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Abstract

This paper proposes consistent estimators for transformation parameters in semiparamet-

ric models. The problem is to find the optimal transformation into the space of models with

a predetermined regression structure like additive or multiplicative separability. We give re-

sults for the estimation of the transformation when the rest of the model is estimated non-

or semi-parametrically and fulfills some consistency conditions. We propose two methods for

the estimation of the transformation parameter: maximizing a profile likelihood function or

minimizing the mean squared distance from independence. First the problem of identification

of such models is discussed. We then state asymptotic results for a general class of nonpara-

metric estimators. Finally, we give some particular examples of nonparametric estimators of

transformed separable models. The theoretical results as well as the small sample performance

are studied by several simulation exercises.
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1 Introduction

Taking transformations of the data has been an integral part of statistical practice for many years.

Transformations have been used to aid interpretability as well as to improve statistical performance.

An important contribution to this methodology was made by Box and Cox (1964) who proposed a

parametric power family of transformations that nested the logarithm and the level. They suggested

that the power transformation, when applied to the dependent variable in a linear regression setting,

might induce normality, error variance homogeneity, and additivity of effects. They proposed estima-

tion methods for the regression and transformation parameters. Carroll and Ruppert (1984) applied

this and other transformations to both dependent and independent variables. A number of other de-

pendent variable transformations have been suggested, for example the Zellner-Revankar transform,

see Zellner and Revankar (1969). The transformation methodology has been quite successful and a

large literature exists on this subject for parametric models, see Carroll and Ruppert (1988). There

are also a number of applications to economics data: see Zarembka (1968), Zellner and Revankar

(1969), Heckman and Polachek (1974), Ehrlich (1977), Hulten and Wykoff (1981).

In this work we concentrate on transformations in a regression setting. For many data, linearity

of covariate effect after transformation may be too strong. For example, a respected study of the

effects of schooling and experience on earnings (Heckman and Polachek (1974, p350)) found that

while their data supported the logarithmic transformation of their dependent variable (earnings), it

was “somewhat less clear on the functional form for the independent variables.” We consider a rather

general specification, allowing for nonparametric covariate effects without specifying their separability

structure explicitly. Let X be a d-dimensional random vector and Y be a random variable, and let

{(Xi, Yi)}ni=1 be an i.i.d. sample from this population. Consider the estimation of the regression

function m(x) = E(Y | X = x). Stone (1980, 1982) and Ibragimov and Hasminskii (1980) showed

that the optimal rate for estimating m is n−�/(2�+d), with � a measure of the smoothness of m. This

rate of convergence can be very slow for large dimensions d. One way of achieving better rates of

convergence is making use of dimension reducing separability structures imposed e.g. by economic

theory. A most typical example is additive or multiplicative modeling. An additive structure for m

for example is a regression function of the form m(x) = c +
Pd

α=1mα(xα), where x = (x1, . . . , xd)
>

are the d-dimensional predictor variables and mα are one-dimensional nonparametric functions with

E[mα(Xα)] = 0. Stone (1986) showed that for such regression curves the optimal rate for estimating

m is the one-dimensional rate of convergence n−�/(2�+1). Thus one speaks of dimensionality reduction
through additive modeling.

We examine a semiparametric model that combines a parametric transformation with the flexi-

bility of an additive nonparametric regression function. Suppose that

Λ(Y ) = G(m1(X1), . . . ,md(Xd)) + ε, (1)

where ε is independent ofX, while G is a known function and Λ is a monotonic function. Special cases
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of G are G(z) = H(
Pd

α=1 zα) and G(z) = H(
Yd

α=1
zα) for some strictly monotonic known function

H. The general model in which Λ is monotonic and G(z) =
Pd

α=1 zα was previously addressed in

Breiman and Friedman (1985) who suggested estimation procedures based on the iterative backfitting

method, which they called ACE. However, they did not provide many results about the statistical

properties of their procedures. See also Hastie and Tibshirani (1990). Linton, Chen, Wang, and

Härdle (1997) considered the model with Λ = Λθ parametric and additive G, G(z) =
Pd

α=1 zα. They

proposed to estimate the parameters of the transformation Λ by either an instrumental variable

method or a pseudo-likelihood method based on Gaussian ε. They assumed that identification held

and did not provide justification for this from primitive conditions. Unfortunately, our simulation

evidence suggests that both methods work poorly in practice and may even be inconsistent for

many parameter configurations. To estimate the unknown functions mα they used the marginal

integration method of Linton and Nielsen (1995) and consequently their method can not achieve the

semiparametric efficiency bound even in the few cases where Gaussian errors are well defined and

their method is consistent.

We establish the nonparametric identification of the model (1) using results of Roehrig (1988).

For practical reasons we propose estimation procedures only for the parametric transformation case

where Λ(y) = Λθo(y) for some parametric family {Λθ(.), θ ∈ Θ} of transformations where Θ ⊂ Rk.
In many studies on generalized linear models the misspecification of the index has turned out to

be much more serious than the misspecification of the link. We suspect that something similar

holds for transformation models: i.e. that a parametrisation of the transformation is less crucial

than a parametric specification of the index. To estimate the transformation parameters we use two

approaches. First, a semiparametric profile likelihood estimator (PL) that involves nonparametric

estimation of the density of ε, and second a mean squared distance from independence method

(MD) based on estimated c.d.f.’s of (X, ε). Both methods use a profiled estimate of the (separable)

nonparametric components of mθ. We use both the integration method and the smooth backfitting

method of Mammen, Linton and Nielsen (1999) to estimate these components. The MD estimator

involves discontinuous functions of nonparametric estimators and we use the theory of Chen, Linton

and Van Keilegom (2003) to obtain its asymptotic properties. We derive the asymptotic distributions

of our estimators under standard regularity conditions, and we show that the estimators of θo are

root-n consistent.

The rest of the paper is organized as follows. In the next section we clarify identification issues.

In Section 3 we introduce the two estimators for the transformation parameter. In Section 4 two

alternative methods of additive modelling are discussed. Section 5 contains the asymptotic theory of

the two estimators of the transformation parameter. Additionally, we discuss tools like bootstrap for

possible inference on the transformation parameter. Finally, in Section 6 we study the finite sample

performance of all methods presented and compare the different estimators of the transformation

parameter as well as the different estimators of the additive components in this context. A special
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emphasis is also given to the question of bandwidth choice. All proofs are deferred to Section 7

(Appendix A) and Section 8 (Appendix B).

2 Nonparametric Identification

The first question is the identification of model (1). We shall establish identification in the fully

nonparametric model where Λ (Y ) = m (X) + ε and Λ and m are unknown functions under ad-

ditional restrictions on the function m, while ε is independent of X. We show that additive and

multiplicative separability are sufficient under normalization conditions. These restrictions are quite

natural in economics applications, see e.g. Deaton and Muellbauer (1980), Blundell and Robin

(2000), Rodriguez-Póo, Sperlich and Vieu (2003) or Stone (1986).

Breiman and Friedman (1985) defined Λ,m1, . . . ,md for general random variables Y,X1, . . . ,Xd
as minimizers of the least squares objective function

e2(Λ,m1, . . . ,md) =

E

∙n
Λ (Y )−Pd

α=1mα (Xα)
o2¸

E [Λ2 (Y )]
.

They show the existence of minimizers and show that the set of minimizers forms a finite dimensional

linear subspace under additional conditions. These conditions were that: (i) Λ (Y )−Pd
α=1mα (Xα) =

0 a.s. implies that Λ (Y ) ,mα (Xα) = 0 a.s., α = 1, . . . , d; (ii) E[Λ (Y )] = 0, E[mα (Xα)] = 0,

E[Λ2 (Y )] < ∞, and E[m2
α (Xα)] < ∞; (iii) The conditional expectation operators E[Λ (Y ) |Xα],

E[mα (Xα) |Y ], α = 1, . . . , d are compact.
We establish unique identification under different conditions as we assume throughout that

Λ (Y ) = m (X) + ε where ε is independent of X. We take the approach to nonparametric iden-

tification of Roehrig (1988).1 Let us define

f(X, Y, ε) := Λ (Y )−m (X)− ε = 0. (2)

Assume that f is a continuously differentiable function in all its arguments and that the distri-

bution of (X, ε) is absolutely continuous with positive density on the set of interest. Further, let

f∗(X, Y, ε) := Λ∗ (Y ) − m∗ (X) − ε = 0 denote a function observationally equivalent to f(·, ·, ·)
(Roehrig (1988), pp.435) and

Nα =

Ã
∂f ∗/∂(xα, y)
∂f/∂(xα, y)

!
, α = 1, . . . , d .

Then, Theorem 1 and Condition 3.2 of Roehrig (1988) tell us that model (2) is uniquely identified if

1The problems Benkard and Berry (2004) found in the article of Roehrig (1988) are not related to the results we
are using here, since we restrict in our article to a single equation problem.
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and only if: |Nα| = 0 for α = 1, . . . , d implies that f ∗ = f . Here, | · | means the determinant.2 We
will give two examples. In particular we show that additive (and likewise multiplicative) separability

of the exogenous variables is sufficient to identify our model.

Without any structure on m(·) , the model is not identified. We have

Nα =

Ã
−∂m∗/∂xα ∂Λ∗/∂y
−∂m/∂xα ∂Λ/∂y

!
, α = 1, . . . , d,

whence
∂m

∂xα
(x)

∂Λ∗

∂y
(y) =

∂m∗

∂xα
(x)

∂Λ

∂y
(y), α = 1, . . . , d. (3)

For all points x for which ∂m(x)/∂xβ 6= 0, we have ∂Λ∗
∂y

= ∂m∗
∂xβ

∂Λ
∂y

³
∂m
∂xβ

´−1
. Now, for a strictly

monotonic Λ we get for any α 6= β,

∂m

∂xα
(x)

∂m∗

∂xβ
(x) =

∂m∗

∂xα
(x)

∂m

∂xβ
(x). (4)

This has many solutions, as for example m∗ = ma for any a. Therefore, even a parametrization of

the transformation function Λ , respectively Λ∗ does not automatically imply Λ = Λ∗ and m = m∗.
Suppose that we have an additive structure m(x) =

Pd
α=1mα(xα).Then (4) becomes

∂mβ

∂xβ
(xβ)

∂m∗α
∂xα

(xα) =
∂m∗β
∂xβ

(xβ)
∂mα

∂xα
(xα).

Then, if Xα is not a function of Xβ and Λ is nonlinear, we get

∂m∗α
∂xα

(xα) =
∂mα

∂xα
(xα) , α = 1, . . . , d ;

∂Λ∗

∂y
(y) =

∂Λ

∂y
(y).

Therefore, mα are identified up to a constant, which can be set by a location normalization on

mα, e.g., E[mα(Xα)] = 0. Similarly, Λ is identified up to a constant, which is set by a location

normalization on ε, like E(ε) = 0 or qα(ε) = 0, where qα denotes the α quantile.

