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Abstract
Given an i.i.d sample (Yi, Zi), taking values in Rd′ × Rd, consider the quantities

Wn(g, h, z) :=fZ(z)−1/2
n∑

i=1

[(
< cg(z), g(Yi) > +dg(z)

)
K
(Zi − z

h

)
− E

((
< cg(z), g(Yi) > +dg(z)

)
K
(Zi − z

h

))]
, (0.1)

where, z belongs to a compact set H ⊂ Rd, fZ is the density of Z1, K is a kernel,
h > 0 a bandwidth, g a Borel function on Rd′

and cg(·), dg(·) are continuous functions
on Rd. Given two bandwidth sequences hn < hn ful�lling mild conditions, we prove
that, for an explicit constant C(G,K), we have almost surely:

lim
n→∞

sup
z∈H, g∈G, hn≤h≤hn

|Wn(g, h, z) |√
2nhd log(h−d)

= C(G,K), (0.2)

under mild conditions on the density fZ , the class G, the kernel K and the func-
tions cg(·), dg(·). We apply this result to the context of empirical likelihood, where
regression parameters are estimated with a smoothed version of empirical likelihood,
involving a kernel K and a bandwidth h. Namely, we prove that smoothed empir-
ical likelihood can be used to build con�dence intervals for conditional probabilities
P
(
Y ∈ C | Z = z

)
, that hold uniformly in z ∈ H, C ∈ C, h ∈ [hn, hn]. Here C is a

Vapnik-Chervonenkis class of sets.
Keywords: Local empirical processes, empirical likelihood, kernel smoothing, uni-
form in bandwidth consistency.

1 Introduction and statement of the main results

Consider an i.i.d sample (Yi, Zi)i=1,...,n taking values in Rd′×Rd, with the same distribution
as a vector (Y, Z), and write < ·, · > for the usual inner product. In this paper, we
investigate the limit behaviour of quantities of the following form (assuming that this
expression is meaningfull):

Wn(g, h, z) :=fZ(z)−1/2
n∑
i=1

[(
< cg(z), g(Yi) > +dg(z)

)
K
(Zi − z

h

)
(1.1)

− E
((

< cg(z), g(Yi) > +dg(z)
)
K
(Zi − z

h

))]
.

1varron@stat.ucl.ac.be, 2 vankeilegom@stat.ucl.ac.be.3 Voie du Roman Pays 20, 1348 Louvain-la-Neuve,
Belgium.
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Here, K denotes a kernel, h > 0 is a smoothing parameter, g is a Borel function from Rd′

to Rk and fZ is (a version) of the density of Z. Given a class of functions G satisfying some
Vapnik-Chervonenkis type conditions (see conditions (HG1) below), and given a compact
set H, Einmahl and Mason [5] showed that somewhat recent tools in empirical processes
theory could be used e�ciently to provide exact rates of convergence of

sup
{
|Wn(g, hn, z) |, g ∈ G, z ∈ H

}
,

along a bandwidth sequence hn ful�lling some mild conditions (see condition (HV) in the
sequel). The exact content of their result is written in Theorem 1 below. The contribution
of the present paper is twofold. As a �rst contribution, we provide an extension of the
result of Einmahl and Mason, by enriching Theorem 1 with a uniformity in the bandwidth
h, when h is allowed to vary into an interval [hn, hn], with hn and hn ful�lling conditions of
Theorem 1. This extension is stated in Section 1.2 (Theorem 2), and is proved in Section
2. As a second contribution (Theorem 3), we apply our Theorem 2 to establish con�dence
intervals for quantities of the form

P
(
Y ∈ C | Z = z

)
, C ∈ C, z ∈ H,

by empirical likelihood techniques. Indeed, we prove that these con�dence intervals can be
built to hold uniformly in z ∈ H, C ∈ C and h ∈ [hn, hn], under conditions that are very
similar to those of Theorem 2. This result is stated in Section 1.3 and is proved in Section
3.

1.1 A result of Einmahl and Mason

As our �rst result is an extension of Theorem 1 in [5] we have to �rst introduce the
notations and assumptions they made in their article. Consider a compact set H ⊂ Rd

with nonempty interior. We shall make the following assumption on the law of (Y, Z).

(Hf) (Y, Z) has a density fY,Z that is continuous in x on Rd′ ×O′, where O′ ⊂ Rd

is open and where H ⊂ O′.
Moreover fZ is continuous and bounded away from zero and in�nity on O′.

From now on, O will denote an open set ful�lling H ( O ( O′. Now consider a class G of
functions from Rd′ to Rk. For l = 1, . . . , k, write Gl := Πl(G), where Πl(x1, . . . , xl, . . . , xk) :=
xl for (x1, . . . , xk) ∈ Rk.

(HG) Each class Gl is a pointwise separable VC subgraph class and has a �nite valued
measurable envelope function Gl satisfying, for some p ∈ (2,∞]:
α := maxl=1,...,k supz∈O || Gl(·) ||LY |Z=z ,p<∞,

where || Gl(·) ||LY |Z=z ,p is le Lp-norm of Gl under the distribution of Y
∣∣∣Z = z. For a

de�nition of a pointwise separable VC subgraph class we refer to [11] (p. 110 and 141). Now,
for any g ∈ G, consider a pair of functions (cg(·), dg(·)), where cg maps Rd to Rk and dg maps
Rd to R, and assume that the classes of functions D1 := {cg, g ∈ G} and D2 := {dg, g ∈ G}
are uniformly bounded and uniformly equicontinuous on O. We call this assumption (HC).
We now formulate our assumptions on the Kernel K, with the following de�nition.

K :=
{
K
(
λ · −z

)
, λ > 0, z ∈ Rd

}
. (1.2)
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(HK1) K has bounded variation and the class K is VC subgraph
(HK2) K(s) = 0 when s /∈ [−1/2, 1/2]d,
(HK3)

∫
Rd

K(s)ds = 1.

Note that (HK1) is ful�lled for a quite large class of kernels (see, e.g., Mason [8], Example
F.1). In [5], Einmahl and Mason have studied the almost sure asymptotic behaviour of

sup
{
|Wn(g, hn, z) |, g ∈ G, z ∈ H

}
(recall (0.1)), along a bandwidth sequence (hn)n≥1 that satis�es the following conditions
(here we write log2 n := log log(n ∨ 3)). :

(HV ) hn ↓ 0, nhnd ↑ ∞, log(1/hn)/ log2 n→∞, hdn
(
n/ log(1/hn)

)1−2/p →∞,

where p is as in condition (HG). We also set

∆2(g, z) :=E
((

< cg(z), g(Y ) > +dg(z)
)2∣∣∣Z = z

)
, z ∈ Rd, g ∈ G, (1.3)

∆2(g) := sup
z∈H

∆2(g, z), g ∈ G (1.4)

∆2(G) := sup
g∈G

∆2(g). (1.5)

Given a measurable space (χ, T ), a measure Q and a Borel function ψ : χ 7→ R, we write

|| ψ ||pQ,p =
∫
χ

| ψp | dQ. (1.6)

Under the above mentioned assumptions, Einmahl and Mason have proved the following
theorem, λ denoting the Lebesgue measure.

