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SUMMARY

In industries that involve either chemistry or biology, anefftmethods are necessary to
keep an eye on all the material produced. If the quality of agtar@imethod is doubtful,
then the whole set of decisions based on those measures is @idstiéor this reason,
being able to assess the quality of an analytical method iisdige than a statistical chal-
lenge; it is a matter of ethics and good business practices.

The validity of an analytical method must be assessed atetvats. The “pre-study”
validation aims to show, by an appropriate set of designed experiments, thathbd
able to achieve its objectives. The “in-study” validatiantsnded to verify, by inserting QC
samples in routine runs, that the method remains valid over Aitrthese two levels, the
total error approach considers a method as valid if a suffjgieportion of analytical results
are expected to lie in a given interval around the (unknown) nominal value.

This paper discusses two methods, based on this total enaapt, of checking the validity

of a measurement method at the pre-study level. The fiestkehwhether a tolerance
interval for hypothetical future measurements lies withieigacceptance limits; the second
calculates the probability of a result lying within thdisgits and computes whether it is
greater than a given acceptance level. For the “in-study” vimiidahe paper assesses the
properties of the s—i—rule recommended by the FDA. The properties and respective
advantages and limitations of these methods are investigated.

A crucial point is to ensure that the decisions taken girtstudy stage and in routine use
are coherent. More precisely, a laboratory should not seeettsod rejected in routine use
when it has been proved to be valid and remains so. This papertshewss goal may be
achieved by choosing compatible validation parameters at both pre- and in-galgly le
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1. INTRODUCTION

In industries that involve either chemistry or biology, suctheagharmaceutical, chemical
and food industries, analytical methods are the eyes and eaibktfe@ material produced
and used. If the quality of an analytical method is doubtful, the dasidiased on the
measures obtained with this procedure may become questionable ably puss the final
product. For this reason, being able to assess the quality oflgticahanethod is far more
than a statistical challenge; it's a matter of ettdogl good business practices. Many
regulatory organisations have addressed this issue in theocaheand pharmaceutical
industry (e.g. the ICKInternational Conference on the Harmonisation), the FDA (Food and
Drug Administration) or EuraChem [1, 2, 3]).

The objective of validation is to give both the laboratand the regulatory bodies a
guarantee that every single routine measurement that wiktbermed will yield results
close enough to the unknown “true” value of the sample [4]. Theoouitf of a given
analytical method to this objective is usually assessedistages [5, 6, 7, 8]. First, a “pre-
study” phase is conducted to prove, on the basis of a designed expethmat the method
can deliver quality results. Then, at a routine level, therédbry must verify that the
analytical method remains valid over time, and that each ruidgsotrustworthy measures.
This is usually achieved by inserting quality control (QC) samplégininknown sample
runs.

At these two stages, it is essential to have a way of dyiagtthe quality of a measure in
terms of its closeness to the “true” value of the properintefest. Traditionally this is
achieved by examining two main performance criteria of an analytical mektgolias or
“trueness”, and the precision of the method. Both should be smallhendite usually
quantified separately [3, 9, 10, 11]. This approach focuses oretheditself, assuming that
if the method is “good” then the measures it provides will also be “goamiieMer this is
not always the case [12]. The concept of “total error” [8, 13, 14, 15]176puts the
emphasis on the results themselves and tackles the proldeadlglby estimating the
proportiontt of the measurements which are expected to lie within a fixed &ht@r-A)
around the true value. The assumption underlying this approacht,isftti@e results
produced are “good”, then the method that produces them is necesgaodl).“This paper
presents procedures to check the pre- and in-study validity abéytiaal method based on
this total error concept, by examining the quality of the results it pesdu

At the pre-study level, the validation procedure consists ofumiegs given set of samples
for which the nominal values are known and arranged according tiequoately-designed
experiment. The design should enable measurement bias and precimastomated for
different nominal levels and, if necessary, it should providecardposition of the global
precision in various components of variances (repeatability,eeetnun, and between
laboratory). Two statistical procedures are discussed ¢és@ati®e validity of the method on
the basis of such an experiment. The first consists of estgratolerance interval in which
a great proportion of “future” measurements are expecter tnd verifying that this
interval is included in predefined acceptance limits. The second &sditha quality level
i.e. the probability of getting a measure within these acceptanits directly, and checks
that it is greater than a given minimum acceptance levehie basis of the lower limit of a
maximum likelihood confidence interval for this probability).

