Xi) + Σ1/2(Xi)ei where Zi is a k1-dimensional response variable of a d-

dimensional covariate Xi, and r(x) = E(Zi|Xi = x) and Σ(x) = V ar(Zi|Xi = x) are

respectively the conditional mean and variance functions. This is a standard multivariate

nonparametric regression model. Suppose that r(x, θ, g) and Σ(x, θ, g) are certain work-

ing models for the conditional mean and variance respectively. Hence, the hypothesized

regression model is

Zi = r(Xi, θ, g) + Σ1/2(Xi, θ, g)ei, (4.8)

where the standardized residuals {ei}ni=1 satisfy E(ei|Xi) = 0 and V ar(ei|Xi) = Id. Here,

Id is the d-dimensional identity matrix. Clearly, the parametric (without g) or semi-

parametric (with g) model specification of (4.8) consists of two components of specifica-

tions: one for the regression part r(Xi, θ, g) and the other is the conditional variance part

Σ(Xi, θ, g). The model (4.8) is valid if and only if both components of the specifications
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are valid simultaneously. Hence, we need to test the goodness-of-fit of both r(x, θ, g) and

Σ(x, θ, g) simultaneously.

To use the notations of this paper, we have

m(x, θ, g) = (r(x, θ, g), vec{Σ(x, θ, g) + r(x, θ, g)rT (x, θ, g)})T

and the multivariate “response” Yi =
(
Zi, vec(ZiZ

T
i )
)T

. Here vec(A) denotes the operator

that stacks columns of a matrix A into a vector.

5 Simulations

Consider the following model :

Yi = 1 + 0.5Xi1 + ag1(Xi1) + g2(Xi2) + εi (5.1)

(i = 1, . . . , n). Here, the covariates Xij (j = 1, 2) follow a uniform distribution on [0, 1],

the error εi is independent of Xi = (Xi1, Xi2), and follows a normal distribution with

mean zero and variance given by Var(εi|Xi) = (1.5 + Xi1 + Xi2)2/100. Several choices

are considered for the constant a ≥ 0 and the functions g1 and g2. We are interested

in testing whether the data (Xi, Yi) (i = 1, . . . , n) follow a partially linear model, in the

sense that the regression function is linear in Xi1, and (possibly) non-linear in Xi2.

We will compare our empirical likelihood based test with the test considered by

Rodŕıguez-Póo, Sperlich and Vieu (2005) (RSV hereafter), which is based on the L∞-

distance between a completely nonparametric kernel estimator of the regression function

and an estimator obtained under the assumption that the model is partially linear.

The simulations are carried out for samples of size 100 and 200. The significance level is

α = 0.05. A total of 300 samples are selected at random, and for each sample 300 random

resamples are drawn. We use a triangular kernel function K(u) = (1− |u|)I(|u| ≤ 1) and

we determine the bandwidth b by using a cross-validation procedure. For the bandwidth

h, we follow the procedure used by Rodŕıguez-Póo, Sperlich and Vieu (2005), i.e. we

consider the test statistic suph0≤h≤h1
[h−d/2{Λn(~h) − k}], where h0 and h1 are chosen in

such a way that the bandwidth obtained by cross-validation is included in the interval.

For n = 100, we take h0 = 0.22 and h1 = 0.28, and for n = 200 we select h0 = 0.18 and

16



h1 = 0.24. The critical values for this test statistic are obtained from the distribution of

the bootstrap statistic, given by suph0≤h≤h1
[h−d/2{Λ∗n(~h)− k}].

The results are shown in Table 1. The table shows that the level is well respected

for both sample sizes, and for both choices of the function g2. Under the alternative

hypothesis, all the considered models demonstrate that the power increases with increasing

sample size and increasing value of a. The empirical likelihood test is in general more

powerful than the RSV test when cn is small (cn = 0.5 and 1.0). For the largest cn

considered, i.e. cn = 3, the RSV test is slightly more powerful. However, this happens

when both tests enjoy a large amount of power.

6 Assumptions and Proofs

Assumptions:

(A.1) K is a d-dimensional product kernel of the form K(t1, . . . , td) =
∏d
j=1 k(tj), where

k is a r-th order (r ≥ 2) univariate kernel (i.e. k(t) ≥ 0 and
∫
k(t) dt = 1) supported on

[−1, 1], k is symmetric, bounded and Lipschitz continuous.

(A.2) The baseline smoothing bandwidth h satisfies nhd+2r → K for some K ≥ 0,

nh3d/2 log−4(n)→∞, and hl/h→ βl as n→∞, where c0 ≤ min1≤l≤k{βl} ≤ max1≤l≤k{βl} ≤
c1 for finite and positive constants c0 and c1. Moreover, d < 4r and the weight function

π is bounded, Lipschitz continuous on its compact support S and satisfies
∫
π(x)dx = 1.

(A.3) Let εi = Yi − m(Xi, θ0, g0) = (εi1, . . . , εik)
T . E(|∏6

j=1 εilj | |Xi = x) is uniformly

bounded for all l1, . . . , l6 ∈ {1, . . . , k} and all x ∈ S.

