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SUMMARY 
 

In industries that involve either chemistry or biology, analytical methods are necessary to 
keep an eye on all the material produced. If the quality of an analytical method is doubtful, 
then the whole set of decisions based on those measures is questionable. For this reason, 
being able to assess the quality of an analytical method is far more than a statistical chal-
lenge; it is a matter of ethics and good business practices.  
 
The validity of an analytical method must be assessed at two levels. The “pre-study” 
validation aims to show, by an appropriate set of designed experiments, that the method is 
able to achieve its objectives. The “in-study” validation is intended to verify, by inserting QC 
samples in routine runs, that the method remains valid over time. At these two levels, the 
total error approach considers a method as valid if a sufficient proportion of analytical results 
are expected to lie in a given interval around the (unknown) nominal value.     
 
This paper discusses two methods, based on this total error concept, of checking the validity 
of a measurement method at the pre-study level.  The first checks whether a tolerance 
interval for hypothetical future measurements lies within given acceptance limits; the second 
calculates the probability of a result lying within these limits and computes whether it is 
greater than a given acceptance level. For the “in-study” validation, the paper assesses the 
properties of the s–n–λ rule recommended by the FDA.   The properties and respective 
advantages and limitations of these methods are investigated.   
 
A crucial point is to ensure that the decisions taken at the pre-study stage and in routine use 
are coherent. More precisely, a laboratory should not see its method rejected in routine use 
when it has been proved to be valid and remains so. This paper shows how this goal may be 
achieved by choosing compatible validation parameters at both pre- and in-study levels.  
 
 
Correspondance to:  
Bernadette Govaerts, Institut de Statistique, 20 voie du roman pays, 1348 Louvain-la-Neuve, 
Belgium, Govaerts@stat.ucl.ac.be, Phone: +32-10-47.43.13. 



2/ 

1. INTRODUCTION 

In industries that involve either chemistry or biology, such as the pharmaceutical, chemical 
and food industries, analytical methods are the eyes and ears for all the material produced 
and used. If the quality of an analytical method is doubtful, the decisions based on the 
measures obtained with this procedure may become questionable and possibly even the final 
product. For this reason, being able to assess the quality of an analytical method is far more 
than a statistical challenge; it’s a matter of ethics and good business practices. Many 
regulatory organisations have addressed this issue in the chemical and pharmaceutical 
industry (e.g. the ICH (International Conference on the Harmonisation), the FDA (Food and 
Drug Administration) or EuraChem [1, 2, 3]). 

The objective of validation is to give both the laboratory and the regulatory bodies a 
guarantee that every single routine measurement that will be performed will yield results 
close enough to the unknown “true” value of the sample [4]. The conformity of a given 
analytical method to this objective is usually assessed in two stages [5, 6, 7, 8]. First, a “pre-
study” phase is conducted to prove, on the basis of a designed experiment, that the method 
can deliver quality results. Then, at a routine level, the laboratory must verify that the 
analytical method remains valid over time, and that each run provides trustworthy measures. 
This is usually achieved by inserting quality control (QC) samples in the unknown sample 
runs. 

At these two stages,  it is essential to have a way of quantifying the quality of a measure in 
terms of its closeness to the “true” value of the property of interest. Traditionally this is 
achieved by examining two main performance criteria of an analytical method: the bias or 
“trueness”, and the precision of the method. Both should be small, and they are usually 
quantified separately [3, 9, 10, 11]. This approach focuses on the method itself, assuming that 
if the method is “good” then the measures it provides will also be “good”. However this is 
not always the case [12]. The concept of “total error” [8, 13, 14, 15, 16, 17] puts the 
emphasis on the results themselves and tackles the problem globally by estimating the 
proportion π of the measurements which are expected to lie within a fixed interval (+/– λ) 
around the true value. The assumption underlying this approach is that, if the results 
produced are “good”, then the method that produces them is necessarily “good”. This paper 
presents procedures to check the pre- and in-study validity of an analytical method based on 
this total error concept, by examining the quality of the results it produces.    