This identification result holds more generally. In particular, the pure multiplicative case is sim-

ilar. Also, the cases where G(z) = H(
Pd

α=1 zα) or G(z) = H(
Yd

α=1
zα) for some strictly monotonic

known function H are automatically identified by the above reasoning.

As we have seen, for identification it is not even necessary to parameterize Λ, but one would need

several restrictions on it, and interpretation becomes difficult. Apart from that, having nonparametric

functionals on both parts of model (2) renders the estimation problem impractical even for relatively

large samples. On the other hand, for functional m(·) some structural assumptions, usually provided
either by economic or biometric theory, are sufficient to identify our regression problem.

2We have applied here Condition 3.2 instead of Condition 3.1 because we restrict here for the ease of presentation
to models where ∂f∗/∂ε∗ = 0 is always fulfilled in

BB∗ = {x, y, ε, ε∗ : f(x, y, u) = 0, f∗(x, y, ε∗) = 0, (x, ε) ∈ D} ,
with D being the joint support of X and ε. Notice that then our conclusions are clearly not affected by the criticism
of Benkard and Berry (2004).
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3 Estimating the optimal Transformation

In the sequel we consider the model

Λθo (Y ) = m(X) + ε, (5)

where {Λθ : θ ∈ Θ} is a parametric family of strictly increasing functions, while the function m(.) is
of unknown form but with a certain predetermined structure that is sufficient to yield identification.

We assume that the error term ε is independent of X and has distribution F . The covariate X

is d-dimensional and has compact support X =
Qd

α=1RXα. Among the many transformations of

interest, the following ones are used most commonly: (Box-Cox) Λθ(y) =
yθ−1
θ
(θ 6= 0) and Λθ(y) =

log(y) (θ = 0); (Zellner-Revankar) Λθ(y) = ln y + θy2; (Arcsinh) Λθ(y) = sinh
−1(θy)/θ. The arcsinh

transform is discussed in Johnson (1949) and more recently in Robinson (1991). The main advantage

of the arcsinh transform is that it works for y taking any value, while the Box-Cox and the Zellner-

Revankar transforms are only defined if y is positive. For these transformations, the error term

cannot be normally distributed except for a few isolated parameters, and so the Gaussian likelihood

is misspecified. In fact, as Amemiya and Powell (1981) point out, the resulting estimators (in the

parametric case) are inconsistent when only n→∞.
We let Θ denote a finite dimensional parameter set (a compact subset of Rk) andM an infinite

dimensional parameter set. We assume thatM is a vector space of functions endowed with metric

k · kM = k · k∞. We denote θo ∈ Θ and mo ∈M as the true unknown finite and infinite dimensional

parameters. Define the regression function

mθ(x) = E[Λθ (Y ) |X = x]

for each θ ∈ Θ. Note that mθo(·) ≡ mo(·).
We suppose that we have a randomly drawn sample Zi = (Xi, Yi), i = 1, . . . , n, from model (5).

Define, for θ ∈ Θ and m ∈M,

ε(θ,m) = Λθ(Y )−m(X),
and let εθ = ε(θ) = ε(θ,mθ), and εo = εθo. When there is no ambiguity, we also use the notations ε

and m to indicate εo and mo. Moreover, let Λo = Λθo .

3.1 The Profile Likelihood (PL) Estimator

The method of profile likelihood has already been applied to many different semiparametric estima-

tion problems. The basic idea is simply to replace all unknown expressions of the likelihood function

by their nonparametric (kernel) estimates. We consider Λθ (Y ) = mθ(X) + εθ for any θ ∈ Θ. Then,

the cumulative distribution function is

Pr[Y ≤ y|X] = Pr[Λθ (Y ) ≤ Λθ(y)|X] = Pr [εθ ≤ Λθ(y)−mθ(X)|X] = Fε(θ)(Λθ(y)−mθ(X)),
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where Fε(θ)(e) = Fε(θ,mθ)(e) and Fε(θ,m) = P (ε(θ,m) ≤ e), and so

fY |X(y|x) = fε(θ)(Λθ(y)−mθ(x))Λ
0
θ(y)

where fε(θ) and fY |X are the probability density functions of ε(θ) and of Y given X. Then, the log

likelihood function is
nX
i=1

n
log fε(θ)(Λθ(Yi)−mθ(Xi)) + logΛ

0
θ(Yi)

o
.

Let bmθ(.) be one of our estimators (see Section 4 below) of mθ(.), and let

bfε(θ)(e) := 1

ng

nX
i=1

K2

µ
e− bεi(θ)

g

¶
, (6)

with bεi(θ) = bεi(θ,mθ) and bεi(θ,m) = εi(θ, bm) = Λθ(Yi)− bm(Xi). Here, K2 is a scalar kernel and g is

a bandwidth sequence. Then, define the profile likelihood estimator of θo by

bθPL = arg maxθ∈Θ nX
i=1

h
log bfε(θ)(Λθ(Yi)− bmθ(Xi)) + logΛ

0
θ(Yi)

i
. (7)

The computation of bθPL can be done by grid search in the scalar case and using derivative-based
algorithms in higher dimensions, assuming that the kernels are suitably smooth.

3.2 Mean Square Distance from Independence (MD) Estimator

Although the profile likelihood approach yields an efficient estimator for the transformation under

certain conditions, there are four good reasons why it is worth providing alternatives when it comes to

practical work. First, as we will see in Section 6, the profile likelihood method is computationally quite

expensive. In particular, so far we have not found a reasonable implementation for the recentered

bootstrap.Second, for that approach we do not only face the typical question of bandwidth choice

for the nonparametric part mθ, we additionally face a bandwidth for the density estimation, see

equation (6). Third, there are some transformation models Λθ for which the support of Y depends

on the parameter θ and so are non-regular. Finally, although the estimator we get from the profile

likelihood is under certain conditions efficient in the asymptotic sense, Severini and Wong (1992),

this tells us little about its finite sample performance, neither in absolute terms nor in comparison

with competitors.

One possible and computationally attractive competitor is the minimization of the mean square

distance from independence. Why it is computationally more attractive will be explained in Section

6. This method we will introduce here has been reviewed in Koul (2001) for other problems.

Define, for each θ ∈ Θ and m ∈M, the empirical distribution functions

bFX(x) = 1

n

nX
i=1

1(Xi ≤ x) ; bFε(θ)(e) = 1

n

nX
i=1

1(bεi(θ) ≤ e) ;
7



bFX,ε(θ)(x, e) = 1

n

nX
i=1

1(Xi ≤ x)1(bεi(θ) ≤ e),
the moment function

GnMD(θ, bmθ)(x, e) = bFX,ε(θ)(x, e)− bFX(x) bFε(θ)(e)
and the criterion function

kGnMD(θ, bmθ)k22 =
Z
[GnMD(θ, bmθ)(x, e)]

2 dμ(x, e) (8)

for some probability measure μ. We define an estimator of θ, denoted bθMD, as any approximate
minimizer of kGnMD(θ, bmθ)k22 over Θ. To be precise let

kGnMD(bθMD, bmθ)k2 = inf
θ∈Θ

kGnMD(θ, bmθ)k2 + op(1/
√
n).

There are many algorithms available for computing the optimum of general non-smooth functions,

e.g., the Nelder-Mead, and the more recent genetic and evolutionary algorithms.

We can use in (8) the empirical measure dμn of {Xi,bεi(θ)}ni=1, which results in a criterion function
Qn(θ) =

1

n

nX
i=1

[GnMD(θ, bmθ)(Xi,bεi(θ))]2 . (9)

4 Estimating the Nonparametric Index

We here discuss how to estimate the function mθ imposing the structure we have assumed. We only

discuss here the additive case

m(x) = c+
dX

α=1

mα(xα),

where E[mα(Xα)] = 0.We start with the marginal integration [MI in the sequel] estimator. For each

α = 1, . . . , d, partition x = (xα, xα), where xα is a one-dimensional direction of interest and xα is a

(d− 1)-dimensional nuisance direction, likewise with X = (Xα, Xα) and Xi = (Xαi, Xαi). Let fX be

the covariate density and fXα be its marginals, and let fXα be the joint density of Xα.

For each θ, we first estimate mθ(x) by local linear regression. That is, let (ba,bb) minimize the
following localized least squares criterion

nX
i=1

K

µ
x−Xi
h

¶h
Λθ(Yi)− a− b>(Xi − x)

i2
, (10)

where K(t) =
Qd
j=1 k(tj) and k is a univariate kernel function, while h = h(n) is a bandwidth. Then

let bmθ(x) = ba. Now define bγα(xα; θ) = 1

n

nX
i=1

bmθ(xα, Xαi). (11)
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This estimator goes back to Newey (1994), Tjøstheim and Auestad (1994), and Linton and Nielsen

(1995). We will use here the improved version of Kim, Linton and Hengartner (1999) and Hengartner

and Sperlich (2005). Now, let

bmMI
θ (x) =

dX
α=1

bγα(xα; θ)− (d− 1)bcθ , (12)

where bcθ = n−1Pn
i=1 Λθ(Yi).

A second estimator of mθ(x) is the so called smooth backfitting [BF in the sequel] estimator

which we denote by bmBF
θ (x). It has been introduced by Mammen, Linton and Nielsen (1999). Here,

we just give a brief definition, see Nielsen and Sperlich (2005) for implementation, finite sample

performance, bandwidth choice and further explanation of the method. We define the ‘empirical

projection’ estimates {bmBF
α (·),α = 1, . . . , d, bmBF

0 } as the minimizers of the following criterionZ
[bmθ(x)− m̄0 − m̄1(x1)− . . .− m̄d(xd)]

2 bf(x)dx, (13)

where the minimization runs over all functions m(x) = m̄0+
P

α m̄α(xα), with
R
m̄α(xα) bfα(xα)dxα =

0, where bfα(xα) = R bf(x)dxα is the marginal of the density estimate bf(x) = n−1h−dPn
i=1K

¡
x−Xi
h

¢
.

This is the one-dimensional kernel density estimate bfα(xα) = n−1Pn
i=1Kh(xα −Xαi). A minimizer

of (13) exists if the density estimate bf is non-negative.
It has been shown that bγα(xα; θ) consistently estimates the population quantity γα(xα; θ) =R
mθ(xα, xα)fXα(xα)dxα. Under the additive model, γα(xα; θo) = c + mα(xα). Then, bmMI

θ (x) esti-

mates consistently

mMI
θ (x) =

dX
α=1

γα(xα; θ)− (d− 1)cθ,

where cθ = E[Λθ(Y )]. Note that mMI
θo
(x) = mθo(x), i.e. combining the covariate effects in the θo scale

gives us the regression function. However, mMI
θ (x) 6= mθ(x) for θ 6= θo. This information is used to

identify θo. Regarding the backfitting estimator, bmBF
θ (x) consistently estimates a function mBF

θ (x),

wheremBF
θo
(x) = mθo(x), but m

BF
θ (x) 6= mθ(x) for θ 6= θo. We give an interpretation to the functions

mMI
θ (x) and mBF

θ (x). Define the subspace of additive functions

Madd = {m : m(x) =
dX

α=1

mα(xα) for some m1(.), . . . ,md(.)},

and define the two additive approximations

mθ,add(.) = arg min
m∈Madd

Z £
(mθ(X)−m(X))2

¤
fX(X)dX

mθ,addprod(.) = arg min
m∈Madd

Z £
(mθ(X)−m(X))2

¤ dY
α=1

fXα(Xα)dXα.