(A.4) f(x) and all the σ2
lj(x)’s have continuous derivatives up to the second order in S,

infx∈S f(x) > 0 and minl infx∈S σ2
ll(x) > 0. Let ξ1(x) and ξk(x) be the smallest and largest

eigenvalues of V (x). We assume that c2 ≤ infx∈S ξ1(x) ≤ supx∈S ξk(x) ≤ c3 for finite and

positive constants c2 and c3.

(A.5) Θ is a compact subspace of Rp, P (θ̂ ∈ Θ) → 1 as n → ∞, and θ̂ satisfies θ̂ − θ0 =

Op(n
−1/2).

(A.6) m(x, θ, g) is twice continuously partially differentiable with respect to the compo-

nents of θ and x for all g, and the derivatives are bounded uniformly in x ∈ S, θ ∈ Θ and

17



n = 100 n = 200

g1(x1) g2(x2) a RSV EL RSV EL

x2
1 exp(x2) 0 .047 .053 .040 .043

0.5 .123 .153 .160 .193

1 .377 .420 .653 .683

1.5 .787 .743 .973 .980
2

x2+1
0 .033 .037 .043 .053

0.5 .110 .120 .153 .177

1 .373 .397 .667 .657

1.5 .753 .733 .977 .963

log(x1 + 0.5) exp(x2) 0 .047 .053 .040 .043

1 .123 .147 .127 .160

2 .387 .400 .657 .660

3 .747 .723 .973 .960
2

x2+1
0 .033 .037 .043 .053

1 .107 .133 .113 .147

2 .407 .440 .660 .713

3 .797 .763 .990 .983

Table 1: Rejection probabilities under the null hypothesis (a = 0) and under the alterna-

tive hypothesis (a > 0). The test of Rodŕıguez-Póo, Sperlich and Vieu (2005) is indicated

by ‘RSV’, the new test is indicated by ‘EL’.

g ∈ G.

(A.7) Each of the functions Γnl(x) (l = 1, . . . , k) appearing in the local alternative hy-

pothesis converges to Γl(x) as n → ∞, and Γl(x) is uniformly bounded with respect to

x.

Let ∆̂l(x, θ) = m̃l(x, θ, ĝ)− m̃l(x, θ, g0) for l = 1, . . . , k, ∆̂(x, θ) = (∆̂l(x, θ))
k
l=1,

Q̂
(2)
i (x, θ) =

(
Kh1(x−Xi)∆̂1(x, θ), . . . , Khk(x−Xi)∆̂k(x, θ)

)T
,

and let ‖ · ‖ be the Euclidean norm.
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The following conditions specify stochastic orders for some quantities involving

Q̂
(2)
i (x, θ0):

(B.1) maxi,l |ml(Xi, θ0, ĝ)−ml(Xi, θ0, g0)| = op{(nhd)−1/2 log(n)}.
(B.2) maxi,l |∂ml(Xi,θ0,ĝ)∂θ

− ∂ml(Xi,θ0,g0)
∂θ

| = op(1).

(B.3) maxi,l ‖∂
2ml(Xi,θ0,ĝ)
∂θ∂θT

‖ = op(n
1/2).

(B.4) supx∈S ‖E{m(x, θ0, ĝ)} −m(x, θ0, g0)‖ = o(hr).

(B.5) P (ĝ ∈ G)→ 1 as n→∞.

Lemma 6.1 Assumption (B.1) implies (B.1a), (B.1b) and (B.1c), given by

(B.1a) supx∈S
[
n−1∑n

i=1 Q̂
(2)
i (x, θ0)Q̂

(2)T
i (x, θ0)

]
= op{n−1h−2d log2(n)}.

(B.1b) supx∈S max1≤i≤n ‖Q̂(2)
i (x, θ0)‖ = op{n−1/2h−3d/2 log(n)}.

(B.1c) supx∈S
[
n−1∑n

i=1 Q̂
(2)
i (x, θ0)

]
= op{(nhd)−1/2 log(n)}.

Proof. First note that

sup
x

max
i
‖Q̂(2)

i (x, θ0)‖ ≤ sup
x

[
max
i,l

Khl(x−Xi)‖∆̂(x, θ0)‖
]

= O(h−d) sup
x

max
l
|m̃l(x, θ0, ĝ)− m̃l(x, θ0, g0)|

≤ O(h−d) max
i,l
|ml(Xi, θ0, ĝ)−ml(Xi, θ0, g0)|

= op{n−1/2h−3d/2 log(n)}.

Therefore,

sup
x
‖n−1

∑

i

Q̂
(2)
i (x, θ0)‖ ≤ hd sup

i
max
i
‖Q̂(2)

i (x, θ0)‖ = op{(nhd)−1/2 log(n)}.

Finally,

sup
x
‖n−1

∑

i

Q̂
(2)
i (x, θ0)Q̂

(2)T
i (x, θ0)‖ ≤ hd sup

x
max
i
‖Q̂(2)

i (x, θ0)‖2 = op{n−1h−2d log2(n)}.

Lemma 6.2 Under assumptions (A.1)-(A.6) and (B.1)-(B.5), and under H0,

sup
x∈S
‖λ(x)h−d‖ = Op{(nhd)−1/2 log(n)}.
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Proof. Write λ(x) = ρ(x)η(x) where ρ(x) = ‖λ(x)‖ and η(x) ∈ Rk satisfying ‖η(x)‖ =

1. And define B̂n(x, θ̂) = max1≤i≤n ‖Q̂i(x, θ̂)‖ and Ŝn(x, θ̂) = n−1∑n
i=1 Q̂i(x, θ̂)Q̂

T
i (x, θ̂).

