
T E C H N I C A L

R E P O R T

0623

ESTIMATION OF PIECEWISE-SMOOTH FUNCTIONS

BY AMALGAMATED BRIDGE REGRESSION SPLINES

ABRAMOVICH F., ANTONIADIS A., and M. PENSKY

*

I A P S T A T I S T I C S

N E T W O R K

INTERUNIVERSITY ATTRACTION POLE

http://www.stat.ucl.ac.be/IAP



Estimation of piecewise-smooth functions

by amalgamated bridge regression splines

Felix Abramovich

Department of Statistics and Operations Research, Tel Aviv University

Tel Aviv 69978, Israel

Anestis Antoniadis,

Laboratoire IMAG-LMC, University Joseph Fourier,

BP 53, 38041 Grenoble Cedex 9, France.

Marianna Pensky∗

Department of Statistics , University of Central Florida,

Orlando, FL 32816 -1364, USA.

June 6, 2006

Abstract

We consider a nonparametric estimation of an one-dimensional piecewise-
smooth function observed within white Gaussian noise on the interval. We
propose the two-step estimation procedure, where one first detects jump
points by a wavelet-based procedure and then estimates the function on
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1 Introduction

In variety of nonparametric regression applications, the underlying response function is

piecewise-smooth with abrupt changes between smooth segments. To cite only a few

examples, we mention seismology, where the density of the sedimentary layers of the

earth’s crust can be locally approximated by a step function; image processing, where

discontinuities present at the edges and econometric models, where structural changes due

to governmental policies are not rare. “Direct” methods for estimating piecewise-smooth

functions in nonparametric regression include wavelets that are known to efficiently tackle

local singularities. However, in practice wavelets often produce pseudo-Gibbs phenomena

and other local artifacts in reconstructing smooth regions (e.g. Coifman and Donoho,

1995; Antoniadis and Gijbels, 2002). Alternatively, following a two-step segmentation

approach, one first detects the locations of change points and then applies some smooth

nonparametric techniques on each segment separately (e.g. Oudshoorn, 1998; Antoniadis

and Gijbels, 2002; Fink and Wells, 2004).

In this paper we consider the latter approach. We present a wavelet-based method for

detecting discontinuities (jumps) of a function and then introduce amalgamated penalized

regression splines for estimating the function at smooth regions. Multiresolutional nature

of wavelet analysis makes it to be an excellent tool for detecting local singularities (Mallat

and Hwang, 1992; Wang, 1995), while penalized regression splines is a popular statistical

techniques for recovering smooth functions from noisy data due to their various optimal

properties, good practical performance and computational simplicity (Eilers and Marx,

1996). For the fixed knots the traditional l2-penalty leads to linear shrinkage (essentially

ridge regression) estimator. In this paper, we consider a more general lρ-type penalty

for ρ > 0. Such an approach has a direct analogy with the bridge regression of Frank

and Friedman (1993) and we will call the resulting splines bridge regression splines. In

particular, ρ = 1 corresponds to the LASSO estimator of Tibshirani (1996). Generally,

lρ-penalties for 0 < ρ ≤ 1 lead to (nonlinear) spline estimators with fewer knots.

The proposed procedure shows some similarities with the recent adaptive multi-order

penalized splines (AMPS) hybrid procedure of Fink and Wells (2004) who estimate the

locations of jumps of a piecewise-smooth function on the basis of the first differences

of the data and then fit regression splines using quadratic penalty. In terms of wavelet

analysis, such jump detection corresponds to application of Haar wavelets at the finest

2



resolution level. As a result, AMPS procedure is not powerful enough, does not attain the

optimal rates and can detect only sufficiently sharp jumps. The wavelet-based procedure

proposed here is somewhat similar in spirit to that of Wang (1995) and is shown to be

optimal for jumps detection. In addition, we argue that the use of the lρ-penalty with

0 < ρ ≤ 1 results in a spline estimator with fewer knots.

The rest of the paper is organized as follows. Section 2 contains a description of

the model and a brief necessary background on wavelet transforms and amalgamated

regression splines. We present the two-step amalgamated bridge regression spline

estimation procedure (ABS) in Section 3 and establish its optimality in Section 4. Section

5 illustrates the performance of the ABS on several simulated and a real data examples.

Some concluding remarks are made in Section 6. All the proofs are given in the Appendix.

2 Formulations and background

2.1 The model

Consider a standard nonparametric regression model

Yi = f(xi) + σZi, 0 ≤ x1 < ... < xn ≤ 1, (1)

where f is an unknown response function and Zi are i.i.d. standard normal N(0, 1).

Assume that f is a piecewise-smooth function. More precisely, assume that f belongs

to the amalgam Sobolev ballH(m,R, κ, S) of radius R of functions satisfying the following

conditions :

M1: f ∈ L∞([0, 1]).

M2: f has D discontinuity (jump) points at locations 0 < θ1 < · · · < θD < 1, where the

integer D and the real θl’s are unknown and θl+1− θl > κ, l = 1, . . . , D− 1 for some

κ > 0. In particular, D = 0 corresponds to a continuous f .

M3: At each discontinuity point θl, the left and right limits f(θl−) and f(θl+) exist and

|f(θl+)− f(θl−)| ≥ S for some S > 0.

M4:
D∑

l=0

∫ θl+1

θl

[f (m)(x)]2 dx ≤ R,
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where integer m ≥ 1, θ0 = 0 and θD+1 = 1.

Note that the condition M2 implies that the number of change points D is finite and

bounded from above by 1/κ <∞.

The statistical challenges in estimating a piecewise-smooth function from

H(m,R, κ, S) are therefore

1. estimating the number of jumps D and their locations θl, l = 1, ..., D;

2. recovering the function at smooth regions without degrading its discontinuities.

As we have mentioned in the Introduction, we propose the following two-step

procedure: first, to detect the jump points by wavelet-based procedure and then to apply

amalgamated bridge regression splines for estimating f between them. We start with

some brief background on wavelet transforms and amalgamated polynomial splines.

2.2 Wavelet transforms

In this Section we recall several wavelet transforms and their applications for detection

function’s singularities.

