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1 Introduction

Everybody who went through a statistics course, even at introductory level,
has been exposed at least to some elementary aspects of rank-based methods,
and has heard about Wilcoxon’s signed rank and rank sum tests.

Although early ideas of distribution-free tests can be traced back as far
as John Arbuthnoth (1667-1735), Frank Wilcoxon’s pathbreaking 1945 four
page paper (Wilcoxon 1945), where these two tests are described for the first
time, certainly can be considered as the starting point of the modern theory
of rank-based inference.

The Wilcoxon tests, and most of the subsequent theory of rank-based infer-
ence, were developed as a reaction against the pervasive presence of Gaussian
assumptions in classical statistical theory. Rank tests are simple and easy
to compute. Above all, they are distribution-free, hence exact and applica-
ble under unspecified (typically, non Gaussian) densities. Moreover, they are
flexible enough to adapt to a wide range of inference problems: the fifties
and the sixties have witnessed an explosive but somewhat aphazard develop-
ment of rank-based solutions to a variety of problems. This development was
structured and systematized in the seventies, mainly on the basis of Jaroslav
Hájek’s fundamental contribution, leading to what can be considered as the
“classical theory” of rank-based inference. This classical theory essentially ad-
dresses all testing (and estimation) problems arising in the context of general
linear models with independent observations, thus covering location, scale,
and regression problems, as well as analysis of variance and covariance, and
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lecture of a Francqui Chair on October 20, 2005—thus plainly justifying the title.
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most linear experimental planning models—see the monograph by Puri and
Sen (1985) for a systematic and fairly exhaustive account.

The progress since then may have been less spectacular, and the opinion
is not uncommon that rank-based inference is a more or less complete—hence
limited and somewhat old-fashioned—theory, the development of which has
stopped in the early eighties. The objective of this nontechnical presentation
is to dispel this wrong perception by showing that, quite on the contrary,
ranks and their generalizations quite naturally find their ultimate expres-
sion in the modern theories of asymptotic statistical experiments and semi-
parametric inference. More precisely, rank-based methods, under very general
assumptions, allow for semiparametrically efficient, yet distribution-free in-
ference (testing and estimation), in a very large variety of models involving
unspecified densities—much beyond the classical linear models with indepen-
dent observations.

Frank Wilcoxon himself would be most surprised to see how, in slightly
more than sixty years, his two tests, which he modestly considered as quick and
easy tricks, to be used when everything else fails, not only have survived the
many revolutions of contemporary statistics, but have turned into a timely and
still growing area of modern inference, reconciling the irreconcilable objectives
of efficiency and robustness.

After sixty years of unremitting service, not the slightest prospect of early
retirement, thus: happy birthday to you, Mr Wilcoxon!

2 Ranks: from distribution-freeness to group invariance

2.1 Ranks and rank tests

Let us first introduce some basic concepts and notation. Denoting by X(n) :=
(X1, X2, . . . , Xn) an n-tuple of observations, the order statistic is ob-
tained by ordering the Xi’s from smallest to largest: X( ) := (Xmin :=
X(1), X(2), . . .X(n) =: Xmax), with X(1) ≤ X(2),≤ . . . ≤ X(n). The vector

of ranks then is defined as R(n) := (R1, R2, . . . , Rn), with Ri such that
X(Ri) = Xi or, equivalently, Ri := #{j | Xj ≤ Xi}.

This vector R(n), provided that no ties occur (which happens with proba-
bility one as soon as X(n) has a density), clearly is a (random) permutation of
(1, 2, . . . , n). Assuming furthermore that the Xi’s are i.i.d., with some un-
specified density f over R, the distribution of R(n) is uniform over the n! per-
mutations of (1, ..., n). An important advantage of R(n)-measurable statistics
over the more general X(n)-measurable ones is thus their distribution-freeness:
since their distributions do not depend on f , they allow for exact inference,
robust to misspecification of f (hence to violations of Gaussian assumptions).

