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Abstract

Very general concepts of scatter, extending the traditional notion of covariance matrices,
have become classical tools in robust multivariate analysis. In many problems of practical
importance (principal components, canonical correlation, testing for sphericity), only homo-
geneous functions of the scatter matrix are of interest, and the latter thus is relevant up
to a positive scalar factor only. In line with this fact, scatter functionals (such as, e.g.,
Tyler (1987)’s matrix) often are only defined up to a positive scalar factor, yielding a family
of scatter matrices rather than a uniquely defined one. In such families, it is natural to sin-
gle out one representative by imposing a normalization constraint: this normalized scatter
is called a shape matrix. In the particular case of elliptical families, this constraint in turn
induces a concept of scale; along with a location center and a standardized radial density,
the shape and scale parameters entirely characterize an elliptical density. In this paper, we
show that, among all possible normalizations, one and only one has the additional properties
that (i) the resulting Fisher information matrices for shape and scale, in locally asymptoti-
cally normal (LAN) elliptical families, are block-diagonal, and (ii) that the semiparametric
elliptical families indexed by location, shape, and completely unspecified radial densities are
adaptive. This particular normalization, which consists in imposing that the determinant of
the shape matrix be equal to one, therefore can be considered canonical.

AMS 2000 subject classifications: 60G20, 60G35, 60F35, 62H05
Keywords: Elliptic densities; Scatter matrix; Shape matrix; Local asymptotic normality; Semiparametric
efficiency; Adaptivity

1 Introduction.

The multivariate concepts of location and scatter, extending to the multivariate context the
traditional concepts of location and scale are generally characterized via their behavior under
affine transformations of the observation space. More precisely, denoting by X a k-variate
random vector with probability distribution PX, consider a couple (θθθ,ΣΣΣ) of functionals defined
over {PAX+b :A an invertible k × k real matrix,b ∈ Rk} mapping PX onto

(
θθθX, ΣΣΣX)

∈ Rk ×
Sk, where Sk denotes the set of symmetric positive definite real k × k matrices—throughout,
k ≥ 2. This couple is called a location-scatter functional iff(

θθθAX+b, ΣΣΣAX+b)
=

(
AθθθX + b, AΣΣΣXA′) (1.1)

for any invertible k × k matrix A and any b ∈ Rk. The traditional example of such a couple of
course is the mean and the covariance matrix, but many other solutions exist, and the problem

∗Research supported by a P.A.I. contract of the Belgian Federal Government and an Action de Recherche
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of defining robust counterparts to means and covariances has generated a huge literature which
we do not attempt to review here—see (11) or (19) for recent surveys.

In many problems in multivariate analysis, it is sufficient to know—or to estimate—normalized
versions of scatter matrices to be able to perform the analysis (see below). In line with this fact,
scatter matrices often are only defined up to a positive factor—see, for instance, (17) and (18).
In such families of scatter matrices, it is natural to pick up one representative by imposing a
normalization constraint. More specifically, let S : Sk → R+

0 be a homogeneous function—i.e.,
satisfying S(λΣΣΣ) = λS(ΣΣΣ) for all λ > 0—and define VS

k := {V ∈ Sk : S(V) = 1}: the elements
of VS

k are called shape matrices, and VX
S := ΣΣΣX/S(ΣΣΣX) is called the shape matrix of X.

The choice of S is arbitrary and, to some extent, inessential (see the comments below).
Classical choices include

(i) S(ΣΣΣ) = Σ11 ((6), (7), (9), and (13)),

(ii) S(ΣΣΣ) = (trΣΣΣ)/k ((5), (12), and (18)), and

(iii) S(ΣΣΣ) = |ΣΣΣ|1/k ((4), (14), (15), and (16)).

