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Summary. We look at the correction for misclassification of possibly cor-

rupted finite count data in epidemiological studies. The general strategy is to

estimate the misclassification probabilities from a validation study and use

the estimated misclassification matrix to correct for the distortion. However,

most often the validation study is quite small implying that the misclassifica-

tion probabilities are estimated with high variability if based on the multino-

mial distribution. To increase efficiency we propose an approach based on

the fact that to determine a count the examiner needs to evaluate all items

that make up that count. In the simplest case, two independent binomial

distributions are modelled and therefore we call it the double binomial ap-

proach. We also suggest various extensions of the double binomial approach

which might mimic better the scoring behavior of the examiner relative to

a gold standard. We evaluate the relative efficiency of our approach(es) to

estimate the misclassification probabilities in comparison to the multinomial

approach in an analytical way and in a simulation study. Finally, the prac-

tical use of our methods is exemplified on an oral health survey examining

caries experience in seven-year old Flemish children.

Key words: Count data; Logistic Regression; Misclassification; Preva-

lence; Response Error

1. Introduction

Large epidemiological studies often involve different scorers or examiners.

Unless mortality is the outcome, assessing (the severity of) the disease is

nearly always prone to misclassification. Here we will assume that the sever-

ity of the disease is expressed as a finite count. Some well-known examples

are: (a) in rheumatology: the number of sensitive joints; (b) in cardiology:
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k-vessel disease where k = 1, 2, 3, . . . indicates the number of coronary ar-

teries that are atherosclerotic; or (c) in dentistry: the dmft(DMFT)-index

expresses the total number of deciduous (permanent) teeth that are either

decayed, missing due to extraction because of caries, or filled.

The effect of misclassification has been studied in various models and in

different circumstances. In general, the conclusion is that misclassification

results in a biased estimate of the prevalence (or incidence) of the disease. In

regression models it has been shown that in the most simple cases misclas-

sification causes attenuated regression parameters (biased towards the null

value), but in general its effect is unpredictable (see e.g. Gustafson, 2004).

When the misclassification probabilities can be estimated unbiasedly, then

a suitable correction mechanism can result in (nearly) unbiasedly estimated

parameters. These probabilities can be estimated from a validation study, if

available, or alternatively from expert knowledge.

In a validation study the different examiners score the (severity of the)

disease and their score is compared to the score of a gold standard or bench-

mark scorer. However, from our experience in oral health research we must

conclude that validation studies are often too small implying that the correc-

tive terms are estimated with high variability. Especially with (finite) count

data the misclassification matrix is most often sparse. Hence when estimated

from a multinomial model, some of the misclassification probabilities cannot

be determined or the estimated misclassification probabilities will be quite

unreliable yielding corrected estimated parameters with high variability and

thus unclear scientific conclusions.

Here, we suggest to base the estimation of the misclassification proba-
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bilities on the double binomial (DB) approach or extensions thereof. The

DB approach exploits the nature of a count. Namely, in order to obtain a

count the sum needs to be made of binary scores, each of which is prone to

misclassification. Thus, one could estimate the misclassification probabilities

for count data from the misclassification table of the binary scores making

up the count. This approach can only be applied when the misclassification

process of the binary scores is done independently and does not depend on

the label of the binary score. These assumptions have been implicitly taken

for granted in a number of applications (see e.g. Paulino et al., 2003; Paulino

et al., 2005). However, when the counts are determined within a subject, it

is not immediately clear that these simplifying assumptions hold in practice.

Further, when the misclassification process is differential, this also needs to

be taken account. This is exemplified by Luan et al. (2005). Finally, Paulino

et al. (2003) and Paulino et al. (2005) assumed a (random-effects) binomial

regression model, which easily combines with the misclassification model.

However, in the dental example examined here, a more complex model had

to be assumed. Thus, we argue that there is a need for an approach to ana-

lyze finite count data in the presence of misclassification that: (a) expresses

the misclassification process in an appropriate manner; (b) maximizes the

efficiency in estimating the misclassification probabilities; and (c) combines

the misclassification process with an appropriate and possibly complex main

model. The elegant approach of Albert et al. (1997), developed for ordinal

responses, has been applied by Mwalili et al. (2005a) but showed not be the

best choice here.

In Section 2, the double binomial approach and its extensions are intro-
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duced. In Section 3 we compare analytically the sampling variability of the

multinomial and the basic double binomial approach. Sometimes it is suf-

ficient to just estimate the prevalence of the disease even with count data.

Therefore, we examine in Section 4 the relative efficiency of estimating the

sensitivity and specificity using the double binomial method to the direct

estimate obtained from the 2× 2 contingency table of the dichotomized true

count and the possibly corrupted count. In Section 5 the results of a sim-

ulation study are summarized. More details of the simulation study can be

found in Lesaffre et al. (2006). In Section 6 we describe how the estimated

misclassification probabilities can be used to correct for possible misclassi-

fication and how to incorporate the variability with which these correction

terms have been estimated. In Section 7 the approaches are applied to the

Signal-Tandmobiel R© study. In the final section we discuss the practical im-

plications of our results.

2. Estimating the misclassification probabilities of a finite count

Let Y =
∑K

k=1 Zk be the “true” count as determined by the gold stan-

dard and Y ∗ =
∑K

k=1 Z∗
k be the possibly corrupted observed count estab-

lished by an examiner. Zk and Z∗
k are the true and possibly corrupted

binary scores, respectively which make up the respective counts. Further,

let πrs(x) = P (Y ∗ = r|Y = s, x) (r, s = 0, . . . , K) with
∑K

r=0 πrs(x) = 1

represent the misclassification probabilities constituting the vector πs(x) =

(π0s(x), π1s(x), · · · , πKs(x))T and the misclassification matrix

(π0(x), . . . , πK(x)). When the misclassification probabilities depend on a

vector x, the misclassification process is called differential, otherwise it is

called non-differential. Suppose a (K +1)× (K +1) misclassification table is
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obtained from validation data with entries nrs with
∑K

r,s=0 nrs = n whereby

nrs represents the number of subjects classified as Y = s by the gold standard

and Y ∗ = r by the examiner and n is the total number of subjects involved

in the validation study.

In this paper we assume that interest lies in Y and not in the individ-

ual Zks. In another paper, we will consider models for multivariate binary

responses subject to misclassification.

2.1 The multinomial approach

Let us assume independence of the subjects. Then the sth column, ns, of

the misclassification table with entries nrs follows a multinomial distribution:

ns ∼ Multinomial
(
ns,πs(x)

)
. (1)

For a non-differential misclassification process, the multinomial estimate of

πrs is π̂rs = nrs/
∑K

r=0 nrs and has variance πrs(1− πrs)/
∑K

r=0 nrs. However,

the variance can be high and the estimate does not exist when the gold

standard does not score ‘s’ in the validation data. When the misclassification

process is differential the dependence on the covariates needs to be modelled.

2.2 The double binomial approach

In order to obtain a count, one needs to score the binary indicators Zk

(k = 1, . . . , K). Hence, it is likely that the validation data provide a mis-

classification table for each Zk. Suppose for a non-differential misclassifi-

cation process that αk = P (Z∗
k = 1|Zk = 1) , βk = P (Z∗

k = 0|Zk = 0)

(k = 1, . . . , K) represent the sensitivity and specificity for Zk, respectively of

the examiner relative to a gold standard. αk and βk can be estimated from
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the corresponding 2 × 2 misclassification table established in the validation

study with entries nk,rs with
∑1

r,s=0 nk,rs = n as follows: α̂k =
nk,11

nk,01+nk,11
and

β̂k =
nk,00

nk,00+nk,10
(k = 1, . . . , K).

The above assumptions imply a binomial model for the sensitivity and

for the specificity on the binary score. Further, it is assumed in first instance

that the misclassification process is non-differential. Therefore, the basic

double binomial approach (see below) will be based on the following three

simplifying assumptions:

• Assumption A1: scoring Zk is done independently from scoring Zl with

k 6= l

• Assumption A2: the scoring behavior of the examiner does not depend

on k

• Assumption A3: the scoring behavior of the examiner does not depend

on the subject (non-differential misclassification process)

For the dental example, the assumptions A1 and A2 imply that the scor-

ing of teeth is done equally well or bad for all teeth and that in an independent

manner. Hence, when A1 to A3 are satisfied, αk = αZ and βk = βZ and are

estimated by α̂Z =
PK

k=1 nk,11PK
k=1[nk,01+nk,11]

and β̂Z =
PK

k=1 nk,00PK
k=1[nk,00+nk,10]

, respectively.

Under the above simplifying assumptions, one can determine the mis-

classification table for Y based on the misclassification table for Zk (k =

1, . . . , K), which is assumed to be equal for all k. Namely

πrs =

M1∑
m=M0

(
s

m

)(
K − s

r −m

)
αm

Z (1− αZ)(s−m)(1− βZ)(r−m)β
(K−s−r+m)
Z , (2)
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where the bounds M0 = max(r − (K − s), 0) and M1 = min(r, s) arise

from the fact that expression (2) is derived from the distribution of two

independent binomial distributions, Bin(s, αZ) and Bin(K − s, 1 − βZ). In

the dental example, the first binomial distribution expresses the probability

that the examiner scores m teeth as decayed from the s teeth that the gold

standard has scored decayed. The second binomial distribution expresses

the probability that the examiner scores (r −m) teeth as decayed from the

(K − s) teeth that the gold standard has scored not decayed. Plugging the

estimates α̂Z , β̂Z in expression (2) yields estimates π̃rs (r, s = 0, . . . , K) and

hence the vectors π̃s = (π̃0s, . . . , π̃Ks)
T (s = 0, . . . , K).

2.3 Extensions of the DB approach

Assumptions A1 to A3 might not hold in practice. But, since the DB

approach is based on two binomial distributions in principle all types of

extensions of binomial models could be used. We discuss below some natural

extensions of the DB model. The DB model can be described as follows:

P (Z∗
1 , . . . , Z

∗
K |Z1, . . . , ZK) =

K∏

k=1

P (Z∗
k |Zk), (3)

with P (Z∗
k = 1|Zk = 1) = αZ and P (Z∗

k = 0|Zk = 0) = βZ . Thus, extensions

of the DB approach can be formulated as extensions of (3).