The price to be paid for this advantage is the corresponding loss of infor-
mation. The observation X(n) and the couple (X( ),R

(n)) contain the same
information: restricting to rank-based inference thus means throwing away



Happy Birthday to you, Mr Wilcoxon! 3

the information contained in the order statistic X( ). Natural questions are:
how crucial (in terms of efficiency) is that loss of information? what is the
real cost of this conflict between robustness and efficiency? The surprising
answer (an answer Wilcoxon definitely would never have dreamed of) is: in
case the density f is unknown, the loss of information is nil (asymptotically),
and robustness can be obtained at no cost!

Fig. 1. Frank Wilcoxon (1892-1965)

The Wilcoxon rank sum test addresses the same two-sample location
problem as the classical two-sample Student test, the only difference being
that the latter requires Gaussian densities. Under the null hypothesis H0,
X1, . . . , Xm, Xm+1, . . . , Xn are i.i.d., with unspecified (nonvanishing)
density f , whereas, under the alternative H1, i.i.d.-ness is the property of
X1, . . . , Xm, Xm+1 − θ, . . . , Xn − θ, for some θ > 0.

The Wilcoxon test statistic can be written as S
(n)
W :=

∑n
i=m+1 Ri; unlike

the Student test, the wilcoxon test does not require any assumption on the
density f , and thus resists light as well as heavy tails. Wilcoxon himself in 1945
hardly realized the consequences and importance of his discovery: he mainly
considered his test as a robust, “quick and easy” solution for the location shift
problem—nothing powerful, though—to be used when everything else fails.

2.2 Hodges-Lehmann and Chernoff-Savage

Eleven years after Wilcoxon’s seminal paper, a totally unexpected result was
published by Hodges and Lehmann (1956). This result, which came as a shock
to the statistical community, is the following:
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inffAREf (Wilcoxon / Student) = .864 .

Recall that the ARE (asymptotic Relative Efficiency) of a sequence (φ
(n)
1 ,

say) of statistical procedures with respect to another one (φ
(n)
2 , say) is the

limit AREf (φ
(n)
1 / φ

(n)
2 ), when it exists, as n → ∞, of the ratio n2(n)/n of

the number n2(n) of observations it takes for φ
(n2(n))
2 to achieve the same

performance as φ
(n)
1 .

Fig. 2. Joseph L. Hodges (1922-2000) and Erich L. Lehmann (1917- — )

In the worst case, the Wilcoxon test thus only requires 13.6% more ob-
servations than the Student one in order to reach comparable power! On the
other hand,

supfAREf (Wilcoxon / Student) = ∞,

and the benefits of unrestricted validity are invaluable . . .
Since the Normal distribution is playing such a central role in classical

statistics, the idea of considering, for the same location problem, a statis-

tic of the form S
(n)
vdW :=

∑n
i=m+1 Φ−1

(
Ri

n+1

)
(or an equivalent exact score

form), where Φ−1 denotes the standard normal quantile function, was pro-
posed by several authors, among which Fisher, Terry, Yates, Fraser, van der
Waerden, . . . For simplicity, we all call them van der Waerden statistics.

Van der Waerden statistics are still distribution-free (since a function of

ranks). In case however the actual underlying density is normal, S
(n)
vdW is

asymptotically equivalent to the Student statistic. Hence, at the normal, S
(n)
vdW

yields the same asymptotic performance as Student, which in that case is
optimal.

Chernoff and Savage in 1958 (Chernoff and Savage 1958) however estab-
lished the following much stronger result, which perhaps is even more surpris-
ing than Hodges and Lehmann’s:
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Fig. 3. Bartel L. van der Waerden (1903-1996)

inffAREf (van der Waerden / Student) = 1.00 ,

an infimum which is attained at Gaussian f only!
It follows that van der Waerden tests are always strictly better (asymp-

totically) than the Student one, except at the normal, where they are equally
good. One thus is always better off using van der Waerden which moreover,
contrary to Student, is uniformly valid. This actually should put Student and
much of everyday Gaussian practice out of business!

Fig. 4. Hermann Chernoff (1923- —) and I. Richard Savage (1926-2004)

.
These surprising facts cannot be a mere coincidence, and raise some obvi-

ous question: what is it that makes ranks that efficient? are ranks the only sta-
tistical objects enjoying such attractive distribution-freeness/efficiency prop-
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erties? Answers however are not straightforward. As we shall see, they are
intimately related with the maximal invariance property of ranks with re-
spect to certain generating groups, and the connection of such invariance
with tangent space projections and semiparametric efficiency. Such answers
certainly were not at hand in 1958, and only emerged quite recently (Hallin
and Werker 2003).