9



Nielsen and Linton (1998) showed that mMI
θ = mθ,addprod. Mammen, Linton and Nielsen (1999) show

that mBF
θ = mθ,add. In general, these will be different functions, and will have different derivatives

at θ0. Define

∂mMI
θ

∂θ
(·) = arg min

m∈Madd

Z "µ
∂mθ

∂θ
(X)−m(X)

¶2# dY
α=1

fXα(Xα)dXα (14)

∂mBF
θ

∂θ
(·) = arg min

m∈Madd

Z "µ
∂mθ

∂θ
(X)−m(X)

¶2#
fX(X)dX. (15)

These functions play an important part in the limiting distributions below.

In the sequel we will denote mθ to indicate either the function E[Λθ(Y )|X = ·] or the functions
mBF

θ and mMI
θ defined above. It will be clear from the context which function it represents.

5 Asymptotic Properties

We now discuss the asymptotic properties of our procedures. Note that although nonparametric

density estimation with non- or semiparametrically constructed variables has already been considered

in Van Keilegom and Veraverbeke (2002) and in Sperlich (2005), their results cannot be applied

directly to our problem. The first ones treated the more complex problem of censored regression

models but have no additional parameter like our θ. Nevertheless, as they consider density estimation

with nonparametrically estimated residuals, their results come much closer to our needs than the

second paper. Neither offer results on derivative estimation. As we will see now, this we need when we

translate our estimation problem into the estimation framework of Chen, Linton and Van Keilegom

(2003) [CLV in the sequel].

To be able to apply the results of CLV for proving the asymptotics of the profile likelihood, we

need an objective function that takes its minimum at θo. Therefore we introduce some notation.

For any function ϕ we define ϕ̇ := ∂ϕ/∂θ and ḃϕ := ∂bϕ/∂θ respectively. Similarly we define for
any function ϕ: ϕ0(u) := ∂ϕ(u)/∂u and bϕ0(u) := ∂bϕ(u)/∂u respectively. The same holds for any
combination of primes and dots.

We use the abbreviated notation s = (m, r, f, g, h), sθ = (mθ, ṁθ, fε(θ), f
0
ε(θ), ḟε(θ)), so = sθo , andbsθ = (bmθ, ḃmθ, bfε(θ), bf 0ε(θ), ḃfε(θ)).

Then, define for any s = (m, r, f, g, h),

GnPL(θ, s) (16)

= n−1
nX
i=1

(
1

f{εi(θ,m)} [g{εi(θ,m)}{Λ̇θ(Yi)− r(Xi)}+ h{εi(θ,m)}] + Λ̇0θ(Yi)
Λ0θ(Yi)

)
,

and let GPL(θ, s) = E[GnPL(θ, s)], and Γ1PL =
∂
∂θ
GPL(θ, sθ)

⏐y
θ=θo

.

10



Note that kGPL(θ, sθ)k and kGnPL(θ, bsθ)k take their minimum at θo and bθPL respectively. We
assume in the appendix that the estimators bmMI and bmBF obey a certain asymptotic expansion.

The proof of such expansions can be found in Lemmas 6.1 and 6.2 of Mammen and Park (2005) for

backfitting and in Linton, Chen, Wang and Härdle (1997) for marginal integration. In consequence

we obtain expansions for bfε(θ), bf 0ε(θ), ḃf ε(θ).
Theorem 1. Under assumptions A.1—A.8 given in Appendix A, we have

bθPL − θo = −Γ−11PLGnPL(θo, so) + op(n−1/2),

and hence √
n(bθPL − θo) =⇒ N(0,ΩPL),

where

ΩPL = Γ−11PLVar{G1PL(θo, so)}(ΓT1PL)−1.

Note that the variance of bθPL equals the variance of the estimator of θo that is based on the true
(unknown) values of the nuisance functions mo, ṁo, fε, f

0
ε and ḟε. When mo = m

BF
θo
, we expect that

the profile likelihood estimator is semiparametrically efficient following Severini and Wong (1992),

see also Linton and Mammen (2005).

We obtain the asymptotic distribution of bθMD using a modification of Theorems 1 and 2 of Chen,
Linton and Van Keilegom (2003). That result applied to the case where the norm in (8) was finite

dimensional, although their Theorem 1 is true as stated with the more general norm. Regarding

their Theorem 2, we need to modify only Condition 2.5 to take account of the fact that GnMD(θ,mθ)

is a stochastic process in (x, e). Let λθ(y) = Λ̇θ(y) = ∂Λθ(y)/∂θ and let λo = λθo . We also note that

∂

∂θ
E[Λθ(Y )|X]

⏐⏐⏐y
θ=θo

=

Z
λo(Λ

−1
o (mo(X) + e))fε(e)de.

Define the matrix

Γ1MD(x, e) = fε(e)E
h
(1(X ≤ x)− FX(x))

³
λo(Λ

−1
o (mo(X) + e)) +

·
mo(X)

´i
,

and the i.i.d. mean zero and finite variance random variables

U i =

Z
[1(Xi ≤ x)− FX(x)][1(εi ≤ e)− Fε(e)]Γ1MD(x, e)dμ(x, e)

+ fX(Xi)
dX

α=1

vo1α(Xαi, εi)

Z
fε(e) (1(Xi ≤ x)− FX(x))Γ1MD(x, e)dμ(x, e).

Let V1MD = E[U iU
>

i ] and Γ1MD =
R
Γ1MD(x, e)Γ

T
1MD(x, e)dμ(x, e).

11



Theorem 2. Under the assumptions B.1—B.8 given in Appendix B, we have

bθMD − θo = −Γ−11MDUi + op(n−1/2),

and hence, √
n(bθMD − θo) =⇒ N(0,ΩMD),

where

ΩMD = Γ
−1
1MDV1MDΓ

−1
1MD.

R .

1. Bootstrap standard errors. CLV proposes and justifies the use of the ordinary bootstrap. Let

{Z∗i }ni=1 be drawn randomly with replacement from {Zi}ni=1 , let

G∗nMD(θ,m)(x, e) = bF ∗Xε(θ)(x, e)− bF ∗X(x) bF ∗ε(θ)(e),
where bF ∗Xε(θ),

bF ∗X(x), and bF ∗ε(θ) are computed from the bootstrap data. Let also bm∗θ(·) (for each θ) be

the same estimator as bmθ(·) but based on the bootstrap data. Following Hall and Horowitz (1996,
p897) it is necessary to recenter the moment condition, at least in the overidentified case. Thus,

define the bootstrap estimator bθ∗MD to be any sequence that satisfies
kG∗nMD(bθ∗MD, bm∗θ∗MD

)−GnMD(bθMD, bmθMD
)k = inf

θ∈Θ
kG∗nMD(θ, bm∗θ)−GnMD(bθMD, bmθMD

)k+ op∗(n−1/2),
(17)

where superscript ∗ denotes a probability or moment computed under the bootstrap distribution
conditional on the original data set {Zi}ni=1. The resulting bootstrap distribution of

√
n(bθ∗MD−bθMD)

can be shown to be asymptotically the same as the distribution of
√
n(bθMD − θo), by following the

same arguments as in the proof of Theorem B in CLV .

2. Estimated weights. Suppose that we have estimated weights μn(x, e) that satisfy supx,e |μn(x, e)−
μ(x, e)| = op(1). Then the estimator computed with the estimated weights μn(x, e) has the same dis-
tribution theory as the estimator that used the limiting weights μ(x, e).

3. Note that the asymptotic distributions in Theorem 1 and 2 do not depend on the details of

the estimators bmMI
θ (x) and bmBF

θ (x) only on their population interpretations through (14) and (15).

6 Simulations

In this section our interest is directed to the performance of our methods for distinct models, error

variances, and sample sizes. But we are also interested in practical questions like bandwidth choice

and computational expense.

We will work with the following data generating process:

Λθ(Y ) = b0 + b1X
2
1 + b2sin(πX2) + εσe, (18)
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where Λθ is the Box—Cox transformation, ε ∼ N(0, 1) but restricted on [−3, 3] and X1, X2 ∼
U [−0.5, 0.5]2. We study three different models setting b0 = 3.0σe + b2 and b1, b2, σe as follows:

for model1 b1 = 5.0, b2 = 2.0, σe = 1.5; for model2 b1 = 3.5, b2 = 1.5, σe = 1.0; and for model3

b1 = 2.5, b2 = 1.0, σe = 0.5. Note that the setting of all parameter and error distribution has been

chosen such that the variable Λθ(Y ) is positive to avoid problems when generating the Y for arbitrary

θ ∈ [−0.5, 1.5] in our simulations.
We have done simulations for the cases when the real data generating parameter θo was set to

0.0, 0.5 or 1.0. The estimate was taken from a grid of step length 0.0625 on the interval [−0.5, 1.5].
The additive model has been estimated by the two above mentioned approaches: by marginal in-

tegration (MI) and by smooth backfitting (BF). We used the quartic kernel K(u) = 15
16
(1 − u2)2+

throughout. We chose h1 = h2 = n−1/5h0 for a large range of h0 — values. Further, for the MI,
where it is allowed or even recommended to choose larger bandwidths (let us call them gα) in the

nuisance directions, we set g1 = g2 = 2 · h1 due to our experiences from Hengartner and Sperlich

(2005). Certainly, neither setting h1 = h2 nor g1 = g2 = 2h1 is always optimal, especially not

when the additive components have rather different smoothness or the variables Xα differ a lot in

distribution. However, both cases hardly meet here so we think our choice is fair enough for our

purposes. For the density estimator of the estimated residuals in the PL we used the Silverman’s

rule of thumb bandwidth in each iteration of the maximization: 1.06n−1/5 IR
1.34

where cIR denotes the
estimated interquartile range of the bεi(θ), i = 1, . . . , n. This is a quite reasonable choice in practice
as long as the residuals follow a somehow bell-shaped distribution.