• Extension E1: the sensitivity and specificity of the binary scores de-

pend on covariates (Begg, 1987). For instance, when diagnosing oral

cancer the sensitivity of detecting the disease might be higher for smok-

ers than for non-smokers because the physician is more alerted for

a smoker. Thus, we assume that (3) holds, but that αZ ≡ αZ(x),
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βZ ≡ βZ(x). In other words, we assume that A1 and A2 are satis-

fied, but not A3. In this case, the misclassification process is called

differential.

• Extension E2: model (3) is extended to

P (Z∗
1 , . . . , Z

∗
K |Z1, . . . , ZK) =

K∏

k=1

P (Z∗
k |Zk, f(Z1, . . . , ZK)).

Thus, the misclassification process depends on a global summary sta-

tistic of the binary scores, i.e. αZ ≡ αZ(f(Z1, . . . , ZK)),

βZ ≡ βZ(f(Z1, . . . , ZK)). The motivation behind this extension is best

seen in the caries example. When f(Z1, . . . , ZK) =
∑K

k=1 Zk is large

there is much caries in the mouth. It is conceivable that in such a

mouth there is might be some confusion of when a tooth is decayed or

not.

• Extension E3: the scoring is dependent, i.e. P (Z∗
1 , . . . , Z

∗
K |Z1, . . . , ZK)

does not split up in a product. Thus, assumption A1 is relaxed, for a

motivation in oral health studies see e. g. Hujoel et al. (1990). There

exists a variety of models for correlated binary random variables, see

e.g. Rudolfer (1990). A convenient way to introduce correlation is to

assume that, given a subject, the scoring is independent but that the

sensitivity and specificity depend on the subject (unknown) characteris-

tics. More formally, assume that α and β have a distribution depending

on the subject’s unknown characteristics, given by the random vector

b and that

P (Z∗
1 , . . . , Z

∗
K |Z1, . . . , ZK , b) =

K∏

k=1

P (Z∗
k |Zk, b),
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and P (Z∗
1 , . . . , Z

∗
K |Z1, . . . , ZK) =

∫ ∏K
k=1 P (Z∗

k |Zk, b)f(b)db. There

are two natural candidates for the distribution of α and β. Firstly,

assume that α and β each have a Beta density and that they are in-

dependent of each other. In that case P (Z∗
1 , . . . , Z

∗
K |Z1, . . . , ZK) =

∫ ∏
Zk=1 P (Z∗

k |Zk, α)B(α)dα
∫ ∏

Zk=0 P (Z∗
k |Zk, β)B(β)dβ, where B(·)

represents a Beta-density. Thus, α ≡ b1 and β ≡ b2, where bT =

(b1, b2). This generalizes the binomial distribution Bin(N, π) to a beta-

binomial distribution BB(N, π,τ), with mean π and variance τ (see

Section 7 for an expression). Further, this implies that in expression

(2), Bin(s, αZ) and Bin(K − s, 1 − βZ) are replaced by BB(s, αZ ,τα)

and BB(K−s, βZ ,τβ), respectively. Secondly, since α and β have a dis-

tribution depending on the subject, it is natural to assume that they

are also correlated. Correlation can be introduced by first taking the

logit transform of α and β, i.e. b1 = logit(α), b2 = logit(β) and then

assuming that bT = (b1, b2) ∼ N(µb, Σb).

• Extension E4: sensitivity and specificity depend on k, i.e. αk, βk (k =

1, . . . , K). For instance, in caries research it is known that detecting

caries experience in molars is more difficult than in other teeth.

In the sequel the basic DB model will also be denoted by E0. To test

whether the E0 model needs to be extended to Ex (x = 1, . . . , 4) a likeli-

hood ratio test can be employed. To choose between the extensions, Akaike’s

Information Criterion might be used. Further, the above extensions could

be combined making the misclassification process even more general. The

availability of a battery of models for the misclassification process helps
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in obtaining unbiased estimates of the misclassification probabilities while

maintaining high efficiency. For all of the extensions, the estimated misclas-

sification probabilities will still be denoted by π̃s.

In the literature it is often recommended that the validation data con-

stitute a random sample of the main study, thereby establishing an internal

validation data set. However, it is sufficient that the misclassification prob-

abilities πrs are estimated unbiasedly to obtain consistent estimates of the

main model parameters. This allows other sampling strategies for the vali-

dation data. An example is given by the method of conditional sampling as

suggested by Haitovsky and Rapp (1992). In caries research an alternative

strategy than simple random sampling is also to be recommended especially

when using the multinomial method.

3. Efficiency considerations

In this section we compare the efficiency of the multinomial and the simple

DB approach. The improvement in efficiency is an upper bound of the effi-

ciency that one could get by modelling the misclassification probabilities as

above since the extensions of the DB approach involve more parameters to

fit.

3.1 Sampling variability of the multinomial approach

The covariance matrix of π̂s = (π̂0s, . . . , π̂Ks)
T is equal to Γs = 1

ns
(Diag(πs)−

πsπ
T
s ) estimated by Γ̂s by plugging π̂s into Γs. The elements of the matrix

Γs are denoted as γgh,s (g, h = 0, . . . , K).
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3.2 Sampling variability of the DB approach

Recall that the estimates α̂Z , β̂Z are plugged in expression (2) to yield

π̃s. Further, the variance of α̂Z (β̂Z) equals τ1 = αZ(1−αZ)PK
k=1[nk,01+nk,11]

(τ0 =

βZ(1−βZ)PK
k=1[nk,00+nk,10]

). Together with the (bivariate) Delta Method the covariance

matrix of π̃s can be obtained. The kth component of π̃s is a function fs,k of

αZ and βZ . Thus, the covariance matrix of π̃s is equal to

Σs =

(
∂fs,k

∂αZ

,
∂fs,k

∂βZ

)
Σα̂Z ,β̂Z

(∂fs,m

∂αZ

∂fs,m

∂βZ

)
, (4)

where Σα̂Z ,β̂Z
= diag (τ1, τ0). The elements of the matrix Σs are denoted by

σgh,s (g, h = 0, . . . , K). By plugging in the estimates α̂Z and β̂Z the matrix

Σ̃s is obtained.

3.3 Asymptotic relative efficiency of the DB approach with respect to the
multinomial approach

In this subsection we work under the assumptions A1 to A3. Let us

denote the asymptotic relative efficiency of the double binomial method to the

multinomial method for estimating πrs by ARErs = σrr,s

γrr,s
. The expression for

ARErs can be derived from the multinomial variance and expression (4). We

show in Figure 1 the values of log(ARE)rs for K = 5, αZ = 0.90, βZ = 0.90

and prevalence equal to 0.10 where r = s ranges from 0 to 5. From this

figure we can see that the relative efficiency is always bigger than 1. It

actually varies here from 1.9 for r = s = 0 to 12, 483 for r = s = 5. Equally

so, the relative efficiency for the off-diagonal elements of the 6 × 6 table of

misclassification probabilities shows for most values of r and s a tremendous

gain (results not shown). Further, the efficiency increases with K, see also

next section. Furthermore, it is important to note that the efficiency also
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depends on the marginal distribution of Y .

[Figure 1 about here.]

4. Estimating the prevalence of a disease

Suppose that only the prevalence of the disease is of interest. In that case

the interest lies in detecting Y > 0. Define the binary variable W as W = 0

when Y = 0 (not diseased) and W = 1 when Y > 0 (diseased). Further, let

W ∗ be the corresponding score given by the examiner. The specificity and

sensitivity of the examiner vis-a-vis the gold standard in scoring prevalence

is βW = P (W ∗ = 0|W = 0) = P (Y ∗ = 0|Y = 0),

αW = P (W ∗ = 1|W = 1) =
K∑

r=1

K∑
s=1

πrsP (Y = s|Y > 0), (5)

respectively. αW and βW can be estimated in two ways. Firstly, a direct

estimate is obtained from the 2× 2 misclassification table of W and W ∗, i.e.

β̂W = n00PK
r=0 nk0

and α̂W =
PK

r=1

PK
s=1 nrsPK

r=0

PK
s=1 nrs

. The expression for α̂W also follows

from taking the multinomial estimates of πrs and of P (Y = s|Y > 0), i.e.

nrsPK
r=0 nrs

,
PK

r=0 nrsPK
r=0

PK
s=1 nrs

, respectively.

Secondly using the DB approach the specificity is equal to βW = βK
Z

yielding the estimate β̃W = β̂K
Z =

( PK
k=1 nk,00PK

k=1[nk,00+nk,10]

)K

. For the sensitivity

one obtains α̃W =
∑K

r=1

∑K
s=1 π̃rs

PK
r=0 nrsPK

r=0

PK
s=1 nrs

.

Using the Delta Method the variance of β̃W is equal to [Kβ̂Z

K−1
]2 βZ(1−βZ)PK

k=1[nk,00+nk,10]
.

In a similar manner the variance of α̃W is obtained, but a more complicated

expression arises and is omitted here.

The estimate β̂W only requires an unbiased estimate of π00, while β̃W also

requires that assumptions A1 to A3 hold. For α̂W and α̃W the probability
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P (Y = s|Y > 0) needs to be estimated unbiasedly from the validation data.

Thus, the validation data need to constitute an unbiased subsample from the

main study. For α̃W also the simplifying assumptions A1 to A3 need to hold.

[Table 1 about here.]

Clearly, the asymptotic relative efficiency for estimating the specificity

equals ARE00. In Table 1, we calculated the relative efficiency in estimating

the specificity βW and sensitivity αW for a variety of situations. The relative

efficiency varies greatly but is always bigger than 1. Further, we observe that

the relative efficiency in estimating βW increases with K and decreases with

increasing specificity of Zk. Since the estimated specificity equals β̃W = β̂K
Z

its relative efficiency does not depend on the sensitivity of Zk. The relative

efficiency in estimating αW increases with K and decreases with increasing

sensitivity and specificity of Zk.