Then, following Owen (1990),

ρ(x) ≤ {1 + ρ(x)B̂n(x, θ̂)}ηT (x) ˆ̄Q(x, θ̂)

ηT (x)Ŝn(x, θ̂)η(x)
. (6.1)

We want to show first that

sup
x∈S

B̂n(x, θ̂) = op(n
1/2h−d/2/ log(n)), (6.2)

sup
x∈S
‖hdŜn(x, θ̂)− V (x)‖ = Op{(nhd)−1/2 log(n)}. (6.3)

Let Q̂
(1)
i (x, θ̂) = Q̂i(x, θ̂) + Q̂

(2)
i (x, θ̂). From (2.2),

Q̂
(1)
i (x, θ̂) =

(
Kh1(x−Xi)(Yi1 − m̃1(x, θ̂, g0)), . . . , Khk(x−Xi)(Yik − m̃k(x, θ̂, g0))

)T
.

(6.4)

Furthermore for s, t = 1, 2, let

B̂(s)
n (x, θ̂) = max

1≤i≤n
‖Q̂(s)

i (x, θ̂)‖,

Ŝ(st)
n (x, θ̂) = n−1

n∑

i=1

Q̂
(s)
i (x, θ̂)Q̂

(t)T
i (x, θ̂)

ˆ̄Q(s)(x, θ̂) = n−1
n∑

i=1

Q̂
(s)
i (x, θ̂).

Then, B̂n(x, θ̂) ≤ B̂(1)
n (x, θ̂) + B̂(2)

n (x, θ̂) and Ŝn(x, θ̂) =
∑2
s,t=1(−1)s+tŜ(st)

n (x, θ̂).

To obtain (6.2), first note that

sup
x∈S

B̂n(x, θ̂) = sup
x∈S

B̂n(x, θ0) +Op(n
−1/2h−d). (6.5)

This is because by conditions (A.5) and (A.6) and the boundedness of K,

sup
x

max
i
‖Q̂i(x, θ̂)− Q̂i(x, θ0)‖ ≤ Op(n

−1/2) sup
x

max
i

√√√√
k∑

l=1

K2
hl

(x−Xi) (6.6)

= Op(n
−1/2h−d).

Next, note that

hd‖Q̂(1)
i (x, θ̂)‖ =

[ k∑

l=1

β−2d
l K2

(
x−Xi

hl

)
{εil − [m̃l(x, θ̂, g0)−ml(Xi, θ0, g0)]}2

]1/2

≤ 2c−d0

[ k∑

l=1

K2
(
x−Xi

hl

)
{ε2il + o(1)}

]1/2

.
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Since each component of εi has finite conditional second moments, we have uniformly in

x ∈ S,

n−1
∑

i

‖Q̂(1)
i (x, θ̂)‖ = Op(1), (6.7)

and similarly for Q̂
(2)
i (x, θ̂).

Let’s show now that

sup
x∈S

hd‖Ŝn(x, θ̂)− Ŝn(x, θ0)‖ = Op(n
−1/2), (6.8)

sup
x∈S
‖ ˆ̄Q(x, θ̂)− ˆ̄Q(x, θ0)‖ = Op(n

−1/2). (6.9)

We will prove (6.8), the proof of (6.9) being similar if not easier.

‖Ŝn(x, θ̂)− Ŝn(x, θ0)‖
≤ n−1

∑

i

[‖Q̂i(x, θ̂)‖ ‖Q̂i(x, θ̂)− Q̂i(x, θ0)‖+ ‖Q̂i(x, θ̂)− Q̂i(x, θ0)‖ ‖Q̂i(x, θ0)‖]

= Op(n
−1/2h−d),

uniformly in x, which follows from (6.6) and (6.7).

It can be shown that by following the argument of Owen (1990),

sup
x∈S

B̂(1)
n (x, θ0) = op(n

1/2h−d/2/ log(n)). (6.10)

Assumption (B.1b) implies that supx∈S B̂
(2)
n (x, θ0) = op(n

1/2h−d/2/ log(n)). This to-

gether with (6.5) and (6.10) leads to (6.2).

To prove (6.3), one can show that

sup
x∈S
‖hdŜ(11)

n (x, θ0)− V (x)‖ = Op{(nhd)−1/2 log(n)}. (6.11)

Condition (B.1a) implies that

sup
x∈S
‖hdŜ(22)

n (x, θ0)‖ = Op((nh
d)−1/2 log(n)), (6.12)

while

sup
x∈S
‖hdŜ(12)

n (x, θ0)‖

≤ sup
x

[
max
i
‖hdQ̂(2)

i (x, θ0)‖ n−1
∑

i

‖Q̂(1)
i (x, θ0)‖

]

= Op{(nhd)−1/2 log(n)} (6.13)
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and similarly for Ŝ(21)
n (x, θ0). Combining (6.8), (6.11) - (6.13), (6.3) is derived.