At the pre-study level, the validation procedure consists of measuring a given set of samples 
for which the nominal values are known and arranged according to an adequately-designed 
experiment. The design should enable measurement bias and precision to be estimated for 
different nominal levels and, if necessary, it should provide a decomposition of the global 
precision in various components of variances (repeatability, between-run, and between 
laboratory). Two statistical procedures are discussed to assess the validity of the method on 
the basis of such an experiment. The first consists of estimating a tolerance interval in which 
a great proportion of “future” measurements are expected to lie and verifying that this 
interval is included in predefined acceptance limits. The second estimates the quality level 
i.e. the probability of getting a measure within these acceptance limits directly, and checks 
that it is greater than a given minimum acceptance level (on the basis of the lower limit of a 
maximum likelihood confidence interval for this probability).  

In routine use, budgets and simplicity requirements usually lead to the use of validation rules 
that do not fully protect either the client or the laboratory. This paper studies the properties of 
the 4–6–15 rule (generalised here as the s–n–λ rule) recommended by the FDA [3] in this 
context. It consists of inserting a set of n QC samples into routine unknown samples and 
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checking that at least s of the measurements obtained from these samples are no more distant 
than λ from their nominal (true) value.   

In the practical organisation of an industrial laboratory, pre- and in-study validation studies 
are often conducted separately by different people, especially if the method has been 
developed and validated in one place (e.g. a research laboratory) and is then routinely used in 
another (e.g. production plan). The compatibility of the decisions taken at these two stages is 
not obvious and not necessarily even well understood by the analysts. A laboratory that has 
declared the validity of a method in a pre-study phase would not appreciate (economically 
speaking) seeing its method rejected for use if it is still valid. On the other hand, if a valid 
method is subject to a significant total error increase, the in-study validation rule should be 
able to detect it rapidly. Conciliating pre- and in-study objectives is then crucial and may be 
achieved through an appropriate choice of validation rule parameters to align the associated 
risks.   

This paper is organised as follows: Section 2 gives a precise definition of the validation 
method based on the concept of total error and introduces related notations. Section 3 
introduces two procedures for “pre-study” validation, the β-expectation tolerance interval 
approach and a maximum likelihood approach aimed at estimating the quality level. Those 
two procedures are illustrated on a real example and their performances are compared using 
simulations. Section 4 discusses the properties of the s–n–λ rule in terms of client and 
laboratory risks. Finally, Section 5 shows how pre- and in-study validation parameters may 
be conciliated to achieve coherent properties for validation decisions.  

2. EVALUATION OF ANALYTICAL METHOD BASED ON TOTAL ERROR 

The objective of a good analytical method is to quantify accurately each of the unknown 
quantities that the laboratory will have to determine. In other words, the analytical method is 
expected to give results X’s for which the difference from the unknown “true” value (µT) of 
the sample is sufficiently small, for example less than a predefined acceptance limit, λ, i.e. 

λµλµλ <−⇔<−<− TT XX . 

Two components may influence this difference: the bias or trueness of the method, and its 
precision. As illustrated in Figure 1, a biased method provides results that deviate “in the 
mean” or systematically from the true value µT: δ = E(X) – µΤ = µ – µT. The precision 
expresses how results vary around the mean value µ=E(X) when the measure is repeated. To 
quantify this precision, let σ denote the standard deviation available. The “closeness” of a 
result X to the unknown true value of the sample µT is directly linked to the size of the bias δ 
and precision σ of the method.  
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Figure 1: Comparison of four possible validation situations 
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Classical method validation and quality control tools usually check the size of these two 
components separately (t and χ2 tests in validation, or X – R control charts in routine use) 
but this approach has the drawback that a very low value of one component may not 
compensate for a large value in the other.  

