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Abstract

We present a Bayesian specification test in presence of partial observability and using

the encompassing principle. The general theory is developed where the partial observ-

ability is known up to a Euclidean parameter, to be estimated from data. This general

development is illustrated with an example where only a linear combination of a latent

vector is observed; thus, in the example, the partial observability is known up the vector

defining the observed linear combination. Some identifiability issues are treated and the

example shows the operationality and the pitfall of the proposed test.
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1 Introduction

The motivational example for this work has been to develop a test for the normality hypothesis
on latent variables supposedly generating, by discretization, manifest ordinal variables. This
normality assumption is indeed a standard one when estimating a covariance structure model
(or, LISREL type models) on the basis of manifest variables blending continuous and ordinal
(i.e. ordered discrete) variables; for the use of the normality assumption in that class of models
see Muthén (1983, 1984); Jöreskog et al. (2002) and for details on discretization model see
Almeida and Mouchart (2003a,b).

In covariance structure models, the normality hypothesis of the latent variables has an im-
portant role. As matter of fact, this hypothesis permits to reduce the inference process to the
analysis of the empirical means, variances and covariances as these empirical moments repre-
sent a sufficient reduction. In the discretization model, the normality assumption of the latent
variables permits the same reduction at the level of latent variables. But given the unidenti-
fiability of the marginal distributions of the latent variables, only the correlations matrix can
be identified. Therefore the inference concentrates on the analysis and the estimation of this
matrix; this matrix is called polychoric correlations matrix, and can be estimated by maximum
likelihood, see in Olsson (1979) or with ad-hoc methods as in Jöreskog (1994).

In general, in models involving some kind of marginalization to the manifest variables,
the natural parametrization of the complete model (i.e. involving both latent and manifest
variables) is not identified by the observable variable. The models considered here correspond
to models called not completely known partial observability models, where this means that the
manifest variable is a deterministic function of the latent variables, known up to a Euclidean
parameter only.

As another example of partial observability, one may also consider the observation of a
linear combination of latent variables (with unknown coefficients). In Econometrics, this is
indeed the case of the permanent income hypothesis, where permanent demand and income are
observable with errors, only.

Formally, the models involving partial observability can be described by means of a struc-

tural model: ξ | θ ∼ Pξ|θ, along with an observability process defined by X = g(ξ, α) where
g is known, α ∈ IRq and ξ is a vector of latent variables. The case where g is not a function
of α (or α is known), has been treated in Almeida and Mouchart (2005) under the heading of
completely known partial observability; the case where α ∈ IRq is unknown, but the functional
form of g is known will be called not completely known partial observabilitity and is the object
of this paper.
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The loss of information due to the partial observability raises substantial problems of sta-
tistical inference. In general, the loss of information implies a loss identification and a loss
of power; this fact can be illustrated, for example, in censored data, where the precision of
estimators and the power of the tests depend on the expected proportion of censored data. As a
pathological example, the case of the sign observation, where the loss of information does not
permit any inference about the form of the distribution of the latent variable, has been presented
in Almeida and Mouchart (2005).

Once the partial observability does not correspond to a sufficient reduction, a loss of identi-
fiability is to be expected. Although the model is identified at the level of latent variable (i.e. θ

is identified by ξ), the statistical model is typically not identified (i.e. (α, θ) is not identified by
X) even if the partial observability process is identified (i.e. α identified by X); see Mouchart
and Oulhaj (2003) for a study on the sufficiency and identification relations under partial ob-
servability. Hereafter the structural models at the level of latent variables will be considered
as identified. This lost of identifiability due to partial observability requires a particular care
for the actual meaning and for a correct interpretation of the hypothesis involved in a testing
procedure.

Next section gives general results for testing by Bayesian encompassing the form of a dis-
tribution under partial observability; results are also obtained for making the proposed test
interpretable from a structural modeling approach. In Section 3 the observation of a linear
combination of latent variables is presented as an example and a simulation study is developed.
Finally Section 5 presents some concluding remarks and conclusions.

2 General Results

The encompassing principle may viewed as a possible approach for replacing an “old” theory
by another “new” theory and can be expressed as follows: The empirical findings explained in
the framework of the old theory should also be explained in the framework of the new theory.
This idea has been applied for testing non-nested hypotheses starting with the pioneering work
of Cox (1961, 1962). Thus, the encompassing test leads to analyze, in the framework of the
preferred model, the behavior of statistics of interest within the context of the non-preferred
model. For a detailed study of the encompassing testing in classical sense and in parametric
framework see Mizon and Richard (1986).

In Bayesian framework, encompassing testing has been sketched in Florens et al. (1990,
section 3.5) and developed in a general setup and applied to parametric models by Florens and
Mouchart (1993), later Florens et al. (2003) presents a Bayesian specification encompassing
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test using as alternative model a nonparametric Bayesian specification. Here, we extend that
idea for a case where only partial observation is available. For the sake of easier reference, a
short summary on Bayesian encompassing is sketched in the Appendix A.