From Condition (B.1c) and (6.9),

sup
x∈S
‖ ˆ̄Q(x, θ̂)‖ = sup

x∈S
‖ ˆ̄Q(1)(x, θ0)‖+ op{(nhd)−1/2 log(n)} = Op{(nhd)−1/2 log(n)}, (6.14)

since

ˆ̄
Q

(1)
l (x, θ0) = (nhdl )

−1
∑

i

K
(x−Xi

hl

)
(Yil − m̃l(x, θ0, g0))

= (nhdl )
−1
∑

i

K
(x−Xi

hl

)
εil

= O((nhd)−1/2 log(n)),

uniformly in x. This and (6.2) imply that

sup
x∈S

hd‖λ(x)‖B̂n(x, θ̂) |ηT (x) ˆ̄Q(x, θ̂)| = op{sup
x∈S
‖λ(x)‖}. (6.15)

By condition (A.4),

inf
x∈S

ηT (x)V (x)η(x) ≥ inf
x∈S

ξ1(x) ≥ c2 > 0. (6.16)

Hence, returning to (6.1) and using (6.3), (6.14)-(6.16), we have

sup
x∈S
‖λ(x)‖ = Op{n−1/2hd/2 log(n)}.

Hence, this completes the proof.

The following lemma gives a one-step expansion for λ(x).

Lemma 6.3 Under assumptions (A.1)-(A.6) and (B.1)-(B.5), and under H0,

λ(x)h−d = (hdŜn(x, θ̂))−1 ˆ̄Q(x, θ̂) +Op{(nhd)−1 log3(n)}
= V −1(x) ˆ̄Q(x, θ̂) +Op{(nhd)−1 log3(n)}, (6.17)

uniformly with respect to x ∈ S.

Proof. As Lemma 6.2 implies that supx∈S maxi |λT (x)Q̂i(x, θ̂)| = op(1), we can safely

expand (2.4) to
ˆ̄Q(x, θ̂)− Ŝn(x, θ̂)λ(x) + Ân(x) = 0, (6.18)
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where Ân(x) = n−1∑n
i=1

{λT (x)Q̂i(x,θ̂)}2Q̂i(x,θ̂)
{1+ξT (x)Q̂i(x,θ̂)}3

for some ξ(x) = (ξl(x))kl=1, with each ξl(x)

between 0 and λl(x) (1 ≤ l ≤ k). As

‖Ân(x)‖ ≤ ‖λ(x)h−d‖2n−1
n∑

i=1

h2d‖Q̂i(x, θ̂)‖2Q̂i(x, θ̂)

|1 + ξT (x)Q̂i(x, θ̂)|3
= Op{(nhd)−1 log3(n)}, (6.19)

(6.17) is reached by inverting (6.18) while using (6.3).

We next derive an expansion of the EL ratio statistic.

Lemma 6.4 Under assumptions (A.1)-(A.6) and (B.1)-(B.5), and under H0,

`{m̃(x, θ̂, ĝ)} = nhd ˆ̄QT (x, θ̂)V −1(x) ˆ̄Q(x, θ̂) + q̂n(x, θ̂) + op(h
d/2),

uniformly with respect to x ∈ S, where

q̂n(x, θ̂) = nhd ˆ̄QT (x, θ̂){(hdŜn(x, θ̂))−1 − V −1(x)} ˆ̄Q(x, θ̂) + 2
3
nhdD̂n(x).

Proof. From (2.3) and a Taylor expansion,

`{m̃(x, θ̂, ĝ)} = 2
n∑

i=1

log{1 + λT (x)Q̂i(x, θ̂)}

= 2nλT (x) ˆ̄Q(x, θ̂)− nλT (x)Ŝn(x, θ̂)λ(x) + 2
3
nhdD̂n(x), (6.20)

where

D̂n(x) = (nhd)−1
n∑

i=1

{λT (x)Q̂i(x, θ̂)}3

{1 + η(x)λT (x)Q̂i(x, θ̂)}3

for some |η(x)| ≤ 1.

Now, substitute (6.17) into (6.20),

`{m̃(x, θ̂, ĝ)} = n ˆ̄QT (x, θ̂)Ŝ−1
n (x, θ̂) ˆ̄Q(x, θ̂) + 2

3
nhdD̂n(x)− nÂTn (x)Ŝ−1

n (x, θ̂)Ân(x).

= nhd ˆ̄QT (x, θ̂)V −1(x) ˆ̄Q(x, θ̂) + q̂n(x, θ̂) +Op{(nhd)−1 log4(n)},

where the last equality follows from (6.3) and (6.19). Hence the claim of the lemma is

reached, since Op{(nhd)−1 log4(n)} = op(h
d/2).
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Applying Lemma 6.4 and (6.9), the EL test statistic can be written as

Λn(~h) = nhd
∫

ˆ̄QT (x, θ̂)V −1(x) ˆ̄Q(x, θ̂)π(x)dx+Rn1 + op(h
d/2)

= nhd
∫

ˆ̄QT (x, θ0)V −1(x) ˆ̄Q(x, θ0)π(x)dx +Rn1 +Rn2 + op(h
d/2), (6.21)

where

Rn1 =
∫
q̂n(x, θ̂)π(x)dx and

Rn2 = 2nhd
∫

ˆ̄QT (x, θ0)V −1(x){ ˆ̄Q(x, θ̂)− ˆ̄Q(x, θ0)}π(x)dx

+nhd
∫
{ ˆ̄Q(x, θ̂)− ˆ̄Q(x, θ0)}TV −1(x){ ˆ̄Q(x, θ̂)− ˆ̄Q(x, θ0)}π(x)dx.

