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Abstract
Given an i.i.d sample (Y;, Z;), taking values in R? x R, consider the quantities
Zl' —Zz
Winlgshs2) i—f 1/22[ < ey(2),0(%0) > +dy(2)) K (2 2)
Zi —z
—E( (< ¢(2),9(%7) > +dg<z>)K( —1)|. (0.1)

where, z belongs to a compact set H C R%, fz is the density of Z;, K is a kernel,
h > 0 a bandwidth, g a Borel function on R? and ¢,(-),d,(-) are continuous functions
on R?. Given two bandwidth sequences h,, < b, fulfilling mild conditions, we prove
that, for an explicit constant €(G, K), we have almost surely:
lim sup AWalg 2| g i), (0.2)
=00 LcH, geG, hn<h<h, \/2nh?log(h—%)
under mild conditions on the density fz, the class G, the kernel K and the func-
tions c4(-),dg(-). We apply this result to the context of empirical likelihood, where
regression parameters are estimated with a smoothed version of empirical likelihood,
involving a kernel K and a bandwidth h. Namely, we prove that smoothed empir-
ical likelihood can be used to build confidence intervals for conditional probabilities

P(Y € C | Z = 2), that hold uniformly in = € H, C € C, h € [hy,by]. Here Cis a
Vapnik-Chervonenkis class of sets.

Keywords: Local empirical processes, empirical likelihood, kernel smoothing, uni-
form in bandwidth consistency.

1 Introduction and statement of the main results

Consider an i.i.d sample (Y;, Z;)i=1,... n taking values in R? x R?, with the same distribution
as a vector (Y,Z7), and write < -,- > for the usual inner product. In this paper, we
investigate the limit behaviour of quantities of the following form (assuming that this
expression is meaningfull):

Zi_z) (1.1)

Wi(g, h,z) :==fz(z 1/22 [ < cg(2),9(Yi) > —l—dg(z))K( -

_ E(( < cg(2),9(Yy) > +dg(z))K<Zih_ 2))]
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Here, K denotes a kernel, h > 0 is a smoothing parameter, g is a Borel function from RY
to R¥ and fy is (a version) of the density of Z. Given a class of functions G satisfying some
Vapnik-Chervonenkis type conditions (see conditions (HG1) below), and given a compact
set H, Einmahl and Mason [5] showed that somewhat recent tools in empirical processes
theory could be used efficiently to provide exact rates of convergence of

sup{ | Wi(g,hn,2) |, g €G, zeH},

along a bandwidth sequence h,, fulfilling some mild conditions (see condition (HV) in the
sequel). The exact content of their result is written in Theorem 1 below. The contribution
of the present paper is twofold. As a first contribution, we provide an extension of the
result of Einmahl and Mason, by enriching Theorem 1 with a uniformity in the bandwidth
h, when h is allowed to vary into an interval [h,, b,], with h,, and b, fulfilling conditions of
Theorem 1. This extension is stated in Section 1.2 (Theorem 2), and is proved in Section
2. As a second contribution (Theorem 3), we apply our Theorem 2 to establish confidence
intervals for quantities of the form

P(YeC\Z:z),Cec,zeH,

by empirical likelihood techniques. Indeed, we prove that these confidence intervals can be
built to hold uniformly in z € H, C € C and h € [hy, b,], under conditions that are very
similar to those of Theorem 2. This result is stated in Section 1.3 and is proved in Section
3.

1.1 A result of Einmahl and Mason

As our first result is an extension of Theorem 1 in [5] we have to first introduce the
notations and assumptions they made in their article. Consider a compact set H C R?
with nonempty interior. We shall make the following assumption on the law of (Y, Z).

(Hf) (Y,Z) has a density fyz that is continuous in z on R x O, where O’ C R?
is open and where H C O’.
Moreover fy is continuous and bounded away from zero and infinity on O’.

From now on, O will denote an open set fulfilling H C O C O'. Now consider a class G of
functions from RY to R*. Forl =1,...,k, write G, := I5;(G), where Ij(z1, ..., @y, . .., &) :=
xy for (z1,...,21) € RF,

(HG) Each class G is a pointwise separable VC subgraph class and has a finite valued
measurable envelope function G satisfying, for some p € (2, o]

o =maxi=1,..k SUP.co || Gi() ll2y ,..p< 00,

where || Gi() ||y ,_.p is le LP-norm of G; under the distribution of Y|Z = z. For a
definition of a pointwise separable VC subgraph class we refer to [11] (p. 110 and 141). Now,
for any g € G, consider a pair of functions (c4(-), dy(-)), where ¢4 maps R? to R* and dgy maps
R9 to R, and assume that the classes of functions Dy := {cy, g € G} and Dy := {d,, g € G}
are uniformly bounded and uniformly equicontinuous on O. We call this assumption (HC).
We now formulate our assumptions on the Kernel K, with the following definition.

K= {K(A-—z), x>0, zeRd}. (1.2)



(HK1) K has bounded variation and the class K is VC subgraph
(HK2) K(s) =0 when s ¢ [-1/2,1/2]¢,
(HK3) [ K(s)ds=1.