In routine use, budgets and simplicity requirements usuatitteine use of validation rules
that do not fully protect either the client or the laboratohys paper studies the properties of
the 4-6-15 rule (generalised here as thex+ume) recommended by the FDA [3] in this
context. It consists of inserting a set of n QC samples intaneutiknown samples and



checking that at least s of the measurements obtainedfes® $amples are no more distant
thanA from their nominal (true) value.

In the practical organisation of an industrial laboratory, @ne-in-study validation studies
are often conducted separately by different people, espetiahg method has been
developed and validated in one place (e.g. a research laboratbis/jtsen routinely used in
another (e.g. production plan). The compatibility of the decisions takbase two stages is
not obvious and not necessarily even well understood by the an#yfaboratory that has
declared the validity of a method in a pre-study phase would not apprecateihically
speaking) seeing its method rejected for use if it is stillyOn the other hand, if a valid
method is subject to a significant total error incredseirt-study validation rule should be
able to detect it rapidly. Conciliating pre- and in-study cibyes is then crucial and may be
achieved through an appropriate choice of validation rule parestetalign the associated
risks.

This paper is organised as follows: Section 2 gives a preeBnition of the validation
method based on the concept of total error and introduces relatéidmsot&ection 3
introduces two procedures for “pre-study” validation, frexpectation tolerance interval
approach and a maximum likelihood approach aimed at estimatiqgality level. Those
two procedures are illustrated on a real example and theirmerioes are compared using
simulations. Section 4 discusses the properties of the\srute- in terms of client and
laboratory risks. Finally, Section 5 shows how pre- and in-stuidjaten parameters may
be conciliated to achieve coherent properties for validation dasisi

2. EVALUATION OF ANALYTICAL METHOD BASED ON TOTAL ERROR

The objective of a good analytical method is to quantify acelyrech of the unknown
quantities that the laboratory will have to determine. In otloedsy the analytical method is
expected to give results X's for which the difference ftbenunknown “true” value ) of
the sample is sufficiently small, for example less than a pnedieacceptance limik, i.e.

—ASX = <A = X -] <A

Two components may influence this difference: the bias or trueness of the methdsl, and i
precision. As illustrated in Figure 1, a biased method provideksdlsat deviate “in the
mean” or systematically from the true valpg 6 = E(X) — ur = 4 — Ur. The precision
expresses how results vary around the mean ualE€X) when the measure is repeated. To
quantify this precision, let denote the standard deviation available. The “closeness” of a
result X to the unknown true value of the samples directly linked to the size of the bidas

and precisior of the method.
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A A A
00 X-pr 0=0 X

Figure 1: Comparison of four possible validation situations



Classical method validation and quality control tools usuallglchiee size of these two
components separately (t axftests in validation, oiX — R control charts in routine use)

but this approach has the drawback that a very low value ota@m@onent may not
compensate for a large value in the other.

The total error approach [4, 8, 13, 14, 15, 16, 17] suggests a global apgproaasidering a
procedure acceptable if itis “very likely” that the diffiece between each measurement X of
a sample and its “true” value-{uis within the acceptance limits¥;+A] predefined by the
analyst. The notion of “very likely” can be translated to the probabikspuation

= PQX ~ 1| <Az,
whereTt,, is called here the acceptance lemediTtthe quality level. The acceptance limit

A can be expressed either in absolute or in relative (%) tertie latter case, the equation
is redefined as

=P ‘X;ﬂ
Hr

< /1} 2 ”min ) (1)

All the results presented in this paper are applicable to both cases. Belowse the first
formulation without loss of generality.

The value o must be chosen according to the intended use of the results. €htvahis
linked to the requirements of the application area of the user (e.@% on bulk, 5% on
pharmaceutical specialties, 15% for biological samples, 30%gérrd-binding assays such

as RIA or ELISA, and so on). The probability;, must also be fixed by the analyst,
according to cost, consumer and analytical domain requirementkeyhie to ensure
coherence between thg;, andA values targeted in the pre-study and in-study phases. This
issue is discussed in more detail in Section 5.