6.1 Comparing PL vs MD and MI vs BF

First, we do some basic considerations like general performance in comparison (MD and PL, MI

and BF) and robustness against bandwidths choice, all for different θo. To this end, we generated

500 samples of size n = 100 for each combination of estimator. Tables 1 and 2 give the means and

standard deviations calculated from these 500 replications for each data generating θo and different

bandwidth h0n−1/5. Notice that due to the fact that we always set Θ = [−0.5, 1.5], the simulation
results for θo = 0.0, respectively 1.0, are biased towards the interior of the interval. Note further

that there is also a relation between bandwidth and θ (the estimated one as well as the real one),

that is the smoothness of the model. As we use local constant smoothers, the estimates will have

more bias for larger derivatives (“steeper functionals"). On the other hand, both a smaller θ and a

larger h0 make the data “smoother" and the other way around. Thus, some unwanted interaction,

even if asymptotically vanishing, would not be surprising.

Table 1 gives the results for any combination of model, bandwidth and method, always keeping

the same nonparametric smoother (here MI) to estimate the additive components. The effect of

using different smoothers (MI versus BF) can be seen when comparing later Table 1 with Table 2

where the same results for BF are presented.
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Both Methods when using MI

θo = .00 .50 1.0 .00 .50 1.0 .00 .50 1.0

h0 = 0.4 0.5 0.6

MD model1 .0393 .6163 .8692 .0394 .6210 .8890 .0368 .6269 .8995

.1640 .5767 .6578 .1453 .5611 .6604 .1431 .5547 .6471

.0284 .3461 .4499 .0227 .3295 .4485 .0218 .3238 .4287

model2 .0642 .6210 .8656 .0625 .6389 .9015 .0566 .6363 .9067

.2178 .6026 .6855 .1909 .5662 .6390 .1926 .5684 .6505

.0516 .3778 .4879 .0403 .3399 .4181 .0403 .3417 .4318

model3 .1434 .6744 .8825 .1241 .6875 .9519 .1169 .6911 .9611

.3468 .6336 .6766 .2965 .5847 .6265 .2877 .5835 .6256

.1408 .4319 .4717 .1033 .3770 .3948 .0964 .3770 .3929

PL model1 .0013 .4209 .8083 .0004 .4372 .8153 .0049 .4392 .8111

.0811 .3351 .5213 .0856 .3501 .5342 .0877 .3512 .5277

.0066 .1186 .3085 .0073 .1265 .3195 .0077 .1270 .3142

model2 -.002 .4436 .8290 .0027 .4471 .8302 .0056 .4450 .8114

.1123 .3496 .5197 .1118 .3570 .5260 .1116 .3646 .5280

.0126 .1254 .2993 .0125 .1303 .3055 .0125 .1360 .3144

model3 .0076 .4799 .8698 .0078 .4778 .8581 .0125 .4777 .8586

.1731 .3867 .5215 .1675 .3873 .5104 .1730 .3957 .5119

.0300 .1499 .2889 .0281 .1505 .2806 .0301 .1571 .2820

Table 1: Performance of MD and PL method with MI estimator: Means (first line), standard devia-

tions (second line), and means squared error (third line) of the bθ for different θo, models [see (18)],
and bandwidths hα = h0n−1/5, α = 1, 2, for sample size n = 100. All numbers calculated from 500

replications.

It is clear by its definition that if the error distribution is small compared to estimation error, then

the MD is expected to do worse. Indeed, even though model3 is the smoothest model and therefore

the easiest estimation problem, for the smallest error (σe = 0.5) the MD does worse. In those cases

the PL estimator should perform better and so it does. It might be surprising that θ mostly gets

better estimated in model1 than in model2 and model3, where the nonparametric functionals are

much easier to estimate, but notice that for the quality of bθ the relation between estimation error
and model error is more important. This holds also true for the PL method. Nevertheless, at least

for small samples none of the estimators seems to outperform uniformly the other: so the PL has

mostly smaller variance whereas MD has mostly smaller bias. We later compare the methods for n
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increasing to n = 1000. Note that this finding does not depend on the particular smoother MI or

BF (compare Table 2). As expected, for very small samples the results depend on the bandwidth.

For this reason, and due to its importance in practice we will investigate this problem more in detail

below.

Concerning the different θo to estimate we observe for θo = 0.0 and 1.0 what we expected, a bias

towards the interior of the interval [−0.5, 1.5]. Note that we did also simulation studies for θo = 0.25
and 0.75 that are not presented here. The quality of the results for these two values was similar to

that we obtain for θo = 0.5.

Let us mention also that, as already indicated before, the PL method is much more expensive to

calculate than the MD.

Next we would like to see the actual convergence rate of the estimates bθ in practice. There
are three possibilities: it converges slower than the parametric

√
n-rate due to the necessity of first

estimating the nonparametric (additive) model, it converges faster as for rather small samples there

is a bias due to the nonparametric pre-step that vanishes for increasing n, or it converges more or less

at rate
√
n. In a simulation study with bandwidth hα = h0n−1/5, α = 1, 2 we applied our methods

with the marginal integration smoother and gα = 2hα, α = 1, 2 on model1. In Figure 1 we give the

mean squared error multiplied by
√
n for data generating θ = 0.0, 0.5, and 1.0 calculated from 100

simulation runs. The data generating model was model1, the bandwidth used was h = 0.5n−1/5.
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Figure 1: Mean Squared Error times
√
n as a function of sample size. Left: PL, right: MD. Data

generating process was model1 with: thick line: θ = 1.0, middle sized line: θ = 0.5, thin line:

θ = 0.0. Numbers are calculated from 100 replicates for each n. Additive function estimator was MI

with h0 = 0.5.

As we can see clearly, for both methods and all θ the estimate converges faster to θ than
√
n, i.e.
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the parametric rate. This actually is not surprising as it is expected that for such small data sets

higher order terms still matter a lot, in particular in the bias. So the reduction in the mean squared

error is, at least at the beginning, faster than the asymptotic
√
n-rate. In both methods θ = 0.0

seems to be estimated best. For n = 1000 the mean squared error is pretty close to zero.

We next focus on the question what happens when we change the smoother, in concrete what

happens if we take Smooth Backfitting (BF) instead of Marginal Integration (MI). For this let us

have a look at Table 2 below.

Both Methods when using BF

θo = .00 .50 1.0 .00 .50 1.0 .00 .50 1.0

h0 = 0.3 0.4 0.5

MD model1 .0178 .5267 .9204 .0233 .5324 .9219 .0262 .5576 .9239

.1079 .4044 .5519 .1154 .4220 .5758 .1214 .4437 .5815

.0120 .1643 .3109 .0139 .1791 .3377 .0154 .2002 .3439

model2 .0315 .5735 .9401 .0337 .5831 .9374 .0432 .5950 .9425

.1497 .4354 .5556 .1563 .4594 .5692 .1591 .4698 .5839

.0234 .1950 .3123 .0256 .2180 .3279 .0272 .2297 .3443

model3 .0534 .5969 .9593 .0686 .6118 .9579 .0820 .6307 .9718

.2257 .4738 .5352 .2358 .4906 .5721 .2421 .5014 .5839

.0538 .2339 .2881 .0603 .2532 .3291 .0653 .2684 .3417

h0 = 0.2 0.3 0.4

PL model1 -.004 .4297 .8335 -.006 .4257 .8336 -.002 .4318 .8261

.0711 .2763 .4369 .0755 .2870 .4655 .0758 .3055 .4916

.0051 .0813 .2186 .0057 .0879 .2444 .0057 .0980 .2719

model2 -.001 .4490 .8710 -.004 .4395 .8470 -.003 .4505 .8423

.0951 .3057 .4610 .1027 .3151 .4725 .1044 .3345 .4974

.0090 .0961 .2292 .0106 .1030 .2467 .0109 .1143 .2723

model3 .0045 .4622 .8732 .0037 .4519 .8562 .0028 .4510 .8562

.1516 .3398 .4590 .1570 .3612 .4842 .1566 .3570 .4929

.0230 .1169 .2268 .0247 .1328 .2551 .0245 .1299 .2636

Table 2: Performance of MD and PL method with BF estimator: Means (first line), standard devia-

tions (second line), and means squared error (third line) of the bθ for different θo, models [see (18)],
and bandwidths hα = h0n−1/5, α = 1, 2, for sample size n = 100. All numbers calculated from 500

replications.

The findings stated above (when we used MI) still hold. But, backfitting clearly does uniformly
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better than MI as our (however, asymptotic) theory indicates for the MD. Nevertheless it is also worth

to mention that the implementation is much simpler for MI and computationally much less expensive.

This is because for each possible θ the backfitting algorithm has to be performed completely in new,

since it is iterative. In contrast, the MI works with weighting matrices that only depend on the

design so that for any θ all we have to do is a simple matrix multiplication to get the estimates bmα.

Note further that the selected results refer to bandwidths that are slightly different. This is

because marginal integration needs larger bandwidths than smooth backfitting to get final estimates

of similar smoothness, see Sperlich, Linton and Härdle (1999). We see here a clear dependence

between the θ and hopt (the optimal bandwidth to estimate θ). So again, obviously it is worth to

think somewhat more about the crucial question of bandwidth choice.

6.2 Bandwidth Discussion and Bootstrap

One might think that the probably easiest approach would be to apply plug-in bandwidths for the

particular problem under consideration. For many of the regression problems and their corresponding

estimators that might be true, and in particular for additive model estimators considered here, those

plug-in rules can be found in the literature. However, they rely on asymptotic expressions with

unknown functions and parameters that in our particular case are even more complicated to estimate.

Further, in simulations (see Sperlich, Linton and Härdle, 1999, or Mammen and Park, 2005) they

turned out not to work satisfactory.

Another, also quite natural approach would be to apply cross validation, i.e. the jackknife or the

generalized version. For the generalized cross validation one needs to estimate the degrees of freedom

of the nonparametric estimator, something that is even in the simple nonparametric regression a

quite crucial point, this does not become better for our problem. On the other hand, for the smooth

backfitting (see Nielsen and Sperlich, 2005) the jackknife method has been implemented successfully,

and Kim et al. (1999) discussed a version for the internalized MI, i.e. the version applied here.

Therefore we implemented the jackknife cv-bandwidth for BF and MI also for our context. However,

for the MI we set all bandwidths of nuisance directions gα to gα = 2hα. In Table 3 we give the results

for minimizing the MD over θ ∈ Θ choosing h ∈ Rd by cross validation as described in Nielsen and
Sperlich (2005), respectively in Kim et al (1999). Notice that we allow for different bandwidths in

each direction. The simulations are executed as before but only for model1 and based on just 100

simulation runs what is enough to see the following: the results presented indicate that this method

seems to work for any θ. As for this exercise we did no further investigation on what happens for

n running from 100 to 1000 we have added the results for the case n = 200. It might surprise that

the constant for “optimal" cv - bandwidths does not only change with θ but even more with n (not

shown in table). Have in mind that in small samples the second order terms of bias and variance

are still quite influential and thus the rate n−1/5 is to be taken carefully; compare with the above
convergence-rate study.
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MD with cv-bandwidth

BF MI
n θo mean(bθ) std(bθ) mse mean(bθ) std(bθ) mse

0.0 .0069 .1369 .0188 .0032 .1619 .0262

100 0.5 .5039 .5319 .2829 .4776 .6251 .3913

1.0 .8345 .6087 .3979 .7176 .7211 .5998

0.0 .0194 .0647 .0046 .0245 .0876 .0083

200 0.5 .5509 .2892 .0862 .5490 .3685 .1382

1.0 1.017 .3695 .1368 .9689 .5104 .2615

Table 3: Simulation results when applying BF and MI with cross validation bandwidth to minimize

(9) w.r.t. θ. Numbers are calculated from 100 replications.