Theorem 1 (Einmahl, Mason, 2000) Under assumptions (HG), (HC), (Hf), (HK1)−
(HK3) and (HV ), we have almost surely

lim
n→∞

sup
z∈H, g∈G

|Wn(g, hn, z) |√
2nhdn log(h−dn )

= ∆(G) || K ||λ,2 . (1.7)

We point out that (1.7) is slightly stronger than Theorem 1 of Einmahl and Mason [5],
as fZ(z)−1/2 appears in our de�nition of Wn(g, h, z) which is not the case in their paper.

However, (1.7) is a consequence of their Theorem 1, as f
−1/2
Z is uniformly continuous on

H, by (Hf).

1.2 An extension of Theorem 1

Our �rst result states that Theorem 1 can be enriched by an additional uniformity in
hn ≤ h ≤ hn in the supremum appearing in (1.7), provided that (hn)n≥1 and (hn)n≥1

do ful�ll assumption (HV ). We also refer to Einmahl and Mason [6], where the authors
provided some consistency results for kernel type function estimators that hold uniformly
in the bandwidth (see also [12] for an improvement in the case of kernel density estimation).

Theorem 2 Assume that (HG), (Hf), (HC) and (HK1) − (HK3) are satis�ed. Let
(hn)n≥1 and (hn)n≥1 be two sequences of constants ful�lling (HV ) as well as 2hn < hn.
Then we have almost surely

lim
n→∞

sup
z∈H, g∈G, hn≤h≤hn

|Wn(g, h, z) |√
2nhd log(h−d)

= ∆(G) || K ||λ,2 . (1.8)
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The proof of Theorem 2 is provided in Section 2.

Remark 1.1 Einmahl and Mason [6] have proved a result strong enough to derive that,
under weaker conditions than those of Theorem 2, we have almost surely

lim sup
n→∞

sup
z∈H, g∈G,
h∈[ c log n

n
,1]

fZ(z)1/2Wn(g, h, z)√
nhd log(1/h) + log log n

<∞. (1.9)

However, the �nite constant appearing on the right hand side of (1.9) is not explicit in their
result. The main advantage of Theorem 2 is that the right hand side of (1.9) is explicit, by
paying the price of making stronger assumptions.

Remark 1.2 As Theorem 2 is an extension of Theorem 1 of Einmahl and Mason, all the
corollaries of Theorem 1 (see [6]) can be enriched with a uniformity in the bandwidth.

1.3 Con�dence bands by empirical likelihood

Empirical likelihood methods in statistical inference hav been introduced by Owen (see
[10]). This nonparametric technique has suscitated much interest for several practical rea-
sons, the most important one being that it directly provides con�dence intervals without
requiring further approximation methods, such as the estimation of dispersion parameters.
Moreover, empirical likelihood is a very versatile tool which can be adapted in many dif-
ferent �elds, for instance in estimation of densities or conditional expectations by kernel
smoothing methods. The idea can be summarised as follows : consider an independent,
identically distributed sample (Yi, Zi)1≤i≤n taking values in Rd′ ×Rd. Given h > 0, z ∈ H,
a function g from Rd′ to Rk and a (kernel) real function K, de�ne the following centring
parameter, which plays the role of a deterministic approximation of E

(
g(Y ) | Z = z

)
:

m(g, h, z) :=
E
(
g(Y )K

(
Z−z
h

))
E
(
K
(
Z−z
h

)) . (1.10)

This quantity is the root of the following equation in θ:

E
(
K
(Z − z

h

)(
g(Y )− θ

))
= 0, (1.11)

which naturally leads to the following formula for a con�dence interval (around m(g, h, z))
by empirical likelihood methods (for more details see, e.g., Owen [10], chapter 5) :

In(g, h, z, c) := {θ ∈ R, Rn(θ, g, h, z) ≥ c}, (1.12)

where c ∈ (0, 1) is a given critical value that has to be chosen in practice, and where

Rn(θ, g, h, z) := max
{ n∏
i=1

npi,
n∑
i=1

piK
(Zi − z

h

)(
g(Yi)− θ

)
= 0, pi ≥ 0,

n∑
i=1

pi = 1
}
.

(1.13)
It is known (see, e.g., [10], chapter 5) that, for �xed z ∈ Rd and �xed g, we can expect

m(g, h, z) ∈ In(g, h, z, c) (1.14)

to hold with probability equal to P(χ2 ≤ −2 log c), ultimately as n→∞, h→ 0, nhd →∞
(see e.g., Owen, chapter 5). A natural arising question is:
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• Can we expect (1.14) to hold uniformly in z, g and h?

• In that case, how much uniformity can we get?

Uniformity in g and z would allow to construct asymptotic con�dence bands (instead of
simple con�dence intervals), while a uniformity in h would allow more �exibility in the
practical choice of that smoothing parameter. Our Theorem 2 provides a tool strong
enough to give some positive answers to these questions. Let us consider the case where
G = {1C , C ∈ C} for a class of sets C. We will make an abuse of notation, by identifying C
and G, and hence, we shall writem(C, h, z) form

(
1C , h, z

)
and so on. Write the conditional

variances of 1C(Y ) given Z = z as follows :

σ2(C, z) := P
(
Y ∈ C | Z = z

)
− P2

(
Y ∈ C | Z = z

)
, C ∈ C, z ∈ H. (1.15)

Our second result shows that we can construct, by empirical likelihood methods (recall
(1.12)), con�dence bands around the centring parameters m(C, h, z) with lengths tending
to zero at rate

√
2σ2(C, z) log(h−d)/nhd when n → ∞ and hn ≤ h ≤ hn. We make the

following assumptions on hn, hn and C

(HG') C is a VC class satisfying inf
z∈H

inf
C∈C

σ2(C, z) =: β > 0.

(HV') hn ↓ 0, nhdn ↑ ∞, log(1/hn)/ log2 n→∞, nhdn/ log(1/hn) →∞.

Note that (HV ′) is equivalent to (HV ) in the speci�c case where p = ∞.

