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Abstract

Functional mixed-effects models are very useful in analyzing functional data. We consider a

general functional mixed-effects model that inherits the flexibility of linear mixed-effects models

in handling complex designs and correlation structures. A wavelet decomposition approach

is used to model both fixed-effects and random-effects in the same functional space, meaning

that the population-average curve and the subject-specific curves have the same smoothness

property. A linear mixed-effects representation is then obtained that is used for estimation and

inference in the general functional mixed-effects model. Adapting recent methodologies in linear

mixed-effects and nonparametric regression models, we provide hypothesis testing procedures for

both fixed-effects (testing whether certain fixed-effects functional components or contrasts are

equal to zero) and random-effects (testing whether the random-effects functional components

are equal to zero). Using classical linear mixed-effects estimation techniques, the linear mixed-

effects representation is also used to obtain wavelet-based estimates for both fixed-effects and

random-effects in the general functional mixed-effects model. We illustrate the usefulness of the

proposed estimation and hypothesis testing procedures by means of two real-life datasets arising

from physiology and proteomics.

KEYWORDS: Functional Data; Linear Mixed-Effects Models; Nonparametric

Hypothesis Testing; Smoothing Spline Estimation; Wavelet Estimation.

1



1 Introduction

Nowadays, a form of data, called functional data (see, e.g., Ramsay & Silverman, 1997), are collected

in many fields of research. Such data are encountered, for example, when units are observed

over time or when, although a whole function itself is not observed, a sufficiently large number

of evaluations over individual is available – a common feature of modern recording equipments.

Sophisticated on-line sensing and monitoring equipments are now routinely used in research in

medicine, seismology, meteorology, physiology, and many other fields. Since functional data arise as

curves it is therefore natural to use a curve as the basic unit in functional data analysis. Functional

data tend to involve a large number of repeated measurements per subject, and these measurements

are usually recorded at the same, often equally spaced, time points for all subjects, and with the

same high sampling rate. The aims of functional data analysis is usually of exploratory nature

– to represent and display data in order to highlight interesting characteristics, perhaps as input

for further analysis (see, e.g., Chapter 1 in Ramsay & Silverman, 1997). However, there are other

aims, among them are the following: estimation of individual (and functional of these) curves from

noisy data, characterising homogeneity and patterns of variability among curves, and assessing the

relationships of shapes of curves to covariates (see Rice, 2004).

It is therefore challenging to build models for functional data that are reasonably flexible,

yet feasible to fit. Linear mixed-effects models provide a flexible likelihood framework to model

such data parametrically (see Laird & Ware, 1982). In the corresponding analysis, however, the

parametric assumption in linear mixed-effects models may not always be appropriate. Extensions of

linear mixed-effects models by including nonparametric fixed-effects and parametric random-effects

have been considered by many researchers (see, e.g., Wang, 1998; Guo, 2002a; Durban et al., 2005).

The limitation of these approaches, however, is that they have used parametric random-effects,

which may not be adequate to handle flexible subject-specific deviations. Various approaches

to include, directly or indirectly, nonparametric methods for serial correlation in functional data

analysis models have also been proposed (see, e.g., Rice & Silverman, 1991; Rice & Wu, 2001).

Although much work has been done on the estimation in various functional mixed-effects models,

only limited work has been done regarding inference in these or more complex models. Both

estimation and inference in a general functional mixed-effects model were recently considered by

Guo (2002b). The idea behind his formulation is to model the fixed-effects as a single realisation

of a partially diffuse integrated Wiener process, while the random-effects are modelled as random

realisations from the same partially integrated Wiener process with proper variances. Then, an

estimation procedure can be developed by taking advantage of the connection between cubic

smoothing splines (at the design points) and linear mixed-effects models, a fact that originally

pointed out by Speed (1991). A likelihood-ratio (LR) test was also proposed by Guo (2002b) for
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testing the fixed-effects using the connection between cubic smoothing splines (at the design points)

and linear mixed-effects models, and the non-standard asymptotic theory for LR tests developed by

Self & Liang (1987). However, inference for the random-effects was not considered in Guo (2002b).

Although cubic smoothing splines provide a continuum of models from a trend linear in time

to treating time as a factor (obtained as the smoothing parameter tends to ∞ and 0 respectively),

the corresponding modelling methodology of Guo (2002b) seems to have its own drawbacks.

Formulating cubic spline smoothing as a mixed-effects model is simply a mathematical device;

the suggested logical distinction between the fixed linear trend and the random smooth variation

about it is artificial, so one should not freely adopt random-effects methodology in this context (see

Green, 1999). Indeed, it is well-known while the space of curves modelling the fixed-effects and

the random-effects is smooth in some sense, they are drawn from a Gaussian prior process whose

individual realizations (prior or posterior) do not have finite smoothness, with prior and posterior

distributions entirely supported outside this space (see, e.g., Green & Silverman, 1994, pp. 53–54).

More importantly, as emphasized in subsequent sections, the non-standard asymptotic theory for

LR or restricted likelihood ratio (RLR) tests, which is used when the parameter under the null

hypothesis is on the boundary of the parameter space (see Self & Liang, 1987), cannot be blindly

applied for testing variance components in linear mixed-effects models; an approach adopted by

Guo (2002b) for testing fixed-effects in a general functional mixed-effects models.

A general functional mixed-effects model, similar to the one studied by Guo (2002b), has also

been recently studied by Morris & Carroll (2006). Their methodology is based on a fully Bayesian

wavelet-based approach, yielding nonparametric estimates of both fixed-effects and random-effects,

as well as the various between-curve and within-curve covariance matrices. Using the posterior

samples for all model quantities, pointwise or joint Bayesian inference or prediction on the quantities

of the model is discussed. However, formal frequentist functional hypothesis testing procedures for

both fixed-effects and random-effects, which is the main focus of the present paper, is lacking from

the analysis described in Morris & Carroll (2006).

In this paper, our aim is to study both estimation and inference in a general functional

mixed-effects model, similar to the models studied by Guo (2002b) and Morris & Carroll (2006).

Note that estimation and inference in nonparametric settings are entirely different problems since

the optimal rates for smoothing parameters in nonparametric function estimation are different

from the ones obtained in nonparametric hypothesis testing (see, e.g., Ingster & Suslina, 2003,

Section, 1.4.4). The proposed estimation and testing procedures will be built upon an appropriate

wavelet decomposition approach. Wavelet decompositions allow one to characterize different types

of smoothness conditions assumed on the response function by means of its wavelet coefficients

for a wider range of function classes than the ones obtained by, e.g., their Fourier or smoothing

splines counterparts. In other words, these later methods may not be suitable for the spatially
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heterogeneous data encountered in our motivating examples presented in Section 2.

The paper is organised as follows. In Section 2, we introduce two functional data sets, arising

from physiology and proteomics, that have motivated our methodological thinking. In Section 3,

we first provide a formulation for a general functional mixed-effects model. We then briefly recall

some relevant facts about the wavelet series expansion and the discrete wavelet transform that we

need further. A wavelet decomposition approach is then developed to model both fixed-effects and

random-effects in the same functional space. Finally, a linear mixed-effects representation, that is

subsequently used for estimation and inference in the general functional mixed-effects model, is also

derived. In Section 4, adapting recent methodologies in linear mixed-effects and nonparametric

regression models, we provide hypothesis testing procedures for both fixed-effects and random-

effects in the general functional mixed-effects model. In Section 5, we illustrate the usefulness

of the proposed testing procedures by applying them on the motivated examples described in

Section 2, along with wavelet-based estimates for both fixed-effects and random-effects that are

readily obtained by using classical linear mixed-effects estimation techniques. Some concluding

remarks and hints for possible extensions of the proposed functional mixed-effects methodology are

made in Section 6. Finally, in the Appendix, we provide outlines of the proofs of the theoretical

results stated in earlier sections.

2 The Motivating Examples

2.1 Orthosis Data

Human movement data were acquired and computed at the Laboratoire Sport et Performance

Motrice, Grenoble University, France (see Cahouët et al., 2002). In this experiment, stepping-

in-place was a relevant task to investigate how muscle redundancy could be appropriately used

to cope with an external perturbation while complying with the mechanical requirements related

either to balance control and/or minimum energy expenditure. For this purpose, 7 young male

volunteers wore a spring-loaded orthosis of adjustable stiffness under 4 experimental conditions:

a Control condition (without orthosis), an Orthosis condition (with the orthosis only), and two

conditions (Spring1, Spring2) in which stepping in place was perturbed by fitting a spring-loaded

orthosis onto the right knee joint. The experimental session included 10 trials of 20 seconds under

each experimental condition for each subject. Data sampling started 5 seconds after the onset of

stepping, and lasted for 10 seconds for each trial. So, anticipatory and joint movements induced

by the initiation of the movement were not sampled. For each of the 7 subjects, 10 stepping-cycles

of data were analyzed under each experimental condition. The resultant moment at the knee is

derived by means of body segment kinematics recorded with a sampling frequency of 200 Hz. For
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Figure 2.1: Orthosis dataset: The panels in rows correspond to ‘Treatments’, while the panels in

columns correspond to ‘Subjects’ (there are 10 repeated measurements in each panel).

each stepping-in-place replication, the resultant moment was computed at 64 time points equally

spaced and scaled so that a time interval corresponds to an individual gait cycle. The data set

consists of 280 separate runs and involves the 7 subjects over 4 described experimental conditions,

replicated 10 times for each subject. Figure 2.1 shows the available data set; typical moment

plots over gait cycles. The inhomogeneous behaviour of the involved curves makes them natural

candidates for the proposed functional mixed-effects methodology. One of the aim of the analysis

is to understand how a subject can cope with the external perturbation, and we need to quantify

the ways in which the individual mean cross-sectional functions differ over the various conditions.