Let us consider the orders of Rn1 and Rn2. From (6.20), Rn1 = Rn11 +Rn12, where

Rn11 = nhd
∫

ˆ̄QT (x, θ̂){(hdŜn(x, θ̂))−1 − V −1(x)} ˆ̄Q(x, θ̂)π(x)dx

Rn12 = 2
3
nhd

∫
D̂n(x)π(x)dx.

Lemma 6.5 Under assumptions (A.1)-(A.6) and (B.1)-(B.5), and under H0, Rn1 =

op(h
d/2).

Proof. To obtain the order for Rn1, we analyze only Rn12 as that for Rn11 is similar and

easier. From the proof of Lemma 6.2 we know that supx∈S maxi |λT (x)Q̂i(x, θ̂)| = op(1).

Hence, it follows from (6.6) that

D̂n(x) = (nhd)−1
n∑

i=1

{λT (x)Q̂
(1)
i (x, θ0) + λT (x)Q̂

(2)
i (x, θ0)}3{1 + op(1)}

= (nhd)−1
n∑

i=1

3∑

j=0

Cj{λT (x)Q̂
(1)
i (x, θ0)}3−j{λT (x)Q̂

(2)
i (x, θ0)}j{1 + op(1)}

=:
3∑

j=0

D̂nj(x){1 + op(1)}

where C0 = C3 = 1 and C1 = C2 = 3. We will evaluate each of D̂nj(x).

Starting from D̂n3(x), we note that

|D̂n3(x)| ≤ ‖λ(x)h−d‖3(nhd)−1
n∑

i=1

‖hdQ̂(2)
i (x, θ0)‖3

= ‖λ(x)h−d‖3(nhd)−1
n∑

i=1

{ k∑

l=1

β−2d
l K2

(
x−Xi

hl

)
∆̂2
l (x, θ0)

}3/2
.
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From (B.0) and Lemma 6.2, supx∈S |D̂n3(x)| = op{(nhd)−3 log9/2(n)}, and using exactly

the same argument, combined with (6.7), supx∈S |D̂nj(x)| = op{(nhd)−(3+j)/2 log(6+j)/2(n)}
for j = 1 and 2. Hence,

sup
x∈S
|

3∑

j=1

D̂nj(x)| = op{(nhd)−2 log4(n)},

which means that

nhd
∫ 3∑

j=1

D̂nj(x)π(x)dx = op{(nhd)−1 log4(n)} = op(h
d/2).

It remains to work on

D̂n0(x) = (nhd)−1
n∑

i=1

{λT (x)Q̂
(1)
i (x, θ0)}3

= (nhd)−1
n∑

i=1

{hdQ̂(1)T
i (x, θ0)V −1(x) ˆ̄Q(1)(x, θ0)}3{1 + op(1)}.

Without loss of generality assume h1 = . . . = hk = h. Recall that

V −1(x) = f−1(x) (γlj(x))k×k (6.22)

and let

φi1,...,i4(x) =
k∑

l1,...,l6=1

K3
(
x−Xi1

h

)
K
(
x−Xi2

h

)
K
(
x−Xi3

h

)
K
(
x−Xi4

h

)
f−3(x)

×γl1l2(x)γl3l4(x)γl5l6(x)ε̃i1l1(x)ε̃i1l3(x)ε̃i1l5(x)ε̃i2l2(x)ε̃i3l4(x)ε̃i4l6(x),

where ε̃il(x) = Yil − m̃l(x, θ0, g0). Then,

∫
D̂n0(x)π(x)dx = (nhd)−1

∫ n∑

i=1

{hdQ̂(1)T
i (x, θ0)V −1(x) ˆ̄Q(1)(x, θ0)}3π(x) dx {1 + op(1)}

= (nhd)−4
∫ n∑

i1,...,i4

φi1,...,i4(x)π(x) dx {1 + op(1)}

= (nhd)−4
∫ { n∑

i1=i2=i3=i4

+
∑

a

+
∑

b

+
∑

c

}
φi1,...,i4(x)π(x) dx {1 + op(1)}

=
∫
{In1(x) + In2(x) + In3(x) + In4(x)}π(x) dx {1 + op(1)},

where
∑
a denotes the sum over all terms for which the set {i1, i2, i3, i4} contains two

distinct indices in total,
∑
b for three distinct indices, and

∑
c for all indices different.
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By noting that

n∑

i=1

K
(
x−Xi

h

)
ε̃ij(x) =

n∑

i=1

K
(
x−Xi

h

)
εij,

it can be readily shown that

E{∫ In1(x)π(x)dx} = O{(nhd)−3}, E{∫ In2(xπ(x)dx)} = O{(nhd)−2},
E{∫ In3(x)π(x)dx} = 0, E{∫ In4(x)π(x)dx} = 0 and (6.23)

Var{∫ In1(x)π(x)dx} = O{(nhd)−7}, Var{∫ In2(x)π(x)dx} = O{(nhd)−6},
Var{∫ In3(x)π(x)dx} = O{(nhd)−5}.