Rd

Note that (HK1) is fulfilled for a quite large class of kernels (see, e.g., Mason [8|, Example
F.1). In [5], Einmahl and Mason have studied the almost sure asymptotic behaviour of

sup { | Wn(g.hn,2) |, g€ G, z€ H}

(recall (0.1)), along a bandwidth sequence (hy)n>1 that satisfies the following conditions
(here we write logy n :=loglog(n V 3)). :

(HV) hn J, 0, nhnd T o0, log(l/hn)/log2n — 00, hg(n/ log(l/hn))172/p — o0,

where p is as in condition (HG). We also set

A%(g, z) ::E(( < cg(2),9(Y) > +dg(z))2‘Z = z), zeR? geg, (1.3)
A%(g) = sup A*(g,2), g€G (1.4)
A?(G) :=sup A%(g). (1.5)

geg

Given a measurable space (x,7 ), a measure () and a Borel function ¢ : y — R, we write

||w|g,p=/|w|dcz. (16)
X

Under the above mentioned assumptions, Einmahl and Mason have proved the following
theorem, A denoting the Lebesgue measure.

Theorem 1 (Einmahl, Mason, 2000) Under assumptions (HG), (HC), (Hf), (HK1)—
(HK3) and (HV), we have almost surely
: Wa(g, hn, 2
T sup @Al (L7)
€M, 9€G .\ [onhd log(hy )

We point out that (1.7) is slightly stronger than Theorem 1 of Einmahl and Mason [5],
as fz(z)~/? appears in our definition of W, (g, h, z) which is not the case in their paper.

However, (1.7) is a consequence of their Theorem 1, as f, 1/2 i uniformly continuous on
H, by (Hf).

1.2 An extension of Theorem 1

Our first result states that Theorem 1 can be enriched by an additional uniformity in
hn, < h < b, in the supremum appearing in (1.7), provided that (h,),>1 and (by)n>1
do fulfill assumption (HV'). We also refer to Einmahl and Mason [6], where the authors
provided some consistency results for kernel type function estimators that hold uniformly
in the bandwidth (see also [12] for an improvement in the case of kernel density estimation).

Theorem 2 Assume that (HG), (Hf), (HC) and (HK1) — (HK3) are satisfied. Let
(hn)n>1 and (hn)n>1 be two sequences of constants fulfilling (HV') as well as 2hy, < bj.
Then we have almost surely

Wy (g, h,
lim sup [ Walg,h,2) | = A(G) || K ||rz - (1.8)

N0 LeH, geg, hn<h<b, \/2nh%log(h=4)




The proof of Theorem 2 is provided in Section 2.

Remark 1.1 Einmahl and Mason [6] have proved a result strong enough to derive that,
under weaker conditions than those of Theorem 2, we have almost surely

1/2 h
limsup sup fz2(2) /" Wa(g, h, 2)

n—oo  zeH, geg, \/nhdlog(1/h) + loglogn
he[£leEn 1)

(1.9)

However, the finite constant appearing on the right hand side of (1.9) is not explicit in their
result. The main advantage of Theorem 2 is that the right hand side of (1.9) is explicit, by
paying the price of making stronger assumptions.

Remark 1.2 As Theorem 2 is an extension of Theorem 1 of Einmahl and Mason, all the
corollaries of Theorem 1 (see [6]) can be enriched with a uniformity in the bandwidth.

1.3 Confidence bands by empirical likelihood

Empirical likelihood methods in statistical inference hav been introduced by Owen (see
[10]). This nonparametric technique has suscitated much interest for several practical rea-
sons, the most important one being that it directly provides confidence intervals without
requiring further approximation methods, such as the estimation of dispersion parameters.
Moreover, empirical likelihood is a very versatile tool which can be adapted in many dif-
ferent fields, for instance in estimation of densities or conditional expectations by kernel
smoothing methods. The idea can be summarised as follows : consider an independent,
identically distributed sample (Y;, Z;)1<i<p taking values in RY xRY. Given h > 0, z € H,
a function g from R? to R¥ and a (kernel) real function K, define the following centring
parameter, which plays the role of a deterministic approximation of E(g(Y) | Z = z) :

E(Q(Y)K(th)>
Z—z '
E(K( - ))
This quantity is the root of the following equation in 6:

E(K(Z;Z>(9(Y)—0>> —0, (1.11)

which naturally leads to the following formula for a confidence interval (around m(g, h, 2))
by empirical likelihood methods (for more details see, e.g., Owen [10], chapter 5) :

m(g, h,z) := (1.10)

In(g,h,z,c) :=={0 € R, Ry(0,9,h,z) > c}, (1.12)
where ¢ € (0,1) is a given critical value that has to be chosen in practice, and where

n n L n
Rn(0, g, h, z) 1= max { [ »»:, ZpiK(Zlh Z) (9(¥;) = 0) =0, p; >0, > pi= 1}.
=1 =1 i=1

(1.13)
It is known (see, e.g., [10], chapter 5) that, for fixed z € R? and fixed g, we can expect

m(g,h, z) € I(g, h, z,¢) (1.14)

to hold with probability equal to P(x? < —2log ¢), ultimately as n — oo, h — 0, nh? — oo
(see e.g., Owen, chapter 5). A natural arising question is:



e Can we expect (1.14) to hold uniformly in z,¢ and h?
e In that case, how much uniformity can we get?