Under the assumption of normality for the measurement residteasy to establish the
relationship between the quality lewel the bias (systematic errad) and the precision
(random errorp as

<Z<
g g

n=PQx—yT|</1)=P(_"_5 "_5},

whereZ is a standard normal random variable. This leads to a dtsfiioi the “acceptance
region”, i.e. the set ofd(0)’s such that the quality levet is greater tham,,. Figure 2
shows, below the curves, the acceptance region for various eiggs(99%, 95%, 90%,
80% and 66.7%) when the acceptance limits are fixed at [-15%]-&kb8commended by
FDA [3] for bioanalytical methods. Note that, in this grapandc must be interpreted as
relative bias and relative standard deviation. Logically,amsbe seen from Figure 1, the
greater the variance of the measure or the greater thetmdess likely it is that a result will
fall within the measurement acceptance limits.
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Figure 2: Acceptance region of analytical methods as a function of the method bias and
precision whem = 15%.

3. PRE-STUDY METHOD VALIDATION

Before an analytical method is used routinely on unknown sampkesgitmal practice to
perform a more or less extensive set of experiments to evaillngther it will be able to
meet the criteria described above. Those experiments are usuallly‘pediestudy valida-
tion” as opposed to the “in-study validation” experiments.

Since the bias and the precisiog, the intrinsic performance parameters of the analytical
procedure, are unknown, experiments are required so that the usétaiarestimates of
these quantities before using the method routinely. The objectilre pfe-study validation
phase is then to evaluate whether, given the estimatés dfiad and standard devia-
tion o obtained, the proportiomof measures of new unknown samples that will fall within
the acceptance limits is greater than a predefined acceptaeteshyr,, (see (1))

However, there is neither an exact solution nor an easyonamswer the question, even for
very simple validation experimental designs. Two appnate methods are discussed below.
The first is based on the notion of a tolerance intervalttensecond consists of calculating
the lower limit of a maximum likelihood one-tailed confidence waéfor i, using the delta
method.

3.1 B-expectation tolerance interval method

The first method has already been introduced in [14, 4]. This pégmersses its properties
more formally. It consists of computing tieexpectation tolerance interval [18]

Eﬁ{PX(é'—k&< X = <o+ k&‘&&)}aﬁ,

where the factor k is determined so that the expected propoftitie population falling
within the interval is equal 3. 3 is defined as the acceptance leng) in this context and
the value of k depends on the experimental design used for i@lidatthe simplest case,

where a sample with nominal valugis measured n times in repeatability conditiodisg
and k are calculated from the measurement resyls,X.. X, as follows, assuming that X
is normally distributed:



n _ R 1 n — 1
z Xi =t =X =l a:\/_—]_Z(xi —X)2 and k =tn—l;(1+nmm)/2 1+E
=1

i=1 i=

5=1
n

wheret .. 1S the quantile (1f,n)/2 of a (n—1) t distribution.

Mee [19] discussed how to calculaiend k in a balanced one-way ANOVA random model
where the within- and between-run variabilities are taken imimet. Hoffman and Kringle
[17] extended this method to more general random effect madehef-content tolerance
intervals (rather than thgexpectation tolerance intervals suggested here).

The decision rule proposed is then: if fh@xpectation tolerance interval is within the
acceptance limits ps+A], i.e. if (3— kd>-1 and 5 +kd < +1 ) then there is high strong
evidence that the method is valid. As a matter of fachi# tondition is verified, the
expected proportion of measurements within the acceptanceimgiteater or equal g,

i.e. equation (1) is also verified, on average. Note that the ipgtetement is not true, i.e.
either 6—kd < -1 or +kd >+ does not imply that the expected proportion is smaller
thanTtt,,. This is illustrated on simulations below.

3.2 Maximum likelihood one-tailed confidence interval onrtusing the delta method

Another approach to validating the method consists of deriving,dramdd , the lower
bound of a one-tailed confidence interval on the quality leegld checking whether or not
it is larger thamm,,. This is not easy as far as the estimation of a probaisiltoncerned. No
exact solution exists even in the simple sampling schemettasever different statistical
approaches may be used to attack the problem: searchingdtinematical approximation
to the exact solution, asymptotic approximation by maximumitiket, bootstrap or
Bayesian modelling. A maximum likelihood (ML) solution for timgle sampling scheme,
under normal-distribution assumption, is presented here.