5. Simulation study

A simulation study was set up to evaluate the performance of the DB ap-

proach and its extensions. More specifically, we have set up two types of sim-

ulations: (1) Evaluating the efficiency of the E0 model (basic DB approach)

when the true model is in fact Ex (x = 0, . . . , 4) in comparison to the true

extension and in comparison to the multinomial model. This evaluates the

basic DB approach in estimating the correction terms; (2) Evaluating the

efficiency of the DB approach as above, but when estimating the main model

parameters. This efficiency comparison was set up to evaluate the practical

gain in estimating the measurement model parameters when using the most

efficient procedure for estimating the correction terms.
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5.1 Setup of the simulation study

5.1.1 First simulation study In the first simulation study, the sample

size of the validation study was fixed to N = 100. Each scenario was sam-

pled 1000 times. We formulated below the four extensions of the basic DB

approach as logistic models. Namely:

L[P (Z∗
k,i = 1)] = γ0 + γ1Zk,i (6)

L[P (Z∗
k,i = 1)] = γ0 + γ1Zk,i + ξ1X1,i + . . . + ξqXq,i (7)

L[P (Z∗
k,i = 1)] = γ0 + γ1Zk,i + δf(Z1i, . . . , ZKi) (8)

L[P (Z∗
k,i = 1)] = γ0 + γ1Zk,i + γ2T2,ki + . . . + γKTK,ki (9)

where L(t) = ln(t/(1 − t)) is the logit, i = 1, . . . , N and k = 1, . . . , K and

the dependence on the covariates is omitted from the expression for clarity.

The true and possibly misclassified counts are obtained by making the sums
∑K

k=1 Zk,i and
∑K

k=1 Z∗
k,i, where K = 8 has been taken.

Two values for the prevalence pM at mouth level were considered, i.e.

pM = 0.10 and pM = 0.30. This implies a prevalence at tooth level equal to

pT = 1− (1− pM)(1/K) yielding pT = 0.013 and pT = 0.043, respectively.

Model E0, i.e. the basic DB approach, corresponds to model (6) with

γ0 = −2.94 and γ1 = 5.14, so we obtain αZ = 0.90 and βZ = 0.95.

In extension E1, see equation (7), we have taken q = 2. The regression

vector ξ is taken equal to (0.7,−0.3, 0.4)T for a minimal variation of the

sensitivities and specificities and equal to (1.5,−0.6, 0.9)T for a moderate

variation. Further, for the two covariates we assume that X1 ∼ N(3, 0.2) and

X2 ∼ Bernoulli(0.6). These two distributions were inspired by the covariates

considered in the Signal-Tandmobielr study (namely, “age at start brushing”
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and “gender”). αZ and βZ vary over the subjects and hence assumption A3

is violated here.

Extension E2, see equation (8), expresses that αZ and βZ depend on the

values of Z1, . . . , ZK and thus assumption A1 is violated now. More specif-

ically, we have taken f(Z1, . . . , ZK) =
∑K

k=1 Zk. For a minimal variation of

the sensitivities and specificities we have taken δ = 0.1 and for a moderate

variation δ = 0.2.

In extension E3, assumption A1 is relaxed by allowing the αZ and βZ

to have a distribution varying by subject. For a minimal variation of the

sensitivities and specificities we take µ′
b = (logit(αZ), logit(βZ)), e.g. µ′

b =

(2.197, 2.944) for αZ = 0.90 and βZ = 0.95, and

Σb =

(
0.050 0.035
0.035 0.030

)
.

For a moderate variation the values of Σb are doubled.

Finally, in extension E4, see equation (9), the variables Tj,k = 1 if j = k

and 0 otherwise for j, k = 1, . . . , K. They express the fact that the αk

and βk differ over k and hence that assumption A2 is violated. For a small

variation, we have taken for K = 6, γ = (−0.3,−0.3, 0.3, 0.3, 0.3)T and

for K = 8 we have taken γ = (−0.3,−0.3,−0.3, 0.3, 0.3, 0.3, 0.3)T . For a

moderate variation, these values are doubled.

We have assumed that the true binary scores Zk are independent (ρ = 0)

and as well as that they are related (ρ = 0.7). However, since the simulation

results for the two values of ρ are similar, we report only the results for

ρ = 0.7. To generate the correlated binary scores we used the method of

Dunn and Davies (1998).
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For the models Ex (x = 0, . . . , 4) and the multinomial model, we calcu-

lated for the estimated αW and βW : the average, the median, the SD, the

Mean Squared Error (MSE) and the 95% range. We calculated also the

estimates for all elements of the misclassification matrix, i.e. πrs, but report-

ing all of these results would be overwhelming. Alternatively, we calculated

the discrepancy measure D =
∑K

s=0

∑K
r=0(πrs − prs)

2/(K + 1), where πrs is

the true misclassification probability and prs = π̂rs, πrs, π̃rs, respectively. A

chi-square type of statistic is possible too but it would give too much weight

on the small (and unimportant) true misclassification probabilities and is

therefore not reported here.

To determine the true misclassification probabilities and consequently

the value of αW and βW an approximative method was used. Namely, we

approximate the true misclassification probabilities using the multinomial

method determined on a validation study of size 200, 000.

We report below only the case of moderate variability together with K = 8

since these results are sufficient to deliver the message.

5.1.2 Second simulation study In the second simulation study, we ex-

amined the effect of the basic DB approach and its extensions on the estima-

tion of the main model parameters and compared their performance to the

multinomial approach. For all cases, the size of the main study is 1000 and

1000 simulations were performed for each scenario. We considered as mea-

surement model a binomial regression model given by Y ∼ Binom(K, pY )

with logit(pY ) = β0 + βXX + βZZ, where X is a binary covariate with suc-

cess probability pX and Z is an independent continuous normal variate with
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mean 0 and standard deviation SDZ . We have varied the values of pX and

SDZ . This was done to examine the effect of the precision with which the

regression coefficient is estimated in the model without scoring errors on the

relative gain of the DB approach. For instance, when SDZ is large it is

known that the regression coefficient of Z is estimated with more precision

than when SDZ is small. Therefore, it is expected that the gain of the DB

approach will be better seen for a relatively large value of SDZ .

The size of the validation study was fixed at 100. Further, we sampled

the validation data such that :

• there is equal probability for scoring Y = s, i.e. P (Y = s) = 1/(K +1);

• there is unequal probability for Y = s, i.e. P (Y = s) = [2(K + 1 −
s)]/[(K + 1)(K + 2)] which is decreasing in s;

• the validation study is a random sample of the main study.

Sampling and estimation was done under the different DB approaches.

More specifically, we sampled from extension Ex and estimated the parame-

ters with E0 and Ex. Thus, when sampling was done under extension Ex,

estimation was done under the same model.

5.2 Simulation results

5.2.1 First simulation study In Table 2 the simulation results are shown

for the sensitivity (αW ) and in Table 3 the simulation results for the speci-

ficity (βW ) are given. More specifically, we show the estimated sensitivity and

specificity for the two values of the prevalence when estimated with the basic

DB approach and the multinomial approach when sampling is done under

the models Ex (x = 0, . . . , 4). We observe that in all cases αW and βW are
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estimated unbiasedly for both approaches. For a low prevalence the speci-

ficity is estimated with less variability than the sensitivity, while the reverse

is true for the higher prevalence. In all cases the variability in estimation is

lower for the DB approach than with the multinomial approach.

[Table 2 about here.]

[Table 3 about here.]

The discrepancy measure D of the misclassification probabilities is given

in Table 4. More specifically, the measure D is calculated for each simulated

scenario and descriptive statistics over the 1000 simulations are reported. We

observe that again the basic DB approach is the winner under all scenarios,

with the most important gain for the higher value of the prevalence.

[Table 4 about here.]

5.2.2 Second simulation study Tables 5 and 6 show the simulation re-

sults for binomial regression with equal and unequal probability, respectively,

of scoring Y = 0, 1, · · · , K in the validation data.

The simulation results indicate that when SDZ is relatively low, i.e. when

the precision of estimating the true regression coefficient in the data set

without scoring errors is relatively low, then the DB approaches are roughly

equivalent (although practically always better than) to the multinomial ap-

proach. In contrast, when the precision of estimating the true regression

is high, there is much gain in DB approaches as compared to multinomial

method. Further, the multinomial method shows a serious bias in estimating

the regression coefficients when SDZ is high.
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We also observe that the variability with which the parameters are esti-

mated with the DB approach does not depend on the marginal probability

distribution of Y. The same seems to be true for the multinomial approach.

However, the latter approach clearly suffers from computational difficulties

when the marginal probability of Y is not uniform. The results are some-

times dramatic when the validation study is a random sample of the main

study, see Table 7.

Finally, we observe that when the correct extension is used the perfor-

mance of the DB approach is best. That is, when sampling is done under Ex

and estimation is done under Ex, then the MSE is the lowest. However, the

performance of the basic DB approach is relatively close to the extension,

certainly in view of its difference with the multinomial approach.

[Table 5 about here.]

[Table 6 about here.]

[Table 7 about here.]

6. Correcting for misclassification in the main study

6.1 Correcting for misclassification in a regression model

Interest lies in relating Y to covariates, but if Y ∗ is observed instead, then

the relationship will be distorted. The relationship between the model for

Y ∗ and the model for Y , assuming non-differential misclassification, is:

P (Y ∗ = r|X = x; θ; A) =
K∑

s=0

P (Y = s|X = x; θ)πrs, (10)
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where θ contains the vector of regression coefficients and model parameters

relating the true counts to the regressors, and A ≡ (πrs)rs. In some simple

cases, a closure property under misclassification holds. Indeed, when P (Y =

s|X = x; θ) is a (random effects) binomial response model, one can show that

combined with a DB misclassification model P (Y ∗ = r|X = x; θ; A) is again

a (random effects) binomial response model, see e.g. Paulino et al. (2003)

and Paulino et al. (2005). However, this property does not hold in general

and one needs expression (10) to fit more complex models as encountered in

our caries example.

Suppose that there are m observations in the main data, i.e. {Y ∗
1 , . . . , Y ∗

m},
and that an extra n pairs of observations {(Y ∗

i , Yi), i = (m+1), . . . , (m+n)}
constitute the validation data set, either being a random subsample from the

main data or sampled to increase the efficiency in unbiasedly estimating the

misclassification probabilities πrs (r, s = 0, . . . , K). The estimated probabil-

ities π̂rs (multinomial) or π̃rs (r, s = 0, . . . , K) (DB approach) are imputed

in equation (10), to estimate the parameter vector θ using, e.g. a maximum

likelihood procedure, yielding θ̂ or θ̃, respectively.