Uniformity in g and z would allow to construct asymptotic confidence bands (instead of
simple confidence intervals), while a uniformity in A would allow more flexibility in the
practical choice of that smoothing parameter. Our Theorem 2 provides a tool strong
enough to give some positive answers to these questions. Let us consider the case where
G = {1¢, C € C} for a class of sets C. We will make an abuse of notation, by identifying C
and G, and hence, we shall write m(C, h, z) for m(lo, h, z) and so on. Write the conditional
variances of 1¢(Y') given Z = z as follows :

0*(C,z2)=P(YeC|Z=2)-P(YeC|Z=2z),CeC, z€ H. (1.15)

Our second result shows that we can construct, by empirical likelihood methods (recall
(1.12)), confidence bands around the centring parameters m(C, h, z) with lengths tending
to zero at rate \/202(C, z) log(h=9)/nh? when n — oo and h, < h < h,,. We make the
following assumptions on h,,, b, and C

(HG’) Cis a VC class satisfying Zlglf{ (ljréfc o*(C,z) = 3> 0.
(HV') hy, | 0, nhd 1 oo, log(1/hy,)/logyn — oo, nhd/log(1/h,) — cc.
Note that (HV') is equivalent to (HV') in the specific case where p = oo.
Theorem 3 Under assumptions (Hf), (HK1)-(HK3), (HG’) and (HV’), as well as 2hy, <

bn, we have almost surely:

—logRn (m(c, h,2),C,h, z)

lim sup =1. 1.16
n—o0 e H, CeC, log(h~4) (1.16)
hn<h<bn

The proof of Theorem 3 is provided in Section 3.

Remark 1.3 Theorem 38 shows that, ultimately as n — oo, we have
YC € C, Yz € H, Yh € [hn, b : m(C,h,z) € I,(C, h, z, h%). (1.17)

Hence, taking c = h® when constructing confidence regions as in (1.12) ensures that each
m(C, h, z) belongs to its associated confidence interval I,,(C,h,z,c). Moreover, this choice
of ¢ = h? is, in some sense, the best we can afford without loosing uniformity in C,h and
2z since, for fived € > 0, taking ¢ = h%=¢ would invalidate (1.17).

Remark 1.4 7To calibrate the confidence region in order to obtain a coverage probability of,
say, 1 — «, the weak convergence of the empirical likelihood process is required. This could
be obtained if Theorem 2 was also enriched by a Bickel-Rosenblatt type limit law (refer to
[1] for such a result in univariate kernel density estimation). However obtaining such a
limat law is a real challenge in itself, and is beyond the scope of this paper. We leave that
problem as an open question.

2 Proof of Theorem 2

For ease of notations, we just prove Theorem 2 when £ = 1. A close look at the proof
shows that there is no loss of generality assuming k = 1.



2.1 Truncation

We start our proof of Theorem 2 as Einmahl and Mason did in their proof of Theorem 1.
As the support of K is bounded and as h,, — 0 we have almost surely, for all large n and
forall ze H, g € G, h, < h < by,

Walg,h,2) = 1”[%( )+ () K (25

—E((cgé):;(ﬁ) +dg<z>)K(Zi )] 1)

where Y; := Yilo/(Z;). Hence, we can suppose that Y; = Y;10/(Z;) without changing
the limiting behaviour of the processes we are studying here. Now consider a sequence of
constants (v )n>1 fulfilling

lim inf Tn

R gy~ 22

and consider the truncated expressions, with G denoting a measurable envelope function
of G fulfilling (HG),

War(g,h,2) = 1/ZZ( VL0 + o)) K (Z7)

_ E((cg(z)g(Y;)l{GMK%} + dg(z))K<Zih_ Z)) (2.3)

The following lemma allows us to study these truncated versions of the W, (g, h, z).

Lemma 2.1 Under the assumptions of Theorem 2 and under (2.2) we have almost surely:

)Wnn(gv h’a Z) - Wn(ga h) Z)‘
lim sup =0. (2.4)
n0 geG, z€H, hn<h<by, 2nhdlog(h—)

Proof: A careful reading of the proof of Lemma 1 in Einmahl and Mason [5] shows
that their assertions (2.8) and (2.9) remain true after adding a uniformity in ¢ € G and
hn, < h < b,, which readily implies Lemma 2.1. Note also that Lemma 2.1 is obvious when
(HQ@) is fulfilled with p = co. O

The two next subsections are devoted to proving respectively the outer and inner bounds
of Theorem 2.

2.2 QOuter bounds

Fix € > 0. Our goal in this subsection is to show that, almost surely

n b h’
lim sup sup [ Wal9. 0 2) | o A(G) || K |[ns (1 + 4e). (2.5)
n—oo geG, z€H, hn<h<b, /2nhlog(h—1)

To this aim, we shall first discretise each of the sets H, [hy,b,] and G into properly
chosen finite grids, then we shall control the oscillations between elements of the grids by
a combination of a concentration inequality which is due to Talagrand (see also [9, 2, 7] for
strongly improved versions) and of an upper bound for the first moment of these oscillations
which is due to Einmahl and Mason [5].