Theorem 3 Under assumptions (Hf), (HK1)-(HK3), (HG') and (HV'), as well as 2hn <
hn, we have almost surely:

lim
n→∞

sup
z∈H, C∈C,
hn≤h≤hn

− logRn

(
m(C, h, z), C, h, z

)
log(h−d)

= 1. (1.16)

The proof of Theorem 3 is provided in Section 3.

Remark 1.3 Theorem 3 shows that, ultimately as n→∞, we have

∀C ∈ C, ∀z ∈ H, ∀h ∈ [hn, hn] : m(C, h, z) ∈ In(C, h, z, hd). (1.17)

Hence, taking c = hd when constructing con�dence regions as in (1.12) ensures that each
m(C, h, z) belongs to its associated con�dence interval In(C, h, z, c). Moreover, this choice
of c = hd is, in some sense, the best we can a�ord without loosing uniformity in C, h and
z since, for �xed ε > 0, taking c = hd−ε would invalidate (1.17).

Remark 1.4 To calibrate the con�dence region in order to obtain a coverage probability of,
say, 1− α, the weak convergence of the empirical likelihood process is required. This could
be obtained if Theorem 2 was also enriched by a Bickel-Rosenblatt type limit law (refer to
[1] for such a result in univariate kernel density estimation). However obtaining such a
limit law is a real challenge in itself, and is beyond the scope of this paper. We leave that
problem as an open question.

2 Proof of Theorem 2

For ease of notations, we just prove Theorem 2 when k = 1. A close look at the proof
shows that there is no loss of generality assuming k = 1.
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2.1 Truncation

We start our proof of Theorem 2 as Einmahl and Mason did in their proof of Theorem 1.
As the support of K is bounded and as hn → 0 we have almost surely, for all large n and
for all z ∈ H, g ∈ G, hn ≤ h ≤ hn,

Wn(g, h, z) =fZ(z)−1/2

[ n∑
i=1

(
cg(z)g(Ỹi) + dg(z)

)
K
(Zi − z

h

)
− E

((
cg(z)g(Ỹi) + dg(z)

)
K
(Zi − z

h

))]
, (2.1)

where Ỹi := Yi1O′(Zi). Hence, we can suppose that Yi = Yi1O′(Zi) without changing
the limiting behaviour of the processes we are studying here. Now consider a sequence of
constants (γn)n≥1 ful�lling

lim inf
n→∞

γn

(n/ log(1/hn))1/p
> 0, (2.2)

and consider the truncated expressions, with G denoting a measurable envelope function
of G ful�lling (HG),

W γn
n (g, h, z) :=fZ(z)−1/2

n∑
i=1

(
cg(z)g(Yi)1{G(Yi)≤γn} + dg(z)

)
K
(Zi − z

h

)
− E

((
cg(z)g(Yi)1{G(Yi)≤γn} + dg(z)

)
K
(Zi − z

h

))
. (2.3)

The following lemma allows us to study these truncated versions of the Wn(g, h, z).

Lemma 2.1 Under the assumptions of Theorem 2 and under (2.2) we have almost surely:

lim
n→∞

sup
g∈G, z∈H, hn≤h≤hn

∣∣∣W γn
n (g, h, z)−Wn(g, h, z)

∣∣∣√
2nhd log(h−d)

= 0. (2.4)

Proof : A careful reading of the proof of Lemma 1 in Einmahl and Mason [5] shows
that their assertions (2.8) and (2.9) remain true after adding a uniformity in g ∈ G and
hn ≤ h ≤ hn, which readily implies Lemma 2.1. Note also that Lemma 2.1 is obvious when
(HG) is ful�lled with p = ∞. �
The two next subsections are devoted to proving respectively the outer and inner bounds
of Theorem 2.

2.2 Outer bounds

Fix ε > 0. Our goal in this subsection is to show that, almost surely

lim sup
n→∞

sup
g∈G, z∈H, hn≤h≤hn

|Wn(g, h, z) |√
2nhd log(h−d)

≤ ∆(G) || K ||λ,2 (1 + 4ε). (2.5)

To this aim, we shall �rst discretise each of the sets H, [hn, hn] and G into properly
chosen �nite grids, then we shall control the oscillations between elements of the grids by
a combination of a concentration inequality which is due to Talagrand (see also [9, 2, 7] for
strongly improved versions) and of an upper bound for the �rst moment of these oscillations
which is due to Einmahl and Mason [5].
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2.2.1 Step 1: discretisations

Consider two parameters δ1 ∈ (0, 1), δ2 ∈ (0, 1) and ρ ∈ (1, 2) that will be chosen small
enough in the sequel, and de�ne the following subsequence

nk :=
[
exp

(
k/ log k

)]
, k ≥ 5, Nk := {nk−1, nk−1 + 1, . . . , nk − 1}. (2.6)

Note that nk/nk−1 → 1 and

log log nk = log k(1 + o(1)), k →∞. (2.7)

We then construct the following �nite grid for each k ≥ 1

hnk,Rk
:= hnk−1

, hnk,l :=ρlhnk
, l = 0, . . . , Rk − 1, (2.8)

where Rk := [log(hnk−1
/hnk

)/ log(ρ)] + 1, and [u] denotes the only integer q ful�lling
q ≤ u < q + 1. Denote by | z |d:= maxi=1,...,d | zi | the usual maximum norm on Rd. Now,
for �xed k and 0 ≤ l ≤ Rk, we construct a �nite grid Mk,l ⊂ H such that, given z ∈ H,
there exists z ∈ Mk,l ful�lling | z − z |d< δ1hnk,l. Note that one can construct this grid
so as ]Mk,l ≤ C(δ1hnk,l)

−d, where C is a constant that depends only on the volume of H.

Now set γn := δ2
(
nk/ log(1/hdnk

)
)1/p

, for each k ≥ 5, n ∈ Nk. By Lemma 2.1, showing
(2.5) is equivalent to showing that

lim sup
n→∞

sup
z∈H, g∈G, hn≤h≤hn

|W γn
n (g, h, z) |√

2nhd log(h−d)
≤ ∆(G) || K ||λ,2 (1 + 4ε) (2.9)

almost surely, for a proper choice of δ2 > 0.

2.2.2 Step 2: a discrete version of (2.5)

Given a real function ψ de�ned on a set S, we write:

|| ψ ||S := sup
s∈S

| ψ(s) | . (2.10)

Recall that, since fZ is bounded away from 0 on H, we can de�ne

γ := inf
z∈H

fZ(z) > 0. (2.11)

Also write, for convenience of notations

|| c ||G×H := sup
g∈G, z∈H

| cg(z) |, || d ||G×H := sup
g∈G, z∈H

| dg(z) | . (2.12)

Our �rst lemma is a discrete version of (2.9).