6.2 Variability of the corrected estimates

For a likelihood-based method, the asymptotic covariance matrix of θ̂

can be derived from the second order derivatives of the log-likelihood at the

final iteration, where the likelihood is derived from expression (10) replacing

the unknown misclassification probabilities by their estimates obtained from

the validation study. However, this approach does not take the sampling

variability of π̂rs (r, s = 0, . . . , K) into account. The same remark applies to

θ̃.
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The total likelihood, combining the main data and the validation data,

is given by (the dependence on covariates is omitted for convenience):

m∏
i=1

P (Y ∗
i |θ, A)

m+n∏
i=m+1

P (Y ∗
i , Yi|φ, A), (11)

where the first term is obtained from (10). Further, the second term splits up

in the products
∏m+n

i=m+1 P (Y ∗
i |Yi; A) and

∏m+n
i=m+1 P (Yi|φ). The first product

represents the misclassification probabilities and the second product pertains

to the true counts. When the validation study is a random sample of the

main study, φ ≡ θ.

The second derivative matrix at the ML estimate of θ, obtained from

likelihood (11), yields the asymptotic covariance matrix of the estimate of

θ taking the variability into account with which πrs is estimated. This ap-

proach has been implemented by Mwalili et al. (2005b). For a non-likelihood

approach, such as the MC-SIMEX method of Küchenhoff et al. (2006), a

bootstrap procedure could be used. Finally, a Bayesian approach (see e.g.

Mwalili et al., 2005a and Mwalili et al., 2005b) together with flexible software

such as WinBUGS (Spiegelhalter et al., 1996), can take the variability of the

correction terms into account in an elegant manner. More specifically, the

parameters determining the sensitivity (α) and specificity (β) in the valida-

tion data set are sampled in parallel with the parameters of the main model

(θ). The posterior distribution of the parameters θ will then automatically

take into account the uncertainty with which the main model parameters

have been estimated. This procedure is described in more detail in Mwalili

et al. (2005a). However, now the WinBUGS Development Interface (WB-

Dev) was used, which enables the implementation of user defined functions
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into the WinBUGS system via compiled Pascal code. The WBDev code that

was used to compute the zero-inflated beta-binomial (ZIBB) distribution can

be obtained from

http://med.kuleuven.be/biostat/software/software.htm

7. Application to the Signal-Tandmobielr study

7.1 The Signal-Tandmobielr study

The Signal-Tandmobiel R© survey is a longitudinal oral health study in-

volving 4468 children conducted in Flanders (Belgium). Detailed dental data

were collected on oral hygiene level using established criteria. Questionnaire

data were also obtained from the parents on the dietary and brushing behav-

ior of their child. The children were examined annually for a period of six

years (1996-2001) and at entry their average age was 7.1 years (sd = 0.4).

Here we will look at caries experience in the first year of the study. For more

details on this study, we refer to Vanobbergen et al. (2000).

A popular measure for caries experience is the dmft-score, which is the

sum of the number of decayed (d), missing due to caries (m) and filled (f)

deciduous teeth with 0 as minimal value (no caries experience) and 20 as

maximal value (all teeth affected). Here, we look at the dmft-score restricted

to the 8 deciduous molars (teeth x4 and x5, with x=5,6,7,8), denoted by

dmft4,5-score. We are interested in the effect of dietary and brushing behavior

on the dmft4,5-score.

The regression model expressing dmft4,5-score as a function of the dietary

and brushing behavior covariates is based on 3303 children with no-missing

information on these covariates. 96.2% of these children had 8 deciduous mo-
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lars, for the remaining children one or more deciduous molars were replaced

by their corresponding permanent molars. We regarded such a deciduous

molar as sound.

7.2 Analysis of the validation study

In the Signal-Tandmobielr study sixteen dental examiners were involved.

Three calibration exercises for scoring caries experience were organized and

at the end of each exercise the scoring behavior of the dental examiners

was compared to that of a gold standard (last author) yielding each time a

misclassification table for each examiner. Here we look at the validation data

of the first calibration exercise.

[Table 8 about here.]

[Table 9 about here.]

The validation study was based on ninety-two children, but the children

were not sampled at random from the main study. Rather, a school was

selected (and all seven-year old children examined) where a relatively high

prevalence for caries experience could be expected. Although the validation

study is not internal, since the children belong to the same population as

those of the main study and the dental examiners are also the same, the mis-

classification probabilities can be unbiasedly estimated using the validation

data. But, for these children no questionnaire data were available so their

true scores could not be included in likelihood (11). In this analysis we will

pool over the examiners. In Table 8 the observed misclassification table for

dmft4,5 with respect to the gold standard is given. Clearly, this is a very

sparse table. In Table 9 scoring caries experience by the dental examiners on
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tooth level is compared with the scores of the gold standard. From this table

we can obtain α̂Z = 133/154 = 0.86 and β̂Z = 418/433 = 0.97. These values

are plugged in (2) together with K = 8 and yields the estimated misclassifi-

cation probabilities for the basic DB method. Combined with the marginal

totals from Table 8 the estimated frequencies of misclassification are obtained

and compared to those of Table 8. The fitted table (not shown) indicates

that the expected frequency of cell (0, 0) under the basic DB method is 26

which is about 25% lower than the observed frequency.

[Figure 2 about here.]

In Figure 2 the observed tooth-specific specificities and sensitivities are

plotted as a function of the dmft4,5-index. From this figure there is some

evidence that the specificity and the sensitivity depend on the actual value of

the dmft4,5-index, namely they are higher for dmft4,5 = 0 and 1. A possible

explanation for the dependence of sensitivity and specificity on dmft4,5, is

that when there is (almost) no caries experience in the mouth caries might

be easier to distinguish from no-caries, while in a mouth with considerable

caries experience the dental examiner might be distracted somewhat easier.

We fitted a logistic regression model predicting the scoring behavior of the

examiners as a function of the true score and dmft4,5:

logit(αZ) = 2.6− 0.14× dmft4,5,

logit(βZ) = 4.1− 0.45× dmft4,5, (12)

where we have omitted the subscript k in dmft4,5 for convenience. Model

(12) corresponds to extension E2. The regression coefficient (SE) indicates
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that the specificity decreases with dmft4,5, but the negative dependence of

the sensitivity on dmft4,5 is not so pronounced. Hence, we used model (12)

to provide the correction terms for the main model.

[Table 10 about here.]

7.3 Analysis of the main study

Since the response dmft4,5 ≡ Y = Z1 + . . . + ZK where K = 8 is a

finite count, an obvious candidate for the distribution of Y is the binomial

distribution. However, the Zk (k = 1, . . . , K) are correlated. In that case,

the beta-binomial distribution is a possible choice, given by Prentice (1986):

P (Y = y) ≡ BB(y|N, π, τ) =

(
K
y

)
y−1∏
h=0

(π + τh)
K−y−1∏

h=0

(1− π + τh)

K−1∏
h=0

(1 + τh)

, (13)

with mean Kπ and variance Kπ(1− π)[1 + (K − 1)δ], where δ = τ/(1 + τ).

In the Signal-Tandmobielr study, there is an excess of zeros. Therefore, we

have chosen for the zero-inflated beta-binomial (ZIBB) model assuming for

the distribution of the count a mixture of a beta-binomial distribution and

a point mass at zero. The ZIBB distribution is given by

P (Y = y) =

{
p + (1− p)BB(0|N, π, τ) if y = 0;
(1− p)BB(y|N, π, τ) if y > 0.

(14)

The ZIBB regression model relates the parameters π and p of the ZIBB

distribution to covariates as follows:

logit(πi) = x′iβ and logit(pi) = z′iγ, (i = 1, · · · ,m) (15)
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where xi and zi are d- and q-dimensional vectors of covariates pertaining

to the ith subject, and with β and γ the corresponding vector of regression

coefficients, respectively.

7.3.1 Estimating the true prevalence The observed prevalence is 55%.

The corrected estimate of prevalence (and 95% credibility interval) assuming

a ZIBB distribution for dmft4,5 are: (a) using the multinomial method: 60.1%

(54.2 – 66.7) and (b) using extension E2: 59.4% (55.5 – 64.4). The estimated

prevalence from both methods are quite close, but the estimate of E2 presents

less variability than the multinomial estimate.

7.3.2 Correcting for misclassification when regressing caries experience on

covariates We now consider the impact of age, gender, dietary and re-

ported brushing behavior on dmft4,5. As dietary covariates we consider the

binary variables ‘intake of sugar-containing drinks’ (yes = 1) and ‘snacks

in-between meals’ (> 2 = 1). As brushing covariates ‘frequency of brushing’

(< 2/day = 1) and ‘age at start brushing’ are taken. Additionally, the use

of systemic fluorides (yes=1) was taken in the model. In Table 11 we show

the fitted ZIBB regression model without correction. The positive regres-

sion coefficient for age in the beta-binomial part implies that the older the

children the higher the degree of caries experience. In addition, the later

the children start brushing the higher the degree of caries experience. Fur-

ther, the use of systematic fluoride supplements lowers the degree of caries

experience whereas the consumption of sugar containing drinks and intake of

in-between-meals increases the risk of caries experience. For the degenerate
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part (explaining 0) only age at start of brushing was important. However,

we omitted this variable from the model to enhance the comparability be-

tween this model and the two fitted models corrected for misclassification

(see below).

[Table 11 about here.]

Table 12 shows the corrected ZIBB regression models based on the two

approaches. First, observe that the fitted value for p is much lower for exten-

sion E2 than for the multinomial approach. This implied that no covariates

turned out to be important to predict the extra-zeros in the DB approach

and hence we dropped covariate age at start of brushing in the degenerate

part from all models. For both correction methods the regression coefficients

increased in absolute value, with the largest increase for the multinomial cor-

rection method. On the other hand, the 95% credibility interval increased

in size with respect to the uncorrected model. But, the median increase in

size is about 1.5 for extension E2, while for the multinomial correction this

increase is about 2.5.