2.2 Mass Spectrometry Proteomic Data

Mass spectrometry of proteins is a leading technology for the measurement and the detection of large

biomolecules (e.g. proteins) from biological samples. This technology requires small amounts of

biological material (tissue or blood samples) and it is often used for biomarker discovery, to identify

proteins linked to disease status, response to therapy, or clinical prognosis. Mass spectrometry

measures two properties of ion mixtures in the gas phase under a vacuum environment: the mass-

to-charge ratio (m/z, in Daltons per unit charge) of ions in the mixture; and the number of ions

present at different m/z values. The output is a mass spectrum, i.e., a curve where the x-axis
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indicates the ratio of the weight of a specific molecule to its electrical charge and the y-axis is

the signal intensity for the same molecule as a measure of the abundance of that molecule in the

sample. Proteomic spectra are characterized by many spike peaks, each representing the ionized

proteins or protein fragments (peptides) of a specific m/z value present in the sample. The heights

of peaks and the m/z values of peaks are a fingerprint of the sample. The intrinsic structure of the

measured spectra and the presence of many spike peaks is a motivating example for the proposed

functional mixed-effects analysis which treats the entire spectrum as a single observation, rather

than a closely spaced sequence of measurements. To illustrate the proposed methodology, we will

use some proteomic data from a recent study described in Petricoin et al. (2002). The dataset

comprises 162 cancer samples and 91 control cases. The expression profile contains measurements

of 15,154 intensities on a grid of m/z ratios, but these intensities do not represent independent

peptides for this instrument. The peptides yield “peaks” in the spectra, which cover a substantial

number of m/z values. A typical SELDI-TOF profile might contain information on several hundred

peptides. Preprocessed data are plotted in Figure 2.2. To simplify the presentation, thus avoiding

many replicated curves being placed in the plot, Figure 2.2 shows only a representative subset of the

preprocessed data curves for each group over a restricted m/z range. One of the aim of the analysis

is to identify characteristic differences in protein expression between ovarian cancer patients and

healthy patients using blood serum samples.

3 Functional Mixed-Effects Models

3.1 The General Setup

Suppose that Yij (i = 1, 2, . . . , n; j = 1, 2, . . . ,mi) is the response of the i-th subject at point tij

(where t is an index such as time or distance) and can be modelled as

Yij = Xijβ(tij) + Zijα
(i)(tij) + ǫij, (1)

where β(t) = (β1(t), . . . , βp(t))
T is a p× 1 vector of fixed functions, α(i)(t) = (α

(i)
1 (t), . . . , α

(i)
q (t))T

is a q × 1 vector of stochastically independent random functions that are modelled as realisations

of zero-mean Gaussian processes a(t) = (a1(t), . . . , aq(t))
T (a q × 1 collection of such independent

processes) with parametrically structured covariances modelled in the wavelet domain (see Section

3.4), Xij = (Xij [1], . . . ,Xij [p]) and Zij = (Zij [1], . . . , Zij [q]) are, respectively, 1 × p and 1 × q

design vectors that can include dummy variables as well as covariates, and ǫij are independent

and identically distributed Gaussian random variables (independent of a(t)) with zero-mean and

variance σ2
ǫ , denoted by ǫij ∼ N(0, σ2

ǫ ). Model (1) can be easily extended to accommodate (possibly

different number of) repetitions per subject, say li (i = 1, 2, . . . , n). Hereafter, “T” denotes the

transpose of a vector or matrix.
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Figure 2.2: Petricoin 08-07-02 dataset: 182 randomly selected spectra (91 in each group) within an

m/z range [7003,7514] with baseline subtracted.

Similar to the interpretation of linear mixed-effects models in longitudinal data settings, Xijβ(t)

can be interpreted as the population-average curve profile, Zijα
(i)(t) can be interpreted as the

i-th curve-specific deviation (also called the subject-specific deviation if each curve is from a

different subject) from the population-average curve profile that accounts for correlation, and

Xijβ(t) + Zijα
(i)(t) can be interpreted as the i-th curve-specific function. Model (1) includes

many useful models commonly used in the literature for analysing functional data, including,

e.g., linear mixed-effects models, functional regression models, functional fixed-effects analysis of

variance models, functional analysis of covariance models, nonparametric mixed-effects models,

functional mixed-effects analysis of variance models, smoothing spline mixed-effects analysis of

variance models, and nested and crossed samples of curves models (see, e.g., Guo, 2002b).

In the nonparametric analysis of functional data, both the fixed functional components of β(t)

and the random functional components of a(t) should be modelled as nonparametric functions

lying in infinite dimensional spaces (since the basic unit in functional data analysis is the curve).

Since deviations from smooth effects may be present, this behaviour should also be included in

the modelling formulation. A natural framework to include non-smooth effects is through wavelet

decompositions, and it is developed below. We briefly recall first some relevant facts about the

wavelet series expansion and the discrete wavelet transform that we need further.
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3.2 The wavelet series expansion and the discrete wavelet transform

Throughout the paper we assume that we are working within an orthonormal basis generated

by dilations and translations of a compactly supported scaling function, φ(t), and a compactly

supported mother wavelet, ψ(t), associated with an r-regular (r ≥ 0) multiresolution analysis of
(
L2[0, 1], 〈·, ·〉

)
, the space of squared-integrable functions on [0, 1] endowed with the inner product

〈f, g〉 =
∫
[0,1] f(t)g(t) dt. For simplicity in exposition, we work with periodic wavelet bases on [0, 1]

(see, e.g., Mallat, 1999, Section 7.5.1), letting

φp
jk(t) =

∑

l∈Z

φjk(t− l) and ψp
jk(t) =

∑

l∈Z

ψjk(t− l), for t ∈ [0, 1],

where φjk(t) = 2j/2φ(2jt− k) and ψjk(t) = 2j/2ψ(2jt− k). For any given primary resolution level

j0 ≥ 0, the collection

{φp
j0k, k = 0, 1, . . . , 2j0 − 1; ψp

jk, j ≥ j0; k = 0, 1, . . . , 2j − 1}

is then an orthonormal basis of L2[0, 1]. The superscript “p” will be suppressed from the notation

for convenience. Despite the poor behavior of periodic wavelets near the boundaries, where

they create high amplitude wavelet coefficients, they are commonly used because the numerical

implementation is particular simple. Therefore, for any f ∈ L2[0, 1], we denote by uj0k = 〈f, φj0k〉
(k = 0, 1, . . . , 2j0 − 1) the scaling coefficients and by wjk = 〈f, ψjk〉 (j ≥ j0; k = 0, 1, . . . , 2j − 1)

the wavelet coefficients of f for the orthonormal periodic wavelet basis defined above; the function

f is then expressed in the form

f(t) =

2j0−1∑

k=0

uj0kφj0k(t) +

∞∑

j=j0

2j−1∑

k=0

wjkψjk(t), t ∈ [0, 1].

In statistical settings, we are more usually concerned with discretely sampled, rather than

continuous, functions. It is then the wavelet analogy to the discrete Fourier transform which

is of primary interest and this is referred to as the discrete wavelet transform (DWT). Given a

vector of function values f = (f(t1), ..., f(tn))′ at equally spaced points ti, the discrete wavelet

transform of f is given by d = Wn×nf , where d is an n× 1 vector comprising both discrete scaling

coefficients, cj0k, and discrete wavelet coefficients, djk, and Wn×n is an orthogonal n × n matrix

associated with the orthonormal periodic wavelet basis chosen. The cj0k and djk are related to

their continuous counterparts uj0k and wjk (with an approximation error of order n−1) via the

relationships cj0k ≈ √
nuj0k and djk ≈ √

nwjk. Note that, because of orthogonality of Wn×n,

the inverse DWT (IDWT) is simply given by f = WT
n×nd, where WT

n×n denotes the transpose of

Wn×n. If n = 2J for some positive integer J , the DWT and IDWT may be performed through a

computationally fast algorithm (see, e.g., Mallat, 1999, Section 7.3.1) that requires only order n

operations.
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3.3 A wavelet-based Model Specification for the Fixed and Random

Effects

An approach to modelling the fixed and random effects, that allows a wide range of irregular effects

(for both fixed-effects and random-effects), is through the sequence space representation of Besov

spaces. The (inhomogeneous) Besov spaces on the unit interval, Bs
ρ1,ρ2

[0, 1], consist of functions

that have a specific degree of smoothness in their derivatives. The parameter ρ1 can be viewed as

a degree of function’s inhomogeneity while s is a measure of its smoothness. Roughly speaking, the

(not necessarily integer) parameter s indicates the number of function’s (fractional) derivatives,

where their existence is required in an Lρ1-sense; the additional parameter ρ2 is secondary in its

role, allowing for additional fine tuning of the definition of the space. For a detailed study on

(inhomogeneous) Besov spaces we refer to, e.g., Donoho & Johnstone (1998).

By exploiting the relation between the hyperparameters of a prior model and the parameters

of those Besov spaces within which realisations from the prior will fall, as originally suggested

by Abramovich et al. (1998) and further considered by, e.g., Di Zio & Frigessi (1999), the fixed

functional components of β(t) and the random functional components of a(t) can be both made to

share the same degree of smoothness, i.e., they should lie in the same Besov space.

Fix now a primary resolution level j0 ≥ 0 and consider the orthonormal periodic wavelet basis

{φj0k, k = 0, 1, . . . , 2j0 − 1; ψjk, j ≥ j0; k = 0, 1, . . . , 2j − 1} discussed in Section 3.2. For each

r1 = 1, 2, . . . , p, assume that βr1 ∈ Bs
ρ1,ρ2

[0, 1] for 0 < s < r, 1 ≤ ρ1, ρ2 ≤ ∞. For each i = 1, 2, . . . , n

and r2 = 1, 2, . . . , q, consider now the following random wavelet series expansion

α(i)
r2

(t) =

2j0−1∑

k=0

c
(r2,i)
j0k φj0k(t) +

∞∑

j=j0

2j−1∑

k=0

θ
(r2,i)
jk ψjk(t), t ∈ [0, 1],

where, for each i = 1, 2, . . . , n and r2 = 1, 2, . . . , q, the wavelet coefficients θ
(r2,i)
jk are assumed to be

independent and identically distributed random variables, distributed as

θ
(r2,i)
jk ∼ N(0, v

(r2,i)
jk ).

Furthermore, we assume that, for each i = 1, 2, . . . , n and r2 = 1, 2, . . . , q, the quantities v
(r2,i)
jk are

functions of the resolution level j only. In particular, we assume that they decrease exponentially

as a functions of the resolution level j, i.e.,

v
(r2,i)
jk = σ2

θ2
−jαi , for some αi ≥ 0,

where σ2
θ is some positive quantity.