Now consider the particular case of a k-variate elliptical random vector X, that is, letting
d(x, θθθ;ΣΣΣ) := ((x− θθθ)′ΣΣΣ−1(x− θθθ))1/2, assume that PX admits the density

x 7→ ck,f1

|ΣΣΣ|1/2
f1(d(x, θθθ;ΣΣΣ)), (1.2)

where θθθ, the center of symmetry, is a k-dimensional real vector, ΣΣΣ belongs to Sk, and f1 : R+
0 −→

R+
0 , the standardized radial density is such that µk−1,f1 :=

∫∞
0 rk−1f1(r) dr < ∞ (ck,f1 is a

normalization factor). To ensure identifiability of ΣΣΣ and ck,f1×f1 without imposing any moment
conditions, the pdf of d(X, θθθ;ΣΣΣ) under (1.2) (that is, r 7→ f̃1k (r) := (µk−1,f1)

−1rk−1f1 (r) I[r>0])
is assumed to have median one.

Under this elliptical setting, the unique solutions of (1.1) are the couples (θθθ, λΣΣΣ), with arbi-
trary λ > 0. It follows that the shape VS = ΣΣΣ/S(ΣΣΣ) is uniquely defined for any homogeneous
function S, and that σS := (S(ΣΣΣ))1/2, as the median of d(X, θθθ;VS), has the interpretation of a
scale parameter. This allows for rewriting (1.2) as

x 7→ ck,f1

σk
S |VS |1/2

f1

(
1
σS

d(x, θθθ;VS)
)

=
ck,f

|VS |1/2
f (d(x, θθθ;VS)) . (1.3)

This latter density is indexed by θθθ, VS , and the (non-standardized) radial density f . Under
finite second-order moments, of course, ΣΣΣ reduces to a multiple of Cov[X], and hence VS =
Cov[X]/S(Cov[X]).

Whatever the choice of S, the shape matrix VS is a parameter of primary interest in a
number of standard problems in multivariate analysis. Principal component analysis (PCA),
canonical correlation analysis (CCA), and the problem of testing for sphericity, among others,
only depend on shape—rather than on scatter or covariance matrices; see, for instance, (3), (6),
and (15). Inference on shape is thus an essential issue in the domain.

The choice of S so far is still arbitrary. The objective of this paper is to show that decision-
theoretic arguments, involving the structure of Fisher information and semiparametric efficiency,
strongly suggest adopting the determinant-based normalization S(ΣΣΣ) = |ΣΣΣ|1/k. This particular
choice indeed is the only one for which
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(a) the Fisher information matrices for scale and shape, in locally asymptotically normal
(LAN) elliptical families, are block-diagonal, and

(b) the semiparametric elliptical families indexed by location θθθ, shape VS , and completely un-
specified radial densities f (see (1.3)) are adaptive; this adaptivity result is much stronger
than the one established in (1) (see Section 2 for a discussion).

These two properties considerably simplify the structure of information, and in principle allow
for parametrically efficient inference for shape, under unspecified (θθθ, f) (equivalently, unspecified
(θθθ, σS , f1)). The determinant-based concepts of shape and scale therefore can be considered
canonical.

2 Assumptions, notation, and local asymptotic normality.

The following notation will be used. For any k × k matrix A, let vecA be the k2-vector
resulting from stacking the columns of A on top of each other. If A moreover is symmetric,
write vechA := (A11, (ve

◦
chA)′)′ for the (K+1)-vector (throughout, K = k(k+1)/2−1) obtained

by stacking the upper-triangular elements of A = (Aij): ve
◦
chA thus stands for vechA deprived

of its first component A11. On the scale functional S we make the following assumption.

Assumption (A1). The scale functional S : Sk → R+
0 (i) is homogeneous (see Section 1),

(ii) is differentiable, with ∂S
∂Σ11

(ΣΣΣ) 6= 0 for all ΣΣΣ ∈ Sk, and (iii) satisfies S(Ik) = 1, where Ik

denotes the k-dimensional identity matrix.