2.2.1 Step 1: discretisations

Consider two parameters d; € (0,1), d2 € (0,1) and p € (1,2) that will be chosen small
enough in the sequel, and define the following subsequence

ng := [exp (k‘/log k)}, k>5, N :={ng_1,np-1+1,...,n, — 1} (2.6)
Note that ng/ng—1 — 1 and
loglog ni =logk(1+ o(1)), k — oo. (2.7)
We then construct the following finite grid for each k£ > 1
P Ry, = Brg_ys gt =Py, 1=10,..., Ry — 1, (2.8)

where Ry := [log(bn,_,/hn,)/log(p)] + 1, and [u] denotes the only integer ¢ fulfilling
¢ <u < q+ 1. Denote by | z |g:= max;—1 4 | 2; | the usual maximum norm on R?. Now,
for fixed k£ and 0 < I < Ry, we construct a finite grid My ; C H such that, given z € H,
there exists z € My fulfilling | 2 — z [4< 01hy, ;. Note that one can construct this grid
so as §Mj; < C’((Slhnhl)*d, where C' is a constant that depends only on the volume of H.
Now set v, = 52(nk/log(1/h,‘ik))1/p, for each k > 5, n € Ni. By Lemma 2.1, showing
(2.5) is equivalent to showing that
| W™ (g, h, 2) |

lim sup sup <AWG) || K ||ao (1 + 4e 2.9
n—oo zeH, g€G, hn<h<b, \/2nh%log(h—1) @) 1K [z ( ) (29)

almost surely, for a proper choice of d5 > 0.

2.2.2 Step 2: a discrete version of (2.5)

Given a real function v defined on a set S, we write:
[ [|s:=sup | ¥(s) | . (2.10)
ses
Recall that, since fz is bounded away from 0 on H, we can define
:= inf . 2.11
7= inf f7(2) >0 (2.11)
Also write, for convenience of notations

I cllgxm="sup [cg(2) |, |[dllgxma=sup |dg(z)]. (2.12)
9€G, z€H ge€g, zeH

Our first lemma is a discrete version of (2.9).

Lemma 2.2 For any choice of

0 < b2 < eAG) || K [lxz /(65" || ¢ lxgl| K [Iga), (2.13)

and for any finite collection {g1,...,94} C G, we have

W'I'Ln >hn7
limsup  max | W™ (90 oy 1,2) | <AQ) || K []x2 (1+6). (2.14)

koo nENG IS0 fonyhd, log(1/hd
0<I<Ry, zEMy, k1 g( / nk,l)




Proof: We can assume here that ¢ = 1 with no loss of generality. We rename in this proof
g1 to g. We define, for z€ H, h>0and g € G,

_ _ T—z
Yneeg (0:2) = [2(:) 72 (I oy + e K (7). (215)
and set, for fixed £k > 1 and 0 <[ < Ry,
Gk = {¢nk,hnk,l,z,g, z € Mk,l}- (2.16)
First note that, for each k > 5, 0 <1 < Ry, and z € My, we have, for any g € G,
| g, 12,9 g cga < (1l € g et 11 d [axg )72 || K ||pa
<2 ellaxg v V2| K |lpa da(nphi, /log(1/hg))? (2.17)
€
<z Il K 13,2 AG) (nehl, /og(1/h )2, (2.18)

where (2.17) holds for all large k, uniformly in 0 <1 < Ry, and z € My, according to
assumption (HV'), and where (2.18) holds by (2.13). Moreover we have (recall (HK?2))

Var (¢nk7hnk,l,z,g(Y, Z))

<E(2, 1, 00(V2 7))
(fz< )7 ez >g<Y>+dg<z>)2K(Z_z)2)

hnk,l
1227 1 d Bl K 120 P({GO) 2 30, } 0 {1 Z =2 14 ha/2}) - (219)
=:A; + As.

The first term on the right hand side of (2.19) is equal to

Ay = / E((cg( )9(Y) +dy(z ‘Z-z) ;jg;i[(z(Zh;T)dz
lz—2|a<hn, 1/2 7

It follows, by making use of assumption (HC), that there exists a function r(-) fulfilling
r(u) — 0 as u — 0 and such that

A < A2(g, ) 22 g2 (222 2.2
R B AL G LIRS (220)
lz—2zla<hn, 1/2
hn .
<A*(G)h? K2(u)Mdu(l + (g 1)) (2.21)
fz(2)
[—1/2,1/2]¢
<A*(G) || K |2 byt (1 + ex0), (2.22)
where
fz (Z + Iy lu)
€kl 1= sup (1 (b)) — 1] 2.23
wl z€H, |ulq<1/2 fz(2) ( (i l)) ( )

By assumption (H f) and since hy,, ; < by, , — 0 we readily infer that

lim max e,; =0.
k—oo 0<I<Ry



Moreover we have, uniformly in 0 <1 < Ry, and z € My, (recall (HG) and (H f))
P{GOY) 2 v} 014 Z = 2 1a< ha1/2})

<t [ E(@W)12=2)falaiz
lz—zla<hn, 1/2
<Yns hdk e / fz (z + hnk’lu)du.
(-1/2,1/2]¢
<7nk hnkl o H fz HO

As 7y, — oo we conclude that, for all large enough k and for each 0 <1 < Ry, z € My,

Var (Vg g 1m0 (Y 2)) < AG) I K Il (1+ b . (2.24)
Given a real function g : R x R% — R, we shall write
1(6) = Y- {ot%.2) - B(9(%.20) } (2:25)
=1

Combining (2.18) and (2.24) making use of the maximal version of Bernstein’s inequality
(see, e.g. Einmahl and Mason [4], Lemma 2.2) repeated]y for each 0 <1 < Ry, z € My,
we have, for all large k (recall that §My; < C6 hnk s

Wg/n 7hn 7Z
P(enicn, T i > A(G) | K ha (1+9)
zké/\/Tkj " \/2nkhnk7l log(l/hmﬁl)

Ry,
< Z M}, max IP’< max

ZGM]CJ neENg

> A©) 1K Ila (1+6)y2mehd, log<1/hﬁk,z>)