A wavelet ψ is a fixed function in L1(R) ∩ L2(R) such that
∫
ψ(t)dt = 0 satisfying

an admissibility condition (see Mallat, 1989). Let ψa,b(x) be its dilation with a scale

parameter a and translation by b: ψa,b(x) = a−1/2ψ((x − b)/a). The continuous wavelet

transform (CWT) of a function f ∈ L2(R) is defined then as

CWTf (a, b) = 〈f, ψa,b〉 =
1√
a

∫
f(t)ψ

(
t− b

a

)
dt,

The condition
∫
ψ(x) dx = 0 implies that ψ oscillates. More generally, one can choose ψ

with N vanishing moments satisfying
∫
tkψ(t) dt = 0, for k = 0, . . . , N . An important

consequence of vanishing moment conditions is that the global and the local Hölder

regularities of a function f is characterized by the rate of decay of the modulus of its

continuous wavelet transform CWTf (a, b) across scales (see Jaffard, 1989 and Mallat,

1989 for more details).

In practical applications however one typically deals with discretely sampled, rather

than continuous functions. Given a vector f = (f1, ..., fn)′ of n = 2J values of the function

f at equally spaced points x1, ..., xn, consider the CWT on the dyadic scales at the finest
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grid, that is CWTf (2
−j, k), j = 0, ..., J − 1, k = 0, ..., n − 1 (see e.g. Abry, 1994;

Vidakovic, 1999). It turns out that the latter is equivalent to the non-decimated wavelet

transform NWT (Shensa, 1992) also known as stationary or translation invariant discrete

wavelet transform (Coifman and Donoho, 1995; Nason and Silverman, 1995). Its order

of complexity is O(n log n) both for memory allocation and numerical computation (see

Dutilleux, 1989; Shensa, 1992). The redundant NWT generates the equal number of n

coefficients at each of J scales. The local Hölder regularity of a function at some point

can be still characterized by the rate of decay of its NWT coefficients at large scales in

the neighbourhood of this point provided that the mother wavelet ψ is sufficiently regular

(Berkner and Wells, 1997).

The well-known discrete wavelet transform (DWT) delivers a set of n discrete wavelet

coefficients djk = CWTf (2
−j, 2−jk) = 2j/2

∫
f(x)ψ(2jx − k)dx, k = 0, ..., n − 1. Fast

algorithms of Mallat (1989) allows one to perform the DWT in O(n) operations. However,

unlike in the case of the NWT, a singularity point cannot be necessarily detected by

the presence of “large” DWT coefficients in its neighbourhood on each sufficiently large

scale due to the possible presence of other singularities or strong oscillations around this

point (Mallat and Hwang, 1992). The discrete grid on scales for DWT is too “crude” to

characterize local Hölder regularity. Nevertheless, as we shall see, for piecewise-smooth

functions satisfying the conditions of Section 2.1, the DWT still does the job.

2.3 Amalgamated regression splines

In this subsection we present basic definitions and some background on regression splines.

For general theory of spline approximations we refer the reader to de Boor (1978) and

Dierckx (1993).

Polynomial splines of order p with knots ξ1 < · · · < ξK are continuous piecewise p− 1

degree polynomials with p−2 continuous derivatives at the knots. Any polynomial spline

s(x) of order p with knots ξ1 < · · · < ξK can be represented as

s(x) =

p−1∑
k=0

βkx
k +

K∑
j=1

βp−1+j(x− ξj)
p−1
+ (2)

where z+ = max(0, z).

Polynomial splines are useful for approximating smooth functions but evidently

inappropriate for fitting functions with abrupt local changes. To model sharp local
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features of a function efficiently, one can consider more general and flexible multi-order

splines of the form

s(x) =

p−1∑
k=0

βkx
k +

K∑
j=1

βp−1+j(x− ξj)
pj

+ , (3)

where the smoothness 0 ≤ pj ≤ p−1 at different knots ξj may vary (Koo, 1997; Fink and

Wells, 2004). Multi-order splines allows jumps in the pj-th derivative at ξj. In particular,

zero-order knots (pj = 0) model discontinuities of the function while first and second

order knots allow one to represent sharp changes in local linear trend and local curvature

respectively. Standard polynomial splines (2) of order p correspond to the particular case

when pj = p− 1 for all j = 1, ..., K. A piecewise-smooth function with D jumps θ1, ..., θD

can be approximated by a multi-order spline with D zero-order knots at jump points

θl, l = 1, ..., D and a set of p− 1-order knots at smooth segments (Fink and Wells, 2004).

However, as it follows from (3), such a multi-order spline necessarily implies the conditions

on one-sided derivatives at jump points, namely, s(j)(θl−) = s(j)(θl+), j = 1, ..., p − 1.

Additional flexibility can be achieved if one considers amalgamated polynomial regression

splines of order p with zero-order knots θ1, ..., θD obtained by amalgamation of separate

p-order splines at each segment. An amalgamated polynomial spline s(x) of order p with

D zero-order knots θ1, ..., θD and q knots ξ1, ..., ξq of order p− 1 can be represented then

as

s(x) = s0(x)I{0≤x<θ1} + s1(x)I{θ1≤x<θ2} + · · · sD(x)I{θD≤x≤1}, (4)

where each sl, l = 0, ..., D is a polynomial spline of order p with ql knots located at

ξ1,l, ..., ξql,l and
∑D

l=0 ql = q.

3 Amalgamated bridge regression splines

We are now ready to propose a two-step adaptive amalgamated bridge regression spline

(ABS) estimation procedure. We start with the estimation of a piecewise-smooth function

with the known jump points by an amalgamated bridge regression spline and then present

a wavelet-based procedure for adaptive estimation of jump points from the data.

6



3.1 Amalgamated bridge regression splines

Assume that f ∈ H(m,R, κ, S), where the jump points 0 < θ1 < ... < θD < 1 are known.

Consider an amalgamated m-order spline estimator f̃ of f of the form (4) with qn knots

ξ1, ..., ξqn of order m− 1 and D knots θ1, ..., θD of order zero placed at jump points.

Re-number the observations and the m− 1-order knots ξ1, ..., ξqn using double indices

(xi,l, Yi,l) and ξν,l, i = 1, · · · , nl, ν = 1, ..., qnl
, l = 0, ..., D, respectively, where

θl ≤ xi,l < θl+1 and θl ≤ ξν,l < θl+1. Using (2) and (4), f̃ can be represented by:

f̃(x) =
D∑

l=0

[
m−1∑
k=0

βk,lx
k +

qnl∑
ν=1

βm−1+ν,l(x− ξν,l)
m−1
+

]
I(θl ≤ x < θl+1), (5)

where
∑D

l=0 qnl
= qn.