2.1 The two Bayesian models

In the general setup, the Bayesian specification of the structural models corresponding to the
null, E0, and alternative hypotheses, E1, are given by:

E0 : (θ, ξ) ∼ Q0
θ,ξ = M0

θ ⊗ P 0
ξ|θ (1)

E1 : (ψ, ξ) ∼ Q1
ψ,ξ = M1

ψ ⊗ P 1
ξ|ψ (2)

where θ and ψ are parameters characterizing the respective models of latent variable ξ. We use
P 1

ξ|ψ = ψ for specifying a general non-parametric alternative.
Some words about notations may be in order. On the one hand we handle probability

measures and transition probabilities (implicitly assuming the existence of regular versions
of conditional probabilities) rather than densities for we deal with undominated families of
distributions (because of some degeneracies and because of nonparametric alternative model).
On the other hand, probability measures and transitions are denoted by capital letters with
upper and lower indices. Upper indices mark different models or different measures (on a same
space) whereas lower indices denote random variables (often under identification with the σ-
field generated by these variables); when lower indices are not present, we refer to an implicitly
defined complete joint distribution. Often we combine a probability measure and a transition
of probability by a Markovian product denoted ⊗; more explicitly, when Q0

θ,ξ is defined by
M0

θ ⊗ P 0
ξ|θ, we mean that for any measurable set A on the θ-space and B on the ξ-space the

probability of the rectangle A×B is defined as:

Q0
θ,ξ(A×B) =

∫

θ∈A

P 0
ξ|θ(B) dM0

θ , (3)

and the probability measure Q0
θ,ξ is obtained as the unique extension of (3) to the σ-field gen-

erated by the rectangles, based on the θ-space and on the ξ-space.
For both models, a same partial observability process is defined by:

X = g(ξ, α) = gα(ξ) (4)
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where the function g is known and α an unknown Euclidean parameter α. Clearly:

P 0
X|α,θ,ξ = P 1

X|α,ψ,ξ = δ{X=g(ξ,α)} (5)

with δ{•} is the unit mass measure (or, Dirac measure). In general, (4) implies that for any γ

and any probability R on (X, γ, α, ξ) we have:

X ⊥⊥ γ | α, ξ; R. (6)

We repeatedly use, in particular:

X ⊥⊥ θ | α, ξ; Q0, and (7)

X ⊥⊥ ψ | α, ξ; Q1 (8)

When completing these structural models in order to incorporate α and X , we shall also
assume a separation between the structural and the observability model in the sense that the
sampling distributions of ξ should not depend on α; more precisely, we always assume:

α ⊥⊥ ξ | θ; Q0 (9)

α ⊥⊥ ξ | ψ; Q1. (10)

Thus, the complete null model E0 can be written as:

E0 : (θ, α, ξ,X) ∼ Q0
θ,α,ξ,X = M0

θ,α ⊗ P 0
ξ|θ ⊗ P 0

X|ξ,α (11)

and the complete alternative model E1 can be written as:

E1 : (ψ, α, ξ, X) ∼ Q1
ψ,α,ξ,X = M1

ψ,α ⊗ P 1
ξ|ψ ⊗ P 1

X|ξ,α (12)

For the Bayesian encompassing test , the null model needs to be extended by incorporating
ψ, the parameter of the alternative one. The construction of this extended model E∗ requires an
extended Bayesian Pseudo-True Value (BPTV) condition, namely:

ψ ⊥⊥ α, ξ | θ; Q0,∗. (13)
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Condition (13) actually aggregates two conditions, namely:

ψ ⊥⊥ α | ξ, θ; Q0,∗ (14)

ψ ⊥⊥ ξ | θ; Q0,∗ (15)

The first one gives a neutrality of the partial observability for interpreting ψ in Q0,∗ and the
second one is the standard BPTV hypothesis within the structural model (see Florens and
Mouchart, 1993, for details on BPTV condition). Note that (9) and (14) are jointly equiva-
lent to

α ⊥⊥ (ξ, ψ) | θ; Q0,∗. (16)

Under (9) and (13), the probability measure Q0,∗ defining the extended complete model can
be written in two equivalent forms, namely:

Q0,∗
θ,α,ψ,ξ,X = M0

θ,α ⊗ P 0
ξ|θ ⊗Mψ|θ ⊗ P 0

X|ξ,α (17)

= M0
θ ⊗ P 0

ξ|θ ⊗Mψ|θ ⊗M0
α|θ ⊗ P 0

X|ξ,α (18)

where Mψ|θ is a BPTV. The extended statistical model, obtained after integrating the latent
variable ξ, can be written under (13) as:

Q0,∗
θ,α,ψ,X = M0

θ,α ⊗ P 0
X|θ,α ⊗Mψ|θ. (19)

As long as the structural process acts independently of the partial observability process, one
might assume that α and θ are a priori independent, more specifically along with

α ⊥⊥ θ; Q0 (20)

α ⊥⊥ ψ; Q1 (21)

(7) and (9) provides in the null and in the alternative models Bayesian cuts between ξ and X (in
the distribution Q0 of (X, ξ, α, θ) and in the distribution Q1 of (X, ξ, α, ψ) respectively). Next
theorem shows that (20) also implies, in the extended complete model, a same Bayesian cut
between ξ and X (in the distribution Q0,∗ of (X, ξ, α, θ)). On Bayesian cuts, see e.g. Florens
et al. (1990, section 3.4)

Theorem 2.1. Using the extended BPTV condition (13), we have under (20), that:

α ⊥⊥ (ξ, ψ, θ); Q0,∗ (22)
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Proof. Clearly (22) is equivalent to the properties (a) α ⊥⊥ ξ, θ and (b) α ⊥⊥ ψ | ξ, θ. Property
(a) is equivalent to (20) and α ⊥⊥ ξ | θ, implied by (16), and property (b) is also implied by
(16)

Two “natural” approaches might be considered for elaborating the encompassing test statis-
tics. A first possibility starts by developing the encompassing test at the level of the latent
variables, i.e. a distance (or discrepancy) d∗ between posteriors at the level of latent variables,
and a test statistics might be the expectation of this distance conditionally on available data:

d1(X) = E [ d∗(M0,∗
ψ|ξ,M

1
ψ|ξ) | X ], (23)

but this statistic is usually not operational. A second approach consists in evaluating

d2(X) = d∗(M0,∗
ψ|X ,M1

ψ|X). (24)

In both cases, these test statistics must be calibrated against P 0
X , the predictive distribution

under the model E0.
Moreover, Florens et al. (2003) shows that a more operational version of the encompassing

test statistic may be obtained by replacing d∗(M0,∗
ψ|X ,M1

ψ|X) by d∗(M0,∗
λ|X ,M1

λ|X) where λ =

h(ψ), a finite dimensional functional defined on ψ.

2.2 Identification and Encompassing testing

Once the partial observability is not completely known (i.e. α unknown), it should be noted
that the partial observation is not likely to identify the complete parameters α and θ (resp.ψ) in
the null (resp. alternative) model, even though we have assumed that θ (resp. ψ) is identified
by ξ. This is so unless X were a sufficient statistic in both models, see Mouchart and Oulhaj
(2003), a situation out of the interest of this paper.

Let us define γX (resp. ωX) as a minimal sufficient parameter for the sampling distribution
of X in the null (resp. alternative) model. Thus in the null model γX ⊂ θ ∨ α, and in the
alternative model the parameter identified by the statistical model P 1

ξ|θ ◦ g−1
α is ωX = ψ ◦ g−1

α ⊂
ψ ∨ α. These identified parameters are such that:

(a) X ⊥⊥ θ, α | γX ; Q0 (b) X ⊥⊥ ψ, α | ωX ; Q1. (25)

In the notation used here, random elements have been identified with the respective σ-field
generated by itself, “∨” denotes the minimal σ-field generated by the union of the operated σ-
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fields and “⊂” is the usual inclusion relation. Thus γX ⊂ θ ∨ α can be heuristically interpreted
as saying that there is a measurable function h such that γX = h(θ, α) we shall also say that
γX is a “subparameter” of (θ, α); similarly for ωX as measurable function of ψ and α.

The second approach, that leads to (24), naturally raises the question whether d2(X) should
be defined from the distance between the posterior distributions of the complete parameter
ψ or of the identified parameter ωX only. Let us therefore ask how far it is to legitimate to
concentrate the encompassing test on the identified part of ψ, i.e. to evaluate

d3(X) = d∗(M0,∗
ωX |X , M1

ωX |X) (26)

instead of d2(X). Intuitively, that would be legitimate if in the extended null model and in the
alternative model the distributions conditional on the data and the identified parameters would
no depend on the data. This is clearly the case for the alternative model in view of condition
(25b). Next theorem and its corollary give conditions under which a similar property holds in
the extended null model.

Theorem 2.2. In E0,∗, under (13),

X ⊥⊥ ψ, θ, α | γX ; Q0,∗ (27)

Proof. Indeed, in Q0,∗, we have that (13) implies ψ ⊥⊥ X | θ, α, which jointly with (25a)
implies (27).