Gkl

—Z W zexp( (1+€/(1+ ) log(1/hi, )

17,1
2C de?/2
< &
62 52
Z ldez/the2/2:EthQ/ZIO(Rk—H)d 2 -1 < 2C /2 /2 (2.26)
1 — ng 5? N pd52/2 -1 - 5%(pd62/2 _ 1) Ng—1
where the last inequality is a consequence of Ry := [log(hn, ,/hn,)/log(p)] + 1. As

log(1/bp,_,)/loglogng_1 — oo (assumption (HV)), and by (2.7), the right hand side
of expression (2.26) is summable in k. The proof of Lemma 2.2 now readily follows by
making use of the Borel-Cantelli lemma. [

2.2.3 Step 3: end of the proof of Theorem 2

Our next lemma allows us to extend the uniformity in Lemma 2.2 to the whole sets G,
[hng, bn,_,] and H, provided that §; > 0,92 > 0,p > 1 and {g1, ..., gy} have been properly
chosen. Before stating our lemma, we need to recall three facts. We shall be able to properly
discretise the class G by making use of the following result, which is a straightforward
adaptation of Lemma 6 of Einmahl and Mason [5].



Fact 2.1 (Einmahl, Mason, 2000) Given € > 0, there exists ho. > 0 and a finite sub-
class {g1,...,94} C G (that may depend on €) fulfilling

o i h fZ(z)_lE[((cg(z)g(Y)—l—dg(z))—(cge(z)gg(Y)%—dge(z)))zKQ(Zh_z)] </

2€H, gegG

Now define the following distances on G:

2 —— —d -1 _ 2
P(g1,) = swp h7fp(2) E[((cm(z)gl(mwgl(z)) (¢ (2)02(Y) + dyo(2))
O<h<h0’5,
zeH

)

d(91792) ‘=1max {d(glag2)v H Cg1 — Cgo HH7 H dgl - dgz ||H } (2'27)

We write | K |, for the total variation of K and we set, for ¢ : R? i— R,

,47 su V(22)  ¥(=1)
nld)= Z;;_ZQ'N( T ek (2.28)
=Ssu 2 =z (0. @] .
B '_zegE<(G (V) +1)|2=2) < o, (2.29)

B =461 || f2 lloll £ llo (11 K 12 +(sup Il eg llo Vsup 1 dg lo ) | K 2 ). (2:30)
geg 9€g

The following fact is a straightforward adaptation of Lemma 4 and Lemma 6 in [5].

Fact 2.2 (Einmahl, Mason, 2000) Fiz ¢ > 0. For any § € (0,1/2) and 0 < h < ho.

fulfilling
z+ (2h)u € O, (2.31)

and for all large k we have, for each z € H and for each u € R? with | u [4< 1, for each
p € (1,2], 21,22 € H with | 21 — 22 [¢< (5h), and for each g1, g2 € G fulfilling d*(g1, g2) < e,

2
E < (djnk,zl,ph,gl (Y7 Z) - wnk,ZQ,h,gg (Y7 Z)) >
<B <w2 (6h) VWl (5h) +p—1+06+ g) he. (2.32)

Remarks: Assumption (2.31) is just technical, in order to have the continuity arguments
of Einmahl and Mason valid. The presence of the term p—1 on the right hand side of (2.32)
is due to the fact that we take care of the differences h/h,, ; — 1, which are implicitely
handled in Lemma 6 of Einmahl and Mason [5].

The third fact is also largely inspired by the ideas of Einmahl and Mason |5]. We remind

that the uniform entropy number of a class of functions F with measurable envelope F' is
defined as

N(e, F):= sup min {p >1, Ig1,..-,9p) € FP, sup min || g—gillg2<c€ll F||gz },
Q@ proba geFi=l,...p

where the supremum is taken over all probability measures ). The following fact is proved
n [12] (Proposition 2.1).
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Fact 2.3 (Varron, 2006) Let F be a class of functions on R? with measurable envelope
function F satisfying, for some constants T >0 and h € (0,1),

sup Var(g(Z1)) < 2he,
geF

Assume that there exists dg, C,v, By > 0 and p > 2 fulfilling, for all 0 < e < 1,

N(e, F) <Ce™", (2.33)
E(F2(Y)?) <. (2:34)
sup | g(2) [<do(nh/log(h ™)'/ (2:35)

Then there exists a universal constant A > 0 and a parameter D(v) > 0 depending only on
v such that, for fized po > 0, if h > 0 satisfies,

1 1 hd
K := max {1, (460vv + 1/7) 72177 (podo/72) 1/271/”} < IO;ET"Z)’ (2.36)
K :=min {1/(726), 7%} > h*, (2.37)

then we have

P( max || T 172 (7 + po) D(nh log(h™)/?) < dexp (— A(Z)log(h™) ).
T

We can now state our second lemma, which will conclude the proof of the outer bounds

of Theorem 2. Recall that ¢ > 0 was fixed at the very beginning of our proof (see Section

2.2).