Therefore, for j = 1, 2 and 3,
∫
Inj(x)π(x)dx = Op{(nhd)−2}. To finish the analysis, we

are to derive

Var{
∫
In4(x)π(x)dx}

= (nhd)−8
∫ ∫ ∑

{i1,...,i4}∩{j1,...,j4}6=φ
Cov (φi1,...,i4(x), φj1,...,j4(x

′))π(x)π(x′)dxdx′

= (nhd)−8
∫ ∫ ∑

d

Cov (φi1,...,i4(x), φj1,...,j4(x
′))π(x)π(x′)dxdx′,

where φ is the empty set and
∑
d is the sum over all the cases where there are four

distinct pairs formed between a il and a jm. Note that all {i1, . . . i4} and {j1, . . . , j4}
are respectively all different among themselves due to the definition of In4(x). As εi has

bounded sixth conditional moments, it is readily seen that

Var{
∫
In4(x)π(x)dx} = O{(nhd)−4},

which together with (6.23) leads to

∫
In4(x)π(x)dx = Op{(nhd)−2}.

In summary of these results, we have Rn12 = 2
3
nhd

∫
D̂n(x)π(x)dx = Op{(nhd)−1} =

op(h
d/2).

Lemma 6.6 Under assumptions (A.1)-(A.6) and (B.1)-(B.5), and under H0, Rn2 =

op(h
d/2).
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Proof. Note that

Rn2 = 2nhd
∫

ˆ̄QT (x, θ0)V −1(x){ ˆ̄Q(x, θ̂)− ˆ̄Q(x, θ0)}π(x)dx

+nhd
∫
{ ˆ̄Q(x, θ̂)− ˆ̄Q(x, θ0)}TV −1(x){ ˆ̄Q(x, θ̂)− ˆ̄Q(x, θ0)}π(x)dx

=: 2Rn21 +Rn22.

We will only show the case for Rn21, as that for Rn22 is similar if not easier.

Without loss of generality, we assume h1 = . . . = hk = h in order to simplify notation.

From a Taylor expansion and (B.2) and (B.3),

m̃(x, θ0, ĝ)− m̃(x, θ̂, ĝ) = −∂m̃(x, θ0, ĝ)

∂θT
(θ̂ − θ0) + op(n

−1/2)

= −∂m̃(x, θ0, g0)

∂θT
(θ̂ − θ0) + op(n

−1/2),

uniformly with respect to all x. This leads to

ˆ̄Q(x, θ̂)− ˆ̄Q(x, θ0) = n−1
n∑

i=1

Kh(x−Xi){m̃(x, θ0, ĝ)− m̃(x, θ̂, ĝ)}

= −n−1
n∑

i=1

Kh(x−Xi)
∂m̃(x, θ0, g0)

∂θT
(θ̂ − θ0){1 + op(1)}

= −n−1
n∑

i=1

Kh(x−Xi)
∂m(Xi, θ0, g0)

∂θT
(θ̂ − θ0){1 + op(1)}.

Hence,

Rn21 = Tn(θ̂ − θ0){1 + op(1)}, (6.24)

where

Tn = −n−1h−d
∑

i,j

∫
K
(
x−Xi

h

)
K
(
x−Xj

h

)
{ε̃i(x)− ∆̂(x, θ0)}T

×V −1(x)
∂m(Xj , θ0, g0)

∂θT
π(x)dx

= n−1
∑

i,j

K(2)
(
Xi −Xj

h

)
{εi − ∆̂(x, θ0)}TV −1(Xi)

∂m(Xi, θ0, g0)

∂θT
π(Xi){1 + op(1)}

= R(K)n−1
n∑

i=1

{εi − ∆̂(x, θ0)}TV −1(Xi)
∂m(Xi, θ0, g0)

∂θT
π(Xi){1 + op(1)}

+n−1
∑

i6=j
K(2)

(
Xi −Xj

h

)
{εi − ∆̂(x, θ0)}TV −1(Xi)

∂m(Xi, θ0, g0)

∂θT
π(Xi){1 + op(1)}

=: {Tn1 + Tn2}{1 + op(1)},

27



where ε̃i(x) = Yi − m̃(x, θ0, g0),

Tn1 = R(K)n−1
n∑

i=1

εTi V
−1(Xi)

∂m(Xi, θ0, g0)

∂θT
π(Xi)

−R(K)n−1
n∑

i=1

{∆̂(x, θ0)}TV −1(Xi)
∂m(Xi, θ0, g0)

∂θT
π(Xi)

=: Tn11 − Tn12

and

Tn2 = n−1
∑

i6=j
K(2)

(
Xi −Xj

h

)
εTi V

−1(Xi)
∂m(Xi, θ0, g0)

∂θT
π(Xi)

−n−1
∑

i6=j
K(2)

(
Xi −Xj

h

)
{∆̂(x, θ0)}TV −1(Xi)

∂m(Xi, θ0, g0)

∂θT
π(Xi)

=: Tn21 − Tn22.