By the definition of an amalgamated spline, on each interval θl ≤ x < θl+1, f̃(x) is

a usual m-order polynomial spline with qnl
knots located at ξ1,l, ..., ξqnl

,l. Unless some

prior information is available, the m−1-order knots ξ1,l, ..., ξqnl
,l are usually placed on the

sufficiently dense equidistant grid. An excessive number of m−1-order knots might imply

too much variability in the resulting spline estimator, so one needs some regularization

procedure to remove superfluous ξν,l within each segment. We present an example of such

a procedure below. The jump points are assumed meanwhile to be known, and, hence,

using the representation (5), one can estimate the vector of unknown coefficients βl on

each l-th segment separately.

Let X(l) be the n× (m+ qnl
) matrix with the rows

(1, xi,l, · · · , xm−1
i,l , (xi,l − ξ1,l)

m−1
+ , · · · , (xi,l − ξqnl

,l)
m−1
+ )

and Yj be the vector with components Yi,l, i = 1, · · · , nl.

Consider the penalized maximum likelihood estimator of βl with lρ-penalty, ρ > 0,

derived by minimizing

Ql(βl,Yl) = ‖Yl −X(l)βl‖2 + nlλnl

m−1+qnl∑
k=m

|βk,l|ρ (6)

with respect to βl, where λnl
> 0 is a smoothing parameter.

The idea of lρ-penalty in regression was introduced in Frank and Friedman (1993) and

the corresponding technique is known as the bridge regression estimation. The traditional

l2-penalty yields a ridge regression estimator which is based on linear shrinkage, while
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ρ = 1 leads to the LASSO estimator of Tibshirani (1996). Any choice 0 < ρ ≤ 1 implies

a thresholding estimator of βl and, therefore, results in a spline with fewer m − 1-order

knots (see Antoniadis and Fan, 2001). Plugging coefficients β̃k,l into (5) leads to the

amalgamated bridge regression spline estimator f̃(x) of f(x).

To conclude this section, note that we have used truncated power bases for a clearer

exposition of a spline-based regression. However, the truncated power bases, especially

when a larger number of knots and a small penalty parameter are involved, may lead to

numerical instabilities. Equivalent bases with more stable numerical properties are the B-

spline bases, and it is easy to routinely transform the matrices X(l) to the versions which

are much more stable numerically by changing bases using an invertible linear transform.

For this reason, we shall not further discuss numerical stability issues when we formulate

the ABS estimator.

3.2 Jumps detection

The general idea behind wavelet-based detection of abrupt changes of a function is based

on the characterization of its local regularity at a point by the rate of decay of its wavelet

coefficients across scales around this point. Local singularities can be identified then by

the presence of large wavelet coefficients at high scales in their neighbourhood.

The detection algorithm described below analyzes wavelet coefficients at an

appropriately chosen scale and selects a threshold large enough to prevent the coefficients

corresponding to smooth segments to penetrate by, but still small enough to allow

coefficients corresponding to singularities to pass it through. The locations of jumps

are then estimated by the locations of coefficients which exceed the threshold.

As we have mentioned in Section 2.2, generally, the DWT coefficients cannot be used

to detect a local singularity since the discrete grid on scales for the DWT might be too

“crude” due to the possible presence of other singularity points or strong oscillations

around this point (Mallat and Hwang, 1992). However, we will show that for piecewise-

smooth functions from amalgam Sobolev balls, the DWT can still be used to detect jump

points.

We will assume hereafter that the variance σ2 of the noise is known, otherwise for

regression functions from amalgam Sobolev balls, it can be estimated at a parametric

rate in the wavelet domain by the median of the absolute deviation of the empirical

wavelet coefficients of the data at the highest resolution level divided by 0.6745.
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Let ψ be a mother wavelet with a compact support [L;U ], L < 0 < U , and

ψjk(x) = 2j/2ψ(2jx − k), j = 0, ..., J − 1, k = 0, ..., 2j − 1. Fix an arbitrarily

small δ > 0. Define j∗ such that 2j∗ = (U − L)n/(lnn)1+δ and a sequence of indices

τ(k) = −L + (U − L)k, k = 0, ..., 2j∗/(U − L) − 1. Without loss of generality, we may

assume that j∗ and 2j∗/(U−L) are integers; otherwise, we take the corresponding integer

parts. Note that Ωj∗k = supp ψj∗τ(k) = [2−j∗(U −L)k; 2−j∗(U −L)(k+ 1)] and, therefore,

the intersection Ωj∗k ∩ Ωj∗(k+1) is a zero-measure set containing a single boundary point

2−j∗(U−L)(k+1). Hence, the unit interval is divided into a grid of N = 2j∗/(U−L) non-

overlapping intervals of lengths 2−j∗(U − L) = (lnn)1+δ/n. Due to M2, for sufficiently

large n, each of these intervals can contain only a single jump point.

Let Tj∗ be a set of indices τ(k) such that the corresponding interval Ωj∗k does not

contain a jump point. For an arbitrary 0 < α < δ/2 define a threshold

t∗n = σ

√
(log n)1+δ−2α

n
. (7)

Proposition 3.1 Consider the model (1), where the unknown f ∈ H(m,R, κ, S) defined

in Section 2.1. Let the wavelet ψ be differentiable with a compact support and d̂jk, j =

0, ..., J − 1, k = 0, ..., 2j − 1 be the set of the DWT coefficients of the noisy data

Y = (Y1, ..., Yn)′. Then, for the threshold t∗n defined in (7) one has uniformly in

f ∈ H(m,R, κ, S):

1. P(maxτ(k)∈Tj∗ |d̂j∗τ(k)| > t∗n) = o(n−γ)

2. P(minτ(k)/∈Tj∗ |d̂j∗τ(k)| < t∗n) = o(n−γ)

as n→∞ for an arbitrarily large γ > 0.

Proposition 3.1 shows that we can track down the jumps by the presence of large DWT

coefficients dj∗τ(k) with very high accuracy.