Lemma 2.3 There exists a finite class gi1,...,9¢ € G as well as two constants pc > 1 and
01, > 0 small enough such that, for each 1 < p < pc and each 0 < §; < b1, we have
almost surely :

‘Wnn g,%1, hnk l) - WT’Lyn(g% 22, h)

limsup max sup inf sup

koo neNg,  geG 1SS 4 zoeH, |2~ 22|<4, \/2n h 10 1 h
0<I<Rp—1 lhnk l<h<Phnk 1 g g / )
AG) || K [lrze. (2.38)
Proof :

Consider the class

g ::{(y, 2) = i (g, (21)91(Y) La)<n + dgl(zl))K(z _th>

— ua(egy (22)92(U) LGy <ty + don(22)) K (z _b

120, (hb) € (0,17 s € [inf 1" sup 1]

z2
)7 z1,%22 € Rda 91,92 € ga

Recall that v = infy f and note that G’ admits the following function as an envelope
function:

G'(y,2) =272 (Il ¢llixg G+ 11 d lmxg ) || K lga - (2.39)
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Set (57 = E(G’2(Y, Z)) < oo (the finiteness of B4 follows from (H f) and (HG)). By an
argument very similar to that used by Einmahl and Mason (see their Lemma 5 in [5]) we
readily infer that there exist C' > 0 and v > 0 fulfilling

N(e,G") < Ce™, e€(0,1]. (2.40)

Recalling the notations of Fact 2.3, we set € = D(v)~}(1 + /2/4)"eA(G) || K ||»2 - B
Fact 2.1 and by (HC), for any € > 0, we can choose a finite subclass {g1,...,94} C G such

that G is included in the finite reunion of the corresponding balls with d-radius smaller
than £/2. For fixed k > 5, 0<I < Ry —1, 1 <{<gqanddJ >0, define the following class
of functions:

Ok g8 = {wnk,zla hg — Ung,za.h By 12900 #1522 € H, | 21— 2 [< 4,

d(g,90) < €/2, by <h < phnk,l}-

Obviously we always have Gy, ;o5 C G'. By inclusion, all the classes Gy ; ¢,5 inherit properties
(2.39) and (2.40). Moreover, proving Lemma 2.3 is equivalent to showing that, almost

surely
max T,
limsup max ne (1 T llgies <AG) || K ||az € (2.41)
koo OSIER L fomyhd log(1/hd, )

As hy, 1 < by, , — 0 and by Fact 2.2, we can choose 61 > 0 such that, for each 0 < §; <
01, for all large k£ and for all 0 <1 < Ry, — 1,

sup " E(Y3(Y, 2)) <€ (2.42)
YEGR, 10,5,

Recalling that h,, < hy,; < by, , and assumption (HV), we can choose k large enough
so that each class Gy 5, fulfills conditions (2.36) and (2.37) with Gy := B4, h = hy, 1,
n:=ng, T:=¢, p:=+/2/A7 and C,v appearing in (2.40). Hence, we have, uniformly in
0<I<Rp—1land1</¢<yq,

P( e 11T 10, > A0) 1| K [z ey/2ockl, los(1/ng, ) )

<P (a1 T gy, DO+ o)y 20k, Tog(1/ng, ) )
<4 €xXp ( 210g(1/hnk l))

Now, by Bonferroni’s inequality we have, for all large k,

Rr—1 J;

P( U U 11 Tl @) 1K [z e 2nat, log<1/h:ik,,>)
=0 j=1

Ri—1

<> My < —

Ri—1

5 e nkﬂl—l_pd —1—pd

hnk .

As log(1/hy,)/loglog(ng) — oo by (HV) and (2.7), the proof of Lemma 2.3 is concluded
by a straightforward use of the Borel-Cantelli lemma. [

12



Combining Lemmas 2.2 and 2.3 we get, for any choice of §;, do > 0 and p > 1 small
enough,

)Wn" g, h, Z)’
limsup max sup SAG)(A+3¢)as. (243)
boo  MEN, z€H, \/2nkh ; log (1/nd )
0<I<Rp—1 Py 1 SR phiy 1 e

Now, as ny/ni—1 — l,assertion (2.5) is implied by the following assertion

ph?log(1/ph)

g~ U S ¢/(1+ 5e), (2.44)

lim sup sup ‘
k—o0 1<P/§P:
he(hnk,bnkil)
which, by routine computations, turns out to be true if we choose p > 1 small enough.
This concludes the proof of the outer bounds of Theorem 2.[]
2.3 Inner bounds

Proving the inner bounds of Theorem 2 is a simple consequence of Theorem 1, since, almost

surely,
n 7h7 . . 7hn7
liminf sup IV Elg Z)Jd > lim inf sup [ Walg ?)| =A(G) || K ||az2, (2.45)
" el O/ 2nhTlog(RTE) 1T sel fonid og (i)

where (2.45) is a consequence of Theorem 1.

3 Proof of Theorem 3

Our proof of Theorem 3 is inspired by Owen (see [10], chapter 5) and borrows some ideas
of Hardle et al. (see their Lemma 1 in [3]). Set, forn >1,C €C, h>0and z € H,

n(C,h, 2) ZK<
Sn(C b, 2) ‘IfZ(Z)_IZ [K< 0 :
i=1

win(C, Ry 2) = K(Zh_ ) (16(v) —m(C.h. ). (3.3)

“) (1e() = m(C,h, ). (3.1)

) (1c(vi) = m(C, b, z))] . (3.2)

The proof of Theorem 3 consists in showing that the quantities
~21og (Rn(m(Q h, z),C’,h,z)), CeC, zeH, helhn bl

are asymptotically equivalent to
Xn(C,h,2)°
fZ( ) (Ca h, Z) ’

and in establishing the almost sure limit behaviour of the quantities U, (C, h,z). Recall
that 0%(C, z) := Var(1¢(Y) | Z = z) and write