Corollary 2.3. Under (13) the BPTV condition is fulfilled in the extended statistical model at

the level of identified parameters, namely:

X ⊥⊥ ωX | γX ; Q0,∗. (28)

Therefore, (13) permits us to write:

Q0,∗
θ,α,ψ,X =

[
M0

γX
⊗M0,∗

ωX |γX
⊗ P 0

X|γX

]
⊗M0,∗

α,θ,ψ|γX
. (29)

Finally, next theorem requires a further condition on the BPTV in order to ensure that ωX

is sufficient, in the extended model, relatively to ψ.

Theorem 2.4. Under the extended BPTV condition (13), if

ψ ⊥⊥ γX | ωX ; Q0,∗ (30)
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then

ψ ⊥⊥ X | ωX ; Q0,∗ (31)

Proof. Clearly (31) is implied by ψ ⊥⊥ X, γX | ωX which is equivalent to (30) along with
ψ ⊥⊥ X | γX , ωX implied by (27).

Note that condition (30) means that the extension of the null model, into E0,∗, is operated in
such a way that the distribution of ψ, conditional on ωX , the parameter identified by X in E1,
should not depend on the parameter identified by X in the null model, i.e. γX . Condition (30)
has a crucial role in the proof of Theorem 2.4, but is not likely to be testable. Therefore its ac-
ceptability is essentially a matter of contextual plausibility. Thus in any particular application,
this assumption should be carefully scrutinised.

Theorem 2.4 permits us to write:

M0,∗
ψ|X =

∫
M0,∗

ψ|ωX
dM0,∗

ωX |X (32)

If, by specification we impose the coherence condition:

M0;∗
ψ|ωX

= M1
ψ|ωX

, (33)

a convenient distance for the posterior distributions of ψ can be defined through a distance
between posterior distributions of ωX , as in d3(X).

Summarising, under the condition (13), (30) and (33), d3 is an adequate and more op-
erational substitute of d2, provided that the discrepancy function in use is such that when two
probabilities share a common regular conditional probability, the discrepancy depends on a dis-
crepancy between the two marginals only. From (29), conditions (30) and (33) are restrictions
on the unspecified M0,∗

α,θ,ψ|γX
.

In some cases, such as the discretization model, the parameter α may be retrieved from the
knowledge of ωX and ψ. These situations permit us to strengthen the Theorem 2.4 as follows:

Corollary 2.5. Under the conditions of Theorem 2.4, if furthermore:

α ⊥⊥ X | ωX , ψ; Q0,∗, (34)

then ωX is sufficient relatively to ψ and α, i. e.

(α, ψ) ⊥⊥ X | ωX ; Q0,∗. (35)
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Note that the condition (34) is trivially implied by α ⊂ ωX ∨ ψ. This corollary ensures in E0,∗

a complete sufficiency of ωX (w.r.t. α and ψ) rather than a partial sufficiency of ωX (w.r.t. ψ

only).

3 An Example

Let us illustrate the computations implied by the test developed so far by examining a sim-
ple example. Thus, we first sketch a parametric (normal) null model with a nonparametric
alternative model along with a partial observability equation. Next we sketch the computa-
tions required to obtain the Bayesian encompassing test statistic, and its calibration. More
specifically we sketch the steps necessaries for evaluating the posterior distributions of ωX , the
parameter identified by the data in the alternative model, namely: M0,∗

ωX |X and M1
ωX |X , entering

the test statistic d3(X) in (26), and for simulating the distribution of this statistic under the null
model in order to calibrate it. In both models, the simulation of the posterior distributions of
ωX requires, as a preliminary step the simulation of the posterior distributions of α. Under a
continuous specification of the prior distribution of α, the posterior distributions of (α | Xn

1 )

can be simulated by acceptance rejection methods.
Finally, we control the operationality of the proposed procedure through a simulation exer-

cise.

The Null and the Alternative Models Consider a linear model with errors of measurement:

Xi = ηi + σxεxi
Xi ∈ IR (36)

Zi = ζi + Σ
1
2
zzεzi

Zi ∈ IRk (37)

ηi = β′ζi (38)

ζi ∼ ind N(k)(µζ , Σζζ) (39)

where Var(εxi
) = 1 and Var(εzi

) = Ik. Let us denote Wi = (Xi, Z
′
i)
′ and ξ∗i = (ζ ′i, εxi

, ε′zi
)′ .