A relationship between the Besov space parameters and the hyperparameters of the prior model

considered above can be now established. Exploiting the equivalence between the Besov norm of the
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function α
(i)
r2 (t) and the corresponding sequence space norm (see, e.g., Donoho & Johnstone, 1998),

and using Theorem 1 in Abramovich et al. (1998), for any given values of c
(r2,i)
j0k (k = 0, 1, . . . , 2j0−1),

and for each i = 1, 2, . . . , n; r2 = 1, 2, . . . , q,

α(i)
r2

(t) ∈ Bs
ρ1,ρ2

[0, 1] almost surely

if and only if

s+ 1/2 − αi/2 < 0

or

s+ 1/2 − αi/2 = 0 for 1 ≤ ρ1 <∞ and ρ2 = ∞.

The above results show that, in each case, the fixed functional components of β(t) and the

random functional components of a(t) can be both made to share the same degree of smoothness

(i.e., they can both lie in the same functional space, Bs
ρ1,ρ2

[0, 1], with 0 < s < r, 1 ≤ ρ1, ρ2 ≤ ∞),

by appropriately relating the Besov space parameters s, ρ1 and ρ2 to the hyperparameters αi of

the prior model discussed above.

Remark 3.1 The hyperparameter v
(r2,i)
jk is the prior variance of the important wavelet coefficient

at resolution level j and scale k. The above model corresponds to the prior belief that all wavelet

coefficients on all levels have the same probability of being non-zero. This actually characterises

self-similar processes, such as Brownian motion, the overall regularity depending on the value of

αi. This model allows us to capture key characteristics of variations in multiple curves.

3.4 A Linear Mixed-Effects Representation

In this section, we provide a linear mixed-effects representation that is subsequently used for

estimation and testing in the general functional mixed-effects model (1). Observations from

different subjects are independent, while observations from the same subject are correlated to

various degrees. We assume that the within-subject design is equispaced on fine grid, a common

model for many instrumental devices usually used to collect functional data. Furthermore we take

mi = m for all i = 1, 2, . . . , n with m = 2J for some positive integer J . This setting allows one to

consider the discrete wavelet transform which can be performed through the computationally fast

algorithm mentioned in Section 3.2. Note that this assumption is not especially restrictive, since if

the grid is fine enough, interpolation can be used to obtain a common grid (of power two) without

substantively changing the observed data.

Fix now a primary resolution level j0 ≥ 0 and consider the orthonormal periodic wavelet basis

{φj0k, k = 0, 1, . . . , 2j0 − 1; ψjk, j ≥ j0; k = 0, 1, . . . , 2j − 1} discussed in Section 3.2. For each

r1 = 1, 2, . . . , p, we set βr1(t) = (βr1(t1), . . . , βr1(tm))T, where t = (t1, . . . , tm) with tj = j/m for
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j = 1, 2, . . . ,m. Considerations related to asymptotic minimax optimality theory suggest taking

as a maximal resolution level j1 a level such that m/ ln(m) ≤ 2j1 ≤ 2m/ ln(m) (see Delyon &

Juditsky, 1996). We recommend hereafter the choice m∗ = 2j1 falling in this interval, because

the resulting wavelet estimators perform well for both smooth and piecewise smooth functions

with isolated points of singularity. (Obviously, such a choice does not affect the conclusions of

Theorem 1 in Abramovich et al. (1998) discussed in Section 3.3.) With this notation, we can write

βr1(t) = WT
m×m∗d̃r1 , where Wm∗×m is the m∗×m matrix associated with the orthonormal periodic

wavelet basis, and d̃r1 is the m∗ × 1 vector of the corresponding scaling and wavelet coefficients

{b̃(r1)
j0k , k = 0, 1, . . . , 2j0 −1; d̃

(r1)
jk , j = j0, . . . , j1 −1; k = 0, 1, . . . , 2j −1}. We assume that, for each

r1 = 1, 2, . . . , p, βr1(t) ∈ Bs
ρ1,ρ2

[0, 1] for 0 < s1 < r, 1 ≤ ρ1, ρ2 ≤ ∞.

Regarding the random-effects, the random components of their wavelet coefficients will help

us to incorporate the correlation structure and subject-specific features of functional data in the

estimation process in the proposed functional mixed-effects model. For each i = 1, 2, . . . , n and

r2 = 1, 2, . . . , q, we set α
(i)
r2 (t) = (α

(i)
r2 (t1), . . . , α

(i)
r2 (tm))T and we can write α

(i)
r2 (t) = WT

m×m∗ θ̃
(i)
r2

,

where again Wm∗×m is the m∗ ×m matrix associated with the orthonormal periodic wavelet basis,

and θ̃
(i)
r2

is the m∗ × 1 vector of the corresponding scaling and wavelet coefficients {c̃(r2,i)
j0k , k =

0, 1, . . . , 2j0 − 1; θ̃
(r2,i)
jk , j = j0, . . . , j1 − 1; k = 0, 1, . . . , 2j − 1}. We assume that, for each

i = 1, 2, . . . , n and r2 = 1, 2, . . . , q, the wavelet coefficients θ̃
(r2,i)
jk are independent and identically

distributed N(0, v
(r2 ,i)
jk ) random variables. This independence assumption implicitly restricts the

time-domain covariance matrices to the class of matrices diagonalisable by the DWT. Moreover,

since the variances (diagonal elements) are allowed to vary across the wavelet scales, the above

model accommodates only stationary covariance structures for the between curves covariance matrix

from the same subject. However, even with such restrictions, the model is flexible enough to

capturing key characteristics of subject-specific deviations encountered in practice. By analogy

to Section 3.3, we take v
(r2,i)
jk = σ2

θ2
−jαi , for some αi ≥ 0, where σ2

θ is some positive quantity.

Certain combinations of the Besov parameters and hyperparameters of the prior model can now be

exploited in order the fixed functional components of β(t) and the random functional components

of a(t) lie in the same Besov space Bs
ρ1,ρ2

[0, 1], with 0 < s < r, 1 ≤ ρ1, ρ2 ≤ ∞ (see Section 3.3).

For identifiability reasons, that will become clear later, we assume that [n(ln(m)−q)] > p, where [x]

denotes the integer part of x. Finally, we assume that, for each i = 1, 2, . . . , n and r2 = 1, 2, . . . , q,

ǫi and θ̃
(r2,i)
jk are independent.

Let Yi = (Yi1, . . . , Yim)T and d̃ = (d̃
T
1 , . . . , d̃

T
p )T, and let X̃i = XiW

(p) and Z̃i = ZiW
(q)
n , where

Xi = diag(Xi1, . . . ,Xim) (each element is an appropriately constructed matrix containing dummy

variables and/or covariates), W(p) = diag(WT
m×m∗ , . . . ,WT

m×m∗) (p blocks), Zi = diag(Zi1, . . . ,Zim)

(each element is an appropriately constructed matrix containing dummy variables and/or

covariates), W
(q)
n = diag(W(q), . . .W(q)) (n blocks) and W(q) = diag(WT

m×m∗ , . . . ,WT
m×m∗) (q

11



blocks). Let also θ̃i = (θ̃i1, . . . , θ̃iq)
T and ǫ̃i = (ǫi1, . . . , ǫim)T. With this notation, the general

functional mixed-effects model (1) can be rewritten as

Y = X̃d̃ + Z̃θ̃ + ǫ̃, (2)

where Y = (YT
1 , . . . ,Y

T
n )T, X̃ = (X̃

T

1 , . . . , X̃
T

n )T, Z̃ = (Z̃
T

1 , . . . , Z̃
T

n )T, θ̃ = (θ̃
T

1 , . . . , θ̃
T

n )T and

ǫ̃ = (ǫ̃T
1 , . . . , ǫ̃

T
n )T. Model (2) is clearly a linear mixed-effects model with one variance component

where the fixed-effects are parameterized by the wavelet coefficients of βr1(t) (r1 = 1, 2, . . . , p) and

the random-effects are parameterized by the wavelet coefficients of α
(i)
r2 (t) (i = 1, 2, . . . , n; r2 =

1, 2, . . . , q).

Obviously, E(θ̃, ǫ̃)T = (Onm∗q,Onm)T, where Ok is a k× k matrix with zero entries. Moreover,

it is not difficult to see that V(θ̃, ǫ̃)T = diag(σ2
θΣ, σ

2
ǫ Inm), where Σ = diag

(
Σ(1), . . . ,Σ(n)

)
(n-

components) with Σ(i) being a diagonal matrix with diagonal entries corresponding to the elements

2−jαi for each i = 1, 2, . . . , n (the same for all r2 = 1, 2, . . . , q), and Ik is the k × k identity matrix.

It is easily seen from the above that the corresponding covariance surface for the Gaussian process

modelling the random-effects α
(i)
r2 (t) is given by σ2

θWm×m∗ΣWT
m×m∗ . This matrix describes how the

functions vary one from another and the parameters αi and σ2
θ have a clear impact on any inference

that is done but such a specification seems unavoidable since the large dimension of the covariance

matrices make it infeasible to estimate them in a completely unstructured fashion. Ideally, estimates

of these parameters could be obtained from some prior information or assumptions about, e.g., the

regularity of realizations of the random-effects α
(i)
r2 (t). In practice, however, it is often difficult to

elicit such a prior information about the regularity properties. We therefore suggest to estimate

these parameters form the data by maximum likelihood. Therefore, the parameters associated

with the covariance matrices are substituted by their estimates without taking their precision into

account in the inference that is done subsequently.

Summarizing, we can now write

E(Y) = X̃d̃ and V(Y) = σ2
ǫ Vλ,

where Vλ = Inm + λZ̃ΣZ̃
T

and λ = σ2
θ/σ

2
ǫ . The parameter λ can be considered as a ratio of the

curve-to-curve variability and the within-curve noise. Note that σ2
θ = 0 if and only if λ = 0, and

the parameter space for λ is [0,∞).