Un(C, h, 2) =

Cel, z€ H, h€lhp by, (3.4)

r(C,2) =E(lc(Y) | Z = 2). (3.5)
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By (Hf) together with Scheffé’s lemma, both o2(C,-) and r(C,-) are equicontinuous uni-
formly in C' € C, namely

limsup sup |r(C,z1)—r(C,22)|=0, (3.6)
0=0CeC z,20€H
|z1—22|<d
limsup sup | 0*(C,z1) — 0?(C, 2) |[= 0. (3.7)
6—0 CeC z1,220€H
|z1—22|<d

3.1 Step 1: an application of Theorem 2

Recall that 0%(C, z) := Var(1¢(Y;) | Z = z) and that r(C z):=P(Y € C|Z =z). In this
first step we prove that, given € > 0, we have (2log(h™%))"'U,(C, h, z) < (1+ ¢) uniformly
in C, h, z, ultimately as n — oo.

Lemma 3.1 Under the assumptions of Theorem 3, we have almost surely :

Sn(C,h, z)

lim sup ) -1 =0, 3.8
n— »cH, CeC, nhdUQ(Ca Z) H K Hg\g 9
lim sup ) Xn(C 1y 2) =1 (3.9)
n—oo cH, Cec, \/2 f2(2)0%(C,2) || K |35 nhlog(h=9)
As a consequence we have
U, (C, h,
lim  sup M‘ =1 as. (3.10)
n—0o .ep, cec,| 2log(h™d
hn<h<bn

Proof:

Note that (3.10) is a consequence of (3.8) and (3.9). Set L(-) = K2(-) || K |[53. To apply
Theorem 2 we write (1¢(Y) — r(C, z))2 = 1c¢(Y)(1 — 2r(C, 2)) + r?(C, 2). Notice that,
under (HG') and (HV’), the class C and the sequence (hy),>1 satisfy the conditions of
Theorem 2 with p = co. By Scheffé’s lemma together with assumption (Hf) and (HG’),
the two following collections of functions are uniformly equicontinuous on H :

D= {1,V 1 —2r(C, "), CecC}, Dy:={f;"*()0r*C,), CecC}.  (3.11)

We can hence apply Theorem 2 to the class C, with Dy, Dy defined as above, and with the
kernel L to obtain, with probability one,

: | Wo(C, h, 2) |
”h_’nolo z€H, Cescl,llf)bnghgbn 2nhdlog(h—?) <00 (3.12)
with
Wi(C,h, 2) = fz(2)7" ; {(10(3@')—7‘(0, z))2L<Zih_ Z)—E [(10(1’2')—7”(0, z))ZL(Zih_ i
: (3.13)
Now write .
E<(1C(Y;-) —r(C, 2))2L( lh_ Z)) =:7(C, h, z). (3.14)
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By assumptions (HG’), (HV') and (H f) together with Scheffé’s lemma, we can infer that

lim  su HCh, )
nooe e, cec, | z(2)0%(C,2)
he[hn,bn]
lim  sup |m(C,h,z)—r(C,z)|=0, (3.16)
n—00 zeH, CeC,
he&[hn,bn]

~1/=0 (3.15)

1 —d
lim sup %

=0. (3.17)
n—oo hE[hnvhn] nhd

Writing

(Su(C. 1 2) = nf2(2) VK B o F(C By 2)) = WalCih 2)

:fz(z)*l[(m%c,h,z) —r(C, 2)) — 2(m(C, h, 2) —T(CEZ))] | K [[3 ZL<Z’;Z>7

=1

we conclude by Theorem 2 and (3.16) that

‘(sn(c, ho2) = nfr(2) " K B, F(C.h,2)) — ”W’n(c,h,z))

lim sup =0
n—o0 e H, CeC, 2nhdlog(h—)
hn<h<bn
with probability one, from where we obtain with (3.14) and (3.15) that
Sn(C, h, z) — nhda?(C, 2)
lim  sup < 00. (3.18)
n00 e H, CeC, 2nhdlog(h—%)
hn<h<bn

The proof of (3.8) is now concluded, by (3.17), (3.18) and (HG’). Assertion (3.9) can
be proved in a very similar way, taking care that the class D := {fz(-)_l/Qa(C, 7t} s
uniformly equicontinuous and bounded away from zero and infinity on H. We omit details.
O

3.2 Step 2: convex hull condition
The second step of our proof of Theorem 3 is usually called the "convex hull condition".

Lemma 3.2 With probability one, we have, for all large n and for all C € C, z € H, h, <

h < by,
. Zl —Z
ﬁ{z. K( - )(1C(Y,) —m(C,h, z)) > 0} e{1,2,....n—1}. (3.19)
Proof: It is sufficient to prove that
liminf inf P( % (1c(Y) = m(C,h z))K(Z_ z) >0) >0 (3.20)
n—oo ze€H, CeC, Y h '
h€[hn,bn]

and that the following class is Glivenko-Cantelli:

Z—z

A= {{(y,z) eRY x RY, (1o(y) — m(C, h, z))K( ) > 0}, CeC, h>0, z¢ H}

(3.21)
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First note that A C B, where

B:= {{(y,%) e RY x R?, (le(y) — a)K(

By (HK1) and by Lemma 2.6.18 in [11], the two following classes of sets are VC:

Z—z

>0, CeC, h>0,zeRY acRp.
ot} e no sent uc)

Bii= {{ZeR:, £K(h7I(Z~2)) >0}, 2 € RY, h>0}.