Lemma 2.2 For any choice of

0 < δ2 < ε∆(G) || K ||λ,2 /(6γ1/2 || c ||H×G || K ||Rd), (2.13)

and for any �nite collection {g1, . . . , gq} ⊂ G, we have

lim sup
k→∞

max
n∈Nk, 1≤`≤q,

0≤l≤Rk, z∈Mk,l

|W γn
n (g`, hnk,l, z) |√

2nkhdnk,l
log(1/hdnk,l

)
≤ ∆(G) || K ||λ,2 (1 + ε). (2.14)
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Proof : We can assume here that q = 1 with no loss of generality. We rename in this proof
g1 to g. We de�ne, for z ∈ H, h > 0 and g ∈ G,

ψnk,h,z,g : (y, x) 7→ fZ(z)−1/2
[
cg(z)g(y)1{G(y)≤γnk

} + dg(z)
]
K
(x− z

h

)
, (2.15)

and set, for �xed k ≥ 1 and 0 ≤ l ≤ Rk,

Gk,l :=
{
ψnk,hnk,l,z,g, z ∈Mk,l

}
. (2.16)

First note that, for each k ≥ 5, 0 ≤ l ≤ Rk and z ∈Mk,l, we have, for any g ∈ G,

|| ψnk,hnk,l,z,g ||Rd′×Rd≤
(
|| c ||H×G γnk

+ || d ||H×G
)
γ−1/2 || K ||Rd

≤2 || c ||H×G γ−1/2 || K ||Rd δ2(nkhdnk
/ log(1/hdnk

))1/2 (2.17)

≤ ε
3
|| K ||2λ,2 ∆(G)(nkhdnk

/ log(1/hdnk
))1/2, (2.18)

where (2.17) holds for all large k, uniformly in 0 ≤ l ≤ Rk and z ∈ Mk,l, according to
assumption (HV ), and where (2.18) holds by (2.13). Moreover we have (recall (HK2))

Var
(
ψnk,hnk,l,z,g(Y, Z)

)
≤ E

(
ψ2
nk,hnk,l,z,g

(Y, Z)
)

≤ E
(
fZ(z)−1

(
cg(z)g(Y ) + dg(z)

)2
K
(Z − z
hnk,l

)2
)

+ fZ(z)−1 || d ||2H×G || K ||2Rd P
({
G(Y ) ≥ γnk

}
∩
{
| Z − z |d≤ hnk,l/2

})
(2.19)

=:A1 +A2.

The �rst term on the right hand side of (2.19) is equal to

A1 =
∫

|z−z|d≤hnk,l/2

E
((
cg(z)g(Y ) + dg(z)

)2∣∣∣Z = z

)
fZ(z)
fZ(z)

K2
(z − z
hnk,l

)
dz.

It follows, by making use of assumption (HC), that there exists a function r(·) ful�lling
r(u) → 0 as u→ 0 and such that

A1 ≤
∫

|z−z|d≤hnk,l/2

∆2(g, z)
fZ(z)
fZ(z)

K2
(z − z
hnk,l

)
dz + r(hnk,l) (2.20)

≤∆2(G)hdnk,l

∫
[−1/2,1/2]d

K2(u)
fZ
(
z + hnk,lu

)
fZ(z)

du
(̇
1 + r(hnk,l)

)
(2.21)

≤∆2(G) || K ||2λ,2 hdnk,l
(1 + εk,l), (2.22)

where

εk,l := sup
z∈H, |u|d≤1/2

∣∣∣∣∣fZ
(
z + hnk,lu

)
fZ(z)

(
1 + r(hnk,l)

)
− 1

∣∣∣∣∣. (2.23)

By assumption (Hf) and since hnk,l ≤ hnk−1
→ 0 we readily infer that

lim
k→∞

max
0≤l≤Rk

εk,l = 0.
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Moreover we have, uniformly in 0 ≤ l ≤ Rk and z ∈Mk,l (recall (HG) and (Hf))

P
(
{G(Y ) ≥ γnk

} ∩ {| Z − z |d≤ hnk,l/2}
)

≤γ−2
nk

∫
|z−z|d≤hnk,l/2

E
(
G2(Y ) | Z = z

)
fZ(z)dz

≤γ−2
nk
hdnk,l

α

∫
[−1/2,1/2]d

fZ
(
z + hnk,lu

)
du.

≤γ−2
nk
hdnk,l

α || fZ ||O .

As γnk
→∞ we conclude that, for all large enough k and for each 0 ≤ l ≤ Rk, z ∈Mk,l,

Var
(
ψnk,hnk,l,z,g(Y, Z)

)
≤ ∆(G) || K ||λ,2 (1 + ε)hdnk,l

. (2.24)

Given a real function g : R× Rd 7→ R, we shall write

Tn(g) :=
n∑
i=1

{
g(Yi, Zi)− E

(
g(Yi, Zi)

)}
. (2.25)

Combining (2.18) and (2.24) making use of the maximal version of Bernstein's inequality
(see, e.g. Einmahl and Mason [4], Lemma 2.2) repeatedly for each 0 ≤ l ≤ Rk, z ∈ Mk,l,
we have, for all large k (recall that ]Mk,l ≤ Cδ−d1 h−dnk,l

),

P
(

max
n∈Nk, 0≤l≤Rk,

z∈Mk,l

|W γn
n (g, hnk,l, z) |√

2nkhdnk,l
log(1/hdnk,l

)
> ∆(G) || K ||λ,2 (1 + ε)

)

≤
Rk∑
l=0

]Mk,l max
z∈Mk,l

P
(

max
n∈Nk

∣∣∣∣∣∣Tn∣∣∣∣∣∣
Gk,l

≥ ∆(G) || K ||λ,2 (1 + ε)
√

2nkhdnk,l
log(1/hdnk,l

)
)

≤
Rk∑
l=0

C

δd1h
d
nk,l

2 exp
(
−
(
1 + ε2/(1 + ε)

)
log(1/hdnk,l

)
)

≤2C
δd1

Rk∑
l=0

h
dε2/2
nk,l

=
2C
δd1

Rk∑
l=0

ρldε
2/2hdε

2/2
nk

=
2C
δd1
hdε

2/2
nk

ρ(Rk+1)dε2/2 − 1
ρdε2/2 − 1

≤ 2Cρdε
2/2

δd1(ρdε2/2 − 1)
hdε

2/2
nk−1

, (2.26)

where the last inequality is a consequence of Rk := [log(hnk−1
/hnk

)/ log(ρ)] + 1. As
log(1/hnk−1

)/ log log nk−1 → ∞ (assumption (HV)), and by (2.7), the right hand side
of expression (2.26) is summable in k. The proof of Lemma 2.2 now readily follows by
making use of the Borel-Cantelli lemma. �

2.2.3 Step 3: end of the proof of Theorem 2

Our next lemma allows us to extend the uniformity in Lemma 2.2 to the whole sets G,
[hnk

, hnk−1
] and H, provided that δ1 > 0, δ2 > 0, ρ > 1 and {g1, . . . , gq} have been properly

chosen. Before stating our lemma, we need to recall three facts. We shall be able to properly
discretise the class G by making use of the following result, which is a straightforward
adaptation of Lemma 6 of Einmahl and Mason [5].
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Fact 2.1 (Einmahl, Mason, 2000) Given ε > 0, there exists h0,ε > 0 and a �nite sub-
class {g1, . . . , gq} ⊂ G (that may depend on ε) ful�lling

sup
0<h<h0,ε,

z∈H, g∈G

min
`=1,...,q

h−dfZ(z)−1E
[((

cg(z)g(Y )+dg(z)
)
−
(
cg`

(z)g`(Y )+dg`
(z)
))2

K2
(Z − z

h

)]
≤ ε/2.

Now de�ne the following distances on G:

d2(g1, g2) := sup
0<h<h0,ε,

z∈H

h−dfZ(z)−1E

[((
cg1(z)g1(Y ) + dg1(z)

)
−
(
cg2(z)g2(Y ) + dg2(z)

))2

×K2
(Z − z

h

)]
,

d̃(g1, g2) := max
{
d(g1, g2), || cg1 − cg2 ||H , || dg1 − dg2 ||H

}
. (2.27)

We write | K |v for the total variation of K and we set, for ψ : Rd 7→ R,

ωψ(δ) := sup
z1,z2∈H, |z1−z2|d≤δ

∣∣∣ ψ(z2)
fZ(z2)

− ψ(z1)
fZ(z1)

∣∣∣, δ > 0, (2.28)

β1 := sup
z∈O

E
((
G2(Y ) + 1

)∣∣∣Z = z
)
<∞, (2.29)

B :=4β1 || fZ ||O|| f−1
Z ||O

(
|| K ||2Rd +

(
sup
g∈G

|| cg ||O ∨ sup
g∈G

|| dg ||O
)
| K |2v

)
. (2.30)

The following fact is a straightforward adaptation of Lemma 4 and Lemma 6 in [5].

Fact 2.2 (Einmahl, Mason, 2000) Fix ε > 0. For any δ ∈ (0, 1/2) and 0 < h < h0,ε

ful�lling
z + (2h)u ∈ O, (2.31)

and for all large k we have, for each z ∈ H and for each u ∈ Rd with | u |d≤ 1, for each
ρ ∈ (1, 2], z1, z2 ∈ H with | z1−z2 |d≤ (δh), and for each g1, g2 ∈ G ful�lling d̃2(g1, g2) ≤ ε,

E
((

ψnk,z1,ρh,g1(Y, Z)− ψnk,z2,h,g2(Y, Z)
)2
)

≤B
(
ω2
cg2

(δh) ∨ ω2
dg2

(δh) + ρ− 1 + δ + ε
)
hd. (2.32)

Remarks: Assumption (2.31) is just technical, in order to have the continuity arguments
of Einmahl and Mason valid. The presence of the term ρ−1 on the right hand side of (2.32)
is due to the fact that we take care of the di�erences h/hnk,l − 1, which are implicitely
handled in Lemma 6 of Einmahl and Mason [5].
The third fact is also largely inspired by the ideas of Einmahl and Mason [5]. We remind
that the uniform entropy number of a class of functions F with measurable envelope F is
de�ned as

N (ε,F) := sup
Q proba

min
{
p ≥ 1, ∃(g1, . . . , gp) ∈ Fp, sup

g∈F
min

i=1,...,p
|| g − gi ||Q,2≤ ε || F ||Q,2

}
,

where the supremum is taken over all probability measures Q. The following fact is proved
in [12] (Proposition 2.1).

10



Fact 2.3 (Varron, 2006) Let F be a class of functions on Rd with measurable envelope
function F satisfying, for some constants τ > 0 and h ∈ (0, 1),

sup
g∈F

Var
(
g(Z1)

)
≤ τ2hd.

Assume that there exists δ0, C, v, β0 > 0 and p > 2 ful�lling, for all 0 < ε < 1,

N (ε,F) ≤Cε−v, (2.33)

E
(
FZ(Y )2

)
≤β2

0 , (2.34)

sup
g∈F , z∈Rd

| g(z) |≤δ0(nhd/ log(h−d))1/p. (2.35)

Then there exists a universal constant A > 0 and a parameter D(v) > 0 depending only on
v such that, for �xed ρ0 > 0, if h > 0 satis�es,

K1 := max
{

1,
(
4δ0
√
v + 1/τ

) 1
1/2−1/p ,

(
ρ0δ0/τ

2
) 1

1/2−1/p

}
≤ nhd

log(h−d)
, (2.36)

K2 := min
{
1/(τ2β0), τ2

}
≥ hd, (2.37)

then we have

P
(

max
1≤m≤n

|| Tm ||F≥ (τ + ρ0)D(nhd log(h−d))1/2
)
≤ 4 exp

(
−A(

ρ0

τ
)2 log(h−d)

)
.

We can now state our second lemma, which will conclude the proof of the outer bounds
of Theorem 2. Recall that ε > 0 was �xed at the very beginning of our proof (see Section
2.2).

Lemma 2.3 There exists a �nite class g1, . . . , gq ∈ G as well as two constants ρε > 1 and
δ1,ε > 0 small enough such that, for each 1 < ρ ≤ ρε and each 0 < δ1 ≤ δ1,ε, we have
almost surely :

lim sup
k→∞

max
n∈Nk,

0≤l≤Rk−1

sup
g∈G

inf
1≤`≤q

sup
z1,z2∈H, |z1−z2|<δ,
hnk,l≤h≤ρhnk,l

∣∣∣W γn
n (g, z1, hnk,l)−W γn

n (g`, z2, h)
∣∣∣√

2nkhdnk,l
log(1/hdnk,l

)

≤∆(G) || K ||λ,2 ε. (2.38)

Proof :
Consider the class

G′ :=
{

(y, z) 7→ u1

(
cg1(z1)g1(y)1{G(y)≤t} + dg1(z1)

)
K
(z − z1

h

)
− u2

(
cg2(z2)g2(y)1{G(y)≤t} + dg2(z2)

)
K
(z − z2

h

)
, z1, z2 ∈ Rd, g1, g2 ∈ G,

t ≥ 0, (h, h) ∈ (0, 1)2, u1, u2 ∈
[
inf
H
f
−1/2
Z , sup

H
f
−1/2
Z

]}
.