Condition (A.3), (A.4) and the boundedness of π give that Tn11 = Op(1). At the same

time (B.1) implies that Tn12 = op{(nhd)−1/2 log(n)} = op(1) as E‖V −1(Xi)
∂m(Xi,θ0,g0)

∂θT
‖ < C. Thus,

Tn1 = Op(1). (6.25)

Next, note that E(Tn21) = 0 and

Var(Tn21)

= n−2
∑

i6=j
Var

{
K(2)

(
Xi −Xj

h

)
εTi V

−1(Xi)
∂m(Xi, θ0, g0)

∂θT
π(Xi)

}

+ n−2
∑

i6=j1 6=j2
Cov

{
K(2)

(
Xi −Xj1

h

)
εTi V

−1(Xi)
∂m(Xi, θ0, g0)

∂θT
π(Xi),

K(2)
(
Xi −Xj2

h

)
εTi V

−1(Xi)
∂m(Xi, θ0, g0)

∂θT
π(Xi)

}

≤ sup
x
|π(x)|2{hdK(4)(0) +O(nh2d)}E{εTi V −1(Xi)

∂m(Xi, θ0, g0)

∂θT

×∂m
T (Xi, θ0, g0)

∂θ
V −1(Xi)εi}{1 +O(h2)}

= O(nh2d).

Hence,

Tn21 = Op(n
1/2hd). (6.26)

28



Finally, consider Tn22.

‖Tn22‖ ≤ sup
x
‖∆̂(x, θ0)‖n−1

∑

i6=j

∣∣∣∣K
(2)
(
Xi −Xj

h

)∣∣∣∣ ‖V −1(Xi)
∂m(Xi, θ0, g0)

∂θT
‖ sup

x
|π(x)|.

By repeating the above variance derivation of Tn21, we have from (B.1) that

Tn22 = op{(nhd)1/2}, (6.27)

since by condition (B.4), E(Tn22) = o{(nhd)1/2}. Combining (6.25), (6.26) and (6.27), we

arrive at Tn = op{(nhd)1/2}+Op(1). Substituting this into (6.24), we have Rn21 = op(h
d/2).

Lemma 6.7 Under assumptions (A.1)-(A.6) and (B.1)-(B.5), and under H0,

Λn(~h) = Λn1(~h) + op(h
d/2), (6.28)

where Λn1(~h) = nhd
∫ ˆ̄Q(1)T (x, θ0)V −1(x) ˆ̄Q(1)(x, θ0)π(x)dx.

Proof. Lemma 6.5 and (6.21) lead to

Λn(~h) = Λn1(~h) + 2nhd
∫

ˆ̄Q(1)T (x, θ0)V −1(x) ˆ̄Q(2)(x, θ0)π(x)dx

+nhd
∫

ˆ̄Q(2)T (x, θ0)V −1(x) ˆ̄Q(2)(x, θ0)π(x)dx+ o(hd/2).

Applying the same analysis to the term D̂n3(x) in the proof of Lemma 6.5, we have

nhd
∫

ˆ̄Q(2)T (x, θ0)V −1(x) ˆ̄Q(2)(x, θ0)π(x)dx = op{(nhd)−1 log2(n)} = op(h
d/2).

It remains to check the order of Λn2(~h) = nhd
∫ ˆ̄Q(1)T (x, θ0)V −1(x) ˆ̄Q(2)(x, θ0)π(x)dx.

Applying the same style of derivation as for D̂n1(x), it can be shown that Λn2(~h) =

op(h
d/2). This finishes the proof.

Proof of Theorem 3.1. Recalling (6.22),

Λn1(~h) = n−1hd
n∑

i,j

k∑

l,t

ε̃il(x)ε̃jt(x)
∫
Khl(x−Xi)Kht(x−Xj)γlt(x)f−1(x)π(x)dx,

where ε̃il(x) = Yil − m̃l(x, θ0, g0). Let K(2)(βl, βt, u) = β−dt
∫
K(z)K

(
βlz
βt

+ u
)
dz, which is

a generalization of the standard convolution of K to accommodate different bandwidths
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and is symmetric with respect to βl and βt . By a change of variable and noticing that

K is a compact kernel supported on [−1, 1]d,

Λn1(~h) = Λn11(~h){1 +Op(h
2)},

where

Λn11(~h) = n−1
n∑

i,j

k∑

l,t

εilεjtK
(2)
(
βl, βt,

Xi −Xj

ht

)√√√√π(Xi)π(Xj)γlt(Xi)γlt(Xj)

f(Xi)f(Xj)

= n−1
n∑

i6=j

k∑

l,t

εilεjtK
(2)
(
βl, βt,

Xi −Xj

ht

)√√√√π(Xi)π(Xj)γlt(Xi)γlt(Xj)

f(Xi)f(Xj)

+ n−1
n∑

i=1

k∑

l,t

εilεitβ
−d
t R (βl/βt)

π(Xi)γlt(Xi)

f(Xi)

=: Λn111(~h) + Λn112(~h). (6.29)

It is straightforward to show that

Λn112(~h) = k + op(h
d/2).

Thus, it contributes only to the mean of the test statistic. As Λn111(~h) is a degenerate

U -statistic with kernel depending on n, straightforward but lengthy calculations lead to

h−d/2Λn111(~h)
d→ N(0, σ2(K,Σ))

The establishment of the above asymptotic normality can be achieved by either the ap-

proach of martingale central limit theorem (Hall and Heyde, 1980) as demonstrated in

Hall (1984) or the approach of the generalized quadratic forms (de Jong, 1987) as demon-

strated in Härdle and Mammen (1993). Note that (nhd)−1 log4(n) = o(hd/2). Applying

Slutsky’s Theorem leads to the result.