Clearly, one can also look at ΣΣΣ 7→ S(ΣΣΣ) as a function of vechΣΣΣ: with a slight abuse of notation,
we indifferently write S(ΣΣΣ) or S(vechΣΣΣ) in the sequel, and denote by ∇S(vechΣΣΣ) the gradient
gradvechΣΣΣS(vechΣΣΣ). Under Assumption (A1), (VS)11, for any VS ∈ VS

k , can be recovered from
(ve

◦
chVS). Also note that the special role of Σ11 in Assumption (A1) could have been played by

any other entry of ΣΣΣ. Assuming that some other component of ∇S is non-zero would allow, for
instance, for dealing with scale functionals such as S(ΣΣΣ) = Σ12 or S(ΣΣΣ) = (

∏k
i=2 Σii)1/(k−1)—

with appropriate redefinition of the ve
◦
ch operator. As the extension of our results to such cases

is trivial, we stick to Assumption (A1) in the sequel.
Denote by Pn

θθθ,ΣΣΣ,f1
or equivalently (for any given S) Pn

θθθ,σ2
S ,VS ,f1

the distribution of an i.i.d.
n-tuple (X1, . . . ,Xn) with density (1.2) or (1.3). For given S satisfying Assumption (A1),
the scatter parameter ΣΣΣ (in vector form, vechΣΣΣ) decomposes into scale and shape parameters
through ΣΣΣ = σ2

SVS , where σ2
S = S(ΣΣΣ) and VS := ΣΣΣ/S(ΣΣΣ) ∈ VS

k . In vector form, dropping (VS)11,
the new parameter is thus ϑϑϑS := (θθθ′, σ2

S , (ve
◦
chVS)′)′ ∈ΘΘΘS(:= Rk ×R+

0 × ve
◦
chVS

k ). Theorem 2.1
below states that, under mild regularity conditions on f1, the families of distributions Pn

S;f1
:=

{Pn
ϑϑϑS ,f1

: ϑϑϑS ∈ ΘΘΘS} are locally asymptotically normal (LAN; see (10)). This theorem extends
to an arbitrary scale functional S the result obtained for S(ΣΣΣ) = Σ11 in (6), where minimal
assumptions are given; here, for the sake of simplicity, we rather provide the following sufficient
one.

Assumption (A2). The standardized radial density f1 belongs to the collection F of ab-
solutely continuous functions, with a.e.-derivative ḟ1, and, letting ϕf1 := −ḟ1/f1, the quantities
Ik(f1) :=

∫∞
0 (ϕf1(r))

2f̃1k(r) dr and Jk(f1) :=
∫∞
0 r2(ϕf1(r))

2f̃1k(r) dr are finite.

The finiteness of the radial Fisher informations for location Ik(f1) and scale Jk(f1) does not
imply any moment conditions. Hence, Assumption (A2) is extremely mild and turns out to be
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satisfied at Gaussian densities as well as at all Student and power-exponential densities (see (6)).
The following notation is needed in the statement of LAN. Denoting by e` the `th vector of

the canonical basis of Rk, let Kk :=
∑k

i,j=1(eie′j) ⊗ (eje′i) be the k2 × k2 commutation matrix,
and put Jk := (vec Ik)(vec Ik)′. Write also A⊗2 for the Kronecker product A ⊗ A. Finally,
for any ΣΣΣ ∈ Sk and S satisfying (A1), let MΣΣΣ

S := MΣΣΣ
S,k be the K × k2 matrix such that

(MΣΣΣ
S )′(ve

◦
chv) = vecv for any symmetric k × k matrix v satisfying (∇S(vechΣΣΣ))′(vechv) = 0.

Note that (∇S(vechΣΣΣ))′(vechv) = 0 holds for S(ΣΣΣ) = Σ11, S(ΣΣΣ) = (trΣΣΣ)/k, and S(ΣΣΣ) = |ΣΣΣ|1/k,
iff (v)11 = 0, trv = 0, and tr (ΣΣΣ−1v) = 0, respectively.

Theorem 2.1 Under Assumptions (A1) and (A2), the family Pn
S;f1

= {Pn
ϑϑϑS ,f1

: ϑϑϑS ∈ ΘΘΘS} is
LAN. More precisely, for any ϑϑϑS = (θθθ′, σ2

S , (ve
◦
chVS)′)′ and any bounded sequence τττn ∈ Rk+K+1,

we have that (i) under Pn
ϑϑϑS ,f1

,

log
(
dPn

ϑϑϑS+n−1/2τττn,f1
/dPn

ϑϑϑS ,f1

)
= τττ ′n∆∆∆

n
ϑϑϑS ,f1

− 1
2
τττ ′nΓΓΓϑϑϑS ,f1

τττn + oP (1),

where, letting di := d(Xi, θθθ;VS) and Ui := V−1/2
S (Xi − θθθ)/di (throughout, V1/2

