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Abstract

Consider the location-scale regression model Y = m(X)+σ(X)ε, where the error

ε is independent of the covariate X, and m and σ are smooth but unknown functions.

We construct tests for the validity of this model and show that the asymptotic limits

of the proposed test statistics are distribution free. We also investigate the finite

sample properties of the tests through a simulation study, and we apply the tests

in the analysis of data on food expenditures.
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1 Introduction

Consider the nonparametric location-scale regression model

Y = m(X) + σ(X)ε, (1.1)

where Y is the variable of interest, X is a covariate, the error ε is independent of X, and m

and σ are smooth but unknown location and scale curves respectively. The location curve

m is not restricted to the conditional mean E(Y |X = ·), but can equally well represent

the conditional trimmed mean curve, the median curve, etc. Similarly the scale curve σ

is not restricted to the conditional standard deviation. Let (X1, Y1), . . . , (Xn, Yn) be n

independent replications of (X,Y ).

This model has been studied by many authors over the last years. The estimation

of this model has been considered in Akritas and Van Keilegom (2001), Van Keilegom

and Veraverbeke (2002), Cheng (2004), Müller et al. (2004a,b), among others, whereas

Neumeyer et al. (2004), Van Keilegom et al. (2004), Dette and Van Keilegom (2005) and

Pardo Fernández et al. (2006) studied various testing problems under this model.

Although the independence of the error and the covariate is a quite weak and common

assumption, in several applications, especially in the recent econometrics literature, it is

considered too strong as an assumption. An appropriate testing procedure for the validity

of this model is therefore in demand. In Einmahl and Van Keilegom (2006) a difference-

based testing approach is proposed for the homoscedastic model Y = m(X) + ε, with ε

independent of X. In the present paper we consider another approach, applicable to the

more general model (1.1). Although model (1.1) has been used and studied frequently,

a procedure for testing the validity of this model is, to the best of our knowledge, not

available. Our approach is based on the estimation of the unobserved errors, and we use

Kolmogorov-Smirnov, Cramér-von Mises and Anderson-Darling type test statistics based

on the estimated errors and the covariate to test the independence between the error and

the covariate.

Observe that the tests developed in this paper can be easily adapted for testing the

validity of the homoscedastic model Y = m(X) + ε, with ε independent of X. This is

also a very relevant testing problem; we will pay attention to it in Sections 3 and 4. Also

note that the results in this paper will be presented for random design, but can be readily

adapted to fixed design. In that case, interest lies in the fact whether or not the error
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terms ε1, . . . , εn are identically distributed.

The paper is organized as follows. In the next section, we will construct the test

statistics and present the main asymptotic results, including the asymptotic distribution

of the test statistics. In Section 3 some simulation results will be shown. The analysis

of data on food expenditures is carried out in Section 4. The assumptions and some

technical derivations are deferred to the Appendix.

2 Main Results

Define FX(x) = P (X ≤ x), Fε(y) = P (ε ≤ y), F (y|x) = P (Y ≤ y|X = x) and

FX,ε(x, y) = P (X ≤ x, ε ≤ y), and let DX be the support of the covariate X. The

probability density functions of these distributions will be denoted with lower case let-

ters. Assume that m and σ are, respectively, a location and scale functional. This means

that we can write m(x) = T (F (·|x)) and σ(x) = S(F (·|x)) for some functionals T and S,

such that

T (FaY +b(·|x)) = aT (FY (·|x)) + b and S(FaY +b(·|x)) = aS(FY (·|x)),

for all a ≥ 0 and b ∈ IR, where FaY +b(·|x) denotes the conditional distribution of aY + b

given X = x (see also Huber (1981), pp. 59, 202). It follows (see e.g. Van Keilegom

(1998), Proposition 5.1) that if model (1.1) holds for a certain location functional m and

scale functional σ, then it holds for all location functionals m̃ and scale functionals σ̃, in

the sense that the new error ε̃ = Y−m̃(X)
σ̃(X)

is still independent of X. Hence, we can and

will assume that m and σ2 are given by

m(x) =

1∫

0

F−1(s|x)J(s) ds, σ2(x) =

1∫

0

F−1(s|x)2J(s) ds−m2(x), (2.1)

where F−1(s|x) = inf{y : F (y|x) ≥ s} is the quantile function of Y given x and J is a

given score function satisfying
∫ 1

0
J(s) ds = 1 (e.g., the choice J ≡ 1 leads to m(x) =

E(Y |X = x) and σ2(x) = Var(Y |X = x).)

Our tests will be based on the difference F̂X,ε̂(x, y)− F̂X(x)F̂ε̂(y) for appropriate esti-

mators F̂X , F̂ε̂ and F̂X,ε̂ of FX , Fε and FX,ε respectively. First, let

F̂X(x) = n−1

n∑
i=1

I(Xi ≤ x)
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be the empirical distribution function of X. To estimate the distribution of ε, estimate

m(x) and σ2(x) by

m̂(x) =

1∫

0

F̂−1(s|x)J(s) ds σ̂2(x) =

1∫

0

F̂−1(s|x)2J(s) ds− m̂2(x), (2.2)

where

F̂ (y|x) =
n∑

i=1

Wi(x, an)I(Yi ≤ y) (2.3)

is the Stone (1977) estimator and the Wi(x, an) (i = 1, . . . , n) are the Nadaraya-Watson

weights

Wi(x, an) =
K

(
x−Xi

an

)

∑n
j=1 K

(
x−Xj

an

)

(with K a given kernel function and (an)n∈IN a bandwidth sequence). Now define ε̂i =

{Yi − m̂(Xi)}/σ̂(Xi) for the resulting residuals, and let

F̂ε̂(y) = n−1

n∑
i=1

I(ε̂i ≤ y). (2.4)

Finally, FX,ε(x, y) is estimated by

F̂X,ε̂(x, y) =
1

n

n∑
i=1

I(Xi ≤ x, ε̂i ≤ y).