[Table 12 about here.]

8. Discussion

Correction for misclassification can only work efficiently if the correction

terms are estimated with high precision. This necessitates that the valida-

tion study is large enough. To increase the efficiency with which the misclas-

sification probabilities are estimated some modelling of these probabilities

seems necessary. In this paper, we have suggested to describe the misclassi-

fication process in a simple statistical way by the double binomial method.
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The gain in efficiency but also the decrease in bias, compared to multino-

mial modelling, can be large if certain assumptions are roughly satisfied. We

admit that it is not clear how often these assumptions will hold in practice.

But from the simulations we can conclude that moderate violation of the

assumptions A1 seems of less importance. Further, we have shown that our

approach can easily be extended when the assumptions do not hold.

In a series of papers (Espeland and Odoroff, 1985; Espeland, 1986; Es-

peland and Hui, 1987), Espeland and coworkers suggested to fit categorical

data in the presence of misclassification errors using a general class of models

incorporating log-linear models. Their approach also allows easily calcula-

tion of variance estimates of the main model parameters, taking into account

the sampling variability of the correction terms. Thus, when the response

and the covariates are categorical, i.e. frequency tables are modelled, their

approach is an elegant way to deal with misclassification errors. In con-

trast, the DB approach is a particular misclassification model for finite count

data that yields a misclassification matrix, which can be used to correct for

scoring errors in the count used as a response of a regression model or as

a regressor. Thus the DB approach involves only a misclassification model

combined in a second step with the measurement model in a general manner.

Therefore, the DB model can be combined with the measurement model in

a likelihood way or in combination with a structural approach, e.g. the MC-

SIMEX (Küchenhoff et al., 2006). The approach of Espeland integrates the

measurement and misclassification model into one model. However, the lat-

ter approach does not exploit the nature of the count (and was not developed

for it) and therefore might suffer from similar problems as the multinomial
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model, e.g. if the true count has not been observed in the validation study

computational problems will occur.
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Figure 1. Log(Relative efficiency) log(ARE)rs with r = s for K = 5, αZ =
0.90, βZ = 0.90 and prevalence equal to 0.10
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Figure 2. Signal-Tandmobielr Study: Tooth-specific specificity and sensi-
tivity (+ 95% CI) as a function of dmft4,5. Open (filled) circles represent
the observed specificities (sensitivities). The lines correspond to fitted values
from model (12), the solid lines represent specificity and the dashed lines
sensitivity. The inner lines represent the average curve, the outer lines show
the 95% pointwise boundary values
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Table 1
Relative efficiency as a function of K, the prevalence and the sensitivity and

specificity of Zk

Relative efficiency
K Prevalence Sensitivity Specificity Sensitivity Specificity
5 0.10 0.90 0.90 3.34 1.90

10 0.10 0.90 0.90 5.56 4.34
20 0.10 0.90 0.90 26.23 24.07
5 0.20 0.90 0.90 3.35 3.05

10 0.20 0.90 0.90 12.79 12.53
20 0.20 0.90 0.99 226.59 225.61
5 0.30 0.90 0.90 5.36 5.20

10 0.30 0.90 0.90 41.91 41.66
20 0.30 0.90 0.90 2845.58 2852.35
5 0.10 0.95 0.90 2.16 1.90

10 0.10 0.95 0.90 4.49 4.34
20 0.10 0.95 0.90 24.43 24.07
5 0.20 0.95 0.90 3.14 3.05

10 0.20 0.95 0.90 12.67 12.53
20 0.20 0.95 0.99 226.59 225.61
5 0.30 0.95 0.90 5.27 5.20

10 0.30 0.95 0.90 41.87 41.66
20 0.30 0.95 0.90 2856.67 2852.35
5 0.10 0.90 0.95 3.20 1.69

10 0.10 0.90 0.95 4.20 3.29
20 0.10 0.90 0.95 13.27 12.58
5 0.20 0.90 0.95 3.03 2.71

10 0.20 0.90 0.95 9.68 9.49
20 0.20 0.90 0.95 118.33 117.96
5 0.30 0.90 0.95 4.80 4.63

10 0.30 0.90 0.95 31.73 31.55
20 0.30 0.90 0.95 1487.43 1491.40
5 0.10 0.95 0.95 1.97 1.69

10 0.10 0.95 0.95 3.40 3.29
20 0.10 0.95 0.95 12.74 12.58
5 0.20 0.95 0.95 2.80 2.71

10 0.20 0.95 0.95 9.59 9.49
20 0.20 0.95 0.95 118.41 117.96
5 0.30 0.95 0.95 4.69 4.63

10 0.30 0.95 0.95 31.70 31.55
20 0.30 0.95 0.95 1493.05 1491.40
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Table 2
Simulation results for sensitivity: K= 8, N = 100 with moderately varying

sensitivity αk and specificity βk around 90%, 95% respectively for each of the four
extensions (E0 corresponds to the basic DB approach). Prev represents the

prevalence at mouth level. All values are expressed in percentages.

Double binomial (E0) Multinomial

Ext Prev SN† Mean(Median)/ SD/ Mean(Median)/ SD/ RE‡

95% Range MSE 95% Range MSE

E0 10 93.3 93.3(94.1) 6.59 93.5(100.0) 8.36
[78.0, 100.0] 43.4 [72.7, 100.0] 69.8 161

E1 10 94.1 94.5(95.1) 5.95 94.2(100.0) 7.75
[80.5, 100.0] 35.5 [75.0, 100.0] 60.1 169

E2 10 92.5 91.8(92.8) 7.54 91.9(92.3) 9.11
[74.3, 100.0] 57.4 [70.0, 100.0] 83.2 145

E3 10 93.3 93.3(94.0) 6.45 93.4(95.0) 8.03
[77.9, 100.0] 41.6 [75.0, 100.0] 64.5 155

E4 10 92.8 92.5(93.3) 7.45 92.8(93.8) 8.83
[75.0, 100.0] 55.6 [70.0, 100.0] 77.9 140

E0 30 94.0 94.0(94.4) 3.30 94.0(94.3) 4.42
[86.7, 100.0] 10.9 [83.3, 100.0] 19.6 180

E1 30 94.8 95.0(95.3) 2.86 94.8(95.8) 4.12
[88.2, 100.0] 8.2 [85.2, 100.0] 16.9 206

E2 30 93.1 93.0(93.4) 3.70 93.1(93.3) 4.73
[85.1, 98.5] 13.7 [82.9, 100.0] 22.3 163

E3 30 94.1 93.8(94.0) 3.12 94.0(94.2) 4.32
[86.9, 98.9] 9.8 [84.0, 100.0] 18.7 191

E4 30 93.4 92.6(92.8) 3.58 93.5(93.9) 4.53
[85.2, 98.6] 13.4 [83.3, 100.0] 20.5 153

†SN = true sensitivity at mouth level.
‡RE = MSEmult/MSEDB × 100
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Table 3
Simulation results for specificity: K= 8, N = 100 with moderately varying

sensitivity αk and specificity βk around 90%, 95% respectively for each of the four
extensions (E0 corresponds to the basic DB approach). Prev represents the

prevalence at mouth level. All values are expressed in percentages.

Double binomial (E0) Multinomial

Ext Prev SP† Mean(Median)/ SD/ Mean(Median)/ SD/ RE%‡

95% Range MSE 95% Range MSE

E0 10 66.1 66.6(66.5) 4.33 66.4(66.3) 4.95
[58.6, 75.7] 18.9 [57.0, 76.3] 24.6 130

E1 10 61.2 61.1(61.2) 4.33 61.3(61.4) 5.12
[52.7, 69.6] 18.8 [51.6, 71.4] 26.2 139

E2 10 71.6 71.9(71.8) 4.40 72.0(72.2) 4.88
[63.2, 80.6] 19.4 [62.5, 81.0] 24.0 123

E3 10 65.7 65.3(65.3) 4.47 65.5(65.6) 4.92
[57.0, 73.4] 20.1 [56.2, 74.7] 24.2 120

E4 10 71.6 71.8(71.8) 4.27 71.7(71.8) 4.81
[63.7, 80.6] 18.3 [61.9, 81.1] 23.1 126

E0 30 66.5 66.2(66.4) 4.34 66(66.2) 5.82
[57.6, 75.0] 18.9 [54.3, 77.0] 34.1 180

E1 30 61.4 60.9(60.9) 4.49 61.4(61.4) 5.82
[52.2, 70.1] 20.3 [50.0, 72.5] 33.9 167

E2 30 71.9 71.1(71.1) 4.48 71.7(72.0) 5.54
[62.3, 80.0] 20.6 [60.0, 82.6] 30.7 149

E3 30 65.6 65.3(65.0) 4.43 65.5(65.3) 5.58
[57.5, 74.5] 19.7 [55.2, 77.1] 31.2 158

E4 30 71.5 71.9(71.8) 4.42 71.6(71.7) 5.57
[63.9, 80.9] 19.7 [60.9, 82.4] 31.0 157

†SP = true specificity at mouth level.
‡RE = MSEmult/MSEDB × 100
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Table 4
Simulation results for misclassification probabilities: estimate (over 1000

simulation samples) of the discrepancy measure D =
∑∑

(πrs − prs)2/(K + 1),
where πrs is the true and prs the estimated misclassification probability over of

the four extensions (K = 8, N = 100; E0 corresponds to the basic DB approach).

Double binomial (E0) Multinomial
Quantile Quantile

Ext Prev % Mean 25% 50% 75% Mean 25% 50% 75%

E0 10 9.3 7.8 8.4 9.8 17.2 15.0 16.3 17.9
E1 10 12.9 12.2 12.5 13.2 23.9 21.2 22.6 25.3
E2 10 17.5 14.9 16.4 18.9 25.0 22.5 23.9 26.0
E3 10 9.4 8.3 8.7 9.8 18.6 16.0 17.1 19.8
E4 10 9.3 7.6 8.5 10.1 15.1 12.2 14.0 16.4

E0 30 1.1 0.6 0.8 1.2 17.1 14.4 16.2 18.8
E1 30 1.4 1.1 1.2 1.5 18.3 15.3 17.2 20.5
E2 30 1.7 0.9 1.4 2.2 20.3 16.6 19.0 23.2
E3 30 1.3 0.8 1.1 1.5 18.9 16.0 17.8 20.8
E4 30 0.7 0.3 0.5 0.8 16.4 13.4 15.6 19.1
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Table 5: Simulation results for binomial regression: K=
8, N = 100 with moderately varying sensitivity αk and
specificity βk around 90%, 95% respectively for each of
the four extensions (E0 corresponds to the basic DB ap-
proach). Case of P (Y = s) = 1/(K + 1) in the vali-
dation data. pX is the success probability of the binary
regressor, SDZ is the standard deviation of the normal
continuous regressor.