Defining a (k + 1)× (2k + 1)-matrix A, we obtain a partial observability model:

Wi = Aξ∗i where A =

(
β′ 1 0′

Ik 0 Ik

)
(40)

The test developed so far for testing the normality of the (2k + 1)-dimensional vector ξ∗i
requires considerable computations. Let us illustrate the main difficulties to be faced in the
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simplest case where k = 1 and only Xi is actually observable. Thus, let us consider a bivariate
latent vector ξi a linear combination of which is observable, namely:

Xi = gα(ξi) = α′ξi. (41)

where ξi = (ζ ′i, εxi
)′ and α = (β, σx)

′.
We want to compare a completely normally distributed (with known variances) null model

with a non parametric alternative model both satisfying (9)-(10) and (20)-(21), namely:

α ⊥⊥ (ξ, θ); Q0 (42)

α ⊥⊥ (ξ, ψ); Q1 (43)

More explicitly:

E0 :





ξ | θ, α ∼ N(2)(θ, A0)

θ | α ∼ N(2)(0, B0)

α ∼ M0
α

E1 :





ξ | ψ, α ∼ ψ

ψ | α ∼ Di(n1
0N(2)(0, C0))

α ∼ M1
α.

(44)

The corresponding statistical models, reduced by integration of the latent variables, are:

E0 :





X | θ, α ∼ N(α′θ, α′A0α)

θ | α ∼ N(2)(0, B0)

α ∼ M0
α

E1 :





X | ψ, α ∼ ωX

ωX | α ∼ Di(n1
0N(0, α′C0α))

α ∼ M1
α.

(45)

where, as in Section 2.2, ωX = ψ ◦ g−1
α is the parameter of E1 identified by X .

Posterior distribution of α under the null model We are using an algorithm where the
simulation of the posterior distribution of the parameter of interest is based on the simulation
of a posterior predictive distribution requiring the posterior distribution of (α | Xn

1 ). This one
may be obtained as follows. The null model E0 conditionally to α is:

(
X

θ

)
| α; E0 ∼ N(3)

[(
0

0

)
,

(
α′(A0 + B0)α α′B0

B0α B0

)]
. (46)

For an n-size sample, the joint distribution of Xn
1 = (X1, . . . , Xn) and θ conditionally to α
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is: (
Xn

1

θ

)
| α; E0 ∼ N(n+2)

[(
0

0

)
,

(
Σn ΣXθ

ΣθX B0

)]
(47)

with:

Σn = α′A0α




1 0 . . . 0

0 1 . . . 0
...

... . . . ...
0 0 . . . 1




+ α′B0α




1 1 . . . 1

1 1 . . . 1
...

... . . . ...
1 1 . . . 1




(48)

ΣθX = Σ′
Xθ = (B0α, . . . , B0α) . (49)

Using a continuous prior distribution, m0(α), the posterior will be also continuous, more-
over:

m0(α | Xn
1 ) ∝ m0(α) p(Xn

1 | α), (50)

where p(Xn
1 | α) is the density function of a normal distribution with the mean and the variance

given above.

Posterior distribution of α under the alternative model In the alternative model E1, Dirich-
let process properties imply that

X | α; E1 ∼ N(0, α′C0α) (51)

Conditionally on α, the posterior distribution of the identified parameter ωX is a Dirichlet
process:

ωX | α, Xn
1 ; E1 ∼ Di(n1

0N(0, α′C0α) + nF̂n) (52)

where F̂n denotes the empirical distribution of the sample Xn
1 . After integrating α out, the

posterior distribution of the identified parameter ωX is accordingly a mixture of Dirichlet pro-
cesses, more specifically:

M1
ωX |Xn

1
=

∫
M1

ωX |α,Xn
1

dM1
α|Xn

1
. (53)

In order to obtain the distribution M1
α|Xn

1
, we first make use of the following property of the

Dirichlet processes:

P 1
Xn

1 |α =
⊗

{1≤i≤n}
P 1

Xi|Xi−1
1 ,α

=
⊗

{1≤i≤n}

n1
0N(0, α′C0α) + (i− 1)F̂i−1

n1
0 + (i− 1)

, (54)
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where F̂j is the empirical distribution using the first j observations (Xj
1). A Radon-Nikodym

derivative of P 1
Xn

1 |α is easily obtained relative to a measure L
(n)
∗ to be defined. Let firstly µn be

the measure defined as follows:

µn(A) = card(A ∩ {X1, . . . , Xn}) for any Borelian A ⊂ IR, (55)

let also L be the Lebesgue measure on the real numbers and denote the following Radon-
Nikodym derivatives as follows:

f 1,α
0 =

dN(0, αC0α)

dL
(56)

f̂i =
dF̂i

dµn

. (57)

As the measures L and µn are mutually singular, we may write:

dP 1
Xi|Xi−1

1 ,α

d(L + µn)
(x) =

n1
0f

1,α
0 (x) + (i− 1)f̂i−1(x)

n1
0 + (i− 1)

(58)

dP 1
Xn

1 |α

dL
(n)
∗

(xn
1 ) =

∏

{1≤i≤n}

n1
0f

1,α
0 (xi) + (i− 1)f̂i−1(xi)

n1
0 + (i− 1)

(59)

where L
(n)
∗ denotes the n-times product measure of (L + µn). Therefore, if there exists a prior

density m1(α), the posterior distribution of α given Xn
1 can be simulated using:

m1(α | Xn
1 ) ∝ m1(α)

dP 1
Xn

1 |α

dL
(n)
∗

(Xn
1 ). (60)

Note that in a sample of size 1, the specifications of C0 = A0 + B0 and of the same prior
for α in both models (M0

α = M1
α) imply the same posterior distribution of α (M0

α|X = M1
α|X).