To test the null hypothesis, we define the following test statistics:

Tn,KS =
√

n sup
x,y
|F̂X,ε̂(x, y)− F̂X(x)F̂ε̂(y)|, (2.5)

Tn,CM = n

∫∫
(F̂X,ε̂(x, y)− F̂X(x)F̂ε̂(y))2 dF̂X(x) dF̂ε̂(y), (2.6)

Tn,AD = n

∫∫
(F̂X,ε̂(x, y)− F̂X(x)F̂ε̂(y))2

F̂X(x)F̂ε̂(y)(1− F̂X−(x))(1− F̂ε̂−(y))
dF̂X(x) dF̂ε̂(y). (2.7)

(For a distribution function F , we denote with F− its left continuous version.)

These statistics are similar to the ones considered in Hoeffding (1948), Blum et al.

(1961) and De Wet (1980) for testing independence between two random variables, except
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that here we have replaced the unknown errors εi by ε̂i (i = 1, . . . , n). As we will see

below, the limiting distribution of these test statistics is the same as in the case where

the εi are observed, and hence the tests are asymptotically distribution free.

In the first theorem we obtain an i.i.d. representation for the difference F̂X,ε̂(x, y) −
F̂X(x)F̂ε̂(y), x ∈ DX , y ∈ IR (weighted in an appropriate way), on which all three test

statistics are based. Based on this result, the weak convergence will then be established.

The assumptions mentioned below are given in the Appendix.

Theorem 2.1 Assume (A),(K),(J) and (F). Then, under H0, for 0 ≤ β < 1
2
,

sup
x∈DX
y∈IR

∣∣∣∣
1

N(x, y)β

{
F̂X,ε̂(x, y)− F̂X(x)F̂ε̂(y)

− (F̂X,ε(x, y)− FX,ε(x, y))− FX(x)(F̂ε(y)− Fε(y))− Fε(y)(F̂X(x)− FX(x))
}∣∣∣

= oP (n−1/2),

with

F̂X,ε(x, y) =
1

n

n∑
i=1

I(Xi ≤ x, εi ≤ y),

F̂ε(y) =
1

n

n∑
i=1

I(εi ≤ y),

and

N(x, y) = FX(x)Fε(y)(1− FX(x))(1− Fε(y)).

Proof Write

N(x, y)−β{[F̂X,ε̂(x, y)− F̂X(x)F̂ε̂(y)]− [FX,ε(x, y)− FX(x)Fε(y)]}

= N(x, y)−β{[F̂X,ε̂(x, y)− FX,ε(x, y)]− FX(x)[F̂ε̂(y)− Fε(y)]− F̂ε̂(y)[F̂X(x)− FX(x)]}

= N(x, y)−β (F̂X,ε(x, y)− FX,ε(x, y))− FX(x)(F̂ε(y)− Fε(y))− Fε(y)(F̂X(x)− FX(x))

+ N(x, y)−β n−1

n∑
i=1

[I(Xi ≤ x)− FX(x)][I(ε̂i ≤ y)− I(εi ≤ y)]

− N(x, y)−β[F̂X(x)− FX(x)][F̂ε̂(y)− Fε(y)]. (2.8)

From Lemma A.1 it follows that the second term on the right hand side of (2.8) is equal

to (using the notation of that lemma)

N(x, y)−β(F̂X(x)− FX(x))(Fε̂(y)− Fε(y)) + oP (n−1/2),
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uniformly in x and y. This term is oP (n−1/2), since by the Chibisov-O’Reilly theorem,

sup
x

∣∣∣∣∣
F̂X(x)− FX(x)

[FX(x)(1− FX(x))]β

∣∣∣∣∣ = OP (n−1/2),

and since

sup
y

∣∣∣∣
Fε̂(y)− Fε(y)

[Fε(y)(1− Fε(y))]β

∣∣∣∣ = oP (1), (2.9)

which can be shown in a similar way as in the beginning of the proof of Lemma A.1.

Using again Lemma A.1, the third term of (2.8) can be written as

N(x, y)−β[F̂X(x)− FX(x)][{F̂ε(y)− Fε(y)}+ {Fε̂(y)− Fε(y)}] + oP (n−1/2)

= oP (n−1/2),

uniformly in x and y. Hence, the result follows. 2

The next result follows readily from Theorem 2.1, by using standard empirical process

theory.

Theorem 2.2 Assume (A),(K),(J) and (F). Let W0 be a 4-sided tied-down Wiener pro-

cess on [0, 1]2, defined by W0(u, v) = W (u, v)− uW (1, v)− vW (u, 1) + uvW (1, 1), u, v ∈
[0, 1], where W is a standard bivariate Wiener process. Under H0, for 0 ≤ β < 1

2
, the

process
√

n
F̂X,ε̂(x, y)− F̂X(x)F̂ε̂(y)

N(x, y)β
, x ∈ DX , y ∈ IR,

converges weakly to W0(FX(x), Fε(y))/N(x, y)β.

As a consequence, we find the limiting distribution of the three test statistics. Recall

that these limits are distribution free and identical to the ones in the classical case, i.e.

when m and σ are not estimated, but known.
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Theorem 2.3 Assume (A),(K),(J) and (F). Then, under H0,

Tn,KS
d→ sup

0<u,v<1
|W0(u, v)|,

Tn,CM
d→

∫∫
W 2

0 (u, v) dudv,

Tn,AD
d→

∫∫
W 2

0 (u, v)

uv(1− u)(1− v)
dudv.

Proof The result for Tn,KS follows readily from Theorem 2.2 and the continuous mapping

theorem. The result for Tn,CM follows from Theorem 2.2, Lemma A.1, (2.9) and the

Helly-Bray theorem.