The total error approach [4, 8, 13, 14, 15, 16, 17] suggests a global approach in considering a 
procedure acceptable if it is “very likely” that the difference between each measurement X of 
a sample and its “true” value (µT) is within the acceptance limits [–λ,+λ]  predefined by the 
analyst. The notion of “very likely” can be translated to the probabilistic equation 

( ) minπλµπ ≥<−= TXP , 

where πmin is called here the acceptance level and π the quality level. The acceptance limit 
λ can be expressed either in absolute or in relative (%) terms. In the latter case, the equation 
is redefined as 

minπλ
µ

µπ ≥ <−=
T

TX
P .    (1) 

All the results presented in this paper are applicable to both cases. Below, we use the first 
formulation without loss of generality. 

The value of λ must be chosen according to the intended use of the results. The objective is 
linked to the requirements of the application area of the user (e.g. 1 or 2% on bulk, 5% on 
pharmaceutical specialties, 15% for biological samples, 30% for ligand-binding assays such 
as RIA or ELISA, and so on). The probability πmin must also be fixed by the analyst, 
according to cost, consumer and analytical domain requirements. The key is to ensure 
coherence between the πmin and λ values targeted in the pre-study and in-study phases. This 
issue is discussed in more detail in Section 5.  

Under the assumption of normality for the measurement results it is easy to establish the 
relationship between the quality level π, the bias (systematic error) δ, and the precision 
(random error) σ as 

( )  −<<−−=<−=
σ

δλ
σ

δλλµπ ZPXP T , 

where Z is a standard normal random variable. This leads to a definition of the “acceptance 
region”, i.e. the set of (δ,σ)’s such that the quality level π is greater than πmin. Figure 2 
shows, below the curves, the acceptance region for various values of πmin (99%, 95%, 90%, 
80% and 66.7%) when the acceptance limits are fixed at [–15%,+15%] as recommended by 
FDA [3] for bioanalytical methods. Note that, in this graph, δ and σ must be interpreted as 
relative bias and relative standard deviation. Logically, as can be seen from Figure 1, the 
greater the variance of the measure or the greater the bias, the less likely it is that a result will 
fall within the measurement acceptance limits. 
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Figure 2: Acceptance region of analytical methods as a function of the method bias and 

precision when λ = 15%. 

 

3. PRE-STUDY METHOD VALIDATION 

Before an analytical method is used routinely on unknown samples, it is normal practice to 
perform a more or less extensive set of experiments to evaluate whether it will be able to 
meet the criteria described above. Those experiments are usually called “pre-study valida-
tion” as opposed to the “in-study validation” experiments. 

Since the bias δ and the precision σ, the intrinsic performance parameters of the analytical 
procedure, are unknown, experiments are required so that the user can obtain estimates of 
these quantities before using the method routinely. The objective of the pre-study validation 

phase is then to evaluate whether, given the estimates of the biasδ̂ and standard devia-
tionσ̂ obtained, the proportion π of measures of new unknown samples that will fall within 
the acceptance limits is greater than a predefined acceptance level, say πmin (see (1)). 

However, there is neither an exact solution nor an easy way to answer the question, even for 
very simple validation experimental designs. Two approximate methods are discussed below. 
The first is based on the notion of a tolerance interval, and the second consists of calculating 
the lower limit of a maximum likelihood one-tailed confidence interval for π, using the delta 
method.  

3.13.13.13.1    ββββ-expectation tolerance interval method 

The first method has already been introduced in [14, 4]. This paper discusses its properties 
more formally.  It consists of computing the β-expectation tolerance interval [18] 

 ( ){ } βσδσδµσδσδ =+<−<− ˆ,ˆˆˆˆˆ
ˆ,ˆ kXkPE TX ,  

where the factor k is determined so that the expected proportion of the population falling 
within the interval is equal to β. β is defined as the acceptance level πmin in this context and 
the value of k depends on the experimental design used for validation. In the simplest case, 

where a sample with nominal value µT is measured n times in repeatability conditions, δ̂ ,σ̂  
and k are calculated from the measurement results X1, X2,… Xn as follows, assuming that X 
is normally distributed: 



6/ 

n
tkXX

n
XX

n n

n

i
iTT

n

i
i

1
1    and  )(

1

1
ˆ

1ˆ
2/)1(;1

2

11
min

+=−
−

=−=−= +−
==
∑∑ πσµµδ  

where 2/)1(;1 minπ+−nt is the quantile (1+πmin)/2 of a (n–1) t distribution. 