2.3 Group invariance

Assume that X(n) = (X1, X2, . . . , Xn) are i.i.d., with unspecified density f
in the class F of all nonvanishing densities over R (X(n) is thus independent

white noise). Denote by P
(n)
f the joint distribution of X(n) and let P(n) :=

{P
(n)
f | f ∈ F}.
Next consider the group of transformations (acting on R

n)

G, ◦ := {Gh | h monotone ↑, continuous, h(±∞) = ±∞} , ◦

mapping (x1, . . . , xn) ∈ R
n onto Gh(x1, . . . , xn) := (h(x1), . . . , h(xn)) ∈ R

n.

Then, G, ◦ is a generating group for P(n), in the sense that for all P
(n)
f1

, P
(n)
f2

in P(n), there exists Gh ∈ G such that (X1, . . . , Xn) ∼ P
(n)
f1

iff Gh(X1, . . . , Xn) ∼

P
(n)
f2

. The vector of ranks R(n) is maximal invariant for G, ◦, that is, T (x1, . . . , xn) =

T (Gh(x1, . . . , xn)) for all Gh ∈ G iff T is R(n)-measurable.

This invariance property of ranks suggests the definition of other “ranks”,
associated with other generating groups. Here are a few examples:

(i) X(n) := (X1, X2, . . . , Xn) i.i.d., with unspecified density f in the class
F+ of all nonvanishing symmetric (w. r. t. 0) densities over R (independent

symmetric white noise). Let P(n) = {P
(n)
f | f ∈ F+}: this family is gener-

ated by the subgroup G+, ◦ of G, ◦, where G+ := {Gh ∈ G | h(−x) = h(x)}.
The signs and the ranks of absolute values are maximal invariant (“signed
ranks”);

(ii) X(n) := (X1, X2, . . . , Xn) i.i.d., with unspecified nonvanishing median-
centered density f in the class F0 of all nonvanishing zero-median densities

over R (independent median-centered white noise). Let P(n) = {P
(n)
f | f ∈

F0}: this family is generated by the subgroup G0, ◦ of G, ◦, where G0 :=
{Gh ∈ G | h(0) = 0}. The signs and the ranks are maximal invariant (see
Hallin, Vermandele, and Werker 2006);

(iii) X(n) := (X1, X2, . . . , Xn) independent, with unspecified nonvanishing
median-centered densities f1, . . . , fn in the class F0 of all nonvanishing
zero-median densities over R (independent, heterogeneous median-centered

white noise). Let P(n) = {P
(n)
f | f ∈ F0}; the signs are maximal invariant

for the appropriate generating group (see Dufour et al. 1998);
(iv) X(n) := (X1, X2, . . . , Xn) i.i.d., with elliptical density

σ−k(detV)−1/2f1(σ
−1
√

(x −µµµ)′V−1(x − µµµ)).
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over R
k (independent elliptical white noise with location µµµ, shape V,

scale σ, and standardized radial density f1). Write X ∼ P
(n)
θθθ;f1

, θθθ =

(µµµ, σ,V) and P(n) = {P
(n)
θθθ;f1

| f1 ∈ F+}, where F+ is the class of all

standardized nonvanishing densities over R
+: the unit vectors Ui :=

V−1/2(Xi − µµµ)/[(Xi − µµµ)′V−1(Xi − µµµ)]1/2 and the ranks Ri of the
“distances” [(Xi − µµµ)′V−1(Xi − µµµ)]1/2 are maximal invariant (multi-
variate signs Ui and ranks Ri) for the generating group of continuous
order-preserving radial transformations: see Hallin and Paindaveine (2002
and 2006) for details.

It is easy to show that maximal invariants (hence, invariants) are distribution-
free. As we shall see, they also have a strong connection to (semi-parametric)
efficiency. This however requires some further preparation.