Now we present the proof for Tn,AD. From the Skorohod construction and Theorem

2.2 it follows that (keeping the same notation for the new processes)

sup
x,y

∣∣∣
√

nT̂ (x, y)−W0(FX(x), Fε(y))

N(x, y)β

∣∣∣ P→ 0, (2.10)

where T̂ (x, y) = F̂X,ε̂(x, y)− F̂X(x)F̂ε̂(y) and 0 ≤ β < 1/2. In what follows we will show

that

∫∫
nT̂ 2(x, y)

N̂(x, y)
dF̂X(x) dF̂ε̂(y)−

∫∫
W 2

0 (FX(x), Fε(y))

N(x, y)
dFX(x) dFε(y)

P→ 0, (2.11)

where N̂(x, y) = F̂X(x)F̂ε̂(y)(1− F̂X−(x))(1− F̂ε̂−(y)). Define An = (F̂−1
X (n−3/4), F̂−1

X (1−
n−3/4))× (F̂−1

ε̂ (n−3/4), F̂−1
ε̂ (1− n−3/4)). The left hand side of (2.11) can be written as

∫∫

An

nT̂ 2(x, y)−W 2
0 (FX(x), Fε(y))

N(x, y)1/3

N(x, y)1/3

N̂(x, y)1/4

dF̂X(x) dF̂ε̂(y)

N̂(x, y)3/4

+

∫∫

An

N(x, y)− N̂(x, y)

N(x, y)2/5

W 2
0 (FX(x), Fε(y))

N(x, y)4/5

N(x, y)1/5

N̂(x, y)1/6

dF̂X(x) dF̂ε̂(y)

N̂(x, y)5/6

+

∫∫

An

W 2
0 (FX(x), Fε(y))

N(x, y)
dF̂X(x) dF̂ε̂(y)−

∫∫

DX×IR

W 2
0 (FX(x), Fε(y))

N(x, y)
dFX(x) dFε(y)

+

∫∫

Ac
n

nT̂ 2(x, y)

N̂(x, y)
dF̂X(x) dF̂ε̂(y)

=
5∑

i=1

Ti.
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The term T1 is oP (1) by (2.10) and Lemma A.2. For showing that T2 = oP (1) use is

made of Lemmas A.1 and A.2 and the Chibisov-O’Reilly theorem. The convergence in

probability to 0 of T3 + T4 follows from the Helly-Bray theorem. Remains to consider T5.

We will only show that

∫∫

Bn

nT̂ 2(x, y)

F̂X(x)F̂ε̂(y)
dF̂X(x) dF̂ε̂(y)

P→ 0,

where Bn is the intersection of Ac
n and (−∞,m1)×(−∞, mε), with m1 and mε the medians

of FX and Fε, respectively; the other parts can be dealt with similarly. First consider

(with cn = F̂−1
X (n−3/4), dn = F̂−1

ε̂ (n−3/4))

∫ cn

−∞

∫ dn

−∞

nT̂ 2(x, y)

F̂X(x)F̂ε̂(y)
dF̂ε̂(y) dF̂X(x)

≤ 2n

∫ cn

−∞

∫ dn

−∞

F̂ 2
X,ε̂(x, y) + F̂ 2

X(x)F̂ 2
ε̂ (y)

F̂X(x)F̂ε̂(y)
dF̂ε̂(y) dF̂X(x)

≤ 4nF̂X(cn)F̂ε̂(dn)

≤ 4n(n−3/4 + n−1)2 → 0.

Next, consider

∫ m1

cn

∫ dn

−∞

nT̂ 2(x, y)

F̂X(x)F̂ε̂(y)
dF̂ε̂(y) dF̂X(x)

≤ 2n

∫ m1

cn

∫ dn

−∞

( F̂ε̂(y)

F̂X(x)
+ F̂X(x)F̂ε̂(y)

)
dF̂ε̂(y) dF̂X(x)

≤ n(log n3/4 + 1)(n−3/4 + n−1)2 → 0.

Finally, the integral over (−∞, cn)× (dn,mε) can be dealt with in a similar way. 2

3 Simulations

The test statistics considered in the previous section are asymptotically distribution free,

and hence the asymptotic critical values of the tests can be obtained by simulation or from

tables. However, for smaller sample sizes simulations have shown that these asymptotic

critical values do not respect well the size of the test. Therefore, a bootstrap procedure is
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a useful alternative and can be performed in the following way. Fix B and let b = 1, ..., B.

Step 1: Let ε∗b1 , . . . , ε∗bn be an i.i.d. sample from the distribution of the residuals ε̂1, . . . , ε̂n.

Step 2: Define Y ∗b
i = m̂(Xi) + σ̂(Xi)ε

∗b
i (i = 1, . . . , n).

Step 3: Let T ∗b
n,KS, T ∗b

n,CM and T ∗b
n,AD be the test statistics obtained from the bootstrap

sample {(Xi, Y
∗b
i ), i = 1, . . . , n}.

If we denote T
∗(b)
n,KS for the order statistics of the values T ∗1

n,KS, . . . , T ∗B
n,KS obtained in

Step 3, and analogously for T
∗(b)
n,CM and T

∗(b)
n,AD, then T

∗b(1−α)Bc
n,KS , T

∗b(1−α)Bc
n,CM and T

∗b(1−α)Bc
n,AD

approximate the (1 − α)-th quantiles of the distributions of Tn,KS, Tn,CM and Tn,AD,

respectively.

We carry out two different simulation studies. In the first study, we compare the

rejection probabilities of the proposed tests with those of the tests studied in Einmahl

and Van Keilegom (2006). Since in the latter paper it is assumed that σ ≡ 1, we replace σ̂

everywhere by 1 in our test statistics. In Einmahl and Van Keilegom (2006) the same type

of test statistics is used as in the present paper, but the bivariate empirical distribution

function on which these statistics are based is very different. Instead of estimating the

location curve m, in that paper the smooth, unknown m is almost eliminated by taking

appropriate differences of Y -values that correspond to 3 neighboring X-values. The thus

obtained limiting distributions of the test statistics are not distribution free and more

complicated than the ones in this paper.