Mee [19] discussed how to calculate σ̂ and k in a balanced one-way ANOVA random model 
where the within- and between-run variabilities are taken into account. Hoffman and Kringle 
[17] extended this method to more general random effect models for the β-content tolerance 
intervals (rather than the β-expectation tolerance intervals suggested here). 

The decision rule proposed is then: if the β-expectation tolerance interval is within the 

acceptance limits [–λ,+λ], i.e. if ( λσδ −>− ˆˆ k  and λσδ +<+ ˆˆ k ) then there is high strong 
evidence that the method is valid. As a matter of fact, if this condition is verified, the 
expected proportion of measurements within the acceptance limits is greater or equal to πmin, 
i.e. equation (1) is also verified, on average. Note that the opposite statement is not true, i.e. 

either λσδ −<− ˆˆ k  or λσδ +>+ ˆˆ k  does not imply that the expected proportion is smaller 
than πmin. This is illustrated on simulations below.  

3.2 Maximum likelihood one-tailed confidence interval on ππππ using the delta method 

Another approach to validating the method consists of deriving, fromδ̂ andσ̂ , the lower 
bound of a one-tailed confidence interval on the quality level π and checking whether or not 
it is larger than πmin. This is not easy as far as the estimation of a probability is concerned. No 
exact solution exists even in the simple sampling scheme case. However different statistical 
approaches may be used to attack the problem: searching for a mathematical approximation 
to the exact solution, asymptotic approximation by maximum likelihood, bootstrap or 
Bayesian modelling. A maximum likelihood (ML) solution for the simple sampling scheme, 
under normal-distribution assumption, is presented here.  

Let X1, X2,… Xn be the measurement results of the validation experiment and suppose that Xi 
is normally distributed with unknown bias δ and variance 2σ . The maximum likelihood 

estimators of these parameters are given by 
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By the invariance property, a maximum likelihood estimator of π can be defined as  −−− −=
σ

δλφ
σ

δλφπ ~
ˆ

~
ˆ

ˆ , 

where (.)φ is the distribution function of the standard normal distribution [19]. The delta 
method can be used to derive an asymptotic approximation for the variance of the estimator 
π̂  as 

( )2

2
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Var ϕδλϕδλ

σ
ϕϕπ −−−−+−=  
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where UL ϕϕ  and are given by  −−= −=
σ

δλϕϕ
σ

δλϕϕ     and   LU  

and (.)ϕ is the density of the standard normal distribution. The asymptotic lower bound of a 

one-tailed 1–α confidence interval on the quality level π can then be calculated as 

πασππ ˆ1inf
ˆˆˆ −−= z  

where z1–α is the quantile 1–α of a standard normal variable and πσ ˆˆ is calculated by replacing 

δ by δ̂  and σ by σσ ˆ~ w=  in )ˆ(πVar above. The analytical method is then declared valid 

if mininf
ˆ ππ > . This approach can be generalised to more general variance components models.  

3.3 Example 

To illustrate the methodology described here, pre-study validation data from a bioanalytical 
procedure [20, 21] are used to illustrate the statistical methods described in Sections 3.1 and 
3.2. 

The design consisted of three runs with four replications per run at each concentration level. 
However the run factor was ignored in this illustration so as to be able to use the formulae 
detailed in Sections 3.1 and 3.2. This results in an overall estimate of the total variance 
without estimating its within- and between-run components. Therefore the sample size is n = 
12 at each level of concentration.   A measurement process was considered valid if the 
proportion of measurements within a range of +/– 15% (λ=0.15) around the target value µT 
was greater than 80% (acceptance level πmin=0.8). A 90% one-tailed confidence interval was 
calculated to get a lower bound for π using the ML method. 