3 Efficiency: from parametric to semiparametric

3.1 Parametric optimality

In the sequel, we consider semiparametric models, namely, models under which
the distribution of some Xn-valued observation X(n) := (X1, X2, . . . , Xn)

belongs to a family of the form P(n) = {P
(n)
θθθ;f | θθθ ∈ ΘΘΘ, f ∈ F} where θθθ ∈ ΘΘΘ ⊆

R
m is some m-dimensional parameter of interest, and f ∈ F is a nonparamet-

ric (infinite-dimensional) nuisance. We moreover assume that P(n) is such that

all its fixed-f parametric subfamilies P
(n)
f := {P

(n)
θθθ;f | θθθ ∈ ΘΘΘ} are LAN (see be-

low), whereas the fixed-θθθ nonparametric subfamilies P
(n)
θθθ := {P

(n)
θθθ;f | f ∈ F}

are generated by some group G
(n)
θθθ , ◦ acting on the observation space Xn, with

maximal invariant R(n)(θθθ).

Fig. 5. Lucien Le Cam (1924-2000)

The concept of local asymptotic normality (LAN, w.r.t. θθθ, at given f) is
due to Lucien Le Cam, and is now widely adopted as the standard structure
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for traditional central-limit type asymptotics. The (sub)family P
(n)
f (more

precisely, the sequence of families indexed by n ∈ N) is said to be LAN if,

for all θθθ ∈ ΘΘΘ, there exists a random vector ∆∆∆
(n)
θθθ;f (the central sequence) and

a (deterministic) positive definite matrix ΓΓΓθθθ;f (the information matrix) such

that, under P
(n)
θθθ;f , as n → ∞,

(i) Λ
(n)

θθθ+n−1/2τττ/θθθ;f
:= log

(
dP

(n)

θθθ+n−1/2τττ;f

dP
(n)

θθθ;f

)
= τττ ′∆∆∆

(n)
θθθ;f − 1

2τττ
′ΓΓΓθθθ;fτττ + oP(1), and

(ii) ∆∆∆
(n)
θθθ;f

L
−→ N (0,ΓΓΓθθθ;f ) .

Skipping technical details, LAN implies that

(a) under P
(n)

θθθ+n−1/2τττ ;f
, τττ ∈ R

m, the central sequence ∆∆∆
(n)
θθθ;f is asymptotically

N (ΓΓΓθθθ;fτττ,ΓΓΓθθθ;f ) as n → ∞;
(b) parametric efficiency (local, at θθθ, and asymptotic) in the initial (fixed-f)

model has the same characteristics as parametric efficiency (exact) in the
Gaussian shift model ∆∆∆ ∼ N (ΓΓΓθθθ;fτττ ,ΓΓΓθθθ;f) , τττ ∈ R

m, that is, for instance,

– optimal α-level tests of H
(n)
0 : θθθ = θθθ0 achieve at P

(n)

θθθ0+n−1/2τττ ;f
asymp-

totic power 1 − Fm;τττ ′ΓΓΓ−1
θθθ0;f

τττ (χ2
m;1−α), where Fm;λ stands for the non-

central chi-square distribution function with m degrees of freedom and
noncentrality parameter λ, or

– optimal estimates θ̂θθ
(n)

are such that n1/2(θ̂θθ
(n)

− θθθ)
L
→ ΓΓΓ−1

θθθ;f∆∆∆ ∼

N (0,ΓΓΓ−1
θθθ;f).

Moreover, optimality is achieved by treating the central sequence ∆∆∆
(n)
θθθ;f exactly

as one would the observation ∆∆∆ in the limit Gaussian shift model, that is, for
instance,

– by basing tests for θθθ = θθθ0 on the asymptotic χ2
m null distribution of

statistics of the form Qf := (∆∆∆
(n)
θθθ0;f

)′ΓΓΓ−1
θθθ0;f∆∆∆

(n)
θθθ0;f , or

– by constructing optimal estimators θ̂θθ
(n)

(of the one-step form) such that

n1/2(θ̂θθ
(n)

− θθθ) = ΓΓΓ−1
θθθ;f∆∆∆

(n)
θθθ;f + oP(1)

L
→ N (0,ΓΓΓ−1

θθθ;f ).

Summing up, parametric efficiency (at given f and θθθ) is entirely charac-
terized by the Gaussian shift model ∆∆∆ ∼ N (ΓΓΓθθθ;fτττ,ΓΓΓθθθ;f ) , τττ ∈ R

m, hence by
the information matrix ΓΓΓθθθ;f .