A disadvantage of this cross validation procedure is that it is computationally rather expensive,

and often rather hard to implement in practice as well. This gets even worse if one wants to combine

the cross validation with the PL method. Therefore we additionally suggest a procedure that is

relatively easy to implement, quite fast, and works reasonably well even for small data sets. The idea

is to choose θ and the bandwidth simultaneously minimizing, respectively maximizing, the considered

criteria function (7), respectively (9). Intuitively, this approach seems rather appealing to us as the

interpretation of the results is easier when keeping the same criteria function to minimize / maximize.

MD & PL for θ and h0 using MI estimator

MD PL
n θo mean(bθ) std(bθ) mse mean(bθ) std(bθ) mse

0.0 .0032 .1587 .0252 -.016 .0960 .0095

100 0.5 .5108 .6020 .3625 .3589 .3954 .1763

1.0 .7245 .7224 .5978 .6720 .5704 .4330

0.0 .0238 .0858 .0079 -.001 .0568 .0032

200 0.5 .5596 .3463 .1235 .4183 .2711 .0802

1.0 1.008 .4971 .2472 .8302 .4374 .2202

Table 4: Simulation results when minimizing (9) / maximizing (7) simultaneously w.r.t. θ and the

bandwidth. Numbers are calculated from 100 replications.

In Table 4 we give the results for minimizing the MD over θ ∈ Θ and h simultaneously. For

computational ease, we did this only for the MI smoother. The simulations are the same as above,

model1 with only 100 simulation runs but again for n = 100 and n = 200. To simplify the simulations

we chose h1 = h2, g1 = g2 = 2h1 as we did at the beginning of this section, see discussion above.
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The results presented in Table 4 indicate that this method seems to work very well, too. Certainly

it would be very hard to do any theory proving that the obtained bandwidths will converge to the

optimal ones. For both, this method and cross validation, it is also rather tedious to derive the

asymptotic properties for bθ since then the bandwidth is random.
As discussed in the sections above, often the asymptotic expressions given in our theorems are

little helpful in practice due to various reasons: they contain various unknown functions and para-

meters, and usually large sample sizes are needed before second order terms become really negligible.

Therefore we have suggested a bootstrap procedure to estimate the distribution of bθ in small samples
whose usefulness and performance we want to investigate now. For the sake of shortness we restrict

again to model1, applying the MI smoother. For this model we already know from above that the

optimal bandwidth constant h0 is about 0.5.

Bootstrap estimates of standard deviation and bias for θ

Method n θo std(bθ) cstd(bθ) std(cstd(bθ)) bias(bθ) dbias(bθ) std(dbias(bθ))
0.0 .1453 .2394 .0736 .0394 .0357 .0865

100 0.5 .5611 .5585 .0693 .1210 .0520 .2134

MD 1.0 .6604 .6179 .0751 -.111 -.072 .2138

0.0 .0810 .1097 .0287 .0129 .0074 .0578

200 0.5 .3598 .4045 .0723 .0224 .0428 .2217

1.0 .4972 .4996 .1019 -.057 -.035 .2588

recentered 0.0 .1453 .1658 .0364 .0394 .0154 .1116

100 0.5 .5611 .4597 .0514 .1210 .0341 .3208

1.0 .6604 .5577 .0621 -.111 -.082 .2682

0.0 .0856 .1044 .0148 .0004 -.002 .0416

100 0.5 .3501 .4048 .0497 -.063 .0155 .1619

PL 1.0 .5342 .5583 .0595 -.185 -.032 .2073

0.0 .0505 .0716 .0099 .0066 -.004 .0314

200 0.5 .2319 .2992 .0400 -.036 -.013 .1271

1.0 .3862 .4532 .0559 -.109 -.055 .1782

Table 5: Approximation of the distribution ofbθ by bootstrap for both methods, using MI. Here, the
values for bstd and bbias are averages over 200 simulations with 250 bootstrap samples. Numbers are
calculated from 200 simulation runs.

For our simulation study we did only 250 bootstrap replicates. In Table 5 we give the results

calculated from 200 replications. We see clearly the bootstrap is doing reasonable in estimating

the standard deviation but, as usually, doing less well for the bias of bθ. As one might expect, the
bootstrap gives some conservative results for the standard deviation, always (slightly) overestimating
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the standard deviation. So it can be recommended for statistical inference on the model.

7 Appendix A : Profile likelihood estimator

To prove the asymptotic normality of the profile likelihood estimator, we will use Theorems 1 and 2

of Chen, Linton and Van Keilegom (2003) (abbreviated by CLV in the sequel). Therefore, we need

to define the space to which the nuisance function s = (m, r, f, g, h) belongs. We define this space

by HPL =M2 × C11(IR)3, where Cba(R) (0 < a <∞, 0 < b ≤ 1, R ⊂ IRk for some k) is the set of all
continuous functions f : R→ IR for which

sup
y
|f(y)|+ sup

y,y0

|f(y)− f(y0)|
|y − y0|b ≤ a,

and where the space M depends on the model at hand. For instance, when the model is addi-

tive, a good choice for M is M =
Pd

α=1C
1
1(RXα), and when the model is multiplicative M =Qd

α=1C
1
1 (RXα). We also need to define, according to CLV, a norm for the space HPL. Let

kskPL = sup
θ∈Θ

max{kmθk∞, krθk∞, kfθk2, kgθk2, khθk2},

where k · k∞ (k · k2) denotes the L∞ (L2) norm. Finally, let’s denote k · k for the Euclidean norm.
We assume that the estimator bmθ is constructed based on a kernel function of degree q1, which

we assume of the form K1(u1)× . . .×K1(ud), and a bandwidth h. The required conditions on K1, q1

and h are mentioned in the list of regularity conditions given below.

7.1 Assumptions

We assume throughout this appendix that the conditions stated below are satisfied. Condition A.1-

A.7 are regularity conditions on the kernels, bandwidths, distributions FX , Fε, etc., whereas condition

A.8 contains primitive conditions on the estimator bmθ, that need to be checked depending on which

model structure and which estimator bmθ one has chosen.

A.1 The probability density function Kj (j = 1, 2) is symmetric and has compact support,R
ukKj(u) du = 0 for k = 1, . . . , qj − 1,

R
uqjKj(u) du 6= 0 and Kj is twice continuously

differentiable.

A.2 nh → ∞, nh2q1 → 0, ng6(log g−1)−2 → ∞ and ng2q2 → 0, where q1 and q2 are defined in

condition A.1 and q1, q2 ≥ 4.

A.3 The density fX is bounded away from zero and infinity and is Lipschitz continuous on the

compact support X .
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A.4 The functions mθ(x) and ṁθ(x) are q1 times continuously differentiable with respect to the

components of x on X × N (θo), and all derivatives up to order q1 are bounded, uniformly in
(x, θ) in X ×N (θo).

A.5 The transformation Λθ(y) is three times continuously differentiable in both θ and y, and there

exists a δ > 0 such that

E

"
sup

kθ0−θk≤δ

¯̄̄̄
∂k+l

∂yk∂θl
Λθ0(Y )

¯̄̄̄#
<∞

for all θ in Θ and all 0 ≤ k + l ≤ 3.

A.6 The distribution Fε(θ)(y) is three times continuously differentiable with respect to y and θ, and

sup
θ,y

¯̄̄̄
∂k+l

∂yk∂θl
Fε(θ)(y)

¯̄̄̄
<∞

for all 0 ≤ k + l ≤ 2.

A.7 For all η > 0, there exists "(η) > 0 such that

inf
kθ−θok>η

kGPL(θ, sθ)k ≥ "(η) > 0.

Moreover, the matrix Γ1PL is of full (column) rank.

A.8 The estimators bmo and ḃmo can be written as

bmo(x)−mo(x) =
1

nh

nX
i=1

dX
α=1

K1

³xα −Xαi

h

´
vo1α(Xαi, εi) +

1

n

nX
i=1

vo2(εi) + bvo(x),
and

ḃmo(x)− ṁo(x) =
1

nh

nX
i=1

dX
α=1

K1

³xα −Xαi

h

´
wo1α(Xαi, εi) +

1

n

nX
i=1

wo2(εi) + bwo(x),
where supx |bvo(x)| = op(n−1/2), supx |bwo(x)| = op(n−1/2), the functions vo1α(x, e) and wo1α(x, e)
are q1 times continuously differentiable with respect to the components of x, their derivatives up

to order q1 are bounded, uniformly in x and e, E(vo2(ε)) = 0 andE(wo2(ε)) = 0. Moreover, with

probability tending to 1, bmθ, ḃmθ ∈M, supθ∈Θ kbmθ −mθk = op(1), supθ∈Θ k ḃmθ − ṁθk = op(1),
kbmθ −mθk = op(n−1/4) and k ḃmθ − ṁθk = op(n−1/4) uniformly over all θ with kθ − θok = o(1),
and

sup
x
|( ḃmθ − ṁθ)(x)− ( ḃmo − ṁo)(x)| = op(1)kθ − θok+Op(n−1/2)

for all θ with kθ − θok = o(1). Finally, the spaceM satisfies
R p

logN(ε,M, k · k∞) dε <∞.
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7.2 Proof of Theorem 1

The proof consists in verifying the conditions given in Theorem 1 (regarding consistency) and 2

(regarding asymptotic normality) in CLV. In Lemmas A1-A8 below, we verify these conditions. The

result then follows immediately from those lemmas, assuming that the primitive conditions on bmθ

and the regularity conditions stated in A.1-A.8 hold true.

L A1. Uniformly for all θ ∈ Θ, GPL(θ, s) is continuous in s at s = sθ in the uniform

norm.

L A2.

sup
y
sup
θ∈Θ

| bfε(θ)(y)− fε(θ)(y)| = op(1), sup
y
sup
θ∈Θ

| ḃf ε(θ)(y)− ḟε(θ)(y)| = op(1),
and

sup
y
sup
θ∈Θ

| bf 0ε(θ)(y)− f 0ε(θ)(y)| = op(1).
L A3. For all sequences of positive numbers δn = o(1),

sup
θ∈Θ,ks−sθkPL≤δn

kGnPL(θ, s)−GPL(θ, s)k = op(1).

L A4. The ordinary partial derivative in θ of GPL(θ, sθ), denoted Γ1PL(θ, sθ), exists in a

neighborhood of θo, is continuous at θ = θo, and the matrix Γ1PL = Γ1PL(θo, so) is of full (column)

rank.