β0 βX βZ

Ext (pX ,SDZ) Mean(SD) MSE Mean(SD) MSE Mean(SD) MSE
True 0.000(0.031) — −0.998(0.046) — 0.996(0.238) —

E0 (0.5, 0.1) Naive −0.100(0.031) 0.011 −0.849(0.045) 0.024 0.835(0.242) 0.084
Mult 0.001(0.072) 0.005 −0.992(0.082) 0.007 0.982(0.289) 0.084
E0 0.002(0.059) 0.003 −0.999(0.061) 0.004 0.992(0.289) 0.084

True 0.000(0.039) — −0.999(0.051) — 1.001(0.030) —
E0 (0.6, 1) Naive −0.114(0.039) 0.015 −0.806(0.050) 0.040 0.803(0.028) 0.040

Mult −0.005(0.078) 0.006 −0.981(0.082) 0.007 0.982(0.066) 0.005
E0 0.001(0.072) 0.005 −1.002(0.070) 0.005 1.004(0.050) 0.002

True −0.001(0.075) — −1.001(0.095) — 1.000(0.024) —
E0 (0.7, 5) Naive −0.181(0.061) 0.036 −0.475(0.076) 0.282 0.470(0.016) 0.281

Mult −0.032(0.117) 0.015 −0.816(0.145) 0.055 0.812(0.107) 0.047
E0 −0.000(0.121) 0.015 −1.001(0.132) 0.018 0.996(0.072) 0.005

True −0.001(0.130) — −1.001(0.152) — 1.002(0.033) —
E0 (0.8, 10) Naive −0.200(0.089) 0.047 −0.273(0.104) 0.541 0.271(0.010) 0.534

Mult −0.044(0.153) 0.025 −0.624(0.202) 0.183 0.622(0.135) 0.162
E0 −0.001(0.192) 0.035 −0.994(0.208) 0.043 0.997(0.086) 0.007

True 0.001(0.031) — −1.002(0.046) — 1.009(0.236) —
E1 (0.5, 0.1) Naive −0.058(0.031) 0.004 −0.842(0.047) 0.028 0.842(0.238) 0.085

Mult −0.002(0.073) 0.005 −0.991(0.085) 0.007 0.994(0.291) 0.085
E0 0.000(0.059) 0.003 −1.003(0.063) 0.004 1.013(0.289) 0.083
E1 0.003(0.044) 0.002 −1.004(0.060) 0.004 0.997(0.281) 0.080

True −0.000(0.040) — −1.000(0.054) — 1.002(0.031) —
E1 (0.6, 1) Naive −0.066(0.037) 0.006 −0.798(0.051) 0.043 0.794(0.028) 0.044

Mult −0.004(0.076) 0.006 −0.978(0.087) 0.008 0.978(0.069) 0.005
E0 −0.001(0.071) 0.005 −1.003(0.073) 0.005 1.005(0.052) 0.003

Continued on next page
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Table 5 – continued from previous page

β0 βX βZ

Ext (pX ,SDZ) Mean(SD) MSE Mean(SD) MSE Mean(SD) MSE
E1 0.003(0.049) 0.002 −1.001(0.070) 0.005 0.998(0.040) 0.002

True 0.001(0.072) — −1.001(0.091) — 1.002(0.025) —
E1 (0.7, 5) Naive −0.105(0.057) 0.015 −0.465(0.070) 0.292 0.464(0.016) 0.289

Mult −0.015(0.119) 0.014 −0.811(0.150) 0.058 0.810(0.106) 0.048
E0 0.004(0.125) 0.016 −1.004(0.140) 0.020 1.002(0.071) 0.005
E1 0.014(0.124) 0.026 −1.016(0.131) 0.017 0.996(0.066) 0.004

True 0.000(0.127) — −1.004(0.151) — 1.002(0.033) —
E1 (0.8, 10) Naive −0.118(0.087) 0.021 −0.269(0.099) 0.55 0.268(0.010) 0.538

Mult −0.037(0.155) 0.026 −0.594(0.195) 0.205 0.594(0.134) 0.184
E0 −0.009(0.188) 0.036 −0.992(0.213) 0.045 0.994(0.086) 0.007
E1 0.006(0.172) 0.029 −1.005(0.198) 0.039 1.006(0.051) 0.003

True −0.001(0.032) — −0.999(0.047) — 0.998(0.235) —
E2 (0.5, 0.1) Naive −0.050(0.033) 0.003 −0.897(0.049) 0.013 0.887(0.242) 0.071

Mult −0.003(0.065) 0.004 −0.993(0.077) 0.006 0.988(0.280) 0.078
E0 −0.005(0.055) 0.003 −1.034(0.062) 0.005 1.032(0.283) 0.082
E2 −0.003(0.037) 0.001 −0.998(0.055) 0.003 0.996(0.277) 0.078

True −0.001(0.041) — −1.002(0.055) — 1.002(0.032) —
E2 (0.6, 1) Naive −0.055(0.041) 0.005 −0.865(0.055) 0.022 0.861(0.031) 0.021

Mult −0.004(0.070) 0.005 −0.985(0.079) 0.006 0.985(0.061) 0.004
E0 −0.005(0.069) 0.005 −1.043(0.074) 0.007 1.045(0.051) 0.005
E2 −0.006(0.046) 0.002 −0.993(0.064) 0.004 0.997(0.038) 0.001

True 0.002(0.074) — −1.004(0.088) — 1.001(0.025) —
E2 (0.7, 5) Naive −0.082(0.063) 0.011 −0.566(0.076) 0.198 0.562(0.019) 0.194

Mult −0.008(0.108) 0.012 −0.866(0.140) 0.039 0.859(0.100) 0.03
E0 0.006(0.118) 0.014 −1.078(0.129) 0.022 1.072(0.066) 0.009
E2 0.003(0.090) 0.008 −0.998(0.106) 0.011 1.000(0.039) 0.001

True 0.001(0.128) — −1.004(0.144) — 1.003(0.032) —
E2 (0.8, 10) Naive −0.094(0.094) 0.018 −0.338(0.105) 0.454 0.339(0.014) 0.442

Mult −0.026(0.148) 0.023 −0.680(0.194) 0.142 0.683(0.138) 0.122
E0 −0.003(0.189) 0.036 −1.075(0.213) 0.050 1.077(0.078) 0.011
E2 0.014(0.172) 0.030 −1.013(0.192) 0.037 1.00(0.047) 0.002

True −0.001(0.032) — −0.999(0.048) — 1.006(0.227) —
Continued on next page
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Table 5 – continued from previous page

β0 βX βZ

Ext (pX ,SDZ) Mean(SD) MSE Mean(SD) MSE Mean(SD) MSE
E3 (0.5, 0.1) Naive −0.104(0.033) 0.012 −0.843(0.049) 0.026 0.841(0.227) 0.079

Mult −0.005(0.071) 0.005 −0.990(0.084) 0.007 0.995(0.282) 0.080
E0 −0.001(0.059) 0.003 −1.001(0.064) 0.004 1.008(0.274) 0.075
E3 −0.003(0.037) 0.001 −0.995(0.057) 0.003 1.016(0.271) 0.074

True 0.001(0.039) — −1.002(0.052) — 1.002(0.031) —
E3 (0.6, 1) Naive −0.117(0.038) 0.015 −0.801(0.050) 0.043 0.796(0.029) 0.043

Mult −0.004(0.078) 0.006 −0.980(0.084) 0.008 0.979(0.069) 0.005
E0 0.001(0.074) 0.005 −1.005(0.074) 0.005 1.006(0.053) 0.003
E3 0.003(0.049) 0.002 −1.001(0.066) 0.004 1.002(0.041) 0.002

True 0.005(0.074) — −1.005(0.092) — 1.000(0.024) —
E3 (0.7, 5) Naive −0.183(0.059) 0.039 −0.466(0.073) 0.296 0.462(0.016) 0.290

Mult −0.031(0.117) 0.015 −0.806(0.145) 0.061 0.800(0.100) 0.050
E0 0.002(0.121) 0.015 −1.000(0.135) 0.018 0.994(0.070) 0.005
E3 0.006(0.095) 0.009 −1.004(0.122) 0.015 1.000(0.041) 0.002

True −0.008(0.128) — −0.993(0.145) — 1.005(0.033) —
E3 (0.8, 10) Naive −0.210(0.092) 0.049 −0.257(0.104) 0.553 0.265(0.010) 0.548

Mult −0.058(0.156) 0.027 −0.594(0.188) 0.195 0.605(0.129) 0.176
E0 −0.004(0.195) 0.035 −0.990(0.222) 0.042 1.001(0.087) 0.008
E3 −0.014(0.249) 0.029 −1.009(0.196) 0.039 1.008(0.056) 0.003

True 0.001(0.031) — −1.001(0.047) — 0.986(0.239) —
E4 (0.5, 0.1) Naive −0.214(0.032) 0.047 −0.837(0.048) 0.029 0.810(0.240) 0.089

Mult −0.006(0.082) 0.007 −0.990(0.090) 0.008 0.968(0.297) 0.088
E0 −0.017(0.065) 0.005 −1.008(0.064) 0.004 0.988(0.295) 0.087
E4 0.002(0.041) 0.002 −1.000(0.059) 0.003 0.977(0.283) 0.080

True 0.003(0.038) — −1.003(0.050) — 1.000(0.030) —
E4 (0.6, 1) Naive −0.231(0.038) 0.056 −0.794(0.051) 0.046 0.786(0.029) 0.046