Consider the following simulation set up. Suppose that X has a uniform-(0, 1) dis-

tribution, m(x) = E(Y |X = x) = x − 0.5x2, σ2 = Var(Y |X = x) = 0.12 and under the

null hypothesis ε follows a standard normal distribution. The simulations are carried out

for samples of sizes n = 100 and 200 and the significance level α = 0.05. The results are

based on 250 samples and for each of them 250 bootstrap replications are created (except

under the null hypothesis, where we use 500 samples and 500 bootstrap replications).

The bandwidth an is selected by means of a least-squares cross-validation procedure; the

kernel K is equal to the Epanechnikov kernel K(u) = 3/(4
√

5)(1− u2/5)I(u2 < 5).

The following alternative hypotheses are studied. First consider

H1,A : ε |X = x ∼ N(0, 1 + ax),

with a > 0. Next, let

H1,B : ε |X = x
d
=

Wx − rx√
2rx

,
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where Wx ∼ χ2
rx

, rx = 1/(bx) and b > 0 controls the skewness of the distribution. Note

that the first and second moment of the variable ε created in the latter way do not

depend on x and coincide with the respective moments under H0. When b tends to 0, the

distribution of ε |X = x converges to its null distribution. Finally, let

H1,C : ε |X = x ∼
√

1− (cx)1/4t2/(cx)1/4 ,

where 0 < c ≤ 1 is a parameter controlling the kurtosis of the distribution. By construc-

tion, the conditional moments up to order three of ε given X are constant and coincide

with the respective moments under the null hypothesis, while the fourth conditional mo-

ment does depend on X (note that the third and fourth moment do not need to exist).

The conditional distribution of ε under H1,C converges to the conditional null distribution

of ε when c tends to 0.

a Meth. n = 100 n = 200

KS CM AD KS CM AD

0 Est .068 .072 .072 .070 .060 .066

Diff .044 .072 .034 .062 .050 .040

1 Est .080 .096 .132 .136 .208 .376

Diff .088 .124 .092 .148 .184 .168

2.5 Est .152 .268 .316 .312 .624 .788

Diff .176 .236 .216 .304 .412 .432

5 Est .224 .444 .524 .540 .872 .960

Diff .240 .352 .308 .492 .672 .716

10 Est .328 .568 .668 .708 .964 1.00

Diff .344 .488 .428 .656 .856 .872

Table 1: Power under H1,A with known variance. The new method is indicated by ‘Est’,

the difference approach by ‘Diff’.

Tables 1-3 summarize the results for these three alternative hypotheses. Table 1

shows that under the alternative hypothesis H1,A, the new method clearly outperforms

the difference approach of Einmahl and Van Keilegom (2006), except for the Kolmogorov-

Smirnov test. Under the alternative H1,B (Table 2), the new approach performs better

than the difference approach for small b; for larger b the difference approach is somewhat

10



b Meth. n = 100 n = 200

KS CM AD KS CM AD

0 Est .068 .072 .072 .070 .060 .066

Diff .044 .072 .034 .062 .050 .040

1 Est .212 .160 .224 .324 .256 .396

Diff .060 .100 .068 .092 .176 .116

2.5 Est .392 .236 .344 .568 .328 .468

Diff .120 .216 .116 .224 .348 .232

5 Est .524 .324 .388 .600 .408 .468

Diff .148 .300 .200 .460 .672 .572

10 Est .616 .396 .412 .728 .484 .496

Diff .256 .512 .380 .712 .880 .816

Table 2: Power under H1,B with known variance. The new method is indicated by ‘Est’,

the difference approach by ‘Diff’.

c Meth. n = 100 n = 200

KS CM AD KS CM AD

0 Est .068 .072 .072 .070 .060 .066

Diff .044 .072 .034 .062 .050 .040

0.2 Est .080 .096 .116 .084 .100 .124

Diff .044 .080 .040 .088 .108 .096

0.4 Est .108 .100 .160 .112 .128 .216

Diff .052 .088 .048 .132 .180 .156

0.6 Est .132 .156 .224 .148 .248 .344

Diff .072 .160 .100 .220 .312 .252

0.8 Est .192 .240 .360 .236 .388 .584

Diff .172 .280 .200 .444 .604 .532

1 Est .308 .432 .572 .512 .752 .876

Diff .376 .612 .520 .836 .944 .940

Table 3: Power under H1,C with known variance. The new method is indicated by ‘Est’,

the difference approach by ‘Diff’.
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better. Finally, the results under the alternative H1,C , given in Table 3, show that the

difference approach gives higher power than the present approach in most cases, but for

the Anderson-Darling statistic (which is the best one for detecting this alternative) it is

the other way around. In summary, we see good behavior of the present method and

we can observe that both methods perform quite different and therefore both have their

merits for detecting certain alternatives.

Next, in the second simulation study we consider the general heteroscedastic model,

in which the function σ is supposed to be unknown. The same simulation setup is chosen

as for the first study, except that we take now n = 50 and 100, σ2(x) = (2 + x)2/100, and

the results are based on 500 samples and 500 bootstrap replications. We consider only

H1,B and H1,C , since H1,A is now contained in the null hypothesis. The bandwidths used

to estimate m and σ are different. They are both selected by means of a cross-validation

procedure. No competing procedures exist for testing this general model.

b n = 50 n = 100

KS CM AD KS CM AD

0 .046 .030 .048 .068 .050 .044

1 .098 .074 .116 .156 .136 .298

2.5 .314 .204 .270 .430 .302 .422

5 .530 .348 .410 .592 .354 .474

10 .556 .342 .360 .594 .356 .416

Table 4: Power under H1,B with unknown variance.

c n = 50 n = 100

KS CM AD KS CM AD

0 .046 .030 .048 .068 .050 .044

0.2 .098 .088 .086 .078 .082 .096

0.4 .098 .096 .094 .080 .096 .100

0.6 .108 .116 .100 .098 .114 .130

0.8 .146 .142 .144 .140 .154 .214

1 .258 .242 .262 .272 .366 .478

Table 5: Power under H1,C with unknown variance.
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The results are given in Tables 4 and 5 and show that the significance level is quite

close to the nominal value of 0.05, both for n = 50 and 100. For the alternative hypothesis

H1,B, the Kolmogorov-Smirnov test usually outperforms the two other tests, whereas for

the alternative H1,C there is not so much difference between the behavior of the three test

statistics for n = 50, whereas the Anderson-Darling test comes out as winner for n = 100.