Encompassing Let us now build an encompassing test under assumptions (30) and (33) with
a BPTV with the following structure:

MωX |γX
=

∫
M1

ωX |X̃n
1
dP 0

X̃n
1 |γX

= E0[ M1
ωX |X̃n

1
| γX ] (61)

where X̃n
1 is a virtual sample generated from P 0

Xn
1 |γX

- for a comment on this specification see
Florens and Mouchart (1993). From Corollary 2.3, this specification ensures that
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ωX ⊥⊥ Xn
1 | γX ; Q0,∗. (62)

Let us now stipulate that the virtual sample X̃n
1 is generated independently of the actual sample

Xn
1 :

X̃n
1 ⊥⊥ Xn

1 | γX ; Q0,∗, (63)

or, equivalently:

P 0
X̃n

1 |Xn
1

=

∫
P 0

X̃n
1 |γX

dM0
γX |Xn

1
(64)

Then we obtain the posterior distribution of ωX , as follows:

M0,∗
ωX |Xn

1
= E0[ MωX |γX

| Xn
1 ] by BPTV property (62)

= E0[ E0[ M1
ωX |X̃n

1
| γX ] | Xn

1 ] by (61)

= E0[ M1
ωX |X̃n

1
| Xn

1 ] by (63) (65)

Thus, by (53) and (65), both in the null and in the alternative models the posterior distri-
bution of the identified parameter ωX are mixtures of Dirichlet processes. The algorithm for
Bayesian encompassing testing used in Florens et al. (2003), with a simple adaptation, can be
applied in this case; this algorithm, based in the direct simulation of trajectories of Dirichlet
process as developed in Rolin (1992) and Sethuraman (1994), can be summarized as follows:

Computation and calibration of the test statistic Consider λ = h(ωX) ∈ IR`, a finite
dimensional sub-parameter of ωX . As in Florens et al. (2003), λ may correspond to the first
two moments only. The simulation of the posterior distributions M1

λ|Xn
1

and M0,∗
λ|Xn

1
may be

obtained through the following steps.

Step 1 Simulation of λ1
1, . . . , λ

1
N1

given Xn
1 in E1, where N1 is the simulation size.

For each i = 1, . . . , N1, let αi be a simulated sample from M1
α|Xn

1
from (60) and (ωX)i

a simulated trajectory of M1
ωX |Xn

1 ,αi
from (52), then (ωX)i is a simulated trajectory of

M1
ωX |Xn

1
.

Compute λ1
i = h[(ωX)i] for i = 1, . . . , N1

Step 2 Simulation of λ0
1, . . . , λ

0
N0

given Xn
1 in E0,∗ where N0 is the simulation size.

For each i = 1, . . . , N0, simulate (X̃n
1 )i from P 0

X̃n
1 |Xn

1
through (64). We simulate again

(ωX)i from M1
ωX |X̃n

1
, using the same device as in step 1. From (65), this sequence is

distributed as M0,∗
ωX |Xn

1
.
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Compute λ0
i = h[(ωX)i] for i = 1, . . . , N0

Step 3 Computation of the test statistics d(Xn
1 )

From the iid samples λ1
1, . . . , λ

1
N1

from step 1 and λ0
1, . . . , λ

0
N0

from step 2, estimate
d(Xn

1 ) by means of a discrepancy between the two posterior distributions of λ | Xn
1 ; the

algorithm developed in Wang et al. (2005) is used for this estimation.

Step 4 Simulation of (X̃n
1 )`, ` = 1, . . . , NC for calibration

Simulate (α, θ)` ` = 1, . . . , NC from (45), for each (α, θ)`, simulate (X̃n
1 )` | (α, θ)` from

(45). Thus (X̃n
1 )` ∼ P 0

Xn
1

.

For each (X̃n
1 )`, compute the test statistic d[(X̃n

1 )`] repeating the steps 1 to 3. Finally
estimate the p− value as follows:

̂p− value =
1

NC

∑

1≤`≤NC

1I{d((X̃n
1 )`) > d(Xn

1 )} (66)

Remark. The simulation of the distribution of α | Xn
1 can be simplified once the predictive

probability that all observations are different is equal to one, namely:

P 0
Xn

1
(∀ i, j, Xi 6= Xj) = 1. (67)

This is indeed the case once, in the null model, the sampling distribution is a continuous one.
Therefore the density of Xn

1 | α; E1, as given in (59), may be simplified, with probability one,
into:

dP 1
Xn

1 |α

dL
(n)
∗

(Xn
1 ) ∝

∏

{1≤i≤n}
f 1,α

0 (Xi). (68)

which corresponds to an iid sample of f 1,α
0 . In other words, when the sample space is explored

in order to find the predictive distribution of the test statistic under the null model, we are going
to fall, with probability one, in the region where the sample can be considered as a iid sample
related to the alternative model, conditionally on α.