Recall that γ = infH f and note that G′ admits the following function as an envelope
function:

G′(y, z) := 2γ−1/2
(
|| c ||H×G G(y)+ || d ||H×G

)
|| K ||Rd . (2.39)

11



Set β2
4 := E

(
G′2(Y, Z)

)
< ∞ (the �niteness of β4 follows from (Hf) and (HG)). By an

argument very similar to that used by Einmahl and Mason (see their Lemma 5 in [5]) we
readily infer that there exist C > 0 and v > 0 ful�lling

N (ε,G′) ≤ Cε−v, ε ∈ (0, 1]. (2.40)

Recalling the notations of Fact 2.3, we set ε = D(v)−1(1 +
√

2/A)−1ε∆(G) || K ||λ,2 . By
Fact 2.1 and by (HC), for any ε > 0, we can choose a �nite subclass {g1, . . . , gq} ⊂ G such

that G is included in the �nite reunion of the corresponding balls with d̃-radius smaller
than ε/2. For �xed k ≥ 5, 0 ≤ l ≤ Rk − 1, 1 ≤ ` ≤ q and δ > 0, de�ne the following class
of functions:

Gk,l,q,δ :=
{
ψnk,z1,h,g − ψnk,z2,hnk,l,g`

, z1, z2 ∈ H, | z1 − z2 |≤ δ,

d̃(g, g`) ≤ ε/2, hnk,l ≤ h ≤ ρhnk,l

}
.

Obviously we always have Gk,l,`,δ ⊂ G′. By inclusion, all the classes Gk,l,`,δ inherit properties
(2.39) and (2.40). Moreover, proving Lemma 2.3 is equivalent to showing that, almost
surely

lim sup
k→∞

max
0≤l≤Rk−1,

1≤`≤q

maxn∈Nk
|| Tn ||Gk,l,`,δ√

2nkhdnk,l
log(1/hdnk,l

)
≤ ∆(G) || K ||λ,2 ε. (2.41)

As hnk,l ≤ hnk−1
→ 0 and by Fact 2.2, we can choose δ1,ε > 0 such that, for each 0 < δ1 <

δ1,ε, for all large k and for all 0 ≤ l ≤ Rk − 1,

sup
ψ∈Gk,l,`,δ1,ε

h−dnk,l
E
(
ψ2(Y, Z)

)
≤ ε2. (2.42)

Recalling that hnk
≤ hnk,l ≤ hnk−1

and assumption (HV ), we can choose k large enough
so that each class Gk,l,`,δ1 ful�lls conditions (2.36) and (2.37) with β0 := β4, h := hnk,l,
n := nk, τ := ε, ρ :=

√
2/Aτ and C, v appearing in (2.40). Hence, we have, uniformly in

0 ≤ l ≤ Rk − 1 and 1 ≤ ` ≤ q,

P
(

max
n∈Nk

|| Tn ||Gk,l,δ1,ε
> ∆(G) || K ||λ,2 ε

√
2nkhdnk,l

log(1/hdnk,l
)
)

≤P
(

max
n∈Nk

|| Tn ||Gk,l,δ1
≥ D(v)(τ + ρ)

√
2nhdnk,l

log(1/hdnk,l
)
)

≤4 exp
(
− 2 log(1/hdnk,l

)
)
.

Now, by Bonferroni's inequality we have, for all large k,

P

(
Rk−1⋃
l=0

Jl⋃
j=1

max
n∈Nk

|| Tn ||Gk,l,δ1,ε
> ∆(G) || K ||λ,2 ε

√
2nkhdnk,l

log(1/hdnk,l
)

)

≤
Rk−1∑
l=0

4]Mk,lh
2d
nk,l

≤ 4C
δ1

Rk−1∑
l=0

hdnk,l
≤ 4C

1− ρd
ρdRk ≤ 4Cρd

1− ρd
hnk−1

.

As log(1/hnk
)/ log log(nk) → ∞ by (HV) and (2.7), the proof of Lemma 2.3 is concluded

by a straightforward use of the Borel-Cantelli lemma. �
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Combining Lemmas 2.2 and 2.3 we get, for any choice of δ1, δ2 > 0 and ρ > 1 small
enough,

lim sup
k→∞

max
n∈Nk,

0≤l≤Rk−1

sup
z∈H,

hnk,l≤h≤ρhnk,l

∣∣∣W γn
n (g, h, z)

∣∣∣√
2nkhdnk,l

log(1/hdnk,l
)
≤ ∆(G)(1 + 3ε) a.s. (2.43)

Now, as nk/nk−1 → 1,assertion (2.5) is implied by the following assertion

lim sup
k→∞

sup
1<ρ′≤ρ,

h∈(hnk
,hnk−1

)

∣∣∣ρhd log(1/ρhd)
hd log(h−d)

− 1
∣∣∣ ≤ ε/(1 + 5ε), (2.44)

which, by routine computations, turns out to be true if we choose ρ > 1 small enough.
This concludes the proof of the outer bounds of Theorem 2.�

2.3 Inner bounds

Proving the inner bounds of Theorem 2 is a simple consequence of Theorem 1, since, almost
surely,

lim inf
n→∞

sup
z∈H, C∈C,
hn≤h≤hn

|Wn(g, h, z) |√
2nhd log(h−d)

≥ lim inf
n→∞

sup
z∈H,
C∈C

|Wn(g, hn, z) |√
2nhdn log(h−dn )

= ∆(G) || K ||λ,2, (2.45)

where (2.45) is a consequence of Theorem 1.