Note that, under both alternatives, the power of the three test statistics increases with b

and c, except when b increases from 5 to 10. This seems to be due to the fact that the

conditional error distribution is very skewed.

4 Data analysis

We consider monthly expenditures in Dutch Guilders (≈ 0.45 Euro) of Dutch households

on several commodity categories and a number of background variables. These data can

be found in the Data Archive of the Journal of Applied Econometrics, see Adang and

Melenberg (1995). We use accumulated expenditures on food and total expenditures over

the year October 1986 through September 1987 for households consisting of two persons

(n = 159) and want to regress two responses, namely

Y1 = share of food expenditure in household budget

Y2 = log(expenditure on food per household)

to the regressor X = log(total expenditures). Scatterplots of these responses versus

the regressor are given in Figure 1. We want to use our tests to see if model (1.1) is

appropriate. The bandwidths for estimating m and σ are, as in the simulation section,

determined by means of a cross-validation procedure. The P -values of the tests are

presented in Table 6.

The table shows that model (1.1) is violated by Y1 (except for the Kolmogorov-Smirnov

test, whose P -value is borderline), but not by Y2. Next, we like to test whether Y2 satisfies

the more restrictive homoscedastic model Y2 = m(X) + ε, with ε independent of X. The

P -values given in the last column of Table 6 indicate that the homoscedastic model is

valid too and can be used for an analysis of the log food expenditure data. This is in

agreement with the findings in Einmahl and Van Keilegom (2006).
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Figure 1: Scatterplot of Y1 versus X (left) and of Y2 versus X (right).

Test Y1 Y2

Hetero Hetero Homo

KS 0.071 0.369 0.378

CM 0.011 0.315 0.371

AD 0.011 0.477 0.638

Table 6: P-values for the household data for the heteroscedastic and homoscedastic model.

Appendix

The asymptotic results given in Section 2 require the following assumptions.

(A) The sequence (an)n∈IN satisfies na4
n → 0 and na3+2δ

n (log a−1
n )−1 →∞ for some δ > 0.

(K) The probability density function K has compact support,
∫

uK(u) du = 0 and K is

twice continuously differentiable.

(J)(i) J(s) = I(0 ≤ s ≤ 1) or

(ii) there exist 0 ≤ s0 ≤ s1 ≤ 1 such that s0 ≤ inf{s ∈ [0, 1] : J(s) 6= 0}, s1 ≥ sup{s ∈
[0, 1] : J(s) 6= 0} and infx∈DX

infs0≤s≤s1 f(F−1(s|x)|x) > 0 and J is twice continuously

differentiable on the interior of its support,
∫ 1

0
J(s) ds = 1 and J(s) ≥ 0 for all 0 ≤ s ≤ 1.
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(F )(i) The support DX of X is a bounded interval, FX is twice continuously differentiable

and infx∈DX
fX(x) > 0.

(ii) F (y|x) is differentiable in y and twice differentiable in x and the derivatives are

continuous in (x, y). Moreover, supx,y |y|f(y|x) < ∞ and the same holds true for the first

and second derivative of F (y|x) with respect to x.

(iii) For every γ ∈ (0, 1) there exists an α ∈ (0, 1), such that

sup
y,|z1−1|≤α,|z2|≤α

max(|y|, 1)fε(z1y + z2)

min(Fε(y), 1− Fε(y))γ
< ∞,

and

sup
y,|z1−1|≤α,|z2|≤α

fε(z1y + z2)

fε(y)
min(Fε(y), 1− Fε(y))γ < ∞.

(iv) infx∈DX
σ(x) > 0.

Note that condition (F )(iii) is only needed for the Anderson-Darling statistic and

controls the denominator of that statistic. This condition is satisfied for error distributions

encountered in practice, in particular for the normal distribution (used as null distribution

in the simulation section) and for the Student t-distribution.

In addition to Fε, F̂ε and F̂ε̂, we will need Fε̂(y) = P ({Y − m̂(X)}/σ̂(X) ≤ y|m̂, σ̂),

where (X,Y ) is independent of (X1, Y1), . . . , (Xn, Yn). The proofs of Section 2 are based

on the two following crucial results.

Lemma A.1 Assume (A),(K),(J) and (F). Then, for 0 ≤ β < 1
2
,

sup
y∈IR

∣∣∣[Fε(y)(1− Fε(y))]−β [F̂ε̂(y)− F̂ε(y)− Fε̂(y) + Fε(y)]
∣∣∣ = oP (n−1/2)

and

sup
x∈DX
y∈IR

∣∣∣∣∣N(x, y)−β n−1

n∑
i=1

[I(Xi ≤ x)− FX(x)]

× [I(ε̂i ≤ y)− I(εi ≤ y)− Fε̂(y) + Fε(y)]
∣∣∣ = oP (n−1/2).

Proof We will show the first statement. The second one can be proved in a similar way.

For reasons of symmetry we restrict attention to the case where y < F−1
ε (1/2). Since
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1 − Fε(y) is bounded away from 0 in this case, we only need to consider Fε(y) in the

denominator. In order to simplify the presentation, we will present the proof for the case

σ ≡ 1 and known. If this is not the case, the estimator σ̂ can be handled in much the

same way as the estimator m̂.