Let Xy, X, ... X, be the measurement results of the validation expetmnelsuppose that X

is normally distributed with unknown bidsand variance”®. The maximum likelihood
estimators of these parameters are given by
;13 v ~ _ 13 )2 ~2 ~2
0= X~y =X~y g' == (X, -X)? =—=d%=wo”’.
n ni=

i=1

By the invariance property, a maximum likelihood estimatar cén be defined as

aELes!

where ¢(.) is the distribution function of the standard normal distribution [TBg delta

method can be used to derive an asymptotic approximation for taas@of the estimator
7l as

1
2nwo?

(-1-0)p. -(A-3)p,)?

Var(#) f%m —g,)2+



where ¢, andg, are given by
A= -A-0
¢U = ¢{—j and ¢|_ = ¢{ }
o o

and ¢(.) is the density of the standard normal distribution. The asymetar bound of a
one-tailed 1l& confidence interval on the quality levetan then be calculated as

ni-nf =7 Zl—aa-ﬁ

where 7 4is the quantile 1eof a standard normal variable adglis calculated by replacing

o by & ando by 7 = JWé in Var(77) above. The analytical method is then declared valid
if 77, > . This approach can be generalised to more generateagamponents models.

3.3 Example

To illustrate the methodology described here, pre-study validddiafrom a bioanalytical
procedure [20, 21] are used to illustrate the statistical metlestsibed in Sections 3.1 and
3.2.

The design consisted of three runs with four replications pet rach concentration level.
However the run factor was ignored in this illustration so as to be able toeufeerhulae
detailed in Sections 3.1 and 3.2. This results in an overall astiaf the total variance
without estimating its within- and between-run components. Thergfesample size isn =
12 at each level of concentration. A measurement processonasiered valid if the
proportion of measurements within a range of +/— 1580 (15) around the target valpe
was greater than 80% (acceptance laygk0.8). A 90% one-tailed confidence interval was
calculated to get a lower bound fousing the ML method.

The results are summarised in Table 1. f4expectation tolerance interval limits were all
within the acceptance limits, whatever the concentration. [€lae bioanalytical method of
interest can therefore be considered valid over the ravgstigated using the tolerance
interval rule. Also, the 90% lower limits of the one-tailedfidence interval fortestimated
by the maximum likelihood method were larger than 0.80 over tigeeraf concentration
levels investigated. Thus, the bioanalytical method can alsortsédered valid according to
the maximum likelihood method.

Table 1: Validation results obtained 3rexpectation tolerance interval and ML methods

~ A

Hr ) 0 | Tolerance Interval  Acceptance Limits 7i Tl

254 0 14 2.1, 2] [-3.8, 3.9] 0.994 0.982
482 27 27 [-6.5, 1.2] [-7.2,7.2] 0.959 0.908
437.8 -93 197 [-37.2, 18.6] [-65.7, 65.7] 0.999 0.995
838.6 11.8 45 [-52, 75.7] [-125.8,125.8] 0.995 0.984

3.4 Validation method comparison on the basis of simulations

This section compares the two pre-study validation procedures bagtseof simulations.
Four valid and two non valid hypothetical measurement processeslyticahanethods

were chosen, as shown in Table 2 and Figure 3, and normally disirdauteles of sizes
ranging from 5 to 200, were randomly generated. The accepianitck Was fixed at 0.15,



i.e. [-15%, +15%], the acceptance lemgl, at 80%, and the confidence level for the ML

one-tailed confidence interval forat 90%.

Table 2: Six scenarios used to compare the performances of the two validation methods

or Ot Lis Or Ot Lis
0 0.0765 0.95 Valid 0.05 0.0605 0.95 Valid
0 0.104 0.85 Valid 0.05 0.091 0.85 Valid
0 0.13 0.75 NonValid 0.05 0.12 0.75 Non Valid
— m=09% — m=09%
————— n=085 —e-- m=085

L=-0.15 6=0 A=015

T a=-015

6=005 A=015

Figure 3: Six scenarios used to compare the performances of the two validation methods
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Figure 4: Simulation resultsd = 0 on the left and = 0.05 on the right

Figure 4 presents, for the six possible scenarios and the tdatien methods, the
proportion of casey, for which the validation over 5000 simulated samples was tsctép

shows that:

* When the measurement process is not vaiiel §.75), the behaviours of the two
methods are quite similar and protect the client very wialiesthe probability of
accepting the result is very small. The ML method perfalightly better than the
tolerance interval method for centred processes, the esbersg true for biased

processes.