The results are summarised in Table 1. The β-expectation tolerance interval limits were all 
within the acceptance limits, whatever the concentration level. The bioanalytical method of 
interest can therefore be considered valid over the range investigated using the tolerance 
interval rule. Also, the 90% lower limits of the one-tailed confidence interval for π estimated 
by the maximum likelihood method were larger than 0.80 over the range of concentration 
levels investigated. Thus, the bioanalytical method can also be considered valid according to 
the maximum likelihood method. 

Table 1: Validation results obtained by β-expectation tolerance interval and ML methods  

Tµ  δ̂  σ̂  Tolerance Interval Acceptance Limits π̂  infπ̂  

25.4 0 1.4 [–2.1, 2] [–3.8, 3.8] 0.994 0.982 
48.2 –2.7 2.7 [–6.5, 1.2] [–7.2,7.2] 0.959 0.908 
437.8 –9.3 19.7 [–37.2, 18.6] [–65.7, 65.7] 0.999 0.995 
838.6 11.8 45 [–52, 75.7] [–125.8,125.8] 0.995 0.984 

 
3.4 Validation method comparison on the basis of simulations 

This section compares the two pre-study validation procedures on the basis of simulations. 
Four valid and two non valid hypothetical measurement processes or analytical methods 
were chosen, as shown in Table 2 and Figure 3, and normally distributed samples of sizes 
ranging from 5 to 200, were randomly generated.  The acceptance limit λ was fixed at 0.15, 
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i.e. [–15%, +15%], the acceptance level πmin at 80%, and the confidence level for the ML 
one-tailed confidence interval for π at 90%. 

Table 2: Six scenarios used to compare the performances of the two validation methods 

δT σΤ πΤ  δT σΤ πΤ  
0 0.0765 0.95 Valid 0.05 0.0605 0.95 Valid 
0 0.104 0.85 Valid 0.05 0.091 0.85 Valid 
0 0.13 0.75 Non Valid 0.05 0.12 0.75 Non Valid 

 
Figure 3: Six scenarios used to compare the performances of the two validation methods 

Figure 4: Simulation results: δ = 0 on the left and δ = 0.05 on the right 

Figure 4 presents, for the six possible scenarios and the two validation methods, the 
proportion of cases, γ, for which the validation over 5000 simulated samples was accepted. It 
shows that: 

• When the measurement process is not valid (π = 0.75), the behaviours of the two 
methods are quite similar and protect the client very well, since the probability of 
accepting the result is very small. The ML method performs slightly better than the 
tolerance interval method for centred processes, the reverse being true for biased 
processes.  

• When the measurement process is well centred (δ=0) and valid, the probability of 
accepting the result behaves as expected – it increases with n and with π. For 
π = 0.85, the tolerance interval method is more powerful than the maximum likeli-
hood method. 

• However, when the process is biased, the behaviour of the tolerance interval method 
is less attractive: for π = 0.95, the measurement process is less often accepted as 
valid than with the ML method.  
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• In addition, for π = 0.85, the probability of accepting the measurement process with 
the tolerance interval method tends to 0 as n increases. This is not a desirable result 
from a statistical point of view, as for π = 0.85 the process is valid. It can be shown 
that this arises (asymptotically) for the points in the acceptance region such that:  

 

2
min1 π

σδλ
+

<− z . 

This result has already been roughly emphasised in [22].  

This last point merits further investigation. Figure 5 illustrates it graphically: the area 
between the triangle and the acceptance region is a zone where, asymptotically, the meas-
urement process is rejected by the tolerance interval method when the process is actually 
valid. Note that, asymptotically, this acceptance region coincides with the region where the 
process is asymptotically accepted by the ML method, so all valid methods should be 
accepted. The controversial point (δ=0.05, σ=0.091) is in this zone.  

 
Figure 5: Representation of the acceptance region where the measurement method is 
(asymptotically) wrongly rejected with the tolerance interval method while it is valid and 
accepted with the ML method. The six simulated scenarios are marked.  