Remark 3.2 The independence assumption of the random effects in the wavelet domain discussed

above only implies independence in the data domain when the variance components of the random

effects are identical across all resolution levels j and locations k, implying that our modelling

methodology allows to model correlation between observations over the same individual.
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4 Inference in Functional Mixed-Effects Models

4.1 Testing for Random-Effects

According to the modelling formulation in Section 3.4, testing for random-effects in the general

functional mixed-effects model (1) is equivalent to testing for a zero variance component in the

linear mixed-effects model (2) which, in turn, is equivalent to testing the following hypotheses

H0 : σ2
θ = 0 (λ = 0) versus HA : σ2

θ > 0 (λ > 0). (3)

Testing the above hypotheses is non-standard because the parameter under the null hypothesis

is on the boundary of the parameter space. Therefore, using the non-standard asymptotic theory

developed by Self & Liang (1987) for independent data, one may be tempted to conclude that

the finite sample null distributions of the resulting LR and RLR tests could be approximated

by a 0.5δ(0) + 0.5χ2
1 distribution, i.e., a 50:50 mixture of a point mass at zero and a chi-square

distribution with one degree of freedom. However, a second problem is lack of independence, at

least under the alternative hypothesis. Because the response variable Y in the linear mixed-effects

model (2) is usually not a vector of independent random variables, the non-standard asymptotic

theory of Self & Liang (1987) does not apply. With this in mind, Crainiceanu & Ruppert (2004)

have recently derived finite sample and asymptotic null distributions for the LR and RLR test

statistics in linear mixed-effects model with one variance component. This is the approach that we

consider in the following development for testing the hypotheses in (3).

4.1.1 Profile and Restricted Profile Log-Likelihood Functions

Twice the log-likelihood function for the linear mixed-effects model (2) is (up to a constant that

does not depend on the parameters)

L(d̃, λ, σ2
ǫ ) = −nm log(σ2

ǫ ) − log |Vλ| −
(Y − X̃d̃)TV−1

λ (Y − X̃d̃)

σ2
ǫ

. (4)

Under the alternative hypothesis HA in (3), by fixing λ and solving the first order minimum

conditions for d̃ and σ2
ǫ , one gets the maximum profile likelihood estimates

̂̃
d(λ) = (X̃

T
V−1

λ X̃)−1X̃
T
V−1

λ Y (5)

and

σ̂2
ǫ (λ) =

1

nm
(Y − X̃

̂̃
d(λ))TV−1

λ (Y − X̃
̂̃
d(λ)). (6)

Plugging the expressions (5) and (6) into (4) we obtain (up to a constant that does not depend on

the parameters), the profile log-likelihood function

L(λ) = − log |Vλ| − nm log (YTPT
λV−1

λ PλY), (7)
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where Pλ = Inm − X̃(X̃
T
V−1

λ X̃)−1X̃
T
V−1

λ .

In order to take into account the loss in degrees of freedom due to estimation of the m∗p-

dimensional d̃ parameters, and thereby to obtain unbiased variance components estimators,

Patterson & Thompson (1971) introduced the notion of restricted (or residual) maximum likelihood

(RML) (or generalised maximum likelihood in the spline smoothing literature). RML consists of

maximizing the likelihood function associated with (any) (nm−m∗p) linearly independent contrasts.

Twice the restricted log-likelihood function for the linear mixed-effects model (2) is (up to a constant

that does not depend on the parameters)

l(d̃, λ, σ2
ǫ ) = L(d̃, λ, σ2

ǫ ) −m∗p log(σ2
ǫ ) − log(|X̃T

V−1
λ X̃|). (8)

Using arguments similar to the ones used to obtain the maximum profile likelihood estimates, the

maximum restricted profile likelihood estimate of d̃(λ) is still given by (5) while the maximum

restricted profile likelihood estimate of σ2
ǫ (λ) is now given by

σ̂2
ǫ (λ) =

1

nm−m∗p
(Y − X̃

̂̃
d(λ))TV−1

λ (Y − X̃
̂̃
d(λ)). (9)

The restricted profile log-likelihood function (up to a constant that does not depend on the

parameters) is then given by

l(λ) = − log |Vλ| − log |X̃T
V−1

λ X̃| − (nm−m∗p) log{YTPT
λV−1

λ PλY}. (10)

By following Crainiceanu & Ruppert (2004) and Claeskens (2004), and taking into account the

restriction [n(ln(m)−q)] > p (see Section 3.4), one can show that both profile and restricted profile

log-likelihood functions can be written as functions of latent eigenvalues. In particular, the profile

log-likelihood function (7) can be written, up to a constant that does not depend on the parameters,

as

L(λ) = −
nm∗q∑

s=1

log(1 + λξs,nm) − nm log



σ

2
ǫ

nm∗q∑

s=1

1

1 + λµs,nm
ω2

s +

nm−m∗p∑

s=nm∗q+1

ω2
s



 ,

while, the restricted profile log-likelihood function (10), can be written as

l(λ) = −
nm∗q∑

s=1

log(1 + λµs,nm) − (nm−m∗p) log



σ

2
ǫ

nm∗q∑

s=1

1

1 + λµs,nm
ω2

s +

nm−m∗p∑

s=nm∗q+1

ω2
s



 ,

where ωs are independent and identically distributed N(0, 1) random variables, and µs,nm and ξs,nm

are the eigenvalues of the matrices Kµ = Σ1/2Z̃
T
P0Z̃Σ1/2 and Kξ = Σ1/2Z̃

T
Z̃Σ1/2 respectively.

Here, Σ1/2 is the unique symmetric square root of Σ and P0 = Inm − X̃(X̃
T
X̃)−1X̃

T
.
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4.1.2 Finite Sample and Asymptotic Null Distributions of the LR and RLR Tests

The finite sample LR test statistic is defined as

LRnm ≡ sup
λ≥0

LRnm(λ) ≡ sup
λ≥0

(L(λ) − L(0)),

while the finite sample RLR test statistic is defined as

RLRnm ≡ sup
λ≥0

RLRnm(λ) ≡ sup
λ≥0

(l(λ) − l(0)).

The following theorem gives the spectral representations of the finite sample null distributions of

the LRnm and RLRnm test statistics that can be used for testing the hypotheses in (3).

Theorem 4.1 Let µs,nm and ξs,nm be the eigenvalues of the matrices Kµ = Σ1/2Z̃
T
P0Z̃Σ1/2 and

Kξ = Σ1/2Z̃
T
Z̃Σ1/2 respectively, where P0 = Inm−X̃(X̃

T
X̃)−1X̃

T
. Then, under the null hypothesis

H0 in (3),

LRnm
D
= sup

λ≥0


nm log

{
1 +

Nnm(λ)

Dnm(λ

}
−

nm∗q∑

s=1

log(1 + λξs,nm)


 (11)

and

RLRnm
D
= sup

λ≥0


(nm−m∗p) log

{
1 +

Nnm(λ)

Dnm(λ

}
−

nm∗q∑

s=1

log(1 + λµs,nm)


 , (12)

where the notation “
D
=” denotes equality in distribution,

Nnm(λ) =

nm∗q∑

s=1

λµs,nm

1 + λµs,nm
ω2

s , Dnm(λ) =

nm∗q∑

s=1

ω2
s

1 + λµs,nm
+

nm−m∗p∑

s=nm∗q+1

ω2
s ,

and ωs, s = 1, 2, . . . , nm∗q, are independent and identically distributed N(0, 1) random variables.

Each of the finite sample null distributions of the LRnm and RLRnm test statistics has a probability

mass at zero, and this mass can be very large indeed. Although there is no simple expression for

these probabilities, there is a good approximation (see Crainiceanu & Ruppert, 2004).

The finite sample null distributions of the RLnm and RLRnm test statistics depend only on the

eigenvalues µs,nm and ξs,nm. Following Crainiceanu & Ruppert (2004), the following algorithm,

which we have used in the analysis of the examples presented in Section 5, provides a simple way

to simulate the finite sample null distributions of the LRnm and RLRnm test statistics, once the

eigenvalues µs,nm and ξs,nm have been calculated.

Step 1. Define a grid 0 = λ1 < λ2 < . . . < λK of possible values of λ.

Step 2. Simulate nm∗q independent χ2
1 random variables ω2

1, . . . , ω
2
nm∗q.

15



Step 3. Independently of step 2, simulate Xnm,m∗p,nm∗q =
∑nm−m∗p

s=nm∗q+1 ω
2
s with χ2

nm−m∗p−nm∗q

distribution.

Step 4. For every grid point λi, compute

Nnm(λi) =

nm∗q∑

s=1

λiµs,nm

1 + λiµs,nm
ω2

s and Dnm(λ) =

nm∗q∑

s=1

ω2
s

1 + λiµs,nm
+Xnm,m∗p,nm∗q.

Step 5. Determine λLR
max which maximizes

fLR
nm(λi) =


nm log

{
1 +

Nnm(λi)

Dnm(λi)

}
−

nm∗q∑

s=1

log(1 + λiξs,nm)




and λRLR
max which maximizes

fRLR
nm (λi) =


(nm−m∗p) log

{
1 +

Nnm(λi)

Dnm(λi)

}
−

nm∗q∑

s=1

log(1 + λiµs,nm)




over λ1, λ2, . . . , λK .

Step 6. Compute

LRnm = fLR
nm(λLR

max) and RLRnm = fRLR
nm (λRLR

max ).

Step 7. Repeat Steps 2 - 6.

The above algorithm could, however, be computationally very expensive since its speed depends

on the number of random-effects, nm∗q, in the linear mixed-effects model (2) (which obviously

depends on the number of subjects, n, the number of observations, m, per subject, and the number

of random-effects, q, in the general functional mixed-effects model (1)).

Alternatively, the asymptotic null distributions of the LRnm and RLRnm test statistics can

be easily obtained; they actually depend on the asymptotic behaviour of the eigenvalues µs,nm

and ξs,nm used to calculated the finite sample null distributions of the LRnm and RLRnm test

statistics. Note that all these asymptotic null distributions essentially depend on the asymptotic

behaviour of the eigenvalues µs,nm and ξs,nm. When these eigenvalues cannot be computed explicitly

it may be simple to study the asymptotic behaviour of the corresponding matrices. Once the

asymptotic behaviour of the eigenvalues µs,nm and ξs,nm is available, one can either obtain closed-

form expressions for or easily simulated from the corresponding asymptotic null distributions.