S is taken
symmetric), ∆∆∆n

ϑϑϑS ,f1
:=((∆∆∆n

ϑϑϑS ,f1;1)
′,∆n

ϑϑϑS ,f1;2,∆∆∆
n
ϑϑϑS ,f1;3)

′)′, with

∆∆∆n
ϑϑϑS ,f1;1 :=

1
σS
√

n

n∑
i=1

ϕf1

(
di

σS

)
V−1/2

S Ui,

∆n
ϑϑϑS ,f1;2 :=

1
2σ2

S

√
n

n∑
i=1

(
ϕf1

(
di

σS

)
di

σS
− k

)
, (2.4)

and
∆∆∆n

ϑϑϑS ,f1;3 :=
1

2
√

n
MVS

S

(
V⊗2

S

)−1/2
n∑

i=1

vec
(

ϕf1

(
di

σS

)
di

σS
UiU′

i − Ik

)
, (2.5)

and that (ii) the central sequence ∆∆∆n
ϑϑϑS ,f1

, still under Pn
ϑϑϑS ,f1

, is asymptotically normal with mean
zero and covariance matrix

ΓΓΓϑϑϑS ,f1
:=

 ΓΓΓϑϑϑS ,f1;11 0 0
0 ΓϑϑϑS ,f1;22 ΓΓΓ′ϑϑϑS ,f1;32

0 ΓΓΓϑϑϑS ,f1;32 ΓΓΓϑϑϑS ,f1;33

 , (2.6)

with
ΓΓΓϑϑϑS ,f1;11 :=

Ik(f1)
kσ2

S

V−1
S ,

ΓϑϑϑS ,f1;22 :=
Jk(f1)− k2

4σ4
S

, ΓΓΓϑϑϑS ,f1;32 :=
Jk(f1)− k2

4kσ2
S

MVS
S (vecV−1

S ),

and

ΓΓΓϑϑϑS ,f1;33 :=
1
4

MVS
S

(
V⊗2

S

)−1/2
[ Jk(f1)
k(k + 2)

(Ik2 + Kk + Jk)− Jk

] (
V⊗2

S

)−1/2(MVS
S )′. (2.7)

The block-diagonal structure of the information matrix (2.6) implies that the non-specification
of the location centre θθθ does not affect optimal parametric performances when estimating VS

and/or σ2
S , or when performing tests about the same; more precisely, when estimating VS for

instance, the optimal asymptotic covariance matrix that can be achieved (at Pn
θθθ,σ2

S ,VS ,f1
) by an
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estimator of VS is the same in Pn
S;σ2

S ,f1
:= {Pn

θθθ,σ2
S ,VS ,f1

: θθθ ∈ Rk,VS ∈ VS
k } as in Pn

S;θθθ,σ2
S ,f1

:=

{Pn
θθθ,σ2

S ,VS ,f1
: VS ∈ VS

k }, where θθθ is specified, and is actually given by (ΓΓΓϑϑϑS ,f1;33)−1. Since the
latter does only depend on VS and f1, so does this optimal performance.

On the contrary, the non-zero covariance between the scale and shape parts of the central
sequences implies that, when estimating VS , the non-specification of σ2

S affects the optimal
parametric performance at f1. The latter actually is given by the f1-efficient Fisher information
for shape

ΓΓΓ?
ϑϑϑS ,f1;33 := ΓΓΓϑϑϑS ,f1;33 −ΓΓΓϑϑϑS ,f1;32Γ−1

ϑϑϑS ,f1;22ΓΓΓ
′
ϑϑϑS ,f1;32

=
Jk(f1)

4k(k + 2)
MVS

S

(
V⊗2

S

)−1/2
[
Ik2 + Kk −

2
k
Jk

] (
V⊗2

S

)−1/2(MVS
S )′, (2.8)

that is, the asymptotic covariance matrix, under Pn
ϑϑϑS ,f1

, of the f1-efficient central sequence for
shape

∆∆∆?n
ϑϑϑS ,f1;3 := ∆∆∆n

ϑϑϑS ,f1;3 −ΓΓΓϑϑϑS ,f1;32Γ−1
ϑϑϑS ,f1;22∆

n
ϑϑϑS ,f1;2

=
1

2
√

n
MVS

S

(
V⊗2

S

)−1/2
n∑

i=1

ϕf1

(
di

σS

)
di

σS
vec

(
UiU′

i −
1
k
Ik

)
;

as explained in a general parametric setup in, e.g, section 2.4 of (2), locally optimal inference
on shape—under unspecified σ2

S—should be based on ∆∆∆?n
ϑϑϑS ,f1;3.