3.2 Parametric efficiency in the presence of nuisance

In order to understand what is meant with semiparametric efficiency, let us
first consider the concept of parametric efficiency in the presence of a para-
metric nuisance. In the LAN family just described, assume that the parameter
breaks into θθθ′ = (θθθ′1, θθθ

′
2), and that inference is to be made about θθθ1 ∈ R

m1 ,

while θθθ2 ∈ R
m2 is a nuisance. The central sequence ∆∆∆

(n)
θθθ;f similarly decomposes

into

(
∆∆∆

(n)
θθθ;f ;1

∆∆∆
(n)
θθθ;f ;2

)
, and the information matrix into ΓΓΓθθθ;f =

(
ΓΓΓθθθ;f ;11 ΓΓΓθθθ;f ;12

ΓΓΓθθθ;f ;12 ΓΓΓθθθ;f ;22

)
.
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Inspired by exact optimality in the limit Gaussian shift, it is easy to under-
stand that locally asymptotically optimal (efficient) inference on θθθ1 should be

based on the residual ∆∆∆
(n)
θθθ;f ;1 − ΓΓΓθθθ;f ;12ΓΓΓ

−1
θθθ;f ;22∆∆∆

(n)
θθθ;f ;2 of the regression of ∆∆∆

(n)
θθθ;f ;1

on ∆∆∆
(n)
θθθ;f ;2 in the covariance ΓΓΓθθθ;f , that is, the ΓΓΓθθθ;f -projection of the θθθ1-central

sequence parallel to the space of the θθθ2-central sequence. Indeed, a local per-
turbation n−1/2τττ2 of θθθ2 induces (see (a) in Section 3.1) on the asymptotic

distribution of ∆∆∆
(n)
θθθ;f a shift

(
ΓΓΓθθθ;f ;12

ΓΓΓθθθ;f ;22

)
τττ2. The resulting shift for the residual

∆∆∆
(n)
θθθ;f ;1 − ΓΓΓθθθ;f ;12ΓΓΓ

−1
θθθ;f ;22∆∆∆

(n)
θθθ;f ;2 is thus ΓΓΓθθθ;f ;12τττ2 − ΓΓΓθθθ;f ;12ΓΓΓ

−1
θθθ;f ;22ΓΓΓθθθ;f ;22τττ2 = 0 :

this residual therefore is insensitive to local perturbations of θθθ2. On the

other hand, the asymptotic covariance of the same the residual ∆∆∆
(n)
θθθ;f ;1 −

ΓΓΓθθθ;f ;12ΓΓΓ
−1
θθθ;f ;22∆∆∆

(n)
θθθ;f ;2 is ΓΓΓθθθ;f ;11 − ΓΓΓθθθ;f ;12ΓΓΓ

−1
θθθ;f ;22ΓΓΓ

′

θθθ;f ;12, whereas a perturbation

n−1/2τττ1 of θθθ1 induces a shift
(
ΓΓΓθθθ;f ;11 − ΓΓΓθθθ;f ;12ΓΓΓ

−1
θθθ;f ;22ΓΓΓ

′

θθθ;f ;12

)
τττ1. Asymptot-

ically efficient (at given f and θθθ) inference on θθθ1 when θθθ2 is a nuisance is
characterized by the Gaussian shift model

∆∆∆ ∼ N
((

ΓΓΓθθθ;f ;11 −ΓΓΓθθθ;f ;12ΓΓΓ
−1
θθθ;f ;22ΓΓΓ

′

θθθ;f ;12

)
τττ,ΓΓΓθθθ;f ;11 −ΓΓΓθθθ;f ;12ΓΓΓ

−1
θθθ;f ;22ΓΓΓ

′

θθθ;f ;12

)
,

τττ ∈ R
m1 hence by the information matrix ΓΓΓθθθ;f ;11 − ΓΓΓθθθ;f ;12ΓΓΓ

−1
θθθ;f ;22ΓΓΓ

′

θθθ;f ;12.