Remark 3.1 The proposed jump detection procedure is performed at such a high

resolution level j∗, that there are essentially no differences between the DWT and NWT

coefficients. This explains why for a piecewise-smooth function f satisfying the conditions

of Section 2.1 the DWT can be still used.
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Proposition 3.1 immediately implies that P{D̂ 6= D} = o(n−γ) for an arbitrarily large

γ > 0. Note also that

E(|θ̂l − θl|2ID̂=D) ≤ (U − L)2 2−2j∗ + P{|θ̂l − θl| > (U − L)2−j∗}, (8)

where the first term in the right-hand side of (8) is O((lnn)2+2δ/n2), while the second one

is negligible due to the first statement of Proposition 3.1. Hence, the following Corollary

holds:

Corollary 3.1 Under the assumptions of Proposition 3.1, as n→∞,

1. P{D̂ 6= D} = o(n−γ) for any γ > 0

2. Uniformly in f ∈ H(m,R, κ, S),

E
(
|θ̂l − θl|2ID̂=D

)
= O(2−2j∗) = O

(
(lnn)2(1+δ)

n2

)
, l = 1, . . . , D̂

Based on the results of this section, we suggest now the following jumps estimation

procedure:

1. Consider the DWT coefficients d̂j∗τ(k) at the level j∗ and find all τ(k) such that

|d̂j∗τ(k)| > t∗n. If the set {|d̂j∗τ(k)| > t∗n} is empty, set D̂ = 0. Otherwise,

2. Estimate the number of jump points D by D̂ = #{|d̂j∗τ(k)| > t∗n} and the locations

θ` of the jumps by the mid-points θ̂` of the corresponding intervals Ωj∗k, i.e.,

θ̂` = 2−j∗(U − L)(k + 1/2), l = 1, ..., D̂.

3.3 The ABS procedure

The resulting two-step ABS procedure naturally combines amalgamated bridge regression

spline estimation with jumps detection and can be summarized as follows :

1. estimate the number of jump points D̂ and their locations θ̂1, ..., θ̂D̂ by the DWT-

based procedure described in Subsection 3.2

2. plug in D̂ and θ̂1, ..., θ̂D̂ into (5) and minimize the resulting expression (6) to obtain

an adaptive amalgamated bridge regression spline estimator f̂ .
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4 Optimality of the ABS procedure

In this section we prove the optimality (in the minimax sense) of the proposed ABS

procedure.

Consider the quadratic risk (L2-loss) for an estimator f̂ of f :

R(f̂ , f) = E{‖f̂ − f‖2
2}

The minimax quadratic risk over H(m,R, κ, S) is then defined by

R (H(m,R, κ, S)) = inf
f̂

sup
f∈H(m,R,κ,S)

R(f̂ , f),

where the infimum is taken over all estimators f̂ .

Antoniadis and Gijbels (2002) derived the minimax rate over R (H(m,R, κ, S)) and

showed that as n increases,

R (H(m,R, κ, S)) = O
(
n−

2m
2m+1

)
(9)

An analogous result under the additional assumption sup
x∈[0,1]

|f(x)| < B was established

in Oudshoorn (1998). Note that the optimal rate (9) for estimating piecewise-

smooth functions from amalgam Sobolev classes satisfying M1–M4 is the same as for

homogeneously smooth functions from usual Sobolev spaces.

We now show that the proposed ABS estimator attains the minimax rate (9). We

first prove that for the fixed zero-order knots the amalgamated bridge regression spline

estimator achieves the optimal rate O(n−2m/(2m+1)) and then demonstrate that the

accuracy of the zero-knots estimation procedure is sufficiently high not to damage it.

Consider the amalgamated bridge regression spline estimator f̃ from Section 3.1 with

qn equally spaced m − 1-order knots and fixed zero-order knots. Impose the following

asymptotic assumptions on the design matrix X, the number of m− 1-order knots qn and

the smoothing parameters λnl
in (6) as n→∞ and qn →∞:

M5: There exists C1 > 0 and C2 > 0 such that 0 < C1n < λmin < λmax < C2n, where

λmin and λmax are the minimal and the maximal eigenvalues of the matrix XTX.

M6: qn = Cn1/(2m+1) for some C > 0.

M7: λnl
n

1−ρ/2
l = O(1) as nl →∞, l = 1, ..., D.
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Due to the assumption M2, the number of observations nl and the number of (m−1)-

order knots qnl
on each l-th segment are of the order n and qn respectively, the same as

on the entire unit interval, and, therefore, the assumptions M5 and M6 holds on each

segment as well. Thus, when the zero-order knots are fixed, the asymptotic properties of

the amalgamated estimator f̃ on the entire unit interval are the same as on each of its

segments.

Consider then minimization of (6) under the assumptions M5 −M7. The following

proposition guarantees the existence of a local
√
nl/qnl

-consistent penalized maximum

likelihood estimator β̃l in (6) of βl:

Proposition 4.1 Under assumptions M5 and M7, there exists a local minimizer β̃l of

(6) such that ‖β̃l − βl‖ = Op(
√
qnl
/nl) = Op(

√
qn/n).

Proposition 4.1 only establishes the existence of a local
√
qn/n consistent minimizer of

(6) but does not provide any tools to obtain it. A closed solution is available for ρ = 2.

For ρ = 1 the minimizer of (6) is unique and can be found either by a LASSO-type

algorithm (Tibshirani, 1996; Osborne et al., 2000), once the matrices X(l) are normalized

to have columns of norm 1, or via surrogate functionals, a method recently introduced

by Daubechies et al. (2004) in the context of wavelet shrinkage methods for deblurring.

When ρ < 1, the objective function is no longer convex but one can still find a local

minimizer using, for example, an approximate algorithm of Ruppert and Carrol (2000),

a backfitting type algorithm of Fu and Kneight (2000) or a recently developed algorithm

of Amato et al. (2006). We discuss these issues in Section 5 below.

The resulting ABS estimator f̃ is obtained by amalgamation of the corresponding

estimators at each segment, that is, f̃ = Xβ̃. The following proposition shows that f̃

achieves the optimal rates (9).