Moreover, as C is a VC class of sets, we straightforwardly deduce that the following class
is also VC:
Mg = {{z €x, le(z) >a}, CeC,ac R}.

By a combination of points (i) and (i7) of Lemma 2.6.17 in [11], we conclude that B is
VC, which entails that A is Glivenko-Cantelli. We now have to prove (3.20). Define the
following family of random variables

My = {(10(1/) —m(C,h,z))K(%), 2€H, CeC 0<h< r;}.

By the Cauchy-Schwarz inequality we have P(X > 0) > E(X2) 'E(X1xs0)?. Hence it is
sufficient to prove that, for b small enough we have

1
'fE(Xl ):f'fE(X)>O, 3.92
Xléth x>0 2 XlélH[) | | ( )
sup E<X2> < 0. (3.23)
X€eH,

Note that the equality appearing in (3.22) is a consequence of E(X) = 0 for each X € H,,.
By (HG"), (Hf) and (3.6), routine analysis shows that, for h small enough, both (3.23)
and the following assertion are true:

1
inf E(X?%)> - inf o2 K ||y 9=: ) 24
XeH,, (X%) > 2 zeit.cec’ (@2)f2(2) [ K [lx2=2 00 > 0 (3:24)

Now, as Hy is uniformly bounded by some constant M > 0 we get that o < ME( | X | )
for all X € Hy, and hence (3.22) is proved. This concludes the proof of Lemma 3.2. [
3.3 Step 3: end of the proof of Theorem 3

Lemma 3.2 ensures us (see, e.g., [10], p. 219) that almost surely, for all large n and for each
ze€ H, CelC, h, <h <b,, the maximum value in R, (m(C, h,z),C,h, z) is obtained by
choosing the following weights (recall (1.13))

(3.25)

1 1
pi(Coh,2) = g An(C, by 2)win(Cyhy 2)

where A\, (C, h, z) is the unique solution of

- win(C,h, 2)
’ =Y 2
; 1 + )\n(c, h, Z)w’i,n(c, h’ Z) 0 (3 6)

Our next lemma gives an asymptotic control of

sup | An(C, R, 2) |-
CeC,z€H,
hn<h<bn

It is largely inspired by Lemma 1 in [3].
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Lemma 3.3 Under the assumptions of Theorem 2 we have almost surely

log(h—9)
su M(C h,z) |=0 — ). 3.27
cec, EEH, [ An )| ( nhd ) ( )
hn<h<bn

Proof : Following the proof of Owen (see [10], p. 220), Lemma 3.3 will be proved if we
check the following three conditions:

log(h~4)
max  sup ——
I<isn eH, Cec, nh
hn<h<bn

’ wi,n(c7h72) ’:0(1.5.(1), (328)

Xn 7h7

qp XG5 gy, (3.29)
zeH, Cec, \/nh?log(h~—%)

hn<h<bn

liminf inf (G, hy2) (C.h2)

n—oo zeH, CeC, nhd
hn<h<bn

>0 a.s. (3.30)

As each w; ,(C, h, z) is almost surely bounded by 2 || K ||g¢, and by (3.17), condition
(3.28) is readily satisfied. Now note that condition (3.29) is a straightforward consequence
of Theorem 2, and that (3.30) is a consequence of Lemma 3.1 and (HG’). The remainder
of the proof of Lemma 3.3 is done by following Owen (see [10], p. 220).00

Now set
‘/;'777/(0’ h7 Z) = )\n(cv h” Z)wi,n(cv h’a Z)'

By Lemma 3.3, we have

lim max sup |Vin(C,2)|=04s., (3.31)
n—oo 1<i<n zeH,CeC

which entails, almost surely, for all large n and for each z € H, C € C,

win(C, h, 2)
0= Zl+%n0hz)

_ Z win(C, b, 2) (1 — Vin(Cy by 2) + V2(Co by 2) /(1 + Vin(Cy b, z)))
i=1

- wiﬁ(c’ h, Z)V;Qn(ca h, Z)
in s

=1
C, h,
=Xn(C,h, 2) = [2(2)80(C, by 2)Aa(C, h, 2 +Z 1+v( (c hZ) )

M (C h,2).  (3.32)

From (3.28), (3.29) and (3.30), we conclude that there exists a random sequence ¢, such
that, almost surely, we have ¢, — 0 and
n wf”n(C, h, 2)

200 h , .
;1+W,n(0,h,z))\”(c’ ,2) <X (C, Z)maxu) W(C R, 2)

-1
X ( min |1+ V;,(C,h,2) |> M (C,h,2)

1<i<n

nhlog(h—%), (3.33)
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uniformly in C' € C,z € H, h € [hy,b,). Hence, dividing the right hand side of (3.32) by
Sn(C, h, z), recalling (3.30) and (3.17), we obtain with probability one
Xn(Cyh, z)

M (Ch, 2) = 7)o 7] + Bn(C, h, 2), (3.34)

with 3,(C, h, z) < Mey/log(h—®)/nh? uniformly in C € C, z € H and h € [hy, b,], for
some almost surely finite random variable M. We can now conclude that (recall (3.4))

‘ —2log (Rn(g, z,m(C, h, Z)))

im  sup _ 1‘ —0, 3.35
n—00 Lep Cec, Un(C,h,z) (3.35)
h€[hn,bn]

by reasoning as in Owen [10], p.221. The proof of Theorem 3 is then concluded by (3.10).
O
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