Choose 0 < δ1 < (1
2
− β)/(1

2
+ β). Write

Fε̂(y)

Fε(y)1−δ1
− Fε(y)δ1 =

∫
P (ε ≤ y + m̂(x)−m(x)|m̂)− P (ε ≤ y)

Fε(y)1−δ1
dFX(x)

=

∫
fε(ξy(x))

Fε(y)1−δ1
(m̂(x)−m(x)) dFX(x),

for some ξy(x) between y and y + m̂(x)−m(x). Since supy,|z|≤α fε(y + z)/Fε(y)1−δ1 < ∞
(for some α > 0) and supx |m̂(x)−m(x)| = oP (1) (see Proposition 4.3 in Akritas and Van

Keilegom (2001)), the above is oP (1), uniformly in y. Hence, it follows that

sup
y

Fε̂(y)β+δ2

Fε(y)β
= OP (1)

with δ2 = βδ1/(1 − δ1) and so it suffices to consider Fε̂(y)−β−δ2 n−1
∑n

i=1[I(ε̂i ≤ y)

− I(εi ≤ y) − Fε̂(y) + Fε(y)]. Next, note that in a similar way (but with replacing

δ1 by δ1/(1 + δ1)), we can show that

sup
y

∣∣∣∣
Fε(y)β+2δ2

Fε̂(y)β+δ2
− Fε(y)δ2

∣∣∣∣
P→ 0.

So since β + 2δ2 < 1
2
, it follows from the Chibisov-O’Reilly theorem that

sup
y

∣∣∣∣∣Fε(y)−β−2δ2n−1

n∑
i=1

[I(εi ≤ y)− Fε(y)]

∣∣∣∣∣ = OP (n−1/2),

and hence it suffices to show that

sup
y

∣∣∣∣∣n
−1

n∑
i=1

[
I(ε̂i ≤ y)

Fε̂(y)a
− I(εi ≤ y)

Fε(y)a
− Fε̂(y)1−a + Fε(y)1−a

]∣∣∣∣∣ = oP (n−1/2), (A.1)

where a = β+δ2 throughout the proof. Note that 0 ≤ a < 1/2. Let dn(x) = m̂(x)−m(x),

and consider the class

F =

{
(x, e) 7→ I(e ≤ y + d(x))

P (ε ≤ y + d(X))a
− I(e ≤ y)

P (ε ≤ y)a
− P (ε ≤ y + d(X))1−a + P (ε ≤ y)1−a;

y < F−1
ε (1/2), d ∈ C1+δ

1 (DX)
}

,
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where C1+δ
1 (DX) (with δ > 0 as in assumption (A)) is the class of all differentiable

functions d defined on DX such that ‖d‖1+δ ≤ α/2 (with α > 0 as in assumption (F )(iii)),

where

‖d‖1+δ = max{sup
x
|d(x)|, sup

x
|d′(x)|}+ sup

x,x′

|d′(x)− d′(x′)|
|x− x′|δ .

Note that by Propositions 4.3, 4.4 and 4.5 in Akritas and Van Keilegom (2001), we have

that P (dn ∈ C1+δ
1 (DX)) → 1 as n →∞. In the next part of this proof we will show that

the class F is Donsker, i.e. we will establish the weak convergence of n−1/2
∑n

i=1 f(Xi, εi),

f ∈ F . This is done by verifying the conditions of Theorem 2.11.9 in van der Vaart and

Wellner (1996) :
∫ δn

0

√
log N[ ](ε̄,F , Ln

2 )dε̄ → 0 for every δn ↓ 0 (A.2)

n1/2E

{
sup
f∈F

|f(X, ε)|I(sup
f∈F

|f(X, ε)| > n1/2η)

}
→ 0 for every η > 0, (A.3)

where N[ ](ε̄,F , Ln
2 ) is the bracketing number, defined as the minimal number of sets Nε̄

in a partition F = ∪Nε̄
j=1Fε̄j, such that for every j = 1, . . . , Nε̄ :

E

{
sup

f,g∈Fε̄j

|f(X, ε)− g(X, ε)|2
}
≤ ε̄2. (A.4)

According to Theorem 2.10.6 in van der Vaart and Wellner (1996), we can deal with the

four terms in the definition of F separately. We will restrict ourselves to showing (A.2)

and (A.3) for

F1 =

{
(x, e) 7→ I(e ≤ y + d(x))

P (ε ≤ y + d(X))a
; y < F−1

ε (1/2), d ∈ C1+δ
1 (DX)

}
,

since the other terms are similar, but much easier. We will assume 0 < ε̄ ≤ 1. In Corol-

lary 2.7.2 of the aforementioned book it is stated that m = N[ ]((K1ε̄)
2, C1+δ

1 (DX), L2(P ))

is bounded by exp(K(K1ε̄)
− 2

1+δ ), with K1 > 0 to be determined later. Let dL
1 ≤

dU
1 , . . . , dL

m ≤ dU
m be the functions defining the m brackets for C1+δ

1 (DX). Thus, for

each d and each fixed y :

I(ε ≤ y + dL
i (X)) ≤ I(ε ≤ y + d(X)) ≤ I(ε ≤ y + dU

i (X)).

Let b = min(2a, 1 − 2a). Define FL
i (y) = P (ε ≤ y + dL

i (X)) and let −∞ = yL
i1 <

yL
i2 < . . . < yL

i,mL
= +∞ (mL = O(ε̄−2/b)) partition the line in segments having FL

i -

probability less than or equal to K2ε̄
2/b where K2 > 0 will be chosen later. Similarly,
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define FU
i (y) = P (ε ≤ y + dU

i (X)) and let −∞ = yU
i1 < yU

i2 < . . . < yU
i,mU

= +∞
(mU = O(ε̄−2/b)) partition the line in segments having FU

i -probability less than or equal

to K2ε̄
2/b.