Note that, unlike the original central sequence for shape in (2.5), ∆∆∆?n
ϑϑϑS ,f1;3 remains centered

under any Pn
ϑϑϑS ,g1

, g1 6= f1. Actually, letting Kf1(u) = ϕf1(F̃
−1
1k (u))× F̃−1

1k (u) (u ∈ (0, 1)), where
F̃1k stands for the cdf associated with the pdf f̃1k, and denoting by Ri = Ri(θθθ,VS) the rank of
di = d(Xi, θθθ;VS) among d1, . . . , dn, a trivial extension of the proof of Lemma 4.1 in (6) (which
is restricted to S(ΣΣΣ) = Σ11) yields that, under Pn

ϑϑϑS ,f1
, as n →∞,

∆∆∆?n
ϑϑϑS ,f1;3 =

1
2
√

n
MVS

S

(
V⊗2

S

)−1/2
n∑

i=1

Kf1

(
Ri

n + 1

)
vec

(
UiU′

i −
1
k

Ik

)
+ oP (1),

which shows that ∆∆∆?n
ϑϑϑS ,f1;3 admits an asymptotically equivalent version based on the ranks Ri

and the multivariate signs Ui. This asymptotic equivalence, along with the invariance properties
of the families ∪g1{PS;ϑϑϑS ,g1

} (see, for S(ΣΣΣ) = Σ11, section 4.1 in (6)) and a general result by (8),
shows that the (semiparametrically) optimal performance (at Pn

ϑϑϑS ,f1
), when performing inference

on shape in Pn
S = {Pn

ϑϑϑS ,g1
: ϑϑϑS ∈ ΘΘΘS , g1 ∈ F} concides with the optimal performance achievable

in the parametric model Pn
S;f1

= {Pn
ϑϑϑS ,f1

: ϑϑϑS ∈ΘΘΘS} (as characterized by the efficient information
matrix ΓΓΓ?

ϑϑϑS ,f1;33 in (2.8)). This confirms the adaptivity result first obtained in Example 4 of (1),
where it is shown that the non-specification of f1 has no cost when estimating the inverse shape
matrix V−1 := ΣΣΣ−1/(trΣΣΣ−1); note that although this adaptivity result restricts to what is called
there a “most general” normalization (the one based on the trace), its proof actually holds for
an arbitrary scale functional S.

Summing up, when estimating the shape VS in Pn
S = {Pn

ϑϑϑS ,g1
: ϑϑϑS ∈ ΘΘΘS , g1 ∈ F}, the

non-specification of σ2
S alone is responsible for a loss of efficiency (as already mentioned, the

non-specification of θθθ does not play any role). This property—call it Bickel adaptivity—actually
holds for an arbitrary scale functional S. In this paper, we consider a stronger adaptivity
concept—full adaptivity, say—under which θθθ, σ2

S and f1 (rather than f1 alone) lie in the nuisance
space of the semiparametric model. The next section shows that full adaptivity holds for one
and only one scale functional S, which therefore can be considered canonical.
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3 A canonical definition of shape.

We are now ready to state the main result of the paper, which shows that there exists a unique
scale functional S (thus a unique definition of the shape VS) for which the non-specification
of σ2

S does not cause any loss of efficiency when performing inference on VS , hence, for which
inference on VS in Pn

S and Pn
S;σ2

S ,f1
(equivalently, Pn

S;θθθ,σ2
S ,f1

) yield the same optimal performance.

Theorem 3.1 Let Assumptions (A1) and (A2) hold. Then ΓΓΓϑϑϑS ,f1;32 = 0 for all ϑϑϑS ∈ ΘΘΘS iff
S = Sd, where Sd(ΣΣΣ) := |ΣΣΣ|1/k.