For any θ ∈ Θ, we say that GPL(θ, s) is pathwise differentiable at s in the direction [s − s] if
{s + τ(s − s) : τ ∈ [0, 1]} ⊂ HPL and limτ→0[GPL(θ, s + τ(s − s)) − GPL(θ, s)]/τ exists; we denote
the limit by Γ2PL(θ, s)[s− s].

L A5. The pathwise derivative Γ2PL(θ, sθ) of GPL(θ, sθ) exists in all directions s− sθ and
satisfies:

(i) kGPL(θ, s)−GPL(θ, sθ)− Γ2PL(θ, sθ)[s− sθ]k ≤ cks− sθk2PL
for all θ with kθ − θok = o(1), all s with ks− sθkPL = o(1), some constant c <∞;

(ii) kΓ2PL(θ, sθ)[bsθ − sθ]− Γ2PL(θo, so)[bso − so]k ≤ ckθ − θok × op(1) +Op(n−1/2)

for all θ with kθ − θok = o(1), where bs = (bm, ḃm, bfε, ḃf ε, bf 0ε).
22



L A6. With probability tending to one, bfε, ḃfε, bf 0ε ∈ C11 (IR). Moreover,
sup
y

sup
kθ−θok≤δn

| bfε(θ)(y)− fε(θ)(y)| = op(n−1/4),
sup
y

sup
kθ−θok≤δn

| ḃf ε(θ)(y)− ḟε(θ)(y)| = op(n−1/4),
and

sup
y

sup
kθ−θok≤δn

| bf 0ε(θ)(y)− f 0ε(θ)(y)| = op(n−1/4),
for any δn = o(1).

L A7. For all sequences of positive numbers {δn} with δn = o(1),

sup
kθ−θok≤δn,ks−sθkPL≤δn

kGnPL(θ, s)−GPL(θ, s)−GnPL(θo, so)k = op(n−1/2).

L A8.

√
n{GnPL(θo, so) + Γ2PL(θo,so)[bs− so]} =⇒ N(0,Var{G1PL(θo, so)}).

7.3 Proofs of Lemmas A1-A8

Before proving Lemmas A1-A8, we first need to consider some preliminary results concerning the

estimator bfε(θ) and its derivatives.
The first result states that the asymptotic behavior of the estimator bfε(θ)(y), which is a kernel

estimator based on the estimated residuals bεiθ = Λθ(Yi)− bmθ(Xi), is the same as that of the kernel

estimator based on the (unobserved) true errors εiθ = Λθ(Yi)−mθ(Xi).

L A9. For all y ∈ IR,

bfε(y)− fε(y) = n−1 nX
i=1

K2g(εi − y)− fε(y)

+ f 0ε(y)n
−1

nX
i=1

h dX
α=1

vo1α(Xαi, εi)fXα(Xαi) + vo2(εi)
i
+ bro(y),

where supy |bro(y)| = op(n−1/2), and where the functions vo1α and vo2 are defined in assumption A.8.
Moreover,

sup
y
sup
θ∈Θ

| bfε(θ)(y)− fε(θ)(y)| = op(1)
and

sup
y

sup
kθ−θok≤δn

| bfε(θ)(y)− fε(θ)(y)| = op(n−1/4)
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for all δn = o(1).

Proof. Write

bfε(y)− fε(y)
=
1

ng

nX
i=1

K 0
2g(εi − y)(bεi − εi) +

1

n

nX
i=1

K2g(εi − y)− fε(y) + op(n−1/2)

= − 1
ng

nX
i=1

K 0
2g(εi − y)

(
1

n

nX
k=1

dX
α=1

K1h(Xαi −Xαk)vo1α(Xαk, εk) +
1

n

nX
k=1

vo2(εk) + bvo(Xi))

+
1

n

nX
i=1

K2g(εi − y)− fε(y) + op(n−1/2)

=
1

n2

dX
α=1

nX
i,k=1

vo1α(Xαk, εk)ϕnik + f
0
ε(y)

1

n

nX
k=1

vo2(εk)

+
1

n

nX
i=1

K2g(εi − y)− fε(y) + op(n−1/2), (19)

where ϕnik = −1
g
K 0
2g(εi − y)K1h(Xαi −Xαk). Since

E(ϕnik|Xk) = f 0ε(y)fXα(Xαk) + op(1),

it follows that (19) equals

f 0ε(y)
1

n

nX
k=1

h dX
α=1

vo1α(Xαk, εk)fXα(Xαk) + vo2(εk)
i

+
1

n

nX
i=1

K2g(εi − y)− fε(y) + op(n−1/2).

In a similar way as for Lemma A9, we can prove the following results. The proofs are omitted.

L A10. For all y ∈ IR,

ḃfε(y)− ḟε(y) = (ng)−1 nX
i=1

K 0
2g(εi − y)(Λ̇θ(Yi)− ṁθ(Xi))− ḟε(y)

+ ḟ 0ε(y)n
−1

nX
i=1

h dX
α=1

vo1α(Xαi, εi)fXα(Xαi) + vo2(εi)
i

+ f 0ε(y)n
−1

nX
i=1

h dX
α=1

wo1α(Xαi, εi)fXα(Xαi) + wo2(εi)
i
+ bro(y),
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where supθ,y |bro(y)| = op(n−1/2). Moreover,
sup
y
sup
θ∈Θ

| ḃf ε(θ)(y)− ḟε(θ)(y)| = op(1)
and

sup
y

sup
kθ−θok≤δn

| ḃf ε(θ)(y)− ḟε(θ)(y)| = op(n−1/4)
for all δn = o(1).

L A11. For all y ∈ IR,

bf 0ε(y)− f 0ε(y) = (ng)−1 nX
i=1

K 0
2g(y − εi)− f 0ε(y)

+ f 00ε (y)n
−1

nX
i=1

h dX
α=1

vo1α(Xαi, εi)fXα(Xαi) + vo2(εi)
i
+ bro(y),

where supy |bro(y)| = op(n−1/2). Moreover,
sup
y
sup
θ∈Θ

| bf 0ε(θ)(y)− f 0ε(θ)(y)| = op(1)
and

sup
y

sup
kθ−θok≤δn

| bf 0ε(θ)(y)− f 0ε(θ)(y)| = op(n−1/4)
for all δn = o(1).

P L A1. Note that

GPL(θ, s) = E

"
1

f(ε(θ,m))
{g(ε(θ,m))(Λ̇θ(Y )− r(X)) + h(ε(θ,m))}+ Λ̇0θ(Y )

Λ0θ(Y )

#
,

which is continuous in s at s = sθ provided conditions A.4-A.6 are satisfied.

P L A2. This follows from Lemmas A9-A11.

P L A3. The proof is similar (but easier) than that of Lemma A7. We therefore

omit the proof.

P L A4. This follows from assumption A.7.
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P L A5. Some straightforward calculations show that

Γ2PL(θ, sθ)[bsθ − sθ] (20)

= lim
τ→0

1

τ
{GPL(θ, sθ + τ(bsθ − sθ))−GPL(θ, sθ)}

= E
hnf 0ε(θ)(εθ)
f 2ε(θ)(εθ)

(bmθ −mθ)(X)− (
bfε(θ) − fε(θ))(εθ)
f 2ε(θ)(εθ)

on
f 0ε(θ)(εθ)[Λ̇θ(Y )− ṁθ(X)] + ḟε(θ)(εθ)

o
+

1

fε(θ)(εθ)

n
− f 00ε(θ)(εθ)[Λ̇θ(Y )− ṁθ(X)](bmθ −mθ)(X) + ( bf 0ε(θ) − f 0ε(θ))(εθ)[Λ̇θ(Y )− ṁθ(X)]

− f 0ε(θ)(εθ)( ḃmθ − ṁθ)(X) + ( ḃf ε(θ) − ḟε(θ))(εθ)− ḟ 0ε(θ)(εθ)(bmθ −mθ)(X)
oi
.

The first part of Lemma A5 now follows immediately. The second part follows from the uniform

consistency of bm, ḃm, bfε(θ), ḃf ε(θ) and bf 0ε(θ), and from the fact that

sup
x
|( ḃmθ − ṁθ)(x)− ( ḃmo − ṁo)(x)| = op(1)kθ − θok+Op(n−1/2),

which follows from assumption A.8.

P L A6. This follows from Lemmas A9-A11.

P L A7. We will make use of Theorem 3 in Chen, Linton and Van Keilegom

(2003). According to this result we need to prove that

(i)

E
h

sup
kθ0−θk<η,ks0−skPL<η

|gPL(X, Y, θ0, s0)− gPL(X, Y, θ, s)|2
i
≤ Kη2,

for all (θ, s) ∈ Θ×HPL, all η > 0 and for some K > 0.

(ii) Z ∞

0

p
logN(ε,HPL, k · kPL)dε <∞,

where N(ε,HPL, k · kPL) is the covering number with respect to the norm k · kPL of the class HPL,

i.e. the minimal number of balls of k · kPL-radius ε needed to cover HPL.

Part (ii) follows from Corollary 2.7.4 in van der Vaart and Wellner (1996), together with assumption

A.8. Part (i) follows from the mean value theorem, together with the differentiability conditions

imposed on the functions of which the function gPL is composed.

P L A8. Combining the formula of Γ2PL(θo, so) given in (20) with the represen-
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tations of bfε(θ), ḃfε(θ) and bf 0ε(θ) given in Lemmas A9-A11, we obtain after some calculations:
GnPL(θo, so) + Γ2PL(θo, so)[bs− so] (21)

= n−1
X
i

(
1

fε(εi)
[f 0ε(εi){Λ̇o(Yi)− ṁo(Xi)}+ ḟε(εi)] + Λ̇0o(Yi)

Λ0o(Yi)

)

+ E

"
− 1

f 2ε (ε)

(
1

ng

X
i

K2

³εi − ε

g

´
− fε(ε)

)
{f 0ε(ε)[Λ̇o(Y )− ṁo(X)] + ḟε(ε)}

+
1

fε(ε)

(
− 1

ng2

X
i

K 0
2

³εi − ε

g

´
− f 0ε(ε)

)
{Λ̇o(Y )− ṁo(X)}

+
1

fε(ε)

(
1

ng2

X
i

K 0
2

³εi − ε

g

´
(Λ̇o(Yi)− ṁo(Xi))− ḟε(ε)

)#
+ op(n

−1/2).