For small samples, the scenario is different and the “gap” between the tolerance interval and 
ML methods is less important. Figure 6 gives the results of new simulations of the two 
validation methods behaviours in the δ, σ space. The three curves delimit the “real” 
acceptance  region for πmin= 0.8 and two regions (one for each method) for which the power 
is higher or equal to γ=0.75. Results for two sample sizes, n=12 and n=200, are shown.  

 
Figure 6: Iso-power line in the δ, σ space of the tolerance interval and maximum likelihood 
validation methods for two samples sizes (n=12 and n=200). The outer (solid) line delimits 
the true acceptance region for πmin= 0.8.  
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As it can be seen from Figure 6, for small sample sizes (n=12) there is very little difference 
in power between the two validation methods and the differences mainly occur when the 
analytical methods are slightly biased. The practical consequence is that, with limited sample 
size, there is a small region of good measurement processes that may be rejected by the 
tolerance interval procedure but accepted by the ML approach. This can increase the cost for 
the laboratories very slightly, but cannot increase the risk for the client because it does not 
occur outside the acceptance region where both methods are very conservative.  

Once the sample size increases (n=200), it can be observed that the ML method converges to 
the “true” acceptance region while the tolerance interval acceptance region retains its 
“triangular” shape. The gap between the two procedures – the difference between the “bell” 
shape and the “triangular” shape – then becomes larger. This highlights the fact that the use 
of a one-tailed tolerance interval ignores the other side of the distribution once the tolerance 
limit goes outside the acceptance limit. This does not occur when the method is unbiased.   

4. (S–N–λ) METHOD FOR ROUTINE FOLLOW UP 

Once a method has been validated and is being used in routine analysis, it should be 
monitored regularly to check that the method remains valid over time. Unlike the pre-study 
validation phase, where expensive and cautious practices are usually envisaged, validation 
rule used in routine must be simple and cheap. An in-study rule that is largely accepted in the 
bioanalytical community, is the “4–6–15” rule and is defined in the FDA guidance [3] as: 
“…At least four of every six QC samples should be within 15% of their respective nominal 
values...”. This rule provides a simple and practical guide for routine follow up; its properties 
are analysed below.  

In general terms, the “s–n–λ” rule is applied as follows: 

1. n QC samples with known nominal values are integrated into a daily run; 
2. the number Y of QC samples such that the (absolute or relative) difference between 

the measured value Xi and the nominal value µT is lower than λ is counted; 
3. if Y≥s, the run is accepted and can be delivered to the laboratory client.  

The properties of such a decision rule with respect to the laboratory’s and the clients’ 
interests depend crucially on the choice of s and n [21]. They are well represented by a power 
function which gives, for a given s-n-λ rule, the probability γ of accepting a run with respect 
to the quality level π, or the bias and precision δ and σ. 

As Y is a binomial distribution with parameters n and π, the power γ is calculated as 
follows: 

∑
=

−−=≥=≥==
n

si

inii
nCsnBiPsYPP )1()),(()()run accept the( πππππγ . 

Figure 7 illustrates this power function for the 4–6–λ rule with respect to π and iso-power 
curves for the 4–6–15 rule in the δ and σ space. These plots show (as expected) that the more 
valid the method (π large or δ and/or σ small)  the higher the probability γ of accepting a run. 
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Figure 7: Power of 4–6–15 decision rule 

It is instructive to study the power of the s–n–λ rule for other values of s and n. Figure 8 
shows the evolution of the power of the s–6–λ rule for s = 2, 4 and 6 and of the s–n–λ rule 
for n = 6, 12, 24 and 96 with s/n = 2/3. These results are intuitively meaningful: increasing s 
(keeping n constant) decreases the client risk while increasing n (keeping s/n constant) 
simultaneously decreases the client and laboratory risks with respect to the compromise π* = 
s/n value. When n increases, the laboratory will have a high probability of seeing a run for 
which π > π* accepted, and the run will have a high probability of being rejected if π < π*. 
Of course, the simultaneous protection of the clients’ and laboratory’s interests has a cost: the 
number n of QC samples required.  