The following theorem provides the asymptotic null distributions of the LRnm and RLRnm test

statistics.

Theorem 4.2 Let µs,nm and ξs,nm be the eigenvalues of the matrices Kµ = Σ1/2Z̃
T
P0Z̃Σ1/2 and

Kξ = Σ1/2Z̃
T
Z̃Σ1/2 respectively, where P0 = Inm − X̃(X̃

T
X̃)−1X̃

T
. Suppose that there exists a
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constant η ≥ 0 so that, for every s, the eigenvalues µs,nm and ξs,nm satisfy limnm→∞(nm)−ηµs,nm =

µs and limnm→∞(nm)−ηξs,nm = ξs, where µs 6= 0 for at least one s. Then, under the null hypothesis

H0 in (3),

LRnm ⇒ sup
d≥0





nm∗q∑

s=1

dµs,nm

1 + dµs,nm
ω2

s −
nm∗q∑

s=1

log(1 + d ξs,nm)





and

RLRnm ⇒ sup
d≥0





nm∗q∑

s=1

dµs,nm

1 + dµs,nm
ω2

s −
nm∗q∑

s=1

log(1 + dµs,nm)



 ,

where the notation “⇒” denotes weak convergence and ωs, s = 1, 2, . . . , nm∗q, are independent and

identically distributed N(0, 1) random variables.

Each of the asymptotic null distributions of the LRnm and RLRnm test statistics has a probability

mass at zero, and this mass can be very large indeed. Although there is no simple expression for

these probabilities, there is a good approximation (see Crainiceanu & Ruppert, 2004). We point

out that the asymptotic null distributions depend on the asymptotic behaviour of the eigenvalues

µs,nm and ξs,nm. In the following, we treat a simple example of practical interest showing how

these conditions can be reduced to a simple expression.

Example 4.1 (Balanced One-Way Functional Mixed-Effects ANOVA Model)

Consider the following balanced one-way functional mixed-effects ANOVA model with n levels, m

discretised values per level, and l repetitions per level, i.e.,

Yijk = β(tij) + α(i)(tij) + ǫijk, i = 1, . . . , n; j = 1, . . . ,m; k = 1, . . . , l, (13)

where β(t) is an unknown functional mean, α(i)(t) are realisations of a zero-mean Gaussian process

a(t), and ǫijk are independent and identically distributed N(0, σ2
ǫ ) random variables that are also

independent of a(t). Using the wavelet transform parameterisation discussed in Section 3.4, the

matrix X̃ for fixed-effects is simply an nml×m∗ matrix with nl block columns equal to WT
m×m∗ and

the matrix Z̃ for random-effects is the nml× nm∗ matrix, with l row blocks each made by a block

diagonal nm×nm∗ with the matrix WT
m×m∗ on the diagonal. We consider the asymptotic situation,

where the number of levels n is fixed, while m, l → ∞. Recall that P0 denotes the orthogonal

projector of R
nml onto the space orthogonal to the column space of X̃. By the orthogonality

of the columns of WT
m×m∗ , it is easy to see that the rank of X̃ is m∗ and, therefore, P0 has

nml −m∗ eigenvalues equal to 1 and m∗ eigenvalues equal to 0. Using again the orthogonality of

the columns of WT
m×m∗ , it is easy to prove that Z̃

T
P0Z̃ has m∗(n − 1) eigenvalues equal to l and

the remaining eigenvalues equal to 0. Moreover, the eigenvalues of Kµ are given by the product of

eigenvalues of Σ and Z̃
T
P0Z̃ while the eigenvalues of Kξ are given by the product of eigenvalues
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of Σ and Z̃
T
Z̃. Given the behaviour of the diagonal matrix Σ, it follows that both µs,nm and ξs,nm

are therefore O(l(m∗)−η). The conditions on the asymptotic behaviour of the eigenvalues µs,nm

and ξs,nm mentioned above reduce now in assuming that there exists a constant η ≥ 0 such that

l1−η(nm)η(m∗)−η = O(1).

4.1.3 Estimators for the ratio of the curve-to-curve variability and the within-

curve noise.

We discuss below two possible ways of obtaining consistent estimators of the parameter λ = σ2
θ/σ

2
ǫ .

Profile and Restricted Profile Maximum Likelihood Estimators. By maximizing (7) or

(10) one can obtain the profile and restricted profile maximum likelihood estimators λ̂LR and λ̂RLR

respectively of λ. Under some regularity conditions, one can show that λ̂LR and λ̂RLR are consistent

estimators of λ (see Claeskens, 2004).

A Wavelet Domain Based Estimator.

It is not difficult to see that, for each individual data curve, the empirical wavelet coefficients

of the data, at each resolution level j, are independent random variables, distributed as Gaussian

distributions with appropriate means and variances, depending on v
(r2,i)
jk . The maximum likelihood

estimators of v
(r2,i)
jk can be obtained explicitly. Given σ2

ǫ , consistent estimators of σ2
θ and αi can be

now obtained in closed forms. Indeed, by noting that for j = 0 one gets v
(r2,i)
jk = σ2

θ , an estimator

of σ2
θ can be obtained for each value of r2 = 1, 2, . . . , q, and then estimate σ2

θ by averaging its q

estimates obtained, resulting in the estimator σ̂2
θ . Noting that v

(r2,i)
jk = σ2

θ2
−jαi , estimators of αi

are now easily derived.

However, in most applications, the noise variance σ2
ǫ can also be estimated in the wavelet

domain. In wavelet function estimation, the common practice is to robustly estimate σǫ by the

median of the absolute deviation of the empirical wavelet coefficients of the data at the highest

resolution level divided by 0.6745. This can be done for all the individual data curves and then

estimate σǫ by averaging its n robust estimates obtained from each individual data curve, resulting

in the estimator σ̂2
ǫ . A consistent estimator of λ is then simply obtained by λ̂wd = σ̂2

θ/σ̂
2
ǫ .

4.2 Testing for Fixed-Effects

The wavelet decomposition proposed in Section 3.4 for the general functional mixed-effects model

(1) can also provide an efficient way to make meaningful inference on the fixed-effects by testing

whether certain fixed-effects or contrasts are equal to zero. The proposed method will be based on an

appropriately defined F-test based procedure for testing that the expectation of a Gaussian vector

with nm independent components belongs to a linear subspace of Rnm against a nonparametric
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alternative. The testing procedure is available even when the variance of the observations is

unknown and does not depend on any prior information on the alternative. The properties of

the test are nonasymptotic and the test will be rate optimal (up to a logarithmic factor) over

various classes of alternatives simultaneously.

To begin with, consider the linear mixed-effects model (2) and take the case where σ2
ǫ is unknown

but the parameter λ = σ2
θ/σ

2
ǫ is known. The general functional mixed-effects model (1) and the

specific wavelet-based modelling approach that we have used in Section 3.3 for representing the

random-effects functional components show that the vector of observations Y is Gaussian. In this

case, the image of the vector Y by V
−1/2
λ leads to the linear regression model

Yλ = V
−1/2
λ Y = V

−1/2
λ X̃d̃ + σǫη, (14)

where η is a random vector with independent and identically distributed standard Gaussian

components, i.e., ηi ∼ N(0, 1) for i = 1, 2, . . . , nm. Let ν denote the expectation of Y and let

µ be its image by V
−1/2
λ . The space of means E of model (14) is the m∗p-dimensional linear

subspace of R
nm spanned by the columns of the matrix V

−1/2
λ X̃, i.e.,

E = {µ ∈ R
nm : µ = V

−1/2
λ X̃d̃ with d̃ ∈ R

m∗p}.

Testing for significant fixed-effects functional components or contrasts is formally a test of

the null hypothesis Hc : Acd̃ = 0 for a suitable defined matrix Ac, against general alternatives.

A powerful approach to such a high-dimensional hypothesis testing is available by adapting the

model selection based procedures proposed recently in Baraud et al. (2003), which are naturally

generalized to our present scenario.

Let Vc be the linear subspace of E defined by

Vc = {V −1/2
λ X̃d̃, Acd̃ = 0}

for a suitable defined contrast matrix Ac. Following the idea of Baraud et al. (2003), we

propose below a test of µ ∈ Vc against that it does not. The testing procedure relies upon

appropriately defined F -statistics which have been widely used for hypothesis testing in the linear

model framework due to their intuitional appeal and their equivalence to LR for fixed-effects models.

It is described as follows.

We consider a finite collection {Sℓ : ℓ ∈ L} of linear subspaces included in the orthogonal

complement V⊥
c ∩ E of Vc in E , such that for each ℓ ∈ L, Sℓ 6= V⊥

c ∩ E and Sℓ 6= {0}. The index set

L is allowed to depend on the number of observations nm. Given a suitable sequence {ᾱℓ : ℓ ∈ L}
of numbers in (0, 1), we consider for each ℓ ∈ L, the Fisher test of level ᾱℓ for testing

H0,c : µ ∈ Vc versus HA,ℓ : µ ∈ (Vc + Sℓ)\Vc, (15)
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and denote by Tc,ℓ the corresponding test statistic. The resulting test can then be regarded as an

adaptive test of linear hypothesis based on a multiple testing procedure rejecting H0,c against HA,ℓ

as soon as there exists ℓ ∈ L such that Tc,ℓ is larger than some threshold.

To pursue, let us first introduce notations that will be repeatedly used throughout this section.

The distribution of the vector of observations Yλ will be denoted by Pµ. For any linear subspace

A of R
nm, we denote by ΠA the orthogonal projector onto A (with respect to the Euclidean norm

|| · ||). For any u ∈ R, Φ̄(u), χ̄D(u) and F̄D,N (u) denote respectively the probability for a standard

Gaussian variable, a chi-square with D degrees of freedom, and a Fisher with D and N degrees of

freedom to be larger than u. For any c, dc will denote the dimension of Vc and, for each ℓ ∈ L, Dℓ

and Nℓ will respectively denote the dimensions of Sℓ and (Vc + Sℓ)
⊥ ∩ E . Let also kc be the rank

of Ac.