Let Fε̄ik (i = 1, . . . , m, k = 1, . . . , mL − 1) be the subset of F1 defined by the functions

dL
i ≤ d ≤ dU

i and ỹL
ik ≤ y ≤ ỹU

ik, where ỹL
ik = yL

ik and ỹU
ik is the smallest of the yU

ik which is

larger than (or equal to) yL
i,k+1. Fix i, k and fix X and ε. We consider three cases :

Case 1 : For all f ∈ Fε̄ik, f(X, ε) = 0. The supremum in (A.4) equals zero in that case.

Case 2 : For certain f ∈ Fε̄ik, f(X, ε) = 0 and for certain f ∈ Fε̄ik, f(X, ε) 6= 0. This

happens only if ỹL
ik + dL

i (X) ≤ ε ≤ ỹU
ik + dU

i (X). Also, the supremum in (A.4) is bounded

by Fε(ε)
−2a in that case. Hence, the expected value in (A.4), restricted to those (X, ε)

that belong to case 2, is bounded by

∫ ∫ ỹU
ik+dU

i (x)

ỹL
ik+dL

i (x)

Fε(y)−2a dFε(y) dFX(x)

=
1

1− 2a

∫
[Fε(ỹ

U
ik + dU

i (x))1−2a − Fε(ỹ
L
ik + dL

i (x))1−2a] dFX(x)

=
1

1− 2a

∫
[Fε(ỹ

U
ik + dU

i (x))1−2a − Fε(ỹ
L
i,k+1 + dU

i (x))1−2a] dFX(x)

+
1

1− 2a

∫
[Fε(ỹ

L
i,k+1 + dU

i (x))1−2a − Fε(ỹ
L
i,k+1 + dL

i (x))1−2a] dFX(x)

+
1

1− 2a

∫
[Fε(ỹ

L
i,k+1 + dL

i (x))1−2a − Fε(ỹ
L
ik + dL

i (x))1−2a] dFX(x)

≤ 1

1− 2a
[FU

i (ỹU
ik)− FU

i (ỹL
i,k+1)]

1−2a +

∫
Fε(ξik(x))−2afε(ξik(x))(dU

i (x)− dL
i (x)) dFX(x)

+
1

1− 2a
[FL

i (ỹL
i,k+1)− FL

i (ỹL
ik)]

1−2a

≤ 2K1−2a
2

1− 2a
ε̄2(1−2a)/b + K ′‖dU

i − dL
i ‖L1(P ),

and this is bounded by ε̄2 for proper choice of K1 and K2, where K ′ > 0 and where ξik(x)

is between ỹL
i,k+1 + dL

i (x) and ỹL
i,k+1 + dU

i (x).

Case 3 : For all f ∈ Fε̄ik, f(X, ε) 6= 0. This implies that k > 1 and hence FL
i (ỹL

ik) ≥ Kε̄2/b.

Hence, the expected value at the left hand side of (A.4), restricted to those (X, ε) that
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satisfy the condition of case 3, is bounded by

[FL
i (ỹL

ik)
−a − FU

i (ỹU
ik)

−a]2FL
i (ỹL

ik)

= {[FL
i (ỹL

ik)
−a − FL

i (ỹL
i,k+1)

−a] + [FL
i (ỹL

i,k+1)
−a − FU

i (ỹL
i,k+1)

−a]

+[FU
i (ỹL

i,k+1)
−a − FU

i (ỹU
ik)

−a]}2FL
i (ỹL

ik)

=: {T1 + T2 + T3}2FL
i (ỹL

ik) ≤ 3{T 2
1 + T 2

2 + T 2
3 }FL

i (ỹL
ik).

It is easy to see that

T 2
1 FL

i (ỹL
ik) ≤ [FL

i (ỹL
i,k+1)− FL

i (ỹL
ik)]

2aFL
i (ỹL

ik)
1−4a

and this is bounded by ε̄2 for proper choice of K2 > 0 (consider separately a ≤ 1/4 and

a > 1/4). It can be shown in a similar way that T 2
` FL

i (ỹL
ik) ≤ ε̄2 for ` = 2, 3 and for

K1, K2 > 0 small enough. This shows that (A.4) is satisfied and hence

N[ ](ε̄,F1, L
n
2 ) = O(exp(2K(K1ε̄)

−2/(1+δ))).

It now follows that (A.2) holds, since

∫ δn

0

√
log N[ ](ε̄,F1, Ln

2 ) dε̄ ≤ 2K

∫ δn

0

(K1ε̄)
−1/(1+δ) dε̄ = 2K

1 + δ

δ
(K1δn)δ/(1+δ) → 0.

Next, by writing

sup
f∈F1

|f(X, ε)| ≤ sup
d∈C1+δ

1 (DX),−∞<y<∞

I(ε ≤ y + d(X))

P (ε ≤ y + d(X))a

= sup
d∈C1+δ

1 (DX)

[∫
Fε(ε− d(X) + d(x))a dFX(x)

]−1

≤ Fε(ε− α)−a,

it follows that the left hand side of (A.3) is bounded by

n1/2E{Fε(ε− α)−aI(Fε(ε− α)−a > n1/2η)} = n1/2

∫ κn

−∞
Fε(y − α)−afε(y) dy, (A.5)

where κn = F−1
ε [(n1/2η)−1/a] + α. It now follows from condition (F )(iii) that (A.5) is

bounded, for n large enough, by (where γ > 0 is chosen such that a + γ < 1/2 and K is
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some positive constant)

Kn1/2

∫ κn

−∞
Fε(y − α)−(a+γ) dFε(y − α)

= Kn1/2

∫ (n1/2η)−1/a

0

u−(a+γ) du

=
Kn1/2

1− a− γ
(n1/2η)−(1−a−γ)/a = O(n(2a+γ−1)/(2a)) = o(1).