Mult −0.002(0.085) 0.007 −0.986(0.092) 0.009 0.981(0.072) 0.006
E0 −0.006(0.078) 0.006 −1.021(0.077) 0.006 1.017(0.056) 0.003
E4 −0.003(0.053) 0.003 −0.994(0.071) 0.005 1.001(0.042) 0.002

True 0.003(0.075) — −1.005(0.091) — 1.001(0.024) —
E4 (0.7, 5) Naive −0.332(0.060) 0.116 −0.449(0.073) 0.314 0.447(0.015) 0.308

Mult −0.046(0.124) 0.018 −0.815(0.143) 0.057 0.810(0.102) 0.047
Continued on next page
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Table 5 – continued from previous page

β0 βX βZ

Ext (pX ,SDZ) Mean(SD) MSE Mean(SD) MSE Mean(SD) MSE
E0 0.007(0.131) 0.017 −1.042(0.138) 0.020 1.038(0.073) 0.007
E4 0.007(0.095) 0.009 −1.008(0.115) 0.013 1.004(0.046) 0.002

True 0.005(0.125) — −1.005(0.142) — 1.002(0.032) —
E4 (0.8, 10) Naive −0.360(0.089) 0.141 −0.250(0.102) 0.580 0.254(0.010) 0.560

Mult −0.087(0.160) 0.034 −0.604(0.197) 0.199 0.610(0.134) 0.172
E0 0.009(0.221) 0.036 −1.021(0.264) 0.043 1.032(0.083) 0.008
E4 −0.008(0.179) 0.032 −1.004(0.239) 0.041 1.006(0.059) 0.003
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Table 6: Simulation results for binomial regression: K=
8, N = 100 with moderately varying sensitivity αk and
specificity βk around 90%, 95% respectively for each of
the four extensions ((E0 corresponds to the basic DB
approach). Case of P (Y = s) descending in s in the val-
idation data. pX is the success probability of the binary
regressor, SDZ is the standard deviation of the normal
continuous regressor.

β0 βX βZ

Ext (pX ,SDZ) Mean(SD) MSE Mean(SD) MSE Mean(SD) MSE
True 0.002(0.031) — −1.002(0.048) — 0.989(0.242) —

E0 (0.5, 0.1) Naive −0.098(0.031) 0.011 −0.854(0.047) 0.024 0.836(0.232) 0.077
Mult (889)† −0.001(0.075) 0.006 −0.994(0.081) 0.007 0.977(0.283) 0.080
E0 0.003(0.062) 0.004 −1.005(0.062) 0.004 0.994(0.278) 0.077

True −0.001(0.038) — −1.000(0.053) — 1.002(0.031) —
E0 (0.6, 1) Naive −0.116(0.037) 0.015 −0.806(0.051) 0.040 0.803(0.029) 0.040

Mult (882)† −0.019(0.080) 0.007 −0.964(0.085) 0.009 0.965(0.069) 0.006
E0 0.002(0.076) 0.006 −1.000(0.072) 0.005 1.003(0.051) 0.003

True 0.004(0.070) — −1.008(0.091) — 1.002(0.024) —
E0 (0.7, 5) Naive −0.177(0.060) 0.037 −0.477(0.074) 0.287 0.470(0.015) 0.282

Mult (869)† −0.134(0.129) 0.036 −0.697(0.153) 0.120 0.691(0.123) 0.112
E0 0.001(0.129) 0.017 −1.008(0.139) 0.019 0.999(0.073) 0.005

True 0.001(0.129) — −1.004(0.147) — 1.002(0.033) —
E0 (0.8, 10) Naive −0.206(0.091) 0.051 −0.268(0.100) 0.552 0.272(0.011) 0.534

Mult (887)† −0.185(0.155) 0.058 −0.453(0.181) 0.336 0.455(0.126) 0.316
E0 0.000(0.195) 0.038 −1.004(0.214) 0.046 0.999(0.092) 0.009

True −0.000(0.031) — −1.000(0.049) — 1.003(0.233) —
E1 (0.5, 0.1) Naive −0.059(0.031) 0.004 −0.842(0.049) 0.027 0.833(0.228) 0.081

Mult (891)† −0.006(0.071) 0.005 −0.990(0.083) 0.007 0.994(0.276) 0.076
E0 0.001(0.062) 0.004 −1.004(0.064) 0.004 1.003(0.275) 0.076
E1 0.001(0.036) 0.001 −1.005(0.058) 0.003 0.974(0.270) 0.073

True −0.000(0.038) — −1.002(0.051) — 1.002(0.031) —
E1 (0.6, 1) Naive −0.068(0.037) 0.006 −0.798(0.051) 0.044 0.792(0.029) 0.045

Mult (888)† −0.022(0.080) 0.007 −0.964(0.081) 0.008 0.963(0.065) 0.006
E0 −0.002(0.074) 0.006 −1.002(0.072) 0.005 1.002(0.051) 0.003

Continued on next page
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Table 6 – continued from previous page

β0 βX βZ

Ext (pX ,SDZ) Mean(SD) MSE Mean(SD) MSE Mean(SD) MSE
E1 −0.003(0.047) 0.002 −0.998(0.063) 0.004 0.999(0.042) 0.002

True 0.001(0.077) — −1.003(0.093) — 1.001(0.025) —
E1 (0.7, 5) Naive −0.105(0.062) 0.015 −0.467(0.076) 0.293 0.465(0.015) 0.289

Mult (885)† −0.122(0.138) 0.034 −0.678(0.157) 0.130 0.679(0.119) 0.118
E0 0.006(0.133) 0.018 −1.003(0.140) 0.020 0.999(0.073) 0.005
E1 −0.009(0.130) 0.017 −0.988(0.133) 0.018 0.987(0.070) 0.005

True −0.000(0.127) — −1.002(0.146) — 1.002(0.033) —
E1 (0.8, 10) Naive −0.118(0.091) 0.022 −0.268(0.102) 0.55 0.268(0.010) 0.538

Mult (884)† −0.159(0.164) 0.052 −0.452(0.184) 0.337 0.451(0.126) 0.319
E0 0.010(0.225) 0.047 −1.003(0.242) 0.060 1.003(0.090) 0.008
E1 −0.003(0.145) 0.021 −0.998(0.166) 0.028 1.004(0.051) 0.003

True 0.001(0.032) — −1.002(0.047) — 0.997(0.231) —
E2 (0.5, 0.1) Naive −0.047(0.033) 0.003 −0.900(0.048) 0.013 0.889(0.238) 0.068

Mult (878)† 0.001(0.068) 0.005 −0.994(0.077) 0.006 0.976(0.275) 0.076
E0 0.023(0.058) 0.004 −1.037(0.061) 0.005 1.033(0.277) 0.078
E2 −0.001(0.038) 0.001 −0.998(0.054) 0.003 0.989(0.271) 0.073

True −0.001(0.037) — −0.999(0.052) — 1.000(0.031) —
E2 (0.6, 1) Naive −0.056(0.038) 0.004 −0.862(0.053) 0.022 0.858(0.031) 0.021

Mult (876)† −0.015(0.071) 0.005 −0.973(0.079) 0.007 0.972(0.063) 0.005
E0 0.023(0.069) 0.005 −1.041(0.073) 0.007 1.043(0.051) 0.004
E2 −0.007(0.051) 0.003 −0.991(0.065) 0.004 0.994(0.043) 0.003

True −0.001(0.075) — −1.000(0.093) — 1.000(0.025) —
E2 (0.7, 5) Naive −0.086(0.062) 0.011 −0.561(0.078) 0.199 0.561(0.018) 0.194

Mult (882)† −0.106(0.124) 0.026 −0.736(0.149) 0.092 0.741(0.122) 0.082
E0 0.035(0.125) 0.017 −1.079(0.136) 0.025 1.078(0.071) 0.011
E2 0.003(0.093) 0.009 −1.007(0.116) 0.014 1.002(0.041) 0.002

True 0.003(0.128) — −1.002(0.150) — 1.002(0.031) —
E2 (0.8, 10) Naive −0.096(0.096) 0.019 −0.335(0.106) 0.455 0.339(0.014) 0.440

Mult (895)† −0.133(0.159) 0.044 −0.520(0.194) 0.269 0.526(0.152) 0.250
E0 0.042(0.192) 0.039 −1.080(0.213) 0.052 1.088(0.082) 0.014
E2 0.001(0.166) 0.027 −1.006(0.185) 0.034 1.003(0.055) 0.003

True 0.000(0.032) — −1.002(0.047) — 0.998(0.239) —
Continued on next page
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Table 6 – continued from previous page

β0 βX βZ

Ext (pX ,SDZ) Mean(SD) MSE Mean(SD) MSE Mean(SD) MSE
E3 (0.5, 0.1) Naive −0.102(0.032) 0.012 −0.847(0.048) 0.026 0.838(0.241) 0.084

Mult (901)† −0.006(0.075) 0.006 −0.988(0.081) 0.007 0.983(0.286) 0.082
E0 0.002(0.063) 0.004 −1.005(0.062) 0.004 1.004(0.290) 0.084
E3 0.001(0.034) 0.001 −1.000(0.056) 0.003 0.992(0.269) 0.072

True 0.000(0.039) — −1.000(0.051) — 1.001(0.031) —
E3 (0.6, 1) Naive −0.118(0.038) 0.015 −0.799(0.051) 0.043 0.796(0.029) 0.043

Mult(888)† −0.023(0.081) 0.007 −0.962(0.086) 0.009 0.964(0.069) 0.006
E0 0.002(0.077) 0.006 −1.003(0.071) 0.005 1.006(0.054) 0.003
E3 0.003(0.052) 0.003 −0.996(0.063) 0.004 0.997(0.042) 0.002

True −0.001(0.075) — −1.003(0.093) — 1.003(0.025) —
E3 (0.7, 5) Naive −0.189(0.060) 0.039 −0.458(0.072) 0.301 0.463(0.016) 0.292

Mult(888)† −0.148(0.131) 0.039 −0.660(0.149) 0.14 0.662(0.120) 0.131
E0 −0.000(0.131) 0.017 −0.999(0.143) 0.02 1.002(0.077) 0.006
E3 0.001(0.097) 0.009 −0.998(0.123) 0.015 1.000(0.041) 0.002