4.2.1 Description of the Test

Let ᾱ ∈ (0, 1) be a fixed significance level. Assume that the collection {Sℓ : ℓ ∈ L} of linear

subspaces of V⊥
c ∩ E is such that 1 ≤ Dℓ ≤ nm−m⋆p+ kc − 1. We set

Tc,ℓ =
Nℓ‖ΠSℓ

Yλ‖2

Dℓ‖Π(Vc+Sℓ)⊥∩EYλ‖2
,

and we define

Tᾱ = sup
ℓ∈L

{Tc,ℓ − F̄−1
Dℓ,Nℓ

(ᾱℓ)}, (16)

where {ᾱℓ : ℓ ∈ L} is a sequence of numbers in (0, 1) such that, for all µ ∈ Vc,
∑

ℓ∈L ᾱℓ ≤ α. We

then reject the null hypothesis (15) when Tᾱ is positive.

4.2.2 Level of the Test

We first study the level of the test statistic defined in (16) and show that it is of level ᾱ. Indeed,

the following theorem holds.

Theorem 4.3 The test statistic Tᾱ defined in (16), under the null hypothesis (15), satisfies

∀ µ ∈ Vc, Pµ{Tᾱ > 0} ≤ ᾱ.

The proof of Theorem 4.3 shows clearly that the above procedure is a Bonferroni-like procedure

in which the p-value ᾱ is composed by #L significance levels, where #L is the total number of

models that are tested. It is well known that the Bonferroni approach is overly conservative when

#L is large; the choice of L is therefore important and connected to optimal model selection

procedures (see Section 4.2.4).

20



4.2.3 Power of the Test

We now study the power of the test statistic defined in (16). Let 0 < γ < 1, and let us first

introduce some quantities that depend on ᾱℓ, γ, Dℓ and Nℓ. For each u > 0 and each ℓ ∈ L, we set

Lℓ = log(1/ᾱℓ), L = log(2/γ), rℓ = 2exp(4Lℓ/Nℓ),

Kℓ(u) = 1 + 2

√
u

Nℓ
+ 2rℓ

u

Nℓ
, Λ1(ℓ) = 2.5 (1 + max(Kℓ(Lℓ), rℓ))

Dℓ + Lℓ

Nℓ
,

Λ2(ℓ) = 2.5
√

1 +K2
ℓ (L)

(
1 +

√
Dℓ

Nℓ

)
, Λ3(ℓ) = 2.5

[
max

(
rℓKℓ(L)

2
, 5

)](
1 + 2

Dℓ

Nℓ

)
.

Under the condition, ᾱℓ ≥ exp(−Nℓ/10) and γ ≥ 2 exp(−Nℓ/21), for all ℓ ∈ L, which is usually

met for reasonable choices of {Sℓ : ℓ ∈ L} and {ᾱℓ : ℓ ∈ L}, the quantities Λ1(ℓ), Λ2(ℓ) and Λ3(ℓ)

behave like constants (see Baraud et al., 2003).

With the above notation, the following theorem holds.

Theorem 4.4 Let Tᾱ be the test statistic defined by (16), and assume that X̃
T
V −1

λ X̃ converges to

a positive definite matrix as m→ ∞. Let Fm and ρ2
m be defined as follows

Fm = {µ(d̃) ∈ E ; d2
m(d̃,Vc) ≥ ρ2

m} (17)

and

ρ2
m = inf

ℓ∈L

[
(1 + Λ1(ℓ)) d

2
m(ΠV⊥

c ∩Eµ, Sℓ) + v2
ℓ

]
,

where

v2
ℓ =

[
Λ2(ℓ)

√
Dℓ log

(
2

γᾱℓ

)
+ Λ3(ℓ) log

(
2

γᾱℓ

)]
σ2

ǫ

m⋆p
.

Then,

lim
m→∞

sup
˜d∈Fm

P
µ(

˜d)
(Tᾱ ≤ 0) = 0.

According to Theorem 4.4, one can see that the larger the Fm is the better the power of

the test. The definition of the set Fm suggests that we would take advantage in considering a

collection of linear subspaces {Sℓ : ℓ ∈ L} with good approximation properties in order to decrease

the bias term, d2
m(ΠV⊥

c ∩Eµ, Sℓ) (as well as ρ2
m). In fact, there is a balance to achieve between

d2
m(ΠV⊥

c ∩Eµ, Sℓ) and v2
ℓ . If, for example, the collection {Sℓ : ℓ ∈ L} is totally ordered for the

inclusion, d2
m(ΠV⊥

c ∩Eµ, Sℓ) decreases with Dℓ but v2
ℓ increases with Dℓ. Therefore, the choice of L

has to be done carefully, as we see for a specific case in Section 4.2.4 below.

The proposed test statistic (16) cannot directly be computed in practical applications because

it depends on the unknown quantity λ. However, this problem can be solved by replacing λ
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with a consistent estimator, regardless that H0 is true or not (see Horowitz & Spokoiny, 2001,

Section 2.5). This is exactly the case for the signal-to-noise estimators λ̂LR, λ̂RLR and λ̂wd discussed

in Section 4.1.3. The method we have developed operates just as if the parameter λ substituted is

the true one, without taking the uncertainty in estimating λ into account in the inference that is

done subsequently.

4.2.4 Nonasymptotic minimax rates for testing the nullity of functional fixed-

effects contrasts

Here, we derive an upper bound for the rate of testing the nullity of a given contrast of the functional

fixed-effects in the general functional mixed-effects model (1). We are therefore able to evaluate

the general bounds and power of the testing procedure discussed above. The connection with the

procedure given above is clear when relating the discrete wavelet coefficients d̃ with the mean

vector µ(d̃), which is in this case nothing else than the vector of sampled values of the contrast,

at least when the sampling grid is the same for all individuals. Indeed, for two functions f and g

sampled on an equidistant grid on [0, 1] of size m, we set ‖f − g‖2
m =

∑m
i=1(f(ti) − g(ti))

2/m

and dm(f ,g) = ‖f − g‖m. For u and v in R
m we set ‖u − v‖2

m =
∑m

i=1(ui − vi)
2/m and

dm(u,v) = ‖u − v‖m. Note that if u and v (in R
m) are the discrete wavelet coefficients of

the functions f and g respectively, sampled on an equidistant grid on [0, 1] of size m, we then have

that ‖u − v‖2
m = ‖f − g‖2

m (see Antoniadis, 1994).

Let s ∈ (0, 1] and R > 0. We assume that the functional fixed-effects contrast that we wish to

test its nullity belongs to a class within a Besov space Bs
∞,∞([0, 1], R) (a Hölder space on [0, 1] of

regularity s),

Bs
∞,∞([0, 1], R) = {f : |f(x) − f(y)| ≤ R|x− y|s},

i.e., the desired class is expressed as

F(R, s, ρm) = {f ∈ Bs
∞,∞([0, 1], R) : dm(f ,µ(d̃)) ≥ ρm},

where µ(d̃) is the wavelet reconstruction from the wavelet coefficients of the true mean of the

estimated contrast.

Here, our concern will be the rate at which the distance between the null and alternative

hypotheses can decrease to zero while still permitting consistent testing, the set of alternatives

should be also separated away from the null hypothesis in the dm-distance by ρm. Theorem 4.5

below gives a upper bound for the minimum separation from zero (see, e.g., Abramovich et al.,

2004), uniformly over F(R, s, ρm), by considering a specific collection of subspaces Sℓ and a series

of levels āℓ.

Denote by Mm the set of all indices j such that 2j ≤ [m/2]. For each index j ∈ Mm, let

Kj = {k : 1 ≤ k ≤ 2j} and set Bkj = [(k− 1)/2j , k/2j). Therefore, for each j ∈ Mm, the intervals
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(Bkj)k∈Kj
define a partition of [0, 1) = ∪k∈Kj

Bkj. For each j ∈ Mm, the subspaces Sj that we

consider is the linear space spanned by the following set of vectors
{

1
#Bkj

∑m
i=1

∑
ti∈Bkj

ei; k ∈ Kj

}
,

where #Bkj = #{ti ∈ Bkj, i = 1, . . . ,m} and (e1, . . . , em) be the canonical basis of R
m. Note that

Sj, as it is defined above, is related to the basis of piecewise constant functions on [0, 1). Indeed,

for each j ∈ Mm and for each k ∈ Kj, denoting by gk(x) = 1Bkj
(x), it is easily seen that Sj is the

vector space spanned by the vectors gk = (gk(t1), . . . , gk(tm)). (When Vc = {0}, i.e., we test the

nullity of the corresponding functional contrast c, Sj is in V⊥
c = R

m.)

For a given f , let ρ2
m(f) be the “indifference threshold” for testing f ≡ 0 against that

f ∈ F(R, s, ρm). With the above notation, the following theorem holds.

Theorem 4.5 Assume that R2 ≥ σ2
ǫ

m

√
ln ln(m). Let ᾱ be an overall significance level. Then, there

exists a constant Cᾱ (depending on ᾱ), such that for all s ∈ (0, 1], one has

ρ⋆2
m := sup

f∈F(R,s,ρm)
ρ2

m(f) ≤ Cᾱ

[
R

2
(1+4s)

(
σ2

ǫ

m

√
ln ln(m)

) 4s
(1+4s)

+R2m−2s +
σ2

ǫ

m
ln ln(m)

]
.

Recall that the optimal rate of testing is the fastest rate at which ρ⋆
m can approach zero while

permitting consistent testing uniformly over F(R, s, ρ⋆
m). Note that when 1/4 ≤ s ≤ 1, the rate of

testing of our procedure, in the sense of Ingster (1982), is
(

1
m

√
ln ln(m)

) 2s
(1+4s)

. The minimax rate

of testing is, however, m
− 2s

(1+4s) . The loss of efficiency by a ln ln(m) factor is unavoidable and is

due to the fact that our procedure is adaptive with respect to s and R (see, e.g., Spokoiny, 1996).

On the other hand, when s < 1/4, the rate of testing is of order m−s, but it is not known whether

such a rate is optimal or not. When σ2
ǫ is assumed to be known, the rate of testing for regular

functions, as the ones we consider for testing contrasts, is m−1/4 (see Baraud, 2002).