Proposition 4.2 Let assumptions M5 – M7 hold and f̃ = Xβ̃. Then,

sup
f∈H(m,R,κ,S)

R(f̃ , f) = O
(
n−2m/(2m+1)

)
. (10)

So far we considered an idealized situation where the jumps locations were assumed

to be known. The following proposition shows that when zero-order knots are estimated

by the wavelet-based jumps detection procedure from Section 3.2, the resulting ABS

estimator f̂ still attains the optimal rates (9). The high accuracy of estimating jump
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points makes the additional error contribution to be negligible in the overall estimation

error.

Proposition 4.3 Let assumptions M1-M7 hold and let f̂ the ABS estimator with zero-

order knots estimated by the wavelet-based procedure proposed in Section 3.2. Then, as

n→∞,

sup
f∈H(m,R,κ,S)

R(f̂ , f) = O
(
n−2m/(2m+1)

)
. (11)

5 Simulations and real examples

Following the proposed two-step ABS algorithm, we first estimate the number and

locations of jumps of an unknown function by the wavelet-based detection procedure.

We then place zero order knots on estimated jump points and a relatively large number of

quadratic knots (m = 3) at locations fixed at “equally-spaced sample quantiles” similarly

to standard penalized splines designed for estimating smooth functions (e.g. Ruppert and

Carroll, 2000). As it has been noted in the previous sections, this step serves to refine

the regression spline basis by allowing for additional smoothness between any zero-order

features. During the second step, the ABS regression spline is fitted using either penalized

least squares with a quadratic penalty or with a more general lρ-type penalty, penalizing

coefficients of the basis functions which are the least supported by the data.

Recall that the bridge regression estimators β̃j of coefficients βj within each segment

are obtained by minimizing Ql in (6) separately for each l = 0, . . . , D with respect to βj:

Ql(βl,Yl) = ‖Yl −X(l)βl‖2 + nlλnl

m−1+qnl∑
k=m

|βk,l|ρ

Suppressing index l in the equation above for simplicity and clarity, we consider

minimization of

Q(β,Y) = ‖Y −Xβ‖2 + λ

m−1+qnl∑
k=m

|βk|ρ.

As we have mentioned above, a closed solution is available for ρ = 2, while for ρ = 1

there exist numerical algorithms (e.g. LASSO). For any 0 < ρ ≤ 1, a possible numerical

solution is to minimize Q iteratively, one component of β at a time (backfitting). Assume

for simplicity that Ȳ = 0 (or replace Yi by Yi − Ȳ ). The algorithm we have used in our

numerical implementation for ρ ≤ 1 can be described then as follows:

13



(0) Center the columns of X to have the mean 0 and scale them to have the unit

variance. Using centered columns, define an initial value β̂ by using the least squares

algorithm. Set k = 1.

(1) Define

Qk(βk) =
n∑

i=1

(Yi −
∑
j 6=k

β̂jxij − βkxik)
2 + λ|βk|ρ.

(2) Set β̂k = arg minQk. The minimization of Qk with respect to βk is carried out by

Newton-Raphson or fixed-point iteration.

(3) If k < m− 1, set k = k + 1 else set k = 1.

(4) Repeat (1), (2) and (3) until convergence occurs.

The above algorithm works very well if the design is not “too collinear” (hence the interest

in using B-splines), otherwise it might get stuck at a local minima. The problem is less

severe when ρ is not too close to 0. For ρ = 1 it may be also computationally simpler

than LASSO that involves linear programming techniques.

In the simulation and real data examples below we considered ρ = 2 (ABS2) and

ρ = 1 (ABS1), where in the latter we used the backfitting algorithm described above.

The quadratic l2-penalty (ABS2) is equivalent to placing quadratic penalties on finite

differences of adjacent B-splines coefficients and it results in shrinking all coefficients

toward zero. On the contrary, the l1-penalty on adjacent B-splines coefficients (ABS1)

not only shrinks the coefficients but also thresholds them removing, therefore, the

corresponding “superfluous” second order knots.

In both approaches the smoothing parameter λn was automatically chosen from the

data by generalized cross-validation (GCV) as usual in spline smoothing (see e.g. Fan

and Li, 2001).

5.1 Simulations

In this subsection we compare the estimates based on the ABS1 and ABS2 procedures

with another related method, namely, the Spatially Adaptive Regression Splines (SARS)

developed by Zhou and Shen (2001) which is particularly suited for functions that

have jumps by themselves or in their derivatives. SARS is locally adaptive to variable

14



smoothness and automatically places more knots in the regions where the function is

not smooth. It has been proved as an effective tool for estimating such functions. For

completeness, we also compare the above estimators with a standard wavelet denoising

procedure based on universal thresholding of Donoho and Johnstone (1994), since wavelet

based procedures are known to efficiently denoise inhomogeneous functions.
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Figure 5.1: Four benchmark test functions punctuated by jump discontinuities used in the
simulations.

To investigate the performance of the developed ABS estimators we conducted a

simulations study based on synthetic data. We used two of the standard test functions

of Donoho and Johnstone (1994) that are examples of piecewise-smooth functions and

commonly used for various wavelet procedures, namely, the blocks and the heavisine.

In addition, we considered two other test functions punctuated by jump discontinuities

called burt and cosine, defined on [0, 1], respectively, as

cosine(x) = cos(5.5πx)−4 sign(0.23−x)−2 sign(0.3−x)−1.75 sign(0.55−x)+3 sign(0.7−x)
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and

burt(x) = 20x cos(16x1.2)− 20I(x < 0.5).

The functions are depicted in Figure 5.1. The sample size used in the simulations was

n = 256 and the design points were uniformly spaced within the unit interval. In each

simulation, we added a normally distributed zero mean additive noise with the standard

deviation σ implying a chosen signal-to-noise-ratio (SNR). SNR is measured as sd(f)/σ,

where sd(f) is the estimated standard deviation of the regression function over the grid.

For each function and two values of SNR (4 and 6), we ran 100 simulations using 50

equally-spaced quadratic knots. The noise level σ was assumed unknown and estimated

by the median of the absolute deviation of the empirical wavelet coefficients of the data

at the highest resolution level divided by 0.6745. For each realization we calculated the

ABS1 and ABS2 estimators using the procedures developed above, where the wavelet-

based jumps detection algorithm was based on Symmlets of order 6, the SARS estimator

and a wavelet denoising estimator (Wav) also used Symmlets of order 6. All simulations

were performed using Matlab 7 (Mathworks 2001) and R.