True −0.002(0.134) — −1.000(0.152) — 1.004(0.032) —
E3 (0.8, 10) Naive −0.201(0.094) 0.049 −0.267(0.105) 0.548 0.265(0.010) 0.546

Mult (877)† −0.183(0.157) 0.057 −0.436(0.181) 0.351 0.437(0.116) 0.334
E0 −0.001(0.201) 0.036 −1.002(0.208) 0.043 0.999(0.090) 0.008
E3 0.005(0.162) 0.026 −1.011(0.188) 0.036 1.006(0.055) 0.003

True −0.001(0.033) — −0.999(0.047) — 0.991(0.237) —
E4 (0.5, 0.1) Naive −0.216(0.034) 0.047 −0.835(0.050) 0.029 0.826(0.245) 0.087

Mult (880)† −0.011(0.086) 0.007 −0.986(0.088) 0.008 0.987(0.300) 0.090
E0 −0.007(0.072) 0.005 −1.005(0.066) 0.004 1.007(0.299) 0.090
E4 0.004(0.048) 0.002 −1.005(0.063) 0.004 0.982(0.287) 0.083

True 0.001(0.038) — −1.003(0.053) — 0.999(0.031) —
E4 (0.6, 1) Naive −0.233(0.038) 0.057 −0.793(0.053) 0.047 0.786(0.029) 0.046

Mult (891)† −0.024(0.084) 0.008 −0.969(0.087) 0.009 0.964(0.069) 0.006
E0 0.005(0.082) 0.007 −1.021(0.080) 0.007 1.018(0.054) 0.003
E4 0.002(0.054) 0.003 −1.004(0.071) 0.005 1.004(0.042) 0.002

True −0.005(0.072) — −0.995(0.090) — 1.001(0.025) —
E4 (0.7, 5) Naive −0.337(0.062) 0.114 −0.446(0.076) 0.308 0.447(0.015) 0.307

Mult (900)† −0.174(0.142) 0.048 −0.660(0.154) 0.136 0.662(0.121) 0.130
Continued on next page
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Table 6 – continued from previous page

β0 βX βZ

Ext (pX ,SDZ) Mean(SD) MSE Mean(SD) MSE Mean(SD) MSE
E0 0.022(0.148) 0.023 −1.034(0.150) 0.024 1.038(0.079) 0.008
E4 0.001(0.103) 0.011 −1.009(0.123) 0.015 1.001(0.041) 0.002

True −0.007(0.130) — −0.999(0.151) — 1.003(0.032) —
E4 (0.8, 10) Naive −0.358(0.088) 0.131 −0.252(0.098) 0.567 0.254(0.010) 0.560

Mult (875)† −0.235(0.153) 0.075 −0.420(0.176) 0.366 0.417(0.114) 0.356
E0 0.019(0.226) 0.042 −1.033(0.226) 0.050 1.031(0.081) 0.007
E4 −0.002(0.212) 0.028 −0.995(0.225) 0.050 1.007(0.058) 0.003

†Number of simulation samples (over 1000) of which the multinomial approach was estimable

47



Table 7
Simulation results for binomial regression: K= 8, N = 100 with moderately

varying sensitivity αk and specificity βk around 90%, 95% respectively for E0
(basic DB approach), when the validation data is a random sub-sample of the

main data.

β0 βX βZ

Ext (pX ,SDZ) Mean(SD) MSE Mean(SD) MSE Mean(SD) MSE
True 0.000(0.030) — −1.001(0.046) — 0.992(0.241) —

(0.5, 0.1) Naive −0.101(0.031) 0.011 −0.851(0.046) 0.025 0.832(0.240) 0.083
Mult (227)† −0.016(0.064) 0.004 −0.977(0.074) 0.006 0.934(0.274) 0.079
E0 −0.001(0.059) 0.003 −1.002(0.061) 0.004 0.989(0.285) 0.081

True −0.002(0.038) — −0.999(0.051) — 1.000(0.031) —
(0.6, 1) Naive −0.117(0.037) 0.015 −0.806(0.050) 0.04 0.802(0.030) 0.040

Mult (887)† −0.018(0.072) 0.005 −0.964(0.081) 0.008 0.964(0.067) 0.006
E0 −0.002(0.070) 0.005 −0.999(0.069) 0.005 1.001(0.052) 0.003

True 0.001(0.076) — −1.005(0.091) — 1.002(0.025) —
(0.7, 5) Naive −0.181(0.062) 0.037 −0.473(0.074) 0.289 0.471(0.015) 0.282

Mult (931)† −0.014(0.150) 0.023 −0.908(0.150) 0.032 0.906(0.102) 0.020
E0 0.003(0.124) 0.015 −1.006(0.132) 0.017 1.003(0.071) 0.005

True 0.002(0.127) — −1.007(0.147) — 1.002(0.034) —
(0.8, 10) Naive −0.198(0.090) 0.048 −0.279(0.103) 0.541 0.271(0.011) 0.534

Mult (563)† −0.005(0.237) 0.056 −0.834(0.247) 0.091 0.822(0.173) 0.063
E0 0.001(0.182) 0.033 −1.011(0.205) 0.042 1.004(0.082) 0.007

†Number of simulation samples (over 1000) of which the multinomial approach was estimable
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Table 8
Signal-Tandmobielr study: Overall misclassification table for dmft4,5,

column= gold standard, row= (pool of) dental examiner(s)

Y
Y ∗ 0 1 2 3 4 5 6 7 8
0 32 1 3 0 0 0 0 0 0 36
1 2 13 2 1 0 0 0 0 0 18
2 0 1 5 2 3 0 1 0 0 12
3 0 0 2 4 1 1 1 0 0 9
4 0 0 0 0 2 1 2 0 0 5
5 0 0 0 0 1 3 1 0 0 5
6 0 0 0 0 0 1 2 2 0 5
7 0 0 0 0 0 0 0 1 1 2
8 0 0 0 0 0 0 0 0 0 0

34 15 12 7 7 6 7 3 1 92
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Table 9
Signal-Tandmobielr Study: Misclassification table at tooth level, column=

gold standard, row= (pool of) dental examiner(s)

Z
Z∗ 0 1
0 418 21 439
1 15 133 148

433 154 587
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Table 10
Signal-Tandmobielr Study: Expected misclassifications (probability of

misclassification ×100) of dmft4,5 with specificities & sensitivities estimated
from model (12). Column = gold standard, row = dental examiner(s)

Y
Y ∗ 0 1 2 3 4 5 6 7 8
0 30(88) 1( 7) 0( 1) 0( 0) 0( 0) 0( 0) 0( 0) 0( 0) 0( 0) 31
1 4(11) 12(78) 2(14) 0( 2) 0( 1) 0( 0) 0( 0) 0( 0) 0( 0) 18
2 0( 1) 2(14) 8(68) 1(20) 0( 5) 0( 1) 0( 0) 0( 0) 0( 0) 11
3 0( 0) 0( 1) 2(16) 4(59) 2(24) 1( 9) 0( 3) 0( 1) 0( 1) 9
4 0( 0) 0( 0) 0( 1) 1(17) 4(50) 2(28) 1(13) 0( 7) 0( 4) 8
5 0( 0) 0( 0) 0( 0) 0( 2) 1(17) 3(43) 2(32) 1(20) 0(14) 7
6 0( 0) 0( 0) 0( 0) 0( 0) 0( 3) 1(16) 3(37) 1(35) 0(29) 5
7 0( 0) 0( 0) 0( 0) 0( 0) 0( 0) 0( 3) 1(13) 1(30) 1(34) 3
8 0( 0) 0( 0) 0( 0) 0( 0) 0( 0) 0( 0) 0( 2) 0( 7) 0(18) 0

34 15 12 6 7 7 7 3 1 92
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Table 11
Signal-Tandmobielr study: Posterior estimates of the ZIBB regression model

(without correction) fitted to the dmft4,5 (results from WinBUGS (version 1.4)).

Parameter Mean(SD) 2.5 % 97.5%
Intercept −1.414(0.116) −1.647 −1.184
Gender (girl) 0.059(0.063) −0.062 0.183
Age 0.306(0.075) 0.162 0.455
Freq. Brushing 0.087(0.087) −0.080 0.253
Age start brush 0.150(0.028) 0.095 0.205
Fluoride suppl. −0.429(0.064) −0.551 −0.303
Sugar drinks 0.382(0.067) 0.256 0.517
Between meals 0.160(0.065) 0.032 0.284

p 0.177(0.035) 0.099 0.242
τ 0.582(0.040) 0.506 0.667
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Table 12
Signal-Tandmobielr study: Posterior estimates of the corrected ZIBB regression

model fitted to the dmft4,5 (results from WinBUGS (version 1.4)).

Double binomial Multinomial
Parameter Mean(SD) 2.5% 97.5% Mean(SD) 2.5% 97.5%
Intercept −1.592(0.143) −1.871 −1.322 −1.779(0.333) −2.362 −1.080
Gender (girl) 0.053(0.097) −0.131 0.255 0.056(0.223) −0.382 0.515
Age (years) 0.337(0.081) 0.183 0.495 0.477(0.164) 0.187 0.837
Brushing frequency (< 2) 0.111(0.118) −0.131 0.342 0.174(0.256) −0.338 0.695
Age start brushing (years) 0.157(0.043) 0.073 0.244 0.237(0.099) 0.049 0.443
Systemic fluoride (yes) −0.465(0.086) −0.635 −0.298 −0.683(0.230) −1.183 −0.289
Sugary drinks (yes) 0.388(0.088) 0.221 0.556 0.519(0.229) 0.117 1.017
Between meals (> 2) 0.171(0.080) 0.016 0.329 0.212(0.169) −0.135 0.545

p 0.004(0.017) 0.000 0.060 0.128(0.161) 0.000 0.463
τ 1.302(1.124) 0.777 2.335 1.143(3.810) 0.160 2.736

†β̂0 −4.128(0.417) −5.030 −3.383
†β̂Z 6.655(0.791) 5.204 8.356
†β̂dmft4,5 0.453(0.130) 0.203 0.715
†β̂Z∗dmft4,5 −0.589(0.180) −0.953 −0.249
†Coefficients of the logistic regression model (12) from double binomial correction.

53