The decomposition of scatter into scale and shape through the functional Sd is thus the
only one that guarantees (a) mutual orthogonality of the scale and shape parts of the central
sequence (hence, independence in the asymptotic multinormal distribution), and, consequently,
(b) full adaptivity (see above) in the estimation of shape.

For this canonical parametrization, the shape part of the central sequence and Fisher infor-
mation matrix take the simple form

∆∆∆n
ϑϑϑS ,f1;3 =

1
2
√

n
MVS

S

(
V⊗2

S

)−1/2
n∑

i=1

ϕf1

(
di

σS

)
di

σS
vec

(
UiU′

i

)
= ∆∆∆?n

ϑϑϑS ,f1;3,

and
ΓΓΓϑϑϑS ,f1;33 =

Jk(f1)
4k(k + 2)

MVS
S [Ik2 + Kk]

(
V⊗2

S

)−1(MVS
S )′ = ΓΓΓ?

ϑϑϑS ,f1;33 (3.9)

(note indeed that the proof of Theorem 3.1 shows that MVS
S (vecV−1

S ) = 0 for all VS ∈ VS
k ,

which entails that MVS
S

(
V⊗2

S

)−1/2Jk = 0). Theorem 3.1 shows that the determinant-based
definition of scale/shape is the only one for which parametric and semiparametric efficiency
bounds do coincide (hence, no other choice of S is such that ∆∆∆?n

ϑϑϑS ,f1;3 and ∆∆∆n
ϑϑϑS ,f1;3 are equal up

to oP (1) terms). Also note that, since Jk(f1) = k(k + 2) at the multinormal, the canonical
parametrization of shape is also the only one for which the information matrix for shape (either
in its original or efficient version) in (3.9) has at any f1 the same structure as that of the
parametric information matrix (2.7) at the multinormal.

4 Proofs.

In this final section, we prove Theorems 2.1 and 3.1.

For any S satisfying Assumption (A1), consider the mapping V S
11 : ve

◦
chSk → R defined

by S((V S
11(ve

◦
chV), (ve

◦
chV)′)′) = 1, the existence of which—locally around any VS ∈ VS

k —is
guaranteed by Assumption (A1) and the implicit function Theorem. We then start with the
following lemma.

Lemma 4.1 Let Assumption (A1) hold and fix VS ∈ VS
k . Let also Pk be the (K + 1) ×

k2 matrix such that P′
k(vechv) = vecv for any symmetric k × k matrix v. Then, MVS

S =
(∇V S

11(ve
◦
chVS)

.

.

. IK)Pk.

Proof of Lemma 4.1. Differentiating (at ve
◦
chVS) both sides of S((V S

11(ve
◦
chV),

(ve
◦
chV)′)′) = 1 with respect to ve

◦
chV, we obtain

∇V S
11(ve

◦
chVS) = −∇2S(vechVS)

∇1S(vechVS)
, (4.1)
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where ∇S(vechVS) = (∇1S(vechVS), (∇2S(vechVS))′)′ ∈ R × RK . Now, MVS
S is such that

(MVS
S )′(ve

◦
chv) = (vecv) for any symmetric k × k matrix v = (vij) satisfying (∇S(vechVS))′

(vechv) = (∇1S(vechVS)) × v11 + (∇2S(vechVS))′(ve
◦
chv) = 0, that is, any v satisfying

(see (4.1))
(∇V S

11(ve
◦
chVS))′(ve

◦
chv) = v11.

The result follows since, for any such v, one also has ((∇V S
11(ve

◦
chVS)

.

.

. IK)Pk)′(ve
◦
chv)

= P′
k(v11, (ve

◦
chv)′)′ = P′

k(vechv) = vecv. �

Proof of Theorem 2.1. As shown in the proof of Proposition 2.1 in (6), the family Pn
f1

:=
{Pn

ξξξ,f1
= Pn

θθθ,ΣΣΣ,f1
: ξξξ = (θθθ′, (vechΣΣΣ)′)′ ∈ ΞΞΞ := Rk × (vechSk)}, under Assumption (A2), is LAN.