3 Proof of Theorem 3

Our proof of Theorem 3 is inspired by Owen (see [10], chapter 5) and borrows some ideas
of Härdle et al. (see their Lemma 1 in [3]). Set, for n ≥ 1, C ∈ C, h > 0 and z ∈ H,

Xn(C, h, z) :=
n∑
i=1

K
(Zi − z

h

)(
1C(Yi)−m(C, h, z)

)
, (3.1)

Sn(C, h, z) :=fZ(z)−1
n∑
i=1

[
K
(Zi − z

h

)(
1C(Yi)−m(C, h, z)

)]2

, (3.2)

wi,n(C, h, z) := K
(Zi − z

h

)(
1C(Yi)−m(C, h, z)

)
. (3.3)

The proof of Theorem 3 consists in showing that the quantities

−2 log
(
Rn

(
m(C, h, z), C, h, z

))
, C ∈ C, z ∈ H, h ∈ [hn, hn]

are asymptotically equivalent to

Un(C, h, z) :=
Xn(C, h, z)2

fZ(z)Sn(C, h, z)
, C ∈ C, z ∈ H, h ∈ [hn, hn], (3.4)

and in establishing the almost sure limit behaviour of the quantities Un(C, h, z). Recall
that σ2(C, z) := Var

(
1C(Y ) | Z = z

)
and write

r(C, z) := E
(
1C(Y ) | Z = z

)
. (3.5)
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By (Hf) together with Sche�é's lemma, both σ2(C, ·) and r(C, ·) are equicontinuous uni-
formly in C ∈ C, namely

lim
δ→0

sup
C∈C

sup
z1,z2∈H
|z1−z2|≤δ

| r(C, z1)− r(C, z2) |= 0, (3.6)

lim
δ→0

sup
C∈C

sup
z1,z2∈H
|z1−z2|≤δ

| σ2(C, z1)− σ2(C, z2) |= 0. (3.7)

3.1 Step 1: an application of Theorem 2

Recall that σ2(C, z) := Var
(
1C(Yi) | Z = z

)
and that r(C, z) := P

(
Y ∈ C | Z = z

)
. In this

�rst step we prove that, given ε > 0, we have (2 log(h−d))−1Un(C, h, z) ≤ (1+ ε) uniformly
in C, h, z, ultimately as n→∞.

Lemma 3.1 Under the assumptions of Theorem 3, we have almost surely :

lim
n→∞

sup
z∈H, C∈C,
hn≤h≤hn

∣∣∣ Sn(C, h, z)
nhdσ2(C, z) || K ||2λ,2

− 1
∣∣∣ = 0, (3.8)

lim
n→∞

sup
z∈H, C∈C,
hn≤h≤hn

∣∣∣ Xn(C, h, z)√
2fZ(z)σ2(C, z) || K ||2λ,2 nhd log(h−d)

∣∣∣ = 1. (3.9)

As a consequence we have

lim
n→∞

sup
z∈H, C∈C,
hn≤h≤hn

∣∣∣Un(C, h, z)
2 log(h−d)

∣∣∣ = 1 a.s. (3.10)

Proof :
Note that (3.10) is a consequence of (3.8) and (3.9). Set L(·) = K2(·) || K ||−2

λ,2. To apply

Theorem 2 we write
(
1C(Y ) − r(C, z)

)2 = 1C(Y )(1 − 2r(C, z)) + r2(C, z). Notice that,
under (HG′) and (HV ′), the class C and the sequence (hn)n≥1 satisfy the conditions of
Theorem 2 with p = ∞. By Sche�é's lemma together with assumption (Hf) and (HG'),
the two following collections of functions are uniformly equicontinuous on H :

D1 :=
{
f
−1/2
Z (·)(1− 2r(C, ·)), C ∈ C

}
, D2 :=

{
f
−1/2
Z (·)r2(C, ·), C ∈ C

}
. (3.11)

We can hence apply Theorem 2 to the class C, with D1,D2 de�ned as above, and with the
kernel L to obtain, with probability one,

lim
n→∞

sup
z∈H, C∈C, hn≤h≤hn

| W̃n(C, h, z) |√
2nhd log(h−d)

<∞, (3.12)

with

W̃n(C, h, z) := fZ(z)−1
n∑
i=1

{(
1C(Yi)−r(C, z)

)2
L
(Zi − z

h

)
−E
[(

1C(Yi)−r(C, z)
)2
L
(Zi − z

h

)]}
.

(3.13)
Now write

E
((

1C(Yi)− r(C, z)
)2
L
(Zi − z

h

))
=: r̃(C, h, z). (3.14)
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By assumptions (HG′), (HV ′) and (Hf) together with Sche�é's lemma, we can infer that

lim
n→∞

sup
z∈H, C∈C,
h∈[hn,hn]

∣∣∣ r̃(C, h, z)
hdfZ(z)σ2(C, z)

− 1
∣∣∣ = 0 (3.15)

lim
n→∞

sup
z∈H, C∈C,
h∈[hn,hn]

| m(C, h, z)− r(C, z) |= 0, (3.16)

lim
n→∞

sup
h∈[hn,hn]

log(h−d)
nhd

= 0. (3.17)

Writing(
Sn(C, h, z)− nfZ(z)−1 || K ||2λ,2 r̃(C, h, z)

)
− W̃n(C, h, z)

=fZ(z)−1
[(
m2(C, h, z)− r2(C, z)

)
− 2
(
m(C, h, z)− r(C, z)

)]
|| K ||2λ,2

n∑
i=1

L
(Zi − z

h

)
,

we conclude by Theorem 2 and (3.16) that

lim
n→∞

sup
z∈H, C∈C,
hn≤h≤hn

∣∣∣(Sn(C, h, z)− nfZ(z)−1 || K ||2λ,2 r̃(C, h, z)
)
− W̃n(C, h, z)

∣∣∣√
2nhd log(h−d)

= 0

with probability one, from where we obtain with (3.14) and (3.15) that

lim
n→∞

sup
z∈H, C∈C,
hn≤h≤hn

∣∣∣Sn(C, h, z)− nhdσ2(C, z)
∣∣∣√

2nhd log(h−d)
<∞. (3.18)

The proof of (3.8) is now concluded, by (3.17), (3.18) and (HG′). Assertion (3.9) can
be proved in a very similar way, taking care that the class D :=

{
fZ(·)−1/2σ(C, ·)−1

}
is

uniformly equicontinuous and bounded away from zero and in�nity on H. We omit details.
�

3.2 Step 2: convex hull condition

The second step of our proof of Theorem 3 is usually called the "convex hull condition".

Lemma 3.2 With probability one, we have, for all large n and for all C ∈ C, z ∈ H, hn ≤
h ≤ hn,

]
{
i : K

(Zi − z

h

)(
1C(Yi)−m(C, h, z)

)
> 0
}
∈ {1, 2, . . . , n− 1}. (3.19)

Proof : It is su�cient to prove that

lim inf
n→∞

inf
z∈H, C∈C,
h∈[hn,hn]

P
(
±
(
1C(Y )−m(C, h, z)

)
K
(Z − z

h

)
> 0
)
> 0, (3.20)

and that the following class is Glivenko-Cantelli:

A :=
{{

(y, z̃) ∈ Rd′ × Rd,
(
1C(y)−m(C, h, z)

)
K
( z̃ − z

h

)
> 0
}
, C ∈ C, h > 0, z ∈ H

}
.