 
Figure 8: Power of n–s–λ as a function of s and n 

Such a discussion is common in the context of lot acceptance sampling plans (see [24]) or 
ISO norms ([25]). In this framework, the problem is considered in the opposite direction, i.e. 
the requirements of both client and supplier are first fixed and then the optimal values for n 
and s are calculated to meet their requirements. In practice, the client has first to choose a 
quality level πC under which the probability of accepting a run (or lot) is small (γC say). On 
the other side, the supplier (laboratory) has to choose a quality level πL, above which the 
probability of accepting a run (or lot) is high enough (γL say). This leads to a system of two 
inequalities to be solved with two unknown values, n and s: 

equationsupplier )(
equationclient )(

LL

CC

sYP
sYP

γππ
γππ

>>≥
<<≥
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Figure 9: A comparison of client and laboratory risks for the 4–6–λ and 6–6–λ rules 

This is illustrated in Figure 9 for the 4–6–λ and 6–6–λ rules. The figure shows that the 4–6–λ 
rule is highly protective for the laboratory and favours the laboratory over the client.  

Table 3 presents the optimal n and s values for different combinations of client and supplier 
parameters. It illustrates clearly the impossibility of achieving acceptable client and supplier 
risks with a reasonable cost by using a classical s–n–λ rule. The FDA recommendations 
should therefore be interpreted as favouring laboratory risks over consumer risks. 
 
Table 3: Optimal sampling plans for different combinations of client and laboratory 
requirements 

πC γC πL γL n s πC γC πL γL n s 
0.6 0.2 0.8 0.8 19 14 0.6 0.1 0.8 0.9 36 26 
0.7 0.2 0.8 0.8 55 42 0.7 0.1 0.8 0.9 127 96 
0.7 0.2 0.9 0.8 14 12 0.7 0.1 0.9 0.9 25 21 
0.8 0.2 0.9 0.8 39 34 0.8 0.1 0.9 0.9 86 74 

 

5. CONCILIATING VALIDATION AND ROUTINE DECISION RULES 

The basic aim, when applying pre-study and in-study validation procedures to a measurement 
method, is to conciliate the objectives of the two validation procedures. When the total error 
approach is used in the pre-study and the s–n–λ method in the in-study there is a common 
objective: to control the parameter π or the proportion of measurement results (X–µT) 
expected to lie within the acceptance limit [–λ,+λ]. The shape of the acceptance region of the 
two methods is then equivalent, as shown in Figures 2 and 5.  

The ability to conciliate the pre- and in-study procedures depends then on the adequacy of 
the parameters chosen. These parameters should ensure that a laboratory which has proved a 
method to be valid in a pre-study experiment will see most of the runs using this analytical 
method accepted in routine analysis if the performance of the method remains stable over 
time. This is essential: it would be counterproductive to maintain an analytical method that 
frequently leads to runs being rejected when the method is still valid.   

This requirement can be reformulated in terms of the test method’s parameters in two ways: 
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1. If the parameters n and s of the s–n–λ rule are fixed, the value of πmin should be chosen 
so as to ensure that, if the method remains valid, the s–n–λ rule is accepted in most cases 
(e.g. with a minimum probability γmin). 

2. On the other hand, for a pre-study validation scheme (πmin and λ), the value of s (for a 
given n) should guarantee that most of the runs will be accepted if the method remains 
valid.   

Note that this formulation focuses on the laboratory.  On the client side, as seen in Section 4, 
it is difficult to really protect the client at a reasonable cost with an s–n–λ rule. The parame-
ters should then protect the client as much as possible given the budget available and the 
laboratory’s economic rationale.  

Let us now consider the particular case of the 4–6–λ rule. As stated above, a good pre-study 
validation rule should work with a πmin value which ensures that the routine test will be 
accepted in most cases (say γmin=90%) if the method is valid: 

minmin )( γππ >>≥ sYP  

For a given s and n, this πmin is obtained by inverting the binomial(n, π) distribution function 
in π, as shown in Figure 10.  