* When the measurement process is well centred)(and valid, the probability of
accepting the result behaves as expected — it increases waitth withtt For
1= 0.85, the tolerance interval method is more powerful than the maritikeli-

hood method.

e However, when the process is biased, the behaviour of thentmeérserval method
is less attractive: forr = 0.95, the measurement process is less often accepted as

valid than with the ML method.



* In addition, forrt= 0.85, the probability of accepting the measurement process with
the tolerance interval method tends to O as n increasasisTiot a desirable result
from a statistical point of view, as far= 0.85 the process is valid. It can be shown
that this arises (asymptotically) for the points in the accepteegion such that:

A _|6| < O-Z:H”min '

2
This result has already been roughly emphasised in [22].

This last point merits further investigation. Figure 5 illates it graphically: the area
between the triangle and the acceptance region is a zone where atiathptthe meas-
urement process is rejected by the tolerance interval methed the process is actually
valid. Note that, asymptotically, this acceptance region coigeiité the region where the
process is asymptotically accepted by the ML method, so adl wathods should be
accepted. The controversial poidt(.05,0=0.091) is in this zone.
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Figure 5: Representation of the acceptance region where the measurenbaod rise
(asymptotically) wrongly rejected with the tolerance intermathod while it is valid and
accepted with the ML method. The six simulated scenarios are marked.

For small samples, the scenario is different and the “gap/daetthe tolerance interval and
ML methods is less important. Figure 6 gives the resultsewf simulations of the two
validation methods behaviours in tec space. The three curves delimit the “real”
acceptance region for,,= 0.8 and two regions (one for each method) for which the power
is higher or equal tg=0.75. Results for two sample sizes, n=12 and n=200, are shown.
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Figure 6: Iso-power line in thé, o space of the tolerance interval and maximum likelihood
validation methods for two samples sizes (n=12 and n=200). The(sotid) line delimits
the true acceptance region fox,= 0.8.



As it can be seen from Figure 6, for small sample sizetd) there is very little difference
in power between the two validation methods and the difference$yroacur when the
analytical methods are slightly biased. The practical coeseg is that, with limited sample
size, there is a small region of good measurement procisdanay be rejected by the
tolerance interval procedure but accepted by the ML approaidcdimincrease the cost for
the laboratories very slightly, but cannot increase the risk forlir@ because it does not
occur outside the acceptance region where both methods are very coreservat

Once the sample size increases (n=200), it can be observtdth. method converges to
the “true” acceptance region while the tolerance intereakptance region retains its
“triangular” shape. The gap between the two procedures — theedifebetween the “bell”
shape and the “triangular” shape — then becomes largehighigyhts the fact that the use
of a one-tailed tolerance interval ignores the other side ofghréodtion once the tolerance
limit goes outside the acceptance limit. This does not occur when thedigtunbiased.

4. (S—-N-A) METHOD FOR ROUTINE FOLLOW UP

Once a method has been validated and is being used in routine snalgbould be
monitored regularly to check that the method remains valid ower Unlike the pre-study
validation phase, where expensive and cautious practices arky eswaaged, validation
rule used in routine must be simple and cheap. An in-study rulie taegely accepted in the
bioanalytical community, is the “4—-6-15" rule and is defined in DA Guidance [3] as:
“...At least four of every six QC samples should be within 15%heif respective nominal
values...”This rule provides a simple and practical guide for roditith@w up; its properties
are analysed below.

In general terms, the “s—Nh-rule is applied as follows:

1. n QC samples with known nominal values are integrated into a daily run;

2. the number Y of QC samples such that the (absolute or reldiffezence between
the measured value #nd the nominal valuer is lower thar\ is counted,;

3. if Y=s, the run is accepted and can be delivered to the laboratory client.

The properties of such a decision rule with respect to tterdtdry’s and the clients’
interests depend crucially on the choice of s and n [21]. THeeyell represented by a power
function which gives, for a given sXrule, the probability of accepting a run with respect
to the quality levett, or the bias and precisi@gnando.

As Y is a binomial distribution with parameters n antdhe power is calculated as
follows:

y = Placcept theurm) = P(Y 2 §7) = P(Bi(n, m) 2 8) = 3 Cot (1= 7)™ .