The corresponding estimates from a single realization are displayed in Figure 5.2.

The accuracy of an estimator f̂ of f was measured by the average mean square error

(MSE) averaged over 100 simulation runs, where

MSE =
1

n

n∑
i=1

(f̂(xi)− f(xi))
2

and {xi} is the set of design points. The average MSEs for each method are reported in

Table 1 and the boxplots in Figure 5.3.

Figure 5.3 and Table 5.1 show that all the three spline estimators with adaptively

places knots outperform a standard wavelet denoising procedure. ABS1 and ABS2 provide

similar results and in most cases are better than SARS. As one can also see, application of

l1-type penalty in ABS provides a relatively small gain. This can be explained by the fact

that, for each of the functions, the regions between any two jumps are relatively smooth.

5.2 A real example

Since the ABS1 has shown the better performance in our simulations we applied the

ABS1 procedure to the real life data provided by Mike Battaglia from the Department

of Forestry at Virginia Tech (see Battaglia, 2000). The data set contains relative light
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Figure 5.2: Fits from the ABS1 procedure (solid line) and SARS (dashed line) for a single
realization with SNR=4.

transmittance data recorded at equal time intervals throughout the daylight hours for

numerous days (see Figure 5.4 for a plot of the relative light transmittance data for one

station during one day, n = 164). In this data set, sun light from various forest stations

in plots with different cutting treatments is compared to the sun light in a nearby open

plot. Cloud interference and overstory patterns (the shades produced by the trees) are

the two most common phenomena that cause jump points in the relative transmittance

data. Jump points that remain consistent across days may be attributed to overstory

pattern while jump points that do not remain consistent across days are probably caused
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Figure 5.3: Boxplots of the mean squared errors on 100 samples obtained by four different
procedures: ABS1 (l1-penalty); ABS2 (l2 penalty); SARS, Spatially Adaptive Regression Splines;
Wav, Wavelet denoising. The hyperparameters are chosen by generalized cross-validation.

Table 1: Average mean squared errors based on 100 samples obtained using signal to

noise ratios of 6 and 4 (in parenthesis) for five different procedures: ABS1 (`1-penalty);

ABS2 (`2 penalty), SARS and Wav. The hyperparameters are chosen by generalized

cross-validation.

estimate blocks heavisine burt cosine

ABS1 0.52 (1.85) 0.21 (0.35) 0.42 (0.96) 3.32 (3.41)

ABS2 0.58 (1.86) 0.22 (0.38) 0.45 (1.08) 3.33 (3.42)

SARS 0.63 (1.51) 0.30 (0.48) 0.46 (1.13) 3.29 (3.40)

Wav 6.21 (9.11) 0.51 (0.61) 2.27 (3.46) 3.72 (3.95)

by cloud interference. Since variation of the light availability increases as canopy gaps

become larger, in order to predict the forest dynamics it is useful to estimate the relative

transmittance taking into account such discontinuities.

We applied the ABS1 procedure to the data shown at Figure 5.4. Symmlets of order

6 were again used for jumps detection. The noise level σ, as usual, was estimated by

the median of the absolute deviation of the empirical wavelet coefficients of the data at

the highest resolution level divided by 0.6745. The procedure found three jump points
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located at 0.138, 0.494 and 0.873. For construction of the ABS estimator, on each of the

four resulting segments 12 quadratic knots were placed at equally spaced quantiles. The

ABS1 reduced the numbers of necessary quadratic knots to 3, 4, 3 and 3 respectively.

The Figure 5.4 shows the resulting ABS1 estimate that nicely fits the data. Examination

of the fitted nonparametric trends of the daily relative light transmittance data and their

jumps can therefore be a powerful tool for the characterization of gap openings in forest

stations.
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Figure 5.4: Display of the relative light transmittance data (data plotted as stars) for one
station during one day from the Forestry Department of Virginia Tech. The x-axis is a daylight
hours time interval rescaled to [0, 1]. The display also includes the ABS1 regression fit (solid
line) to the transmittance data (with 3 jumps detected).

6 Concluding remarks

In this paper we developed a two-step procedure for estimating piecewise-smooth functions

by amalgamated bridge regression splines. It first detects the unknown jump points by a

wavelet-based method and then estimates the regression function on each smooth segment

separately by bridge regression splines. We showed that the resulting amalgamated

estimator achieves minimax convergence rates over amalgam Sobolev balls. From a
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practical point of view, ABS is fairly accurate and computationally efficient: it requires a

little more computation time than traditional penalized regression splines. The number of

operations necessary for location of the zero-order knots grows linearly with n, inheriting

the algorithmic complexity of the discrete wavelet transform. We demonstrated good

performance of ABS on several simulated and a real data examples. Summarizing, we

believe that the proposed ABS estimators are an attractive alternative to the existing

estimators of piecewise-smooth functions.

7 Appendix

Throughout the proofs in the Appendix, we use C to denote a generic positive constant,

not necessarily the same each time it is used, even within a single equation.

7.1 Proof of Proposition 3.1

Applying the DWT to the both sides of (1) we obtain

d̂jk = djk + εjk,

where djk and εjk, j = 0, ..., J − 1, k = 0, ..., 2j − 1 are the DWT of the unknown f and

the Gaussian noise respectively. Note that εjk are independent Gaussian variables with

Var(εjk) = σ2/n.

Consider the level j∗ and the corresponding sequence of indices τ(k) defined in Section

3.2. Consider first τ(k) ∈ Tj∗ . Since m ≥ 1, the function f is at least of Lipschitz

regularity one for all x ∈ Ωj∗k. Then, for sufficiently large n,

max
k∈Tj∗

|dj∗τ(k)| < C2−
3
2
j∗ = O

((
(lnn)1+δ

n

)3/2
)

= o(t∗n) (12)

(e.g. Daubechies, 1992, p.299).

As n increases, for any 0 < α < δ/2 and for all τ(k) ∈ Tj∗

P{|d̂j∗τ(k)| > t∗n} ≤ P{|εj∗τ(k)| > t∗n − |dj∗τ(k)|} ≤ P{|εj∗τ(k)| > t∗n/2}

≤ C(log n)α−(1+δ)/2 exp(−(log n)1+δ−2α/8) = o(n−γ̃) (13)

for any γ̃ > 1. Since card{Tj∗} = O(2j∗) = O(n/(lnn)1+δ), we have

P{max
k∈Tj∗

|d̂j∗τ(k)| > t∗n} ≤
∑

k∈Tj∗

P{|d̂j∗k| > t∗n} = o(n−γ),
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where γ = γ̃ − 1 > 0.