5 Applications

The purpose of this section is to illustrate the usefulness of the proposed functional hypotheses

testing procedures described in Section 4, by applying them on the orthosis and mass spectrometry

proteomic datasets discussed in Section 2.

Using classical linear mixed-effects estimation techniques, the linear mixed-effects representation

(2) is also used to obtain wavelet-based estimates for both fixed-effects and random-effects.

More specifically, for the estimation of the functional fixed-effects (i.e., the population-average

curve profiles), we apply the classical weighted least-squares (WLS) methodology, which is easily

implemented. On the other hand, for the estimation of the functional random-effects (i.e., the

curve-specific functions), we apply RML estimation of variance components, as is commonly used

in standard liner mixed-models software such as, e.g., PROC MIXED in SAS and lme() in S-PLUS
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(see, e.g., Ngo & Wand, 2004). Following the wavelet-based model formulation for random-effects

discussed in Section 3.3, and in order to reduce the computational time, we have taken for both

examples αi = α for all i = 1, 2, . . . , n. Its value was estimated by maximum likelihood.

The computational algorithms related to wavelet analysis were performed using Version 8 of

the freely available WaveLab toolbox for Matlab.

5.1 Orthosis Data

Abramovich et al. (2004) analysed this dataset as arising from a fixed-effects functional analysis of

variance model with 2 qualitative factors (Subjects and Treatments), 1 quantitative factor (Time)

and 10 replications for each level combination. They considered a block design model, treating

subjects as blocks, which allowed them to make inference about the treatments of interest; they

found significant global differences between treatments although under Spring 1 and Spring 2

conditions the subjects behave similarly, the same being less true under Control and Orthosis

conditions. They also found a highly significant global trend over time.

However, as in Abramovich & Angelini (2006), it is more reasonable to treat subjects as

random-effects and to apply the proposed estimation and testing procedures. (We point out at

this point that testing for functional random-effects is lacking from the mixed-effects functional

analysis of variance testing methodology of Abramovich & Angelini (2006).) Averaging over the 10

repetitions for each subject, following the wavelet-based formulation, and using the matrix notation

of Section 3.4, it is not difficult to see that, in this particular situation, we have n = 28, m = 64

(m⋆ = 16), p = 4 and q = 1, and the general functional mixed-effects model (1) can be expressed

as a linear mixed-effects model with one variance component, written as

Y = X̃d̃ + Z̃θ̃ + ǫ̃,

using the compactly supported Symmlet 4-tap filter mother wavelet, where

• Y = (YT
1 , . . . ,Y

T
28)

T (a 1792 × 1 vector of data points);

• X̃ = XW(4) (a 1792 × 64 fixed-effects design matrix), X = (AT
1 , A

T
2 , A

T
3 , A

T
4 )T, where Ai

(i = 1, . . . , 4) are 7 × 4 block-zero matrices apart from their ith column which consists of 7

identity matrices each one of size 64 × 64, and W(4) = diag(WT
64×16, . . . ,W

T
64×16) (4 blocks);

• d̃ = (d̃
T
1 , . . . , d̃

T
4 )T (a 64 × 1 vector of fixed-effects wavelet coefficients);

• Z̃ = I1792W
(28) (a 1792 × 448 random-effects design) and W

(1)
28 = diag(WT

64×16, . . . ,W
T
64×16)

(28 blocks);

• θ̃ = (θ̃
T

1 , . . . , θ̃
T

28)
T (a 448 × 1 vector of random-effects wavelet coefficients);
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Figure 5.3: (a): Random-effects testing for the Orthosis dataset: The histogram with 50 bins of the

RLR test statistic values under the null hypothesis; (b): Fixed-effects estimates for the Orthosis

dataset (‘S2’ (Spring 2), ‘S1’ (Spring 1), ‘C’ (Control) and ‘O’ (Orthosis)).

• ǫ̃ = (ǫ̃T
1 , . . . , ǫ̃

T
28)

T (a 1792 × 1 vector of standard Gaussian errors).

One of the aim of the analysis is to understand how a subject can cope with the external

perturbation, and we need to quantify the ways in which the individual mean cross-sectional

functions differ over the various conditions. Below, we apply our general methodology described

in previous sections in order to test both functional fixed-effects (i.e., if there is difference between

specific functional contrasts of interest) and functional random-effects (i.e., if there is any random-

effect present in the dataset) as well as to estimate the various functional components.

Regarding the functional random-effects, the application of the testing methodology presented

in Section 4.1 reveals that σ̂θ = 40.313, α̂ = 4.082 and σ̂ǫ = 1.080 resulting in λ̂wd = 1393.531. The

finite sample RLR test statistic, computing on a grid of 400 points and taking 100000 simulations

from the null, takes the value of 3.490 and the corresponding probability at zero value is 0.528 which

shows that the corresponding testing methodology is feasible. Figure 5.3(a) shows the histogram

with 50 bins of the RLR test statistic values under the null hypothesis. The corresponding p-value

is 0.028, showing that there is significant evidence of random-effects in this case. Figure 5.4 shows

the random-effects estimates of the averaged curves in each group based on RML estimation of

variance components.

Regarding the functional fixed-effects, the application of the testing methodology presented in

Section 4.2 reveals that a piecewise constant functions collection {Sℓ : ℓ ∈ L} of orders 1, 3, 7

and 15 gives the following Bonferroni based test statistic value (where, in each case, each of the

corresponding Bonferroni level is taken as 0.0125): 4.847 for Spring 1 vs Spring 2 conditions, 8.992

for Control vs Orthosis conditions, and 48.751 for Spring 1 + Spring 2 vs Control + Orthosis
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Figure 5.4: Random-effects estimates for the Orthosis dataset.

conditions. These show that the various fixed-effects hypotheses of a similar behaviour under the

different conditions are all rejected (the overall p-values were 0.020, 0.001 and 0 respectively). This

supports the fact that individuals adjust their posture differently under perturbations of different

nature. Note that the different behaviour under Spring 1 and Spring 2 conditions, that is further

supported by the empirical evidence of the scientists provided us with the data, it is not captured

by the testing methodologies of Abramovich et al. (2004) and Abramovich & Angelini (2006).

Figure 5.3(b) shows the corresponding group means estimates based on the WLS method.

The entire model fitting for the orthosis data example took 49 minutes in Matlab on a Mac

G5 computer 1.8 GHz with 1 GB RAM. The most time consuming step is the estimation of the

fixed-effects by the WLS method.

5.2 Mass Spectrometry Proteomic Data

Petricoin et al. (2002) reported finding patterns in mass spectrometry proteomic data (SELDI-

TOF, Ciphergen) that can distinguish between serum samples from normal women and serum

samples from women with ovarian cancer, even when the cancers are at early stages (data are

available from http://clinicalproteomics.steem.com). There are three different datasets and

we have used the most recent one dated 08-07-02; see Alexe et al. (2004) for a description of all

datasets and of various analyses. The dataset comprises 162 cancer samples and 91 control cases.
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The expression profile contains measurements of 15,154 intensities on a grid of m/z ratios, but

these intensities do not represent independent peptides for this instrument. The peptides yield

“peaks” in the spectra, which cover a substantial number of m/z values. A typical SELDI-TOF

profile might contain information on several hundred peptides.

Certain preprocessing steps must be performed before analyzing the spectra, including removal

of baseline and normalization to calibrate the spectra from different samples. There is no consensus

in the literature about how the various pre-processing steps should be done. The hope remains that

if a strong signal is truly present in the given data, then it will not be too sensitive to the details of

the pre-processing, and information critical for building models with strong prediction capabilities

will be retained. We performed baseline correction on all spectra by using a loess procedure

and normalization using the appropriate functions in the Bioinformatics toolbox of Matlab (see

Figure 2.2 in the introduction for a plot of the preprocessed data).

As now acknowledged by the original authors (see Liotta et al., 2005), the cancers and controls

for this experiment were not randomized, but rather run in separate batches, which resulted in a

strong systematic bias between the cancer and control spectra. Thus, in this dataset, it is quite

easy to separate the cancer and control spectra using any part of the spectrum (see Baggerly et

al., 2005), mainly beacuse of this hard-wired bias. However, here we have used this dataset with

the only purpose of illustrating the proposed methodology. From the original dataset of curves

that exemplified the methods of Petricoin et al. (2002), we have randomly selected a subset of 24

curves relevant for our mixed-effects FANOVA application, in an attempt to discriminate between

12 disease spectra (cancer) and 12 normal spectra (control). Figure 5.5 shows some mass spectra

for the cancer and control groups together with their means. It has been noted in the literature that

the intensities at a range of m/z values around 7000 to 7500 have some interesting features, with

a number of peaks in the control samples that are more pronounced than the peaks in the cancer

samples. Since the grid is fine enough, and for computational feasibility, the data in this range

were interpolated on an equispaced grid of 512 points, without substantively changing the observed

data. Following the wavelet-based formulation and using the matrix notation of Section 3.4, in

this particular situation we have n = 24, m = 512 (m⋆ = 128), p = 2 and q = 1, and the

general functional mixed-effects model (1), as in our previous example, is expressed again as a

linear mixed-effects model with one variance component

Y = X̃d̃ + Z̃θ̃ + ǫ̃,

using the compactly supported Symmlet 4-tap filter mother wavelet, where

• Y = (YT
1 , . . . ,Y

T
24)

T (a 12288 × 1 vector of data points);

• X̃ = XW(2) (a 12288 × 256 fixed-effects design matrix), X = (AT
1 , A

T
2 )T, where Ai (i = 1, 2)
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Figure 5.5: Petricoin 08-07-02 dataset: Mass spectra (thin lines) and the corresponding average

spectra (thick lines): (a) Control group; (b) Cancer group.

are 12 × 2 block-zero matrices apart from their ith column which consists of 12 identity

matrices each one of size 512 × 512, and W(2) = diag(WT
512×128,W

T
512×128);

• d̃ = (d̃
T
1 , d̃

T
2 )T (a 256 × 1 vector of fixed-effects wavelet coefficients);

• Z̃ = I12288W
(24) (a 12288 × 3072 random-effects design) and

W
(1)
24 = diag(WT

512×128, . . . ,W
T
512×128) (24 blocks);

• θ̃ = (θ̃
T

1 , . . . , θ̃
T

24)
T (a 3072 × 1 vector of random-effects wavelet coefficients);

• ǫ̃ = (ǫ̃T
1 , . . . , ǫ̃

T
24)

T (a 12288 × 1 vector of standard Gaussian errors).