Figure 7 illustrates this power function for the 4x6ule with respect tatand iso-power
curves for the 4—6L5 rule in thed ando space. These plots show (as expected) that the more
valid the methodr{large o and/orc small) the higher the probabilityof accepting a run.

10
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Figure 7: Power of 4—645 decision rule

It is instructive to study the power of the simdle for other values of s and n. Figure 8
shows the evolution of the power of the sk8ue for s = 2, 4 and 6 and of the sixndle
forn=6, 12, 24 and 96 with s/n = 2/3. These results are intyitiveaningful: increasing s
(keeping n constant) decreases the client risk while inogasikeeping s/n constant)
simultaneously decreases the client and laboratory risks@gpect to the compromige=

s/n value. When n increases, the laboratory will have a high probabiliégioigsa run for
which > 1t accepted, and the run will have a high probability of being rejette< t*.

Of course, the simultaneous protection of the clients’ dratddory’s interests has a cost: the
number n of QC samples required.
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Figure 8: Power of n—sX as a function of s and n

Such a discussion is common in the context of lot acceptance samplingselaf24]) or
ISO norms ([25]). In this framework, the problem is considerdubmpposite direction, i.e.
the requirements of both client and supplier are first fixetithen the optimal values for n
and s are calculated to meet their requirements. In prattieelient has first to choose a
quality levelre under which the probability of accepting a run (or lot) is sfgakay). On
the other side, the supplier (laboratory) has to choose a gleafithyry , above which the
probability of accepting a run (or lot) is high enoughs@y). This leads to a system of two
inequalities to be solved with two unknown values, n and s:

PY=2gm<rm)<y, clientequation
PY=2sm>m)>y, supplierequation
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Figure 9: A comparison of client and laboratory risks for the A-&rd 6—6x rules

This is illustrated in Figure 9 for the 426and 6—6x rules. The figure shows that the 4A6—
rule is highly protective for the laboratory and favours the laboratver the client.

Table 3 presents the optimal n and s values for differenic@tions of client and supplier
parameters. Itillustrates clearly the impossibilityaiiaving acceptable client and supplier
risks with a reasonable cost by using a classical’sste. The FDA recommendations
should therefore be interpreted as favouring laboratory risks over congsikser

Table 3: Optimal sampling plans for different combinations of client #dabratory
requirements

c Yc L Yo n S c Yc L Yo n S

0.6 0.2 0.8 0.8 19 14 0.6 0.1 0.8 0|9 36 26
0.7 0.2 0.8 0.8 55 42 0.7 0.1 0.8 0|9 127 D6
0.7 0.2 0.9 0.8 14 12 0.7 0.1 0.9 0|9 25 21
0.8 0.2 0.9 0.8 39 34 0.8 0.1 0.9 0]9 86 14

5. CONCILIATING VALIDATION AND ROUTINE DECISION RULES

The basic aim, when applying pre-study and in-study vatid@tiocedures to a measurement
method, is to conciliate the objectives of the two validgtimetedures. When the total error
approach is used in the pre-study and thres method in the in-study there is a common
objective: to control the parametaror the proportion of measurement results{{X
expected to lie within the acceptance limi f+A]. The shape of the acceptance region of the
two methods is then equivalent, as shown in Figures 2 and 5.

The ability to conciliate the pre- and in-study procedures depends then on the addéquacy
the parameters chosen. These parameters should ensure thitargladich has proved a
method to be valid in a pre-study experiment will see mosteofuns using this analytical
method accepted in routine analysis if the performance of ttieotheemains stable over
time. This is essential: it would be counterproductive tmtaan an analytical method that
frequently leads to runs being rejected when the method is still valid

This requirement can be reformulated in terms of the test methatimeters in two ways:
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1. If the parameters n and s of thasA rule are fixed, the value of,, should be chosen
S0 as to ensure that, if the method remains valid;-tré sule is accepted in most cases
(e.g. with a minimum probability.,).

2. On the other hand, for a pre-study validation schamg &ndA), the value of s (for a
given n) should guarantee that most of the runs will be acceptezinfiethod remains
valid.