This shows that the class F1 (and hence F) is Donsker. Next, let us calculate

V ar

[
I(ε ≤ y + dn(X))

P (ε ≤ y + dn(X))a
− I(ε ≤ y)

P (ε ≤ y)a
− P (ε ≤ y + dn(X))1−a + P (ε ≤ y)1−a

∣∣∣∣ dn

]

≤ E

[
E

({
I(ε ≤ y + dn(X))

P (ε ≤ y + dn(X))a
− I(ε ≤ y)

P (ε ≤ y)a

}2
∣∣∣∣∣ X, dn

)∣∣∣∣∣ dn

]
. (A.6)

The conditional expectation is equal to (suppose that dn(X) ≥ 0 for simplicity)

E

[
I(ε ≤ y + dn(X))

Fε(y + dn(X))2a
+

I(ε ≤ y)

Fε(y)2a
− 2

I(ε ≤ y)

Fε(y + dn(X))aFε(y)a

∣∣∣∣ X, dn

]

= Fε(y + dn(X))1−2a − Fε(y)1−2a + 2
Fε(y)1−2a

Fε(y + dn(X))a
[Fε(y + dn(X))a − Fε(y)a]

= (1− 2a)Fε(ξy(X))−2afε(ξy(X))dn(X)

+2a
Fε(y)1−2a

Fε(y + dn(X))a
Fε(ξ̃y(X))a−1fε(ξ̃y(X))dn(X)

≤ Fε(ξy(X))−2afε(ξy(X))dn(X)

and, by condition (F )(iii), this is bounded by Kdn(X) for some K > 0, where ξy(X) and

ξ̃y(X) are between y and y + dn(X). A similar derivation can be given when dn(X) ≤ 0.

It follows that the right hand side of (A.6) is bounded by K supx |dn(x)| = oP (1), by

Proposition 4.3 in Akritas and Van Keilegom (2001).

Since the class F is Donsker, it follows from Corollary 2.3.12 in van der Vaart and

Wellner (1996) that

lim
η↓0

lim sup
n→∞

P

(
sup

f∈F ,V ar(f)<η

n−1/2

∣∣∣∣∣
n∑

i=1

f(Xi, εi)

∣∣∣∣∣ > ε̄

)
= 0,

for each ε̄ > 0. By restricting the supremum inside this probability to the elements in F
corresponding to d(X) = dn(X) as defined above, (A.1) follows. 2
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Lemma A.2 Assume (A),(K),(J) and (F), let η > 0, 0 < ζ < 1 and bn = n−(1−ζ). Then,

sup
F̂ε̂(y)≥bn

{
Fε(y)η

∣∣∣Fε(y)

F̂ε̂(y)
− 1

∣∣∣
}

= oP (1)

and

sup
1−F̂ε̂(y)≥bn

{
(1− Fε(y))η

∣∣∣1− Fε(y)

1− F̂ε̂(y)
− 1

∣∣∣
}

= oP (1).

Proof We only prove the first statement. The second one follows in a similar way. Choose

ν > 0 such that ν < 1/2 and (1− ζ)(1− ν) < 1/2. Then,

sup
Fε̂(y)≥bn

∣∣∣ F̂ε̂(y)

Fε̂(y)
− 1

∣∣∣ ≤ sup
Fε̂(y)≥bn

|F̂ε̂(y)− Fε̂(y)|
Fε̂(y)νb1−ν

n

= o(1) sup
Fε̂(y)≥bn

|√n(F̂ε̂(y)− Fε̂(y))|
Fε̂(y)ν

= o(1)
(

sup
|√n(F̂ε(y)− Fε(y))|

Fε(y)ν
+ oP (1)

)
= oP (1),

where the last equality follows from the Chibisov-O’Reilly theorem and the one but last

equality from the proof of Lemma A.1. Hence, it follows that

sup
Fε̂(y)≥bn

∣∣∣Fε̂(y)

F̂ε̂(y)
− 1

∣∣∣ = oP (1). (A.7)

We next show that the supremum in (A.7) can be replaced by the supremum over {y :

F̂ε̂(y) ≥ bn}. Indeed, it follows from (A.7) that there exists a sequence δn ↓ 0 such that

P

(
sup

Fε̂(y)≥bn

∣∣∣Fε̂(y)

F̂ε̂(y)
− 1

∣∣∣ ≥ δn

)
→ 0

as n →∞. Hence,

P

(
sup

F̂ε̂(y)≥bn

∣∣∣Fε̂(y)

F̂ε̂(y)
− 1

∣∣∣ ≥ ε

)

≤ P

(
sup

Fε̂(y)≥bn(1−δn)

∣∣∣Fε̂(y)

F̂ε̂(y)
− 1

∣∣∣ ≥ ε

)
+ P

(
sup

Fε̂(y)≥bn

∣∣∣Fε̂(y)

F̂ε̂(y)
− 1

∣∣∣ ≥ δn

)
→ 0.

Finally, consider

sup
F̂ε̂(y)≥bn

{
Fε(y)η

∣∣∣Fε(y)

F̂ε̂(y)
− 1

∣∣∣
}

= sup
F̂ε̂(y)≥bn

{
Fε̂(y)η

∣∣∣Fε̂(y)

F̂ε̂(y)
− 1

∣∣∣
}

+ oP (1) = oP (1),
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since supy |Fε̂(y)η − Fε(y)η| = oP (1) and since it follows from the proof of Lemma A.1

that

sup
y

∣∣∣Fε(y)1+η

Fε̂(y)
− Fε(y)η

∣∣∣ = oP (1).

2
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Van Keilegom, I., González Manteiga, W. and Sánchez Sellero, C. (2004). Goodness-of-fit

tests in parametric regression based on the estimation of the error distribution. TEST,

under revision.

Van Keilegom, I. and Veraverbeke, N. (2002). Density and hazard estimation in censored

regression models. Bernoulli, 8, 607–625.

Dept. of Econometrics & OR and CentER Institut de Statistique

Tilburg University Université catholique de Louvain
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