One of the aim of the analysis is to test both functional fixed-effects (i.e., if there is difference

between the two group mean curves) and functional random-effects (i.e., if there is any random-

effect present in the dataset) as well as to estimate the various functional components.

Regarding the functional random-effects, the application of the testing methodology presented

in Section 4.1 reveals that σ̂θ = 10.012, α̂ = 2.542 and σ̂ǫ = 0.629 resulting in λ̂wd = 253.141. The

finite sample RLR test statistic, computing on a grid of 400 points and taking 100000 simulations

from the null, takes the value of 30.541 and the corresponding probability at zero value is 0.531

which shows that the corresponding testing methodology is feasible. Figure 5.6 shows the histogram

with 20 bins of the RLR test statistic values under the null hypothesis. The corresponding p-value is

0, showing that there is, as suspected from the plots, a significant strong evidence of random-effects

in this case.

Regarding the functional fixed-effects, the application of the testing methodology presented in

Section 4.2 reveals that a piecewise constant functions collection {Sℓ : ℓ ∈ L} of orders 1, 3, 7,
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Figure 5.6: (a): Random-effects testing for the Petricoin dataset: The histogram with 20 bins of the

RLR test statistic values under the null hypothesis; (b): Fixed-effects estimates for the Petricoin

08-07-02 dataset.

15, 31, 63 and 127 gives a Bonferroni based test statistic value (where each of the corresponding

Bonferroni level is taken as 0.007) of 104.556. This shows that the fixed-effects hypothesis that

the two group means are the same is rejected (the overall p-value is 0.009). As expected, the

proposed methodology is capable of diagnosis for diseases using SELDI-TOF on tissue samples

even in presence of a strong random-effect. Figure 5.6(b) shows the corresponding group means

estimates based on the WLS method.

The entire model fitting for the mass spectrometry proteomic data example took 2 hours and

37 minutes in Matlab on a Mac G5 computer 1.8 GHz with 1 GB RAM. The most time consuming

step is the estimation of the fixed-effects by the WLS method.

6 Concluding Remarks

Although the particular motivated examples were modelled as a functional mixed-effects analysis

of variance models, the methodology presented in this paper is very general and can be applied to

other functional mixed-effects models, depending on the particular applications at hand. On the

other hand, the matrix representation used to construct the general linear mixed-effects model that

was subsequently considered for further analysis increases the computational and storage demands,

and put some limitation of the proposed methodology in large sample sizes, as it has been observed

in our computations. The complexity of the proposed algorithm is O(nm⋆p), so when nm⋆p is

very large the algorithm is not efficient. As mentioned in the application section, the most time

consuming step is the estimation of the fixed-effects by the wavelet-based weighted least-squares

method. A possible way to improve upon this limitation is to explore the sparsity of the involved
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matrices; however, this is not immediately clear to us and it has not been taken care of in our

implementation.

We finally point out an interesting extension of the proposed modelling methodology. An

alternative model can be built by taking different priors with hyperparameters αi for i ∈
{1, 2, . . . , n1}, i ∈ {n1 + 1, n1 + 2, . . . , n2}, . . ., i ∈ {np−1 + 1, np−1 + 2, . . . , np}, where n1 + n2 +

. . .+ np = n. In other words, using similar notation, model (2) is now replaced by

Y = X̃d̃ + Z̃1θ̃1 + . . .+ Z̃qθ̃q + ǫ̃. (18)

Model (18) is clearly a linear mixed-effects model with q variance components where the fixed-effects

are parameterized by the wavelet coefficients of βr1(t) (r1 = 1, 2, . . . , p) and the random-effects are

parameterized by the wavelet coefficients of α
(i)
r2 (t) (i = 1, 2, . . . , n; r2 = 1, 2, . . . , q). Adapting

the recent methodology of Claeskens (2004), ideas similar to the ones presented earlier can now

be further developed to provide functional hypothesis testing procedures for both fixed-effects and

random-effects as well as to estimate the various components.

A detailed analysis of all these is beyond the scope of this article but present avenues for further

research that hope will be addressed in the future.
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Appendix A

For sake of brevity, we provide outlines of the proofs of the theoretical results obtained in Section 4.

Proof of Theorem 4.1. The proof of the theorem can be obtained by working along the

same lines of the proof of Theorem 1 in Crainiceanu & Ruppert (2004), taking into account that

[n(ln(m) − q)] > p. �

Proof of Theorem 4.2. The proof of the theorem can be obtained by working along the same

lines of the proof of Theorem 2 in Crainiceanu & Ruppert (2004), taking also into account the

discussion in their Section 3 and that [n(ln(m) − q)] > p. �
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Proof of Theorem 4.3. The proof of the theorem can be obtained by arguing along the same

lines of the arguments given in Section 2.2 in Baraud et al. (2003). More precisely, under the

null hypothesis (15), and for each ℓ, the random variables ‖ΠSℓ
Yλ‖2 and ‖Π(Vc+Sℓ)⊥∩EYλ‖2 are

independent and distributed as χ2 variables with Dℓ and Nℓ degrees of freedom respectively. Thus,

for each ℓ ∈ L, the test statistics Tc,ℓ are distributed under the null as Fisher variables with Dℓ and

Nℓ degrees of freedom and, therefore, we have

∀ µ ∈ Vc, Pµ{Tc,ℓ > F̄−1
Dℓ,Nℓ

(ᾱℓ)} ≤ ᾱℓ.

Using now the Bonferroni inequality, it follows that

∀ µ ∈ Vc, Pµ{Tᾱ > 0} ≤
∑

ℓ∈L

Pµ{Tc,ℓ > F̄−1
Dℓ,Nℓ

(ᾱℓ)} ≤
∑

ℓ∈L

ᾱℓ ≤ ᾱ,

which is our claim. �

Proof of Theorem 4.4. The proof of the theorem can be obtained by working along the same

lines of the proof of Theorem 1 in Baraud et al. (2003), by taking into account the way the space

Vc is defined, which follows by noting that the extra assumption on the design matrix X̃ and the

properties of the discrete wavelet transform of a discretised function do not affect the orders of

d2
m(ΠV⊥

c ∩Eµ, Sℓ) and of vℓ. �

Proof of Theorem 4.5. Let Dj be the dimension of Sj. Note first that for all j ∈ Mm, Dj ≤ 2j .

Since, by assumption, for all j ∈ Mm we have that sj ≤ [m/2], we get

ρm(f) ≤ inf
j∈Mm

{(
1 +

kᾱ

2

)
d2

m(f , Sj) + kᾱ

[√
2j

(
ln

(
1

ᾱm

)
+ ln ln(m)

)
+ ln

(
1

ᾱm

)
+ ln ln(m)

]
σ2

ǫ

m

}
,

where ᾱm = ᾱ
#Mm

and kᾱ is a positive constant depending only on ᾱ. Now, by definition,

d2
m(f , Sj) = inf

gj∈Sj





1

m

m∑

i=1

∑

k∈Kj

(f(xi) − [gm]i)
2 1Bkj

(xi)



 ≤ inf

gj∈Sj





1

m

m∑

i=1

∑

k∈Kj

sup
Bkj

|f(xi) − gj(xi)|





2

,

(19)

where gj is a piecewise constant on [0,1] which coincides with a constant on each interval Bkj and

such that gj(xi) = [gj ]i. By Corollary 3.1 in Dahmen et al. (1980), we know that each function in

Bs
∞,∞([0, 1], R) is uniformly approximated by a piecewise function on [0,1]. Therefore, there exists

a piecewise constant function ḡ, which is constant on each rectangle Bkj for each j ∈ Kj , such that

supx∈Bkj
|f(x) − ḡj(x)| ≤ CR2−js, where C > 1 is a constant. Using (19), we easily get

d2
m(f , Sj) = C2R22−2js. (20)
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The cardinality of the set Mm is less than log2([m/2]). Therefore, for all j ∈ Mm, we have that

ᾱm ≥ C/ log2([m/2]), and that

ln

(
ln(m)

ᾱm

)
≤ ln ln(m). (21)

Using inequalities (20) and (21), we obtain

ρm(f) ≤ C

[
inf

j∈Mm

{
R22−2js +

σ2
ǫ

m

√
2j ln ln(m)

}
+
σ2

ǫ

m
ln ln(m)

]
. (22)

The conclusion of the theorem now follows by working along the same lines of the proof of Corollary

2 in Baraud et al. (2003). Indeed, note that

R22−2js ≤ σ2
ǫ

m

√
2j ln ln(m)

if and only if

2j ≥ ρ⋆ :=

(
R2m

σ2
ǫ

√
ln ln(m)

) 2
(1+4s)

.

By the assumptions, we therefore have ρ⋆ ≥ 1. If there exists a j′ ∈ Mm such that ρ⋆ ≤ 2j′ , then

inf
j∈Mm

{
R22−2js +

σ2
ǫ

m

√
2j ln ln(m)

}
≤ 2

σ2
ǫ

m

√
2j′ ln ln(m) ≤ 2

√
2R

2
(1+4s)

(
σ2

ǫ

m

√
ln ln(m)

) 4s
(1+4s)

.

(23)

Otherwise, take j′ ∈ Mm such that m/4 ≤ 2j′ ≤ m/2. Since 2j′ ≤ max(ρ⋆,m/2), we obtain the

upper bound

inf
j∈Mm

{
R22−2js +

σ2
ǫ

m

√
2j ln ln(m)

}
≤ 2R22−2j′s ≤ 2R2

(m
4

)−2s
.

Since s ≤ 1, we obtain

inf
j∈Mm

{
R22−2js +

σ2
ǫ

m

√
2j ln ln(m)

}
≤ CR2m−2s. (24)

From (22), (23) and (24), the requested inequality is proved. �
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