Now, for any scale functional S satisfying Assumption (A1), consider the function hS : ΘΘΘS → ΞΞΞ
that maps ϑϑϑS onto the corresponding value of ξξξ, namely onto ξξξ = hS(ϑϑϑS) = (θθθ′, σ2

S (vechVS)′)′ =
(θθθ′, σ2

SV S
11(ve

◦
chVS), σ2

S (ve
◦
chVS)′)′. Since hS is a diffeomorphism, Pn

S;f1
= {Pn

ϑϑϑS ,f1
: ϑϑϑS ∈ ΘΘΘS} is

also LAN, and the corresponding central sequence is given by

∆∆∆n
ϑϑϑS ,f1

=
(
DhS(ϑϑϑS)

)′ ∆̄∆∆n
h(ϑϑϑS),f1

, (4.2)

where

DhS(ϑϑϑS) =

 Ik 0 0
0 V S

11(ve
◦
chVS) σ2

S (∇V S
11(ve

◦
chVS))′

0 ve
◦
chVS σ2

S IK


is the jacobian matrix of hS at ϑϑϑS and where, letting di(ξξξ) = d(Xi, θθθ;ΣΣΣ) and Ui(ξξξ) = ΣΣΣ−1/2(Xi−
θθθ)/di(ξξξ) (where ΣΣΣ1/2 denotes the symmetric root of ΣΣΣ),

∆̄∆∆n
ξξξ,f1

:=

 1√
n

∑n
i=1 ϕf1

(
di(ξξξ)

)
ΣΣΣ−1/2Ui(ξξξ)

1
2
√

n
Pk

(
ΣΣΣ⊗2

)−1/2 ∑n
i=1 vec

(
ϕf1

(
di(ξξξ)

)
di(ξξξ)Ui(ξξξ)U′

i(ξξξ)− Ik

)


is the central sequence in the LAN family Pn
f1

= {Pn
ξξξ,f1

: ξξξ ∈ ΞΞΞ} (see the proof of Proposition 2.1
in (6)). The result then readily follows from (4.2), since (i) the scale part ∆∆∆n

ϑϑϑS ,f1;2 of ∆∆∆n
ϑϑϑS ,f1

can be written as in (2.4) by noting that (vechVS)′Pk

(
V⊗2

S

)−1/2vecv = (trv) for any k × k
symmetric matrix v, and since (ii) the shape part ∆∆∆n

ϑϑϑS ,f1;3 of ∆∆∆n
ϑϑϑS ,f1

can be directly put under
the form (2.5) by using Lemma 4.1. �

Now, for any ΣΣΣ ∈ Sk and S satisfying Assumption (A1), define CΣΣΣ
S := CΣΣΣ

S,k as the upper-
triangular k × k matrix such that vechCΣΣΣ

S := ∇S(vechΣΣΣ), and let DΣΣΣ
S := (CΣΣΣ

S + (CΣΣΣ
S )′)/2.

Clearly, (vecDΣΣΣ
S )′(vecv) = (vechCΣΣΣ

S )′(vechv) for any symmetric k × k matrix v. The matrix
MΣΣΣ

S is then such that (MΣΣΣ
S )′(ve

◦
chv) = (vecv) for any symmetric k × k matrix v satisfying

(vecDΣΣΣ
S )′(vecv) = 0 (equivalently, satisfying tr (DΣΣΣ

Sv) = 0). For S(ΣΣΣ) = Σ11, S(ΣΣΣ) = (trΣΣΣ)/k,
and S(ΣΣΣ) = |ΣΣΣ|1/k, one has DΣΣΣ

S = e1e′1, DΣΣΣ
S = 1

kIk, and DΣΣΣ
S = 1

k |ΣΣΣ|
1/kΣΣΣ−1, respectively. The

following result states some important properties of MΣΣΣ
S and DΣΣΣ

S , which are needed in the proof
of Theorem 3.1.