Note that this formulation focuses on the laboratory. On thetdliée, as seen in Section 4,
it is difficult to really protect the client at a reasomadxbst with an-g+A rule. The parame-
ters should then protect the client as much as possible giveudget available and the
laboratory’s economic rationale.

Let us now consider the particular case of tH&-# rule. As stated above, a good pre-study
validation rule should work with &y, value which ensures that the routine test will be
accepted in most cases (3ay=90%) if the method is valid:

P(YZS|7T> ”min) >ymin

For a given s and n, thig,, is obtained by inverting the binomial(m), distribution function
in 1, as shown in Figure 10.

[=1

o
[=1

06
1
~

P{Accepting run)
04
~

v=
00 02
1 L

n=067 Tyin =08
T

00 02 04 06 038 10
n=P{i-pl<h)

Figure 10 Conciliating pre-study validation, value with 46-A rule

For the 46-A rule we haveat,, = 0.8. This means that, in the pre-study validation experi-
ment, the laboratory should demonstrate that at least 80% ofghgurements-ir are
expected to lie within the acceptance limifs,frA]. This will ensure that the-8-A rule will
accept 90% of cases in routine use if the process renaid$rv> T.,i,). This contrasts with
the (intuitive) proposal frequently encountered in the liteegli®, 17] that 4/6 or 66.7% of
the results should lie within the acceptance limits. Adopting?6&4 the value far,;, can
lead to up to 32% of the “valid” runs being rejected, as can be seen in Figure 9.

On the other hand, when, as we recommend-e\gule is not fixed in advance, it is easy
to calculate the best value of s for givgr,, n andy.i,. The procedure consists of finding
the maximum value of s @s< n) such that

P(Yzqn—:ﬂmin)>ymin "

Figure 11 shows this optimal value of s for different values of mgpdwheny, is
fixed at 0.9.
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Figure 11: Optimal s values for a fixed n and pre-study acceptancerngyel

6. CONCLUSION

Throughout this paper test methods, based on the total error cdraaaphbeen proposed to
decide about the acceptance or rejection of an analytical mathgate- and in-study stage
so as to minimise both the consumer and the laboratory risks.

The tolerance interval and the maximum likelihood method arevthalternative methods
proposed for the pre-study validation. For limited sample sizemn @fhcountered in
laboratories, simulations have shown that they behave simiifahg sense that they have
comparable power curves over th@] space. The tolerance interval approach, howbeaser,
asymptotical unsuitable behaviour because the acceptance rddiois test does not
converge, as the maximum likelihood method does, to the true regipnadtice, the
difference is negligible, but the maximum likelihood method shoulcemigeless be
preferred, not only for its good statistical properties, but alsause it directly answers the
fundamental question: what is the expected proportion of meakategill fall within the
acceptance limits in the future?

The s-nA rule is presented as a possible approach for in-study vahddtiis shown that,
with a limited sample size, this rule is unfortunately not able to proteattameously the
laboratory and the client interests. In particular, theMrie recommended by FDA in the
pharmaceutical industry favours the laboratory to the detriment cfidn.

This paper also discusses the necessity to conciliatymlg-validation criteria and routine-
run acceptance rules so as to minimise both consumer and labosksrynrother words,
depending on the rule to be used routinely for accepting runs, Wwhaldsthe minimal
probability 1., as estimated from validation experiments, be, to ensuri tiwaitine use
most valid runs are accepted keeping in mind the client risks.

The results show, that if the-@-A rule is retained, the minimum proportion,, of
measures that should be expected to fall within the acceptamnte[i\,+A] to guarantee
that at least 90% of the runs are accepted when the measuproess remains valid, is
80%. Taking 80% ast., value allows the pre-study and in-study decision rules to de ma
consistent. But, as also shown, th&-4\ rule lacks power and favours the laboratory over
the consumer. The only way to minimise both the consumer anditbieatory risks is to
improve the in-study rule, by increasing both the number of QC sartil and the number
of successful samples (s), and adaptingthevalue accordingly for the pre-study valida-
tion. But, as shown in Table 3, this requires a very langeimpracticable number of QC
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samples. This is why more advanced techniques, based directlyquratitiéative measures
and/or taking into account the history of the method’s resudésgaommended. Sampling
plans for measures [26], scan statistics [27] and moving-type tonsmds (Cusum, Ewma)
[28] are all attractive solutions. They would merit to be more empladsysimternational
regulation texts.
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