Let now τ(k) /∈ Tj∗ . The condition M2 guarantees that for sufficiently large n there is

a single jump point θl ∈ Ωj∗k. Similarly to the arguments of Wang (1995) and Antoniadis

and Gijbels (2002) but applied for the DWT, under the conditions M1-M4 we derive

that

|dj∗k| = 2−j∗/2 |f(θl+)− f(θl−)|
{∣∣∣∣∫ ψ(θl − u)sign(u)du

∣∣∣∣+O(1)

}
≥ C2−j∗/2. (14)

For each τ(k) /∈ Tj∗ it then follows from (14) that

P{|d̂j∗τ(k)| < t∗n} ≤ P{|εj∗τ(k)| > C2−j∗/2} > C(log n)−(1+δ) exp(−C2(log n)1+δ/2) = o(n−γ)

for any γ > 0. Hence, for finite D,

P{ min
τ(k)/∈Tj∗

|d̂j∗τ(k)| < t∗n} ≤
D∑

k=1

P{|d̂j∗τ(k)| < t∗n} = o(n−γ)

that completes the proof.

�

7.2 Proof of Proposition 4.1

As we have mentioned, the asymptotic properties of β̃l are same for each l and for

simplicity of exposition we omit the index l throughout the proof.

Let β be the true set of coefficients. Let M be a relatively large number and

αn =
√
qn/n. In order to prove Proposition 4.1 we show that

lim
n→∞

P

{
sup

‖u‖=M

Q(β + αnu,Y) > Q(β,Y)

}
= 0. (15)

Equality (15) implies that with probability tending to one, there is a local minimum β̃

of (6) in the ball with the center β and radius αnM such that ‖β̃ − β‖ = Op(αn). Let

ε = Y −Xβ and

Dn(u) = Q(β + αnu,Y)−Q(β,Y) = ∆1 + ∆2 + ∆3 (16)

= α2
n‖Xu‖2 − 2αnu

TXT ε + nλn

qn∑
k=1

[|βp+k + αnuk|ρ − |βp+k|ρ]

(17)
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Note that ∆1 is a constant and, by assumption M5, ∆1 ≥ C1α
2
nn‖u‖2 = C1M

2α2
nn =

C1M
2qn. The second term, ∆2 is a random variable with E∆2 = 0, so that, for any δ > 0

by Markov inequality, and M5 we have

P (|∆2| > δ) ≤ 2δ−1αn

√
E(uTXT εεTXu) ≤ 2δ−1Mσαn

√
C2n.

Therefore, setting δ = 0.5C1M
2α2

nn, we obtain P (|∆2| > 0.5C1M
2α2

nn) ≤
4σ(C1M)−1(αn

√
n)−1 → 0. For an upper bound for ∆3, note that since |x+y|ρ−|x|ρ ≤ |y|ρ

as 0 < ρ ≤ 1, by condition M7 when M is large enough we have

|∆3| ≤ nλnα
ρ
n

qn∑
k=1

|uk|ρ ≤ nλnα
ρ
nM

ρ/2q1−ρ/2
n < 0.5C1M

2qn.

7.3 Proof of Proposition 4.2

The proof Proposition 4.2 is based on the following lemma.

Lemma 7.1 Let w(z, α) = arg minw[w2 − 2wz + α|w|ρ], 0 < ρ ≤ 1. Then, w(z, α) = 0

whenever |z| < aρα
1/(2−ρ). If ρ 6= 1, then |w(z, α)| ≥ bρα

1/(2−ρ) whenever |z| ≥ aρα
1/(2−ρ).

Here aρ = (2− ρ)(ρ/2)1/(2−ρ)(1− ρ)(ρ−1)/(2−ρ) and bρ = [ρ(1− ρ)/2]1/(2−ρ).

Proof of Lemma 7.1: Since w(−z, α) = −w(z, α), it is enough to consider z > 0. The

derivative of the objective function is of the form h(w, z) = 2w − 2z + αρ|w|ρ−1sgn(w).

Note that the function φ(w) = 2w+αρ|w|ρ−1sgn(w) is odd and for w > 0 has a minimum

at w0 = bρα
1/(2−ρ) equal to aρα

1/(2−ρ). Hence, whenever 0 < z < aρα
1/(2−ρ) equation

h(w, z) = 0 has no solutions and h(w, z) is negative for any w < 0 and positive for any

w > 0. Thus, in this case w(z, α) = 0. If z > aρα
1/(2−ρ), equation h(w, z) = 0 has two

solutions 0 < w1 < w2 where solution w1 < w0 corresponds to the local maximum of the

objective function while w2 > w0 corresponds to its absolute minimum. �

We now complete the proof of Proposition 4.2. Let βj be the j-th component of β

and β(−j) be the vector β without component βj. Similarly, let Xj be the j-th column of

matrix X and X(−j) be the matrix X without column j. Note that n−1Q(β,Y) in (6) can

be rewritten as n−1Q(βj,β
(−j),Y) = n−1‖Y − Xjβj − X(−j)β(−j)‖2 + λn

∑m−1+qn

k=m |βk|ρ

and β̃j = arg minβj
Q(βj,β

(−j),Y). If 0 ≤ j ≤ m− 1, equating derivative of n−1Q(β,Y)

over β̃j to zero we obtain

n−1XT
j Xβ̃ − n−1XT

j Y = 0. (18)
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If m + 1 ≤ j ≤ m + qn, then application of Lemma 7.1 with α = λ/(n−1XT
j Xj) and

z = n−1XT
j (Y −X(−j)β̃

(−j)
)/(n−1XT

j Xj) yields that β̃j = 0 whenever

|n−1XT
j (Y −X(−j)β̃

(−j)
)| < aρλ

1/(2−ρ)(n−1XT
j Xj)

(1−ρ)/(2−ρ). (19)

In this case, taking into account condition M5, β̃j = 0 and Xβ̃ = X(−j)β̃
(−j)