Numerical illustration For the sake of simplicity, we specify in this exercise a same prior
distribution for αi.e. M0

α = M1
α. A simple specification of that prior distribution may be

obtained through an opportune reparametrization. Consider now the null model obtained after
integrating θ i.e. the probability measure Q0

α,Xn
1

. Because of the integration of θ, the (Xi | α)’s
are not mutually independents, but for a sample of size one, characterized by Q0

α,X , the minimal
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sufficient parameter may be easily described, namely αX = α′(A0 + B0)α ( i.e. αX ⊂ α is
identified by X in Q0

α,X). Let us reparametrize α into (αX , τ) as follows:

α =
√

αXR−1
0

(
cos τ

sin τ

)
; τ ∈ [τ0, τ1) αX ≥ 0 (69)

where R0 is a 2 × 2-matrix is a such that: (A0 + B0) = R′
0R0 and [τ0, τ1) is specified in such

way that α2 ≥ 0 with prior probability one. For the prior distribution let us consider:

αX ⊥⊥ β

αX ∼ Gamma(a, b)

β ∼ U[τ0,τ1).

(70)

Let us specify in the null model (44) the variances covariances matrices as follows:

A0 = B0 =

(
1 .5

.5 1

)
, (71)

and the parameters for the prior distribution of α, in (70) are a = b = 1.
The purpose of this exercise is to evaluate how far a sample generated from a distribution

in the alternative sampling model would be likely associated to a value of the test statistic
relatively far in the tail of the null predictive distribution. Consider accordingly the following
specification:

φ = (φ1, φ2)
′; φ1 ⊥⊥ φ2; φi ∼ χ2

2

ξ̃ = (ξ̃1, ξ̃2); ξ̃1 ⊥⊥ ξ̃2 | φ; ξ̃i ∼ Expo
(

1

φi

)

ξ = D0

(
ξ̃ −

(
2

2

))
; D0 is a 2× 2 matrix,

where we choose D0 in such a way that 12 D0D
′
0 = A0 + B0; so-doing ensures that the

predictive expectation and variances are the same as in the null model.
For the test statistic we compute the Kullback-Leibler divergence

d3(X
n
1 ) = dKL(M0,∗

λ|Xn
1
, M1

λ|Xn
1
) (72)

obtained by means of Wang et al. (2005) procedure.
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If one considers the rule “Reject E0 if ̂p− value ≤ 0.5”, one may define the empirical
coverage as the proportion of the rejecting sample. For data generated from the alternative
model, as done in this exercise, the empirical coverage should be higher than 0.05 and increase
with the sample size. Table 1 gives the observed results for four different sample sizes. (n =

10, 50, 100, 200) and 3 trials.

n trial 1 trial 2 trial 3
10 0.14 0.100 0.14
50 0.17 0.128 0.11
100 0.25 0.204 0.18
200 0.28 0.226 0.24

Table 1: Coverage rates

What we observe and learn from this numerical illustration may be summmarised as
follows:
(i.) The Bayesian encompassing test, as developed above, under reasonable hypotheses, is
indeed operational even under partial observability: we have described completely an algorithm
and proved its operationality in an example.
(ii.) The computational burden increases substantially with the sample size: In the present case,
from 20′ for n = 10 to 130′ for n = 200, for a simple run of the algorithm (with N1 = 200,
N2 = 200 and NC = 500). The 3 columns of table 1 give the results for 3 trials with identical
parameters (N1, N2, NC) and increasing sample size n. The similarity of the results suggests
that from a numerical point of view the problem is reasonable well-conditioned.
(iii.) The problem of partial observability is a pervading issue in statistical practice. Common
sense suggests that partial observability deteriorates the power, or the efficiency, of statistical
procedures, when compared with complete observability. In the proposed illustration we have
chosen a not too-favorable situation: the observability process reduces the dimension of the
data from 2 to 1 and the predictive distributions of the two models are not far from each other
as the distributions of the latent variable share identical expectations and variances and same
prior distribution for the parameter of the partial observability equation.

4 Conclusions

This paper demonstrates the operationallity of a Bayesian encompassing test in the framework
of partial observability even if numerical issues require powerful computations. We show that
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Figure 1: Density of the test statistics, null model (continuous line) and alternative model (dashed line)

the test, from a theoretical point of view, is feasible, but we also give evidence of practical
problems to be faced. The proposed procedure might therefore be adapted to a wider class of
problems.