3.3 Semiparametric efficiency

In the previous two sections, the density f was supposed to be correctly spec-
ified. In a semiparametric context, of course, this density f is the nuisance,
playing the role of θθθ2! Except for the technical details related to the infinite-
dimensional nature of f (the classical reference is the monograph by Bickel et
al. 1993), this nuisance intuitively is treated in the same way as the parametric
nuisance θθθ2 in Section 3.2. Instead of being projected along the space of shifts

induced by local variations of θθθ2, however, ∆∆∆
(n)
θθθ;f is projected along the space

generated by the shifts induced by variations of densities in the vicinity of f :
the so-called tangent space. This projected semiparametrically efficient central

sequence ∆∆∆
(n)∗
θθθ;f , with (asymptotic) covariance ΓΓΓ ∗

θθθ;f ≤ ΓΓΓθθθ;f—the semiparamet-

rically efficient information matrix in turn defines a Gaussian shift model

∆∆∆∗ ∼ N
(
ΓΓΓ ∗

θθθ;fτττ ,ΓΓΓ ∗

θθθ;f

)
, τττ ∈ R

m which characterizes the best performance

that can be expected (at f and θθθ) when f is unspecified.
In some models, the semiparametric information matrix ΓΓΓ ∗

θθθ;f coincides
with the parametric one ΓΓΓθθθ;f : the model is adaptive at f , meaning that para-
metric and semiparametric performances are asymptotically the same at f
(possibly, at all f). In general, however, ΓΓΓ ∗

θθθ;f < ΓΓΓθθθ;f : the cost of not knowing
the true density, at f , is strictly positive.

Although the definitions of the semiparametrically efficient (at given f)
central sequence and information matrix are intuitively satisfactory, their
practical value at first sight is less obvious. While ΓΓΓ ∗

θθθ;f ≤ ΓΓΓθθθ;f provides the
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optimality bounds that in principle can be achieved at f , ∆∆∆
(n)∗
θθθ;f heavily depend

on f , and cannot be computed from the observations: ∆∆∆
(n)∗
θθθ;f thus cannot be

used for achieving the bound. This problem can be solved in two ways (recall
that the central sequence at f—hence also the semiparametrically efficient
one—only are defined up to o

P
(n)

θθθ;f

(1) terms).

(i) for all f in some class F of densities, an estimate f̂ (n) can be constructed

in such a way that ∆∆∆
(n)∗

θθθ;f̂(n)
−∆∆∆

(n)∗
θθθ;f under P

(n)
θθθ;f is oP(1) as n → ∞. Then,

∆∆∆
(n)
θθθ := ∆∆∆

(n)∗

θθθ;f̂(n)
, which is a measurable function of the observations, is

asymptotically equivalent to the actual efficient central sequence for any
f ∈ F ; together with ΓΓΓ ∗

θθθ(n) := ΓΓΓ ∗

θθθ;f̂(n)
, it allows for uniformly (over F)

semiparametrically efficient inference. The convergence of the distribution

of ∆∆∆
(n)∗
θθθ to a N

(
0,ΓΓΓ ∗

θθθ;f

)
one, however, may be quite slow, and unpleasant

technicalities such as sample splitting are often required.

(ii) if, for some selected f , a distribution-free statistic ∆∆∆
˜

(n)
θθθ;f can be constructed

such that ∆∆∆
˜

(n)
θθθ;f −∆∆∆

(n)∗
θθθ;f under P

(n)
θθθ;f is oP(1) as n → ∞, then this ∆∆∆

˜
(n)
θθθ;f is a

version of the semiparametrically efficient central sequence at f enjoying
the remarkable property of being distribution-free, hence asymptotically

N
(
0,ΓΓΓ ∗

θθθ;f

)
irrespective of the actual underlying density, thus allowing

for reaching semiparametric optimality at the selected f based on exact
(even under density g 6= f) inference. As we shall see in the next section,
this is precisely what rank-based inference can provide.