 
Figure 10: Conciliating pre-study validation πmin value with 4–6–λ rule 

For the 4–6–λ rule we have πmin = 0.8. This means that, in the pre-study validation experi-
ment, the laboratory should demonstrate that at least 80% of the measurements X–µT are 
expected to lie within the acceptance limits [–λ,+λ]. This will ensure that the 4–6–λ rule will 
accept 90% of cases in routine use if the process remains valid (π > πmin). This contrasts with 
the (intuitive) proposal frequently encountered in the literature [8, 17] that 4/6 or 66.7% of 
the results should lie within the acceptance limits. Adopting 66.7% as the value for πmin can 
lead to up to 32% of the “valid” runs being rejected, as can be seen in Figure 9.  

On the other hand, when, as we recommend, the s–n–λ rule is not fixed in advance, it is easy 
to calculate the best value of s for given πmin, n and γmin. The procedure consists of finding 
the maximum value of s (0 ≤ s ≤ n) such that 

minmin )( γππ >=≥ sYP . 

Figure 11 shows this optimal value of s for different values of n and πmin, when γmin is 
fixed at 0.9. 
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Figure 11: Optimal s values for a fixed n and pre-study acceptance level ππππmin  

 
6. CONCLUSION 

Throughout this paper test methods, based on the total error concept, have been proposed to 
decide about the acceptance or rejection of an analytical method at a pre- and in-study stage 
so as to minimise both the consumer and the laboratory risks.  

The tolerance interval and the maximum likelihood method are the two alternative methods 
proposed for the pre-study validation.  For limited sample sizes, often encountered in 
laboratories, simulations have shown that they behave similarly in the sense that they have 
comparable power curves over the (δ,σ) space. The tolerance interval approach, however, has 
asymptotical unsuitable behaviour because the acceptance region of this test does not 
converge, as the maximum likelihood method does, to the true region. In practice, the 
difference is negligible, but the maximum likelihood method should nevertheless be 
preferred, not only for its good statistical properties, but also because it directly answers the 
fundamental question: what is the expected proportion of measures that will fall within the 
acceptance limits in the future? 

The s-n-λ rule is presented as a possible approach for in-study validation.  It is shown that, 
with a limited sample size, this rule is unfortunately not able to protect simultaneously the 
laboratory and the client interests.  In particular, the 4-6-λ rule recommended by FDA in the 
pharmaceutical industry favours the laboratory to the detriment of the client. 

This paper also discusses the necessity to conciliate pre-study validation criteria and routine-
run acceptance rules so as to minimise both consumer and laboratory risks. In other words, 
depending on the rule to be used routinely for accepting runs, what should the minimal 
probability  πmin, as estimated from validation experiments, be, to ensure that in routine use 
most valid runs are accepted keeping in mind the client risks.    

The results show, that if the 4–6–λ rule is retained, the minimum proportion  πmin of 
measures that should be expected to fall within the acceptance limits [–λ,+λ] to guarantee 
that at least 90% of the runs are accepted when the measurement process remains valid, is 
80%. Taking 80% as  πmin value allows the pre-study and in-study decision rules to be made 
consistent. But, as also shown, the 4–6–λ rule lacks power and favours the laboratory over 
the consumer. The only way to minimise both the consumer and the laboratory risks is to 
improve the in-study rule, by increasing both the number of QC samples (n) and the number 
of successful samples (s), and adapting the πmin value accordingly for the pre-study valida-
tion. But, as shown in Table 3, this requires a very large and impracticable number of QC 
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samples. This is why more advanced techniques, based directly on the quantitative measures 
and/or taking into account the history of the method’s results, are recommended. Sampling 
plans for measures [26], scan statistics [27] and moving-type control charts (Cusum, Ewma) 
[28] are all attractive solutions.  They would merit to be more emphasised by international 
regulation texts. 
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