Proof of Theorem 3.2. It can be checked that given the original sample χn =

{(Xi, Yi)}ni=1, versions of assumptions (B.1)-(B.5) are true for the bootstrap resample.

And hence, Lemmas 6.2-6.7 are valid for the resample given χn. In particular, let
ˆ̄Q∗(x, θ̂) be the bootstrap version of ˆ̄Q(x, θ0), let V̂ (x) = f̂(x)

(
β−dj R(βl/βj)σ̂lj(x)

)
k×k

,

where σ̂lj(x) = f̂−1(x)n−1 ∑n
i=1 Kh(x − Xi)ε̂il ε̂ij, f̂(x) = n−1∑

iKh(x − Xi), and let

(γ̂lj(x))k×k = f̂(x)V̂ −1(x). Then, conditional on χn,

`∗{m̃(x, θ̂∗, ĝ∗)} = nhd ˆ̄Q∗T (x, θ̂)V̂ −1(x) ˆ̄Q
∗
(x, θ̂) + op(h

d/2)
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and Λ∗n(~h) = Λ∗n11(~h) + op(h
d/2), where

Λ∗n11(~h) = n−1
n∑

i,j

k∑

l,t

ε∗ilε
∗
jtK

(2)
(
βl, βt,

Xi −Xj

ht

)√√√√π(Xi)π(Xj)γ̂lt(Xi)γ̂lt(Xj)

f̂(Xi)f̂(Xj)
,

which are respectively the bootstrap versions of (6.28) and (6.29).

Then apply the central limit theorem for degenerate U -statistics as in the proof of

Theorem 3.1, conditional on χn,

h−d/2 (Λ∗n11 − k)
d→ N(0, σ2(K, Σ̂)),

where σ2(K, Σ̂) is σ2(K,Σ) with Σ(x) replaced by Σ̂(x) = (σ̂lj(x))k×k. This implies that

h−d/2 (Λ∗n − k)
d→ N(0, σ2(K, Σ̂)). (6.30)

Let Ẑ
d
= N(0, σ2(K, Σ̂)) and Z

d
= N(0, σ2(K,Σ)), and ẑα and zα be the upper-α quantiles

ofN(0, σ2(K, Σ̂)) and N(0, σ2(K,Σ)) respectively. Recall that q̂nα and qnα are respectively

the upper-α quantile of

h−d/2 (Λ∗n − k) given χn and h−d/2 (Λn − k) .

As (6.30) implies that

1− α = P
(
h−d/2 (Λ∗n − k) < q̂nα|χn

)
= P

(
Ẑ < q̂nα

)
+ o(1),

it follows that q̂nα = ẑα +o(1) conditionally on χn. A similar argument by using Theorem

3.1 leads to qnα = zα + o(1). As Σ̂(x)
p→ Σ(x) uniformly in x ∈ S, then σ2(K, Σ̂)

p→
σ2(K,Σ), and hence ẑα = zα + o(1). Therefore, q̂nα = qnα + o(1) and this completes the

proof.

Proof of Theorem 3.3. It can be shown that Lemmas 6.2-6.7 continue to hold true

when we work under the local alternative H1n. In particular, (6.28) is still valid. By using

a derivation that resembles very much that for obtaining (6.29), we have

Λn(~h) = {Λn11(~h) + Λa
n112(~h) + Λa

n113(~h)}{1 +Op(h
2)}+ op(h

d/2)

where Λn11(~h) is defined in (6.29),

Λa
n112(~h) = n−1hdcn

k∑

l,t

∫ n∑

i,j

Khl(x−Xi)Kht(x−Xj)γlt(x)π(x)f−1(x)

×{εjtΓnl(Xi) + εilΓnt(Xj)}dx
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and

Λa
n113(~h) = n−1hdc2

n

k∑

l,t

∫ n∑

i,j

Khl(x−Xi)Kht(x−Xj)γlt(x)Γnl(Xi)Γnt(Xj)π(x)f−1(x)dx.

It can be shown that E{Λa
n112(~h)} = 0 and that

E{Λa
n113(~h)} = (n− 1)hdc2

n

∫
ΓTn (x)V −1(x)Γn(x)f 2(x)π(x)dx

+ c2
nβ
−d
l

∫ k∑

l,t

R(βl/βt)Γnl(x)γlt(x)Γnt(x)π(x)dx{1 +O(h2)}

= nhdc2
n

∫
ΓTn (x)V −1(x)Γn(x)f 2(x)π(x)dx +O(c2

n + nhd+2c2
n)

= hd/2β(f,K,Σ,Γ) +O(c2
n + nhd+2c2

n) + o(hd/2). (6.31)

It is fairly easy to see that Λa
n112(~h) = op(h

d/2) and

Λa
n113(~h) = hd/2β(f,K,Σ,Γ) + op(h

d/2).

From Lemma 6.7,

h−d/2[Λn11(~h)− k}] d→ N(0, σ2(K,Σ)). (6.32)

The theorem now follows after combining these results.
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