+ Xjβ̃j,

we obtain

|n−1XT
j (Y −Xβ̃)| = O

(
λ1/(2−ρ)

)
. (20)

If inequality (19) does not hold, then β̂j is the solution of the equation n−1XT
j (Xβ −

Y) + λρ|β̂j|ρ−1sgn(β̃j) = 0. For 0 < ρ < 1, by Lemma 7.1 we obtain

|n−1XT
j (Y −Xβ̃)| = λρ|β̃j|ρ−1 = O

(
λ1+(ρ−1)/(2−ρ)

)
= O

(
λ1/(2−ρ)

)
. (21)

Observe that for ρ = 1, (21) continues to hold. Combining (18), (20) and (21), we derive

that for any j

n−1|XT
j Xβ̃ − n−1XT

j Y| = O
(
λ1/(2−ρ)

)
. (22)

Now, denote by β̃∗ the global minimizer of ‖Y −Xβ‖2. It is easy to see that

n−1XT
j Xβ̃∗ − n−1XT

j Y = 0. (23)

Moreover, Agarwal and Studden (1980) showed that for f̃∗ = Xβ̃∗ under condition M7,

one has

sup
f∈H(m,R,κ,S)

R(f̃∗, f) = O
(
n−2m/(2m+1)

)
. (24)

Subtracting equation (23) from equation (22) one derives n−1|(XTX(β̃ − β̃∗))j| =

O
(
λ1/(2−ρ)

)
for all j = 0, · · · ,m− 1 + qn, so that (22) together with condition M7 imply

that ‖Xβ̃−Xβ̃∗‖2 = O(qnλ
2/(2−ρ)). To complete the proof combine the last equality with

(24) and conditions M6 and M7. �

7.4 Proof of Proposition 4.3

Let T̂ = {θ̂j, j = 1, . . . , D̂} be the set of estimated jump points of f and define the event

F = {D̂ = D} ∩ {|θ̂j − θj| < n/(log n)1+δ, j = 1, . . . , D̂}.

We have

R(f̂ , f) = E{‖f̂ − f‖2
2} = E{‖f̂ − f‖2

2IF}+ E{‖f̂ − f‖2
2IF c}. (25)
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Note that

E{‖f̂ − f‖2
2IF c} = E

(
E{‖f̂ − f‖2

2IF c |T̂}
)

= E
(
IF cE{‖f̂ − f‖2

2|T̂}
)
.

Exploiting the results of Section 4 and the fact that both f̂ and f belong to amalgam

Sobolev ball H(m,R, κ, S), one easily gets E{‖f̂ − f‖2
2|T̂} = OP (1). Furthermore, by

Proposition 3.1, P{F c} = o(n−γ) for an arbitrarily large γ > 0. Hence the second term in

the right-hand side of (25) is o(n−γ) and is negligible.

Consider now the first term in the right-hand side of (25). For simplicity of exposition,

consider first the case where there is a single jump point θ and D = 1. The unknown f

can be decomposed as

f(x) = I[0,θ](x)f0(x) + I(θ,1](x)f1(x),

where f0 and f1 both belong to the Sobolev balls H(m,R) of radius R. From the known

properties of spline approximation, we can approximate f by an an amalgamated m-order

polynomial spline s as

s(x) = I[0,θ](x)s0(x) + I(θ,1](x)s1(x),

where s0 and s1 are spline approximations of f0 and f1 respectively, with the

approximation error

‖f − s‖2
2 ≤ O(n−2m/(2m+1))

Let θ̂ be an estimator of θ. Given the data, define amalgamated spline estimators f̃ and

f̂ with a zero-knot at true θ and estimated θ̂ respectively. Then,

f̃(x) = I[0,θ](x)s̃0(x) + I(θ,1](x)s̃1(x)

and

f̂(x) = I[0,θ̂](x)ŝ0(x) + I(θ̂,1](x)ŝ1(x),

where s̃j, j = 0, 1 and ŝj, j = 0, 1 are the corresponding spline estimates.

To simplify notation, denote hereafter E{·IF} by EF{·}. We have EF{‖f̂ − f‖2
2} =

EF{‖f̂ − s‖2
2}+O(n−2m/(2m+1)).

Consider only the case θ̂ ≤ θ since the opposite case can be treated in a similar way.

Then,

EF{‖f̂ − s‖2
2} = EF{

∫ θ̂

0

(s(x)− f̂(x))2dx}+ EF{
∫ θ

θ̂

(s(x)− f̂(x))2dx}

+ EF{
∫ 1

θ

(s(x)− f̂(x))2dx} = (A) + (B) + (C). (26)
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For the first term (A) in (26) we have

EF{
∫ θ̂

0

(s(x)− f̂(x))2dx} = EF{
∫ θ̂

0

(ŝ0(x)− s0(x))
2dx}

≤ EF{
∫ θ̂

0

(ŝ0(x)− s̃0(x))
2dx}+ EF{

∫ θ̂

0

(s̃0(x)− s0(x))
2dx}

= (A1) + (A2).

By Proposition 4.2 , the term (A2) is O(n−2m/(2m+1). For (A1), note that by construction

and assumption M6, the sup-norm distance between the knots of ŝ and those of s̃ is

bounded above by O
(
q−1
n (θ − θ̂)

)
' oP (n−2m/(2m+1)). The knots of ŝ may be viewed as

the set of knots of s̃ perturbed by an amount o(n−2m/(2m+1)). Using Theorem 6.2 of Lyche

and Mørken (1999) it follows that ‖ŝ0(x)− s̃0(x)‖2
∞ = O(n−2m/(2m+1)) and therefore (A1)

is also O(n−2m/(2m+1).

The third term (C) in the right-hand side of (26) can be handled exactly in the same

way to verify that it is O(n−2m/(2m+1). Finally, it is easy to see that the remaining term

(B) is O
(
EF (|θ − θ̂|)

)
which is o(n−2m/(2m+1)) by Corollary 3.1.

So far we have proved the proposition for D = 1. For an arbitrary (but still finite!) D,

one can partition the unit interval by θl and θ̂l, l = 1, ..., D and then use the result

established above for a single jump point similarly to the proof of Proposition 2 in

Antoniadis and Gijbels (2002) in order to obtain the rates stated in Proposition 4.3.
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