Lemma 4.2 Let Assumption (A1) hold and fix ΣΣΣ ∈ Sk. Then, (i) DΣΣΣ
S = DλΣΣΣ

S for all λ > 0; (ii)
S(ΣΣΣ) = tr (DΣΣΣ

S ΣΣΣ); (iii) letting ΣΣΣλ := (1−λ)Ik +λΣΣΣ, S(ΣΣΣ) = exp
[ ∫ 1

0 tr ((ΣΣΣ−Ik)D
ΣΣΣλ
S /S(ΣΣΣλ)) dλ

]
;

(iv) MΣΣΣ
S has (maximal) rank K; (v) denoting by kerA the null space of a matrix A, (kerMΣΣΣ

S )∩
(vecSk) = {λ(vecDΣΣΣ

S ) : λ ∈ R}.
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Proof of Lemma 4.2. (i) The claim readily follows from the definition of DΣΣΣ
S and the

homogeneity of S, which implies that the gradient of S is constant along half lines of the form
{λΣΣΣ : λ > 0}. (ii) By taking derivatives at λ = 1 of both sides of the equality λS(vechΣΣΣ) =
S(λ (vechΣΣΣ)), one obtains that S(ΣΣΣ) = (vechCΣΣΣ

S )′(vechΣΣΣ) = (vecDΣΣΣ
S )′(vecΣΣΣ) = tr (DΣΣΣ

S ΣΣΣ).
(iii) The result follows by integrating between 0 and 1 the mapping λ 7→ dlog S(ΣΣΣλ)/dλ =
(vech (ΣΣΣ− Ik))′(vechCΣΣΣλ

S )/S(ΣΣΣλ) = (vec (ΣΣΣ− Ik))′(vecDΣΣΣλ
S )/S(ΣΣΣλ) = tr ((ΣΣΣ− Ik)D

ΣΣΣλ
S /S(ΣΣΣλ)).

(iv) It is clear from the definition of MΣΣΣ
S that (MΣΣΣ

S )′ maps the canonical basis of RK into
a collection of linearly independent vectors (in (vecSk), actually). Hence, rank(MΣΣΣ

S ) = K.
(v) It follows from the definition of MΣΣΣ

S that, for any symmetric k × k matrix v satisfying
(vecDΣΣΣ

S )′(vecv) = 0, (vecDΣΣΣ
S )′(MΣΣΣ

S )′(ve
◦
chv) = 0. Since Assumption (A1) guarantees that

(DΣΣΣ
S )11 = ∂S

∂Σ11
(ΣΣΣ) 6= 0 for all ΣΣΣ ∈ Sk, this entails that MΣΣΣ

S (vecDΣΣΣ
S ) = 0. Now, the proof of (ii)

shows that the restriction (L, say) to (vecSk) of the linear mapping from Rk2
to RK with matrix

MΣΣΣ
S has rank K. Hence, the null space of L has dimension 1, which establishes the result. �

We are now able to prove Theorem 3.1.

Proof of Theorem 3.1. Assume that ΓΓΓϑϑϑS ,f1;32 = 0 for all ϑϑϑS ∈ΘΘΘS . Since Assump-
tion (A2) guarantees that Jk(f1) > k2 (see (6)), we must have that MVS

S (vecV−1
S ) = 0 for

all VS ∈ VS
k . Lemma 4.2(v) shows that, for all VS ∈ VS

k , there exists some λ(VS) 6= 0 such
that V−1

S = λ(VS)DVS
S . Lemma 4.2(ii) then yields that 1 = S(VS) = tr ((λ(VS))−1Ik) =

(λ(VS))−1k, so that λ(VS) = k for all VS ∈ VS
k . Hence, Lemma 4.2(i) entails that, for any

ΣΣΣ ∈ Sk, DΣΣΣ
S/S(ΣΣΣ) = DΣΣΣ/S(ΣΣΣ)

S /S(ΣΣΣ) = 1
k (ΣΣΣ/S(ΣΣΣ))−1/S(ΣΣΣ) = 1

kΣΣΣ−1. Since we also have that
DΣΣΣ

Sd
/Sd(ΣΣΣ) = 1

kΣΣΣ−1 (see the paragraph below the proof of Theorem 2.1), Lemma 4.2(iii) yields
that S(ΣΣΣ) = Sd(ΣΣΣ) for any ΣΣΣ ∈ Sk, which establishes the result. �
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