4 Ranks: from tangent space to Hájek projection

A fundamental statistical principle is the Invariance Principle, stipulating that
“when a statistical problem is invariant under the action of some group of
transformations, one should restrict to invariant statistical procedures”, that
is, to statistical procedures based on invariant statistics. It has been assumed

in Section 3.1 that the fixed-θθθ subfamilies P
(n)
θθθ of P(n) are invariant w.r.t. the

groups Gθθθ, ◦, with maximal invariant R(n)(θθθ) (typically, the ranks of some θθθ-
residuals). The set of invariant statistics thus coincides with the set of R(n)(θθθ)-
measurable statistics (typically, the rank statistics). Since optimal (at θθθ and f)

inference can be based on the central sequence ∆∆∆
(n)
θθθ;f , a natural idea consists

in considering the invariant statistic which is closest to the central sequence

by projecting ∆∆∆
(n)
θθθ;f onto the σ-field generated by R(n)(θθθ), yielding

∆∆∆
˜

(n)
θθθ;f := Ef

[
∆∆∆

(n)
θθθ;f | R(n)(θθθ)

]

Being R(n)(θθθ)-measurable, ∆∆∆
˜

(n)
θθθ;f is an invariant, hence distribution-free statis-

tic (in the fixed-θθθ submodel). The projection mapping ∆∆∆
(n)
θθθ;f onto ∆∆∆

˜
(n)
θθθ;f is, in a
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sense, the opposite of a classical “Hájek projection”; in the sequel, as a tribute
to Jaroslav Hájek, we also call it a Hájek projection.

The relation between the seemingly completely unrelated Hájek and tan-
gent space projections was established by (Hallin and Werker 2003). Un-

der very general conditions, indeed, they show that, under P
(n)
θθθ;f , ∆∆∆

˜
(n)
θθθ;f =

∆∆∆
(n)∗
θθθ;f + oP(1) as n → ∞: ∆∆∆

˜
(n)
θθθ;f is thus an invariant (rank-based) distribution-

free version of the semiparametrically efficient (at θθθ and f) central sequence.
As explained in Section 3.2, it thus allows for distribution-free semiparamet-
rically efficient (at θθθ and f) inference on θθθ.

Fig. 6. Jaroslav Hájek (1926-1974)

Remark that ∆∆∆
˜

(n)
θθθ;f is obtained as the projection of the “regular” central

sequence, not the semiparametrically efficient one: Hájek projections thus are
doing the same job as tangent space projections, without requiring the (often
nontrivial) computation of the latter, and with the (invaluable) additional

advantages of distribution-freeness. The projection Ef [∆∆∆
(n)
θθθ;f | R(n)(θθθ)] is the

“exact score version” of ∆∆∆
˜

(n)
θθθ;f ; simpler “approximate score” versions also exist,

but their form depends on the specific central sequence under study.
Uniformly semiparametrically efficient inference is also possible, by con-

sidering ∆∆∆
˜

(n)

θθθ;f̂(n)
, where f̂ (n) is an appropriate density estimator, with the

important advantage of avoiding the unpleasant technicalities, such as sample-
splitting, associated with the “classical semiparametric procedures”, based on

∆∆∆
(n)

θθθ;f̂(n)
. But then, ∆∆∆

˜
(n)

θθθ;f̂(n)
also splits the sample, into two mutually indepen-

dent parts: the invariant and distribution-free part on one hand (the ranks),

the “order statistic” (involved in f̂ (n) on the other, with the ranks containing
the “f -free” information about the parameter θθθ, whereas the “order statistic”
contains information on the nuisance f only.
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5 Conclusion

Rank-based methods (more generally, the “maximal invariant” ones) are quite
flexible, and apply in a very broad class of statistical models, much beyond
the traditional context of linear models with independent observations. They
are powerful—achieving semiparametric efficiency at selected density, which is
the best that can be hoped for in presence of unspecified densities. In the same
time, they are simpler and more robust (distribution-freeness) than “classical”
semiparametric procedures. Often, they make Gaussian or pseudo-Gaussian
methods non-admissible (the Chernoff-Savage phenomenon: see Hallin 1994
for time series models, Hallin and Paindaveine 2002 for elliptical location,
and Paindaveine 2006 for elliptical shape).

Within their sixty years of existence, Wilcoxon’s “quick and easy” tricks
have grown into a full body of efficient and modern methods, reconciling the
apparently antagonistic objectives of efficiency and robustness (distribution-
freeness, meaning 100% resistance against misspecified densities).

Happy birthday to you, Mr Wilcoxon!
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