Theoretically, the specifications of a model involving partial observability, as defined in
this paper, can therefore be tested under reasonable hypotheses. The main hypotheses for using
the encompassing test is the extended BPTV condition, which involves the BPTV condition at
the level of latent variables and the neutrality of the model defining the partial observability
process. Under these hypotheses, the BPTV condition at the level of manifest variables and
using only identified parameters is fulfilled (Theorem 2.2).

A second result provides a sufficient condition for specifying the BPTV through the sta-
tistical models involving manifest variables and identified parameters only, but this condition
should be justified from a contextual framework (Theorem 2.4) as it is not empirically control-
lable.

The generally substantial simplification of the procedure is due to the neutrality of the
partial observability process: equations (9) and (20) bin the null model implying (22) in the
extended model and equations (10) and (21) in the alternative model. Fortunately enough such
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a structure seems natural in most real-life situations.
From a numerical point of view, the computations are made easier thanks to the possibility

of direct simulations for the trajectories of a Dirichlet process (making use of Rolin-Sethuraman
representation). If this were not the case, e.g. for other non parametric alternatives, recourse to
heavier, and numerically more problematic, procedures, such as those based on MCMC, could
probably not be avoided.

A Appendix: Bayesian Encompassing

The encompassing principle has been developed originally for comparing two experiments, in
line with seminal papers by Cox (1961, 1962) about non-nested hypotheses. The main idea is
to compare the inference made on parameter of the second model using the first one and the
inference using the second model directly.

In a sampling framework, the comparison of these two inferences is operated though the
concept of Pseudo-True Value, i.e. the probability limit in the first model of the maximum
likelihood estimator of the parameter in the second model; more explicitly, if we have two
statistical models on the same sample space: {P 0

ξ|θ : θ ∈ Θ} and {P 1
ξ|ψ : ψ ∈ Ψ}, the classical

Pseudo-True Value (PTV) is a function of θ defined by:

PTV (θ) = p lim
n→∞

ψ̂n (θ) ⇔ lim
n→∞

P 0
ξ|θ(|ψ̂n − PTV (θ)| > ε) −→ 0, (73)

where ψ̂n is the maximum likelihood estimator in the second model. Therefore the comparison
can be made between the inference on ψ both in the first model, through the PTV, and in the
second model. Thus, the comparison by encompassing takes into account the idea that the
preferred model explains in a “good” level the inference made with the non-preferred one.

In a Bayesian framework, the encompassing principle was sketched in Florens et al. (1990)
and developed in Florens and Mouchart (1993) in the framework of a sufficiency principle on
the parametric space. The parametric spaces are endowed with prior distributions (M0

θ and M1
ψ

respectively); in order to include the parameter of the second model in the, so-called, extended

model, a Bayesian Pseudo-True Value (BPTV) must be defined; this definition is made through
a probability transition. The use of a conditional independence condition (BPTV condition)
permits us to interpret the first model as the marginalization by sufficiency of the extended
model, in the notation of Bayesian experiments as Markovian product, the extended model can



REFERENCES 20

be written as:

Q0,∗ = M0
θ ⊗ P 0

ξ|θ ⊗Mψ|θ under ξ ⊥⊥ ψ | θ; Q0,∗ the BPTV condition. (74)

Thus, the comparison is made between the posterior distributions of ψ both in the extended
and in the alternative models, namely: M0,∗

ψ|ξ and M1
ψ|ξ. A statistics of test is a distance or

divergence between these two posterior distributions. As, in general the distribution of this
statistics is not known, this will be calibrated against the predictive measure in the null model,
P 0

ξ .
In Florens and Mouchart (1993), the authors suggest a possibility for the specification of

the BPTV, motivated by the corresponding definition in the classical framework; this is the
sampling expectation in the first model of the posterior measure in the second one, namely:

Mψ|θ =

∫
M1

ψ|ξdP 0
ξ|θ ( = E0[M1

ψ|ξ | θ ] ) (75)

Florens et al. (2003) develop an operational specification test. They use as null hypothesis
a parametric specification of the sampling model and as alternative a non parametric one; in the
alternative model, a Dirichlet process is used as prior distribution. With this specification and
using the BPTV specified as in (75) they show that the posterior measure M0,∗

ψ|ξ is a mixture of
Dirichlet processes and they use direct simulation of Dirichlet process, as developed in Rolin
(1992) or in Sethuraman (1994), in order to compute the statistics of test and for its calibration
against the predictive measure in the null model, P 0

ξ . For a non parametric alternative they
suggest to focus the attention on the two posterior distributions of finite dimensional functionals
of the parameter in the alternative model.
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