(3.21)
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First note that A ⊂ B, where

B :=
{{

(y, z̃) ∈ Rd′ × Rd,
(
1C(y)− a

)
K
( z̃ − z

h

)
> 0
}
, C ∈ C, h > 0, z ∈ Rd, a ∈ R

}
.

By (HK1) and by Lemma 2.6.18 in [11], the two following classes of sets are VC:

B± :=
{{
z̃ ∈ Rd, ±K

(
h−d(z̃ − z)

)
> 0
}
, z ∈ Rd, h > 0

}
.

Moreover, as C is a VC class of sets, we straightforwardly deduce that the following class
is also VC:

MG :=
{
{z ∈ χ, 1C(z) > a}, C ∈ C, a ∈ R

}
.

By a combination of points (i) and (ii) of Lemma 2.6.17 in [11], we conclude that B is
VC, which entails that A is Glivenko-Cantelli. We now have to prove (3.20). De�ne the
following family of random variables

Hh :=
{(

1C(Y )−m(C, h, z)
)
K
(Z − z

h

)
, z ∈ H, C ∈ C, 0 < h ≤ h

}
.

By the Cauchy-Schwarz inequality we have P(X > 0) ≥ E(X2)−1E(X1X>0)2. Hence it is
su�cient to prove that, for h small enough we have

inf
X∈Hh

E
(
X1X>0

)
=

1
2

inf
X∈Hh

E
(
| X |

)
> 0, (3.22)

sup
X∈Hh

E
(
X2
)
<∞. (3.23)

Note that the equality appearing in (3.22) is a consequence of E(X) = 0 for each X ∈ Hh.
By (HG′), (Hf) and (3.6), routine analysis shows that, for h small enough, both (3.23)
and the following assertion are true:

inf
X∈Hh

E
(
X2
)
>

1
2

inf
z∈H, C∈C

σ2(C, z)fZ(z) || K ||λ,2=: α0 > 0. (3.24)

Now, as Hh is uniformly bounded by some constant M > 0 we get that α0 ≤ME
(
| X |

)
for all X ∈ Hh, and hence (3.22) is proved. This concludes the proof of Lemma 3.2. �

3.3 Step 3: end of the proof of Theorem 3

Lemma 3.2 ensures us (see, e.g., [10], p. 219) that almost surely, for all large n and for each
z ∈ H, C ∈ C, hn ≤ h ≤ hn, the maximum value in Rn

(
m(C, h, z), C, h, z

)
is obtained by

choosing the following weights (recall (1.13))

pi(C, h, z) :=
1
n

1
1 + λn(C, h, z)wi,n(C, h, z)

, (3.25)

where λn(C, h, z) is the unique solution of

n∑
i=1

wi,n(C, h, z)
1 + λn(C, h, z)wi,n(C, h, z)

= 0. (3.26)

Our next lemma gives an asymptotic control of

sup
C∈C,z∈H,
hn≤h≤hn

| λn(C, h, z) | .

It is largely inspired by Lemma 1 in [3].

16



Lemma 3.3 Under the assumptions of Theorem 2 we have almost surely

sup
C∈C, z∈H,
hn≤h≤hn

| λn(C, h, z) |= O
(√ log(h−d)

nhd

)
. (3.27)

Proof : Following the proof of Owen (see [10], p. 220), Lemma 3.3 will be proved if we
check the following three conditions:

max
1≤i≤n

sup
z∈H, C∈C,
hn≤h≤hn

√
log(h−d)
nhd

| wi,n(C, h, z) |=oa.s.(1), (3.28)

sup
z∈H, C∈C,
hn≤h≤hn

| Xn(C, h, z) |√
nhd log(h−d)

=Oa.s.(1), (3.29)

lim inf
n→∞

inf
z∈H, C∈C,
hn≤h≤hn

Sn(C, h, z)
nhd

>0 a.s. (3.30)

As each wi,n(C, h, z) is almost surely bounded by 2 || K ||Rd , and by (3.17), condition
(3.28) is readily satis�ed. Now note that condition (3.29) is a straightforward consequence
of Theorem 2, and that (3.30) is a consequence of Lemma 3.1 and (HG′). The remainder
of the proof of Lemma 3.3 is done by following Owen (see [10], p. 220).�

Now set
Vi,n(C, h, z) := λn(C, h, z)wi,n(C, h, z).

By Lemma 3.3, we have

lim
n→∞

max
1≤i≤n

sup
z∈H,C∈C

| Vi,n(C, z) |= 0a.s., (3.31)

which entails, almost surely, for all large n and for each z ∈ H, C ∈ C,

0 =
n∑
i=1

wi,n(C, h, z)
1 + Vi,n(C, h, z)

=
n∑
i=1

wi,n(C, h, z)
(
1− Vi,n(C, h, z) + V 2

i,n(C, h, z)/(1 + Vi,n(C, h, z))
)

=Xn(C, h, z)− fZ(z)Sn(C, h, z)λn(C, h, z) +
n∑
i=1

wi,n(C, h, z)V 2
i,n(C, h, z)

1 + Vi,n(C, h, z)

=Xn(C, h, z)− fZ(z)Sn(C, h, z)λn(C, h, z) +
n∑
i=1

w3
i,n(C, h, z)

1 + Vi,n(C, h, z)
λ2
n(C, h, z). (3.32)

From (3.28), (3.29) and (3.30), we conclude that there exists a random sequence εn such
that, almost surely, we have εn → 0 and

n∑
i=1

w3
i,n(C, h, z)

1 + Vi,n(C, h, z)
λ2
n(C, h, z) ≤Xn(C, h, z) max

i
w2
i,n(C, h, z)

×
(

min
1≤i≤n

| 1 + Vi,n(C, h, z) |
)−1

λ2
n(C, h, z)

≤εn
√
nhd log(h−d), (3.33)
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uniformly in C ∈ C, z ∈ H, h ∈ [hn, hn]. Hence, dividing the right hand side of (3.32) by
Sn(C, h, z), recalling (3.30) and (3.17), we obtain with probability one

λn(C, h, z) =
Xn(C, h, z)

fZ(z)Sn(C, h, z)
+ βn(C, h, z), (3.34)

with βn(C, h, z) ≤ Mεn
√

log(h−d)/nhd uniformly in C ∈ C, z ∈ H and h ∈ [hn, hn], for
some almost surely �nite random variable M . We can now conclude that (recall (3.4))

lim
n→∞

sup
z∈H, C∈C,
h∈[hn,hn]

∣∣∣−2 log
(
Rn

(
g, z,m(C, h, z)

))
Un(C, h, z)

− 1
∣∣∣ = 0, (3.35)

by reasoning as in Owen [10], p.221. The proof of Theorem 3 is then concluded by (3.10).
�
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