We next show that

E

"
ḟε(ε)

fε(ε)

#
= 0, (22)

E

"
1

fε(ε)

(
1

ng2

X
i

K 0
2

³εi − ε

g

´
(Λ̇o(Yi)− ṁo(Xi))− ḟε(ε)

)#
= 0, (23)

and

E

"
− 1

f2ε (ε)

(
1

ng

X
i

K2

³εi − ε

g

´)
{f 0ε(ε)[Λ̇o(Y )− ṁo(X)] + ḟε(ε)}

+
1

fε(ε)

(
− 1

ng2

X
i

K 0
2

³εi − ε

g

´)
{Λ̇o(Y )− ṁo(X)}

#
= 0. (24)

It then follows that only the first term on the right hand side of (21) (i.e. the term GnPL(θo, so)) is

non-zero, from which the result follows. We start by showing (22) :

E

"
ḟε(ε)

fε(ε)

#
=

Z
ḟε(y) dy =

∂

∂θ

Z
fε(θ)(y) dy

⏐⏐⏐y
θ=θo

= 0,

since
R
fε(θ)(y) dy = 1. Next, consider (23). The left hand side equals

1

ng2

X
i

(Λ̇o(Yi)− ṁo(Xi))E

∙
1

fε(ε)
K 0
2

³εi − ε

g

´¸
− E

"
ḟε(ε)

fε(ε)

#
=
1

ng

X
i

(Λ̇o(Yi)− ṁo(Xi))

Z
K 0
2(u) du = 0.
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Finally, for (24), note that the left hand side can be written as

1

ng

X
i

E

∙
1

f 2ε (ε)

n
−K2

³εi − ε

g

´ d
dθ
fε(θ)(ε(θ))

⏐y
θ=θo

+
d

dθ
K2

³εi − ε(θ)

g

´⏐⏐⏐y
θ=θo

fε(ε)
o¸

=
1

ng

X
i

E

⎡⎣ d
dθ

K2

³
εi−ε(θ)
g

´
fε(θ)(ε(θ))

⏐⏐⏐⏐⏐y
θ=θo

⎤⎦ = 1

ng

X
i

d

dθ

Z
K2

³εi − e
g

´
de = 0,

since
R
K2

³
εi−e
g

´
de = g. This finishes the proof.

8 Appendix B : MD estimator

8.1 Assumptions

We assume throughout this appendix that assumptions B.1—B.8 given below are valid.

B.1 The probability density function K1 is symmetric and has compact support,
R
ukK1(u) du = 0

for k = 1, . . . , q1 − 1,
R
uq1K1(u) du 6= 0 and K1 is twice continuously differentiable.

B.2 nh→∞ and nh2q1 → 0, where q1 is defined in condition B.1 and q1 ≥ 4.

B.3 The density fX is bounded away from zero and infinity and is Lipschitz continuous on the

compact support X .

B.4 The function mθ(x) is q1 times continuously differentiable with respect to the components of x

on X ×N (θo), and all derivatives up to order q1 are bounded, uniformly in (x, θ) in X ×N (θo).

B.5 The transformation Λθ(y) is twice continuously differentiable in both θ and y, and there exists

a δ > 0 such that

E

"
sup

kθ−θ0k≤δ
|λθ0(Y )|k

#
<∞

for all k and for all θ in Θ.

B.6 The distribution Fε(y) is twice continuously differentiable with respect to y, and supy |f 0ε(y)| <
∞.

B.7 For all η > 0, there exists "(η) > 0 such that

inf
kθ−θok>η

kGMD(θ,mθ)k2 ≥ "(η) > 0.

Moreover, the matrix Γ1MD(x, e) (defined in Section 5) is of full (column) rank for a set of

positive μ-measure (x, e).
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B.8 The estimator bmo can be written as

bmo(x)−mo(x) =
1

nh

nX
i=1

dX
α=1

K1

³xα −Xαi

h

´
vo1α(Xαi, εi) +

1

n

nX
i=1

vo2(εi) + bvo(x),
where supx |bvo(x)| = op(n

−1/2), the function vo1α(x, e) is q1 times continuously differentiable
with respect to the components of x, their derivatives up to order q1 are bounded, uniformly in

x and e, E(vo2(ε)) = 0. Moreover, with probability tending to 1, bmθ ∈M, supθ∈Θ kbmθ−mθk =
op(1), kbmθ −mθk = op(n−1/4) uniformly over all θ with kθ − θok = o(1), and

sup
x
|(bmθ −mθ)(x)− (bmo −mo)(x)| = op(1)kθ − θok+Op(n−1/2)

for all θ with kθ − θok = o(1). Finally, the spaceM satisfies
R p

logN(ε,M, k · k∞) dε <∞.

8.2 Proof of Theorem 2

We use a generalization of Theorems 1 (about consistency) and 2 (about asymptotic normality) of

Chen, Linton and Van Keilegom (2003), henceforth CLV. Below, we state the primitive conditions

under which these results are valid (see Lemmas B1—B6). Their proof is given in Section 8.3.

Given these lemmas, we have the desired result. We just reprieve the last part of the argument

because it is slightly different from CLV due to the different norm. Note that

Fε(θ,m)(e) = Pr [Λθ(Y )−m(X) ≤ e]
= Pr

£
Y ≤ Λ−1θ (m(X) + e)

¤
= Pr

£
ε ≤ Λo(Λ

−1
θ (m(X) + e))−mo(X)

¤
= EFε[Λo(Λ

−1
θ (m(X) + e))−mo(X)].

Likewise, FX,ε(θ,m) satisfies

FX,ε(θ,m)(x, e) = Pr [X ≤ x,Λθ(Y )−m(X) ≤ e]
= E Pr

£
X ≤ x, ε ≤ Λo(Λ

−1
θ (m(X) + e))−mo(X)

¤
= E

£
1(X ≤ x)Fε[Λo(Λ−1θ (m(X) + e))−mo(X)]

¤
.

Define

GMD(θ,m)(x, e) = FX,ε(θ,m)(x, e)− FX(x)Fε(θ,m)(e).
Define now the stochastic processes

Ln(x, e) =
√
n[ bFX,ε(x, e)− FX,ε(x, e)]− FX(x)√n[ bFε(e)− Fε(e)]− Fε(e)√n[ bFX(x)− FX(x)]

and

Ln(θ)(x, e) = Ln(x, e) + Γ1MD(x, e)(θ − θo) + [Γ2MD(θo,mo)(bm−mo)](x, e),
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where for any θ ∈ Θ and any m,m ∈ M, Γ2MD(θ,m)(m − m)(x, e) is defined in the following
way. We say that GMD(θ,m) is pathwise differentiable at m in the direction [m − m] at (x, e) if
{m + τ (m − m) : τ ∈ [0, 1]} ⊂ M and limτ→0[GMD(θ,m + τ (m − m))(x, e) − GMD(θ,m)(x, e)]/τ
exists; we denote the limit by Γ2MD(θ,m)[m−m](x, e).
A consequence of Lemmas B1—B6 is that

sup
kθ−θok≤δn

kGnMD(θ, bmθ)− Ln(θ)k22 = op(n−1/2),

which means we can effectively deal with the minimizer of Ln(θ), say θ. Note that θ has an explicit

solution and indeed

√
n(θ − θo) = −

∙Z
Γ1MDΓ1MD

>
(x, e)dμ(x, e)

¸−1
×
Z
[Ln(x, e) + [Γ2MD(θo,mo)(bm−mo)](x, e)]Γ1MD(x, e)dμ(x, e).

Then apply Lemma B6 below to get the desired result.

L B1. Uniformly for all θ ∈ Θ, GMD(θ,m) is continuous in m at m = mθ in the uniform

norm.

L B2. For all sequences of positive numbers δn = o(1),

sup
θ∈Θ,km−mθkM≤δn

kGnMD(θ,m)−GMD(θ,m)k2 = op(1).

L B3. For all (x, e), the ordinary partial derivative in θ of GMD(θ,mθ)(x, e), denoted

Γ1MD(θ,mθ)(x, e), exists in a neighborhood of θo, is continuous at θ = θo, and the matrix Γ1MD(x, e) =

Γ1MD(θo,mo)(x, e) is of full (column) rank for a set of positive μ-measure (x, e).

L B4. For μ-all (x, e), the pathwise derivative Γ2MD(θ,mθ)(x, e) of GMD(θ,mθ)(x, e) exists

in all directions m−mθ and satisfies:

(i) kGMD(θ,m)−GMD(θ,mθ)− Γ2MD(θ,mθ)[m−mθ]k2 ≤ ckm−mθk2M

for all θ with kθ − θok = o(1), all m with km−mθkM = o(1), some constant c <∞;

(ii) kΓ2MD(θ,mθ)[bmθ −mθ]− Γ2MD(θo,mo)[bm−mo]k2 ≤ ckθ − θok × op(1) +Op(n−1/2)

for all θ with kθ − θok = o(1).
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L B5. For all sequences of positive numbers {δn} with δn = o(1),

sup
kθ−θok≤δn,km−mθkM≤δn

kGnMD(θ,m)−GMD(θ,m)−GnMD(θo,mo)k2 = op(n−1/2).

L B6.
√
n

Z
{GnMD(θo,mo) + Γ2MD(θo,mo)[bm−mo]}(x, e)Γ1MD(x, e)dμ(x, e) =⇒ N(0, V1MD).

8.3 Proofs of Lemmas B1—B6

P L B1. This follows from the representation

GMD(θ,mθ)(x, e) = E
£
[1(X ≤ x)− FX(x)]Fε[Λo(Λ−1θ (mθ(X) + e))−mo(X)]

¤
, (25)

and the smoothness of Fε,Λo, and Λ−1θ .

P L B2. Define the linearization :

GLnMD(θ,m)(x, e) =
bFX,ε(θ,m)(x, e)− FX(x) bFε(θ,m)(e)− bFX(x)Fε(θ,m)(e) + FX(x)Fε(θ,m)(e).

By the triangle inequality we have

sup
θ∈Θ,km−mθkM≤δn

kGnMD(θ,m)−GMD(θ,m)k2

≤ sup
θ∈Θ,km−mθkM≤δn

kGLnMD(θ,m)−GMD(θ,m)k2 + sup
θ∈Θ,km−mθkM≤δn

kGnMD(θ,m)−GLnMD(θ,m)k2.

We must show that both terms on the right hand side are op(1). Define the stochastic processes

τnε(θ,m, e) = bFε(θ,m)(e)− Fε(θ,m)(e) and τnXε(θ,m, x, e) = bFX,ε(θ,m)(x, e)− FX,ε(θ,m)(x, e)
for each θ ∈ Θ, m ∈M, x ∈ Rk, e ∈ R. We claim that

sup
θ∈Θ,km−mθkM≤δn,e∈R

|τnε(θ,m, e)| = op(1) (26)

sup
θ∈Θ,km−mθkM≤δn,x∈Rk,e∈R

|τnXε(θ,m, x, e)| = op(1), (27)

which implies that

sup
θ∈Θ,km−mθkM≤δn

kGLnMD(θ,m)−GLMD(θ,m)k2

= sup
θ∈Θ,km−mθkM≤δn

k( bFX,ε(θ,m) − FX,ε(θ,m))− FX( bFε(θ,m) − Fε(θ,m))− Fε(θ,m)( bFX − FX)k2
≤
"

sup
θ∈Θ,km−mθkM≤δn,e∈R

|τnXε(θ,m, e)|+ sup
θ∈Θ,km−mθkM≤δn,x∈Rk,e∈R

|τnε(θ,m, x, e)|

+ sup
x∈Rk

| bFX(x)− FX(x)|¸
= op(1).
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Similarly, supθ∈Θ,km−mθkM≤δn kGnMD(θ,m) − GLnMD(θ,m)k2 = op(1). The proof of (26) and (27) is
based on Theorem 3 in CLV. We omit the details because it is similar to our proof of Lemma B5.

P L B3. Below, we calculate Γ1MD(x, e) = Γ1MD(θo,mo)(x, e). In a similar way

Γ1MD(θ,mθ)(x, e) can be obtained. First, we have

∂

∂θ
Fε(θ,mθ)(e)

⏐⏐⏐y
θ=θo

= E
∂

∂θ
Fε
£
Λo(Λ

−1
θ (mθ(X) + e))−mo(X)

¤⏐⏐⏐y
θ=θo

= fε(e)E
∂

∂θ
Λo(Λ

−1
θ (mθ(X) + e))

⏐⏐⏐y
θ=θo

= fε(e)EΛ
0
o(Λ

−1
o (mo(X) + e))

∂

∂θ
(Λ−1θ (mθ(X) + e))

⏐⏐⏐y
θ=θo

= fε(e)EΛ
0
o(Λ

−1
o (mo(X) + e))

∙
λo(Λ

−1
o (mo(X) + e))

Λ0o(Λ−1o (mo(X) + e))
+

1

Λ0o(Λ−1o (mo(X) + e))

·
mo(X)

¸
= fε(e)E

h
λo(Λ

−1
o (mo(X) + e)) +

·
mo(X)

i
by the chain rule. Similarly,

∂

∂θ
FX,ε(θ,mθ)(x, e)

⏐⏐⏐y
θ=θo

= fε(e)E
h
1 (X ≤ x)

n
λo(Λ

−1
o (mo(X) + e)) +

·
mo(X)

oi
.

Therefore,

Γ1MD(x, e) = Γ1MD(θo,mo)(x, e) =
∂GMD(θ,mθ)

∂θ
(x, e)

⏐⏐⏐y
θ=θo

=
∂

∂θ
FX,ε(θ,mθ)(x, e)− FX(x)

∂

∂θ
Fε(θ,mθ)(e)

= fε(e)E
h
(1(X ≤ x)− FX(x))

³
λo(Λ

−1
o (mo(X) + e)) +

·
mo(X)

´i
. (28)

P L B4. By the law of iterated expectation and partial differentiation we obtain

that

[Γ2MD(θo,mo)(m−mo)](x, e)

=
∂GMD(θo,mo + t(m−mo))

∂t
(x, e)

⏐⏐⏐y
t=0

= fε(e)E [(1(X ≤ x)− FX(x)) (m(X)−mo(X))] .

32



Similarly, the formula of [Γ2MD(θ,mθ)(m−mθ)](x, e) is given by

[Γ2MD(θ,mθ)(m−mθ)](x, e)

= lim
τ→0

1

τ
E
£{1(X ≤ x)− FX(x)}fε[Λo{Λ−1θ (mθ(X) + e)}−mo(X)]

×[Λo{Λ−1θ (mθ(X) + τ(m−mθ)(X) + e)}− Λo{Λ−1θ (mθ(X) + e)}]
¤
.

The two inequalities in the statement of Lemma B4 now follow easily, using the consistency of bmθ

and the fact that supx |(bmθ −mθ)(x)− (bmo −mo)(x)| = op(1)kθ − θok+Op(n−1/2).

P L B5. Define the stochastic processes

νnε(θ,m, e) =
√
n[ bFε(θ,m)(e)− Fε(θ,m)(e)] and νnXε(θ,m, x, e) =

√
n[ bFX, ε(θ,m)(x, e)− FX,ε(θ,m)(x, e)]

for each θ : kθ − θok ≤ δn and m : km−mθkM ≤ δn, x ∈ Rk, e ∈ R. We claim that

sup
kθ−θok≤δn,km−mθkM≤δn,e∈R

|νnε(θ,m, e)| = op(1) (29)

sup
kθ−θok≤δn,km−mθkM≤δn,x∈Rd,e∈R

|νnXε(θ,m, x, e)| = op(1). (30)

The proof of these results are based on Theorem 3 in CLV. We have to show that their condition

(3.2) is satisfied, which requires in our case [with g(Z, θ,m) = 1(ε(θ,m) ≤ e)−E1(ε(θ,m) ≤ e) and
g(Z, θ,m) = 1(X ≤ x)1(ε(θ,m) ≤ e)−E1(X ≤ x)1(ε(θ,m) ≤ e)] thatÃ

E

"
sup

(θ0,m0):kθ0−θk<δ,km0−mkM<δ

|g(Z, θ0,m0)− g(Z, θ,m)|r
#!1/r

≤ Kδs

for all (θ,m) ∈ Θ×M, all small positive value δ = o(1), and for some constants s ∈ (0, 1], K > 0,

and that the bound holds for μ-almost all (x, e). We have

|g(Z, θ0,m0)− g(Z, θ,m)| ≤ |1(ε(θ,m) ≤ e)− 1(ε(θ0,m0) ≤ e)|
+ |E1(ε(θ,m) ≤ e)−E1(ε(θ0,m0) ≤ e)|,

and

|1(ε(θ,m) ≤ e)− 1(ε(θ0,m0) ≤ e)| = |1(Λθ(Y )−m(X) ≤ e)− 1(Λθ0(Y )−m0(X) ≤ e)|
≤ |1(Λθ(Y )−m(X) ≤ e)− 1(Λθ(Y )−m0(X) ≤ e)|
+ |1(Λθ(Y )−m0(X) ≤ e)− 1(Λθ0(Y )−m0(X) ≤ e)|.

For all m0 ∈M with km0 −mkM ≤ δ ≤ 1, we have for all Y,X, e:

sup
km0−mkM≤δ

|1(m0(X) ≥ Λθ(Y )− e)− 1(m(X) ≥ Λθ(Y )− e)|

≤ 1(m(X) + δ ≥ Λθ(Y )− e)− 1(m(X)− δ ≥ Λθ(Y )− e).
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The preceding term is either one or zero and its expectation is the probability that m(X) + δ ≥
Λθ(Y )− e ≥ m(X)− δ, which is the probability that e+ δ ≥ Λθ(Y )−m(X) ≥ e− δ, which is

Fε(θ,m)(e+ δ)− Fε(θ,m)(e− δ) = EFε[Λo(Λ
−1
θ (m(X) + e+ δ))−mo(X)]

− EFε[Λo(Λ−1θ (m(X) + e− δ))−mo(X)].

We then apply the smoothness conditions on Fε,Λo, and Λ−1θ to bound the right hand side by Kδ

for small enough δ and constant K <∞.
Next, by the Mean Value Theorem, we have

Λθ(Y )− Λθ0(Y ) = λθ∗(Y )× (θ − θ0),

where θ∗ is an intermediate value between θ and θ0. For all α > 0, by the Bonferroni and Markov

inequalities,

Pr

"
max
1≤i≤n

sup
kθ−θ0k≤δ

|λθ0(Yi)| > c× nα
#

≤ n× Pr
"
sup

kθ−θ0k≤δ
|λθ0(Y )| > c× nα

#

≤ n× E
£
supkθ−θ0k≤δ |λθ0(Y )|k

¤
cknkα

= o(1),

provided k > α−1.
Therefore, we can safely assume that there is some upper bound c such that supkθ−θ0k≤δ |Λθ(Y )−

Λθ0(Y )| ≤ c× δ. Therefore, on this set

sup
kθ0−θk≤δ

|1(Λθ(Y )−m0(X) ≤ e)− 1(Λθ0(Y )−m0(X) ≤ e)|

≤ 1(Λθ(Y ) + cδ −m0(X) ≤ e)− 1(Λθ(Y )− cδ −m0(X) ≤ e)|,

which has probability bounded by Kδ for some K > 0.

Therefore, condition (3.2) of Theorem 3 in CLV is satisfied with r = 2 and s = 1/2, and condition

(3.3) of Theorem 3 is satisfied by the condition on the bracketing number of the classM, stated in

assumption B.8.

P L B6. We show below that

[Γ2MD(θo,mo)(bm−mo)](x, e)

= fε(e)
√
n

Z
[(1(X ≤ x)− FX(x)) (bm(X)−mo(X))] fX(X)dX

= fε(e)
1√
n

nX
i=1

(1(Xi ≤ x)− FX(x))fX(Xi)
dX

α=1

vo1α(Xαi, εi) + op(1). (31)
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Therefore,

[Ln(x, e) + [Γ2MD(θo,mo)(bm−mo)](x, e)] =
1√
n

nX
i=1

Ui(x, e) + op(1),

where

Ui(x, e) = [1(Xi ≤ x)1(εi ≤ e)− FX,ε(x, e)]− FX(x)[1(εi ≤ e)− Fε(e)]− Fε(e)[1(Xi ≤ x)− FX(x)]

+ fX(Xi)
dX

α=1

vo1α(Xαi, εi)fε(e) (1(Xi ≤ x)− FX(x)) ,

and where E[Ui(x, e)] = 0 for all x, e. Because FX,ε(x, e) = FX(x)Fε(e) we have

Ui(x, e) = [1(Xi ≤ x)−FX(x)][1(εi ≤ e)−Fε(e)]+fX(Xi)
dX

α=1

vo1α(Xαi, εi)fε(e) (1(Xi ≤ x)− FX(x)) .

Now integrating Ui(x, e) with respect to Γ1MD(x, e)dμ(x, e) gives the answer.

Proof of (31). Write

bm(X)−mo(X) =
1

nh

nX
i=1

dX
α=1

K1

³Xα −Xαi

h

´
vo1α(Xαi, εi) +

1

n

nX
i=1

vo2(εi) + op(n
−1/2).

Then, provided nh2q1 → 0,

√
n

Z
[(1(X ≤ x)− FX(x)) (bm(X)−mo(X))] fX(X)dX

=
1√
n

nX
i=1

dX
α=1

vo1α(Xαi, εi)

Z ∙
(1(X ≤ x)− FX(x)) 1

h
K1

µ
Xα −Xαi

h

¶¸
fX(X)dX

+
1√
n

nX
i=1

vo2(εi)

Z
[(1(X ≤ x)− FX(x))] fX(X)dX + op(1)

=
1√
n

nX
i=1

dX
α=1

vo1α(Xαi, εi)

Z
[(1(Xi + uh ≤ x)− FX(x))K1(uα)] fX(Xi + uh)du+ op(1)

=
1√
n

nX
i=1

dX
α=1

vo1α(Xαi, εi) (1(Xi ≤ x)− FX(x)) fX(Xi) + op(1).

We also have to substitute ∂mθ

∂θ
(x)
⏐y
θ=θo

into the formula for Γ1MD.
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