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Abstract

Measures of association for bivariate interval censored data have not yet been
studied extensively. Betensky and Finkelstein (1999, Statistics in Medicine 18,
3101–3109) proposed to calculate Kendall’s coefficient of concordance using a mul-
tiple imputation technique, but their method becomes computer intensive for mod-
erate to large data sets. We suggest a different approach consisting of two steps.
Firstly, a bivariate smooth estimate of the density of log-event times is determined.
The smoothing technique is based on a mixture of Gaussian densities fixed on a
grid with weights determined by a penalized likelihood approach. Secondly, given
the smooth approximation several global and local measures of association can be
estimated readily.
The performance of our method is illustrated by an extensive simulation study and
is applied to tooth emergence data of 7 permanent teeth measured on 4468 children
from the Signal-Tandmobiel r©study.

Key words: Bivariate survival; interval-censored; Kendall’s tau; Spearman’s cor-
relation; cross ratio function.

1 Introduction

Measures of association are well studied and often applied to data that are completely
observed. Some measures have been extended to right censored data (e.g. Oakes [1982],
Dabrowska [1986], Clayton [1978]). However for interval censored data, association mea-
sures have not yet been studied extensively.
In the absence of censoring, Kendall’s tau (τ) is estimated from scores assigned to each
pair of bivariate observations, say (X1, Y1), (X2, Y2) to measure the concordance between
the two observations. More specifically, (X1, Y1) and (X2, Y2) are said to be concordant
if X1 > X2 and Y1 > Y2 or if X1 < X2 and Y1 < Y2 and they are discordant if X1 > X2

and Y1 < Y2 or if X1 < X2 and Y1 > Y2. Concordant pairs are assigned a score of 1,
discordant pairs are assigned a score of −1, and pairs in which there is equality among
either variable are assigned a score of 0. Kendall’s tau is then estimated by the average of
these scores over all pairs of observations and in this way it estimates the difference be-
tween the probability of concordance and the probability of discordance. In the presence
of censoring, things are more complicated. Oakes [1982] proposed to estimate Kendall’s
tau for bivariate right censored data by assigning zero to pairs of observations that cannot
be compared. Following Oakes’s approach, Betensky and Finkelstein [1999] suggested to
calculate Kendall’s tau in the presence of interval censoring using a multiple imputation
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strategy. However, their approach is quite computer intensive for moderate to large data
sets.
Our approach is based on 2 steps. First we approximate the bivariate density of the log
of the event times by a smoothing technique. The smoothing technique is an extension of
the approach used by Ghidey et al. [2004] for smoothing the random effects distribution
in a linear mixed model and by Komárek et al. [2005] for smoothing the distribution of
the error term in an accelerated failure time model. More specifically the smooth density
is a mixture of Gaussian densities fixed on a bivariate grid with weights determined by
a penalized likelihood approach. In the second step, the estimated smoothed bivariate
cumulative distribution function F̂ is plugged into the expression τ = 4

∫
FdF − 1, which

is the population’s version of Kendall’s tau. The same approach can be used to estimate
other measures of association like Spearman’s rank correlation, the cross ratio function
and a conditional version of Kendall’s tau. Spearman’s correlation is a global measure of
association like Kendall’s tau, the latter two are local measures of association.
The next section describes the smoothing procedure and its mathematical properties.
The calculation and properties of the measures of association are described in Section 3.
An overview of alternative approaches is described in Section 4. A simulation study is pre-
sented in Section 5. The application to tooth emergence data of the Signal Tandmobiel r©study
is described in Section 6. Concluding remarks are found in Section 7.

2 Smooth estimate of the bivariate density

2.1 Smoothing Method

A detailed description of the smoothing method can be found in Bogaerts and Lesaffre
[2003]. Briefly, let (T1, T2) represent a positive valued bivariate random vector with density
f . Let T1 and T2 be interval censored in the rectangle (t1l, t1r]×(t2l, t2r] by an independent
censoring process. We also include here the special cases, i.e. left (tl = 0) and right
censoring (tr = ∞). The smoothing procedure is an extension of the approach of Ghidey
et al. [2004] and Komárek et al. [2005]. The bivariate density g of U1 ≡ log(T1) and
U2 ≡ log(T2) is modelled as a weighted sum of bivariate normal distributions with zero
correlation over a (fixed) fine grid of size k1 × k2 with means equal to the gridpoints of
the grid and variances equal but fixed. Let (µi, νj), i = 1 . . . , k1 and j = 1 . . . , k2 denote
the locations of the gridpoints. Thus, we assume that

(
U1

U2

)
∼

k1∑
i=1

k2∑
j=1

cijN ((µi, νj)
T ,

[
σ2

1 0
0 σ2

2

]
) (1)

where cij > 0,∀i, j and

k1∑
i=1

k2∑
j=1

cij = 1. The aim is to estimate the weights cij(i =

1, . . . , k1, j = 1, . . . , k2). Note that this involves a constrained maximum likelihood pro-
cedure in the k1 × k2 weight parameters. Unconstrained maximum likelihood estimation

is obtained by introducing parameters aij as cij = eaij

/∑
i,j

eaij , with, say a11 = 0 to

ensure identifiability.
Following the work of Eilers and Marx [1996] a penalty term is used to smooth our ap-



proximation to the true density g. The penalty term equals to

p =
λ1

2

k2∑
j=1

k1∑

i=k

(∇k
1aij)

2 +
λ2

2

k1∑
i=1

k2∑

j=k

(∇k
2aij)

2 (2)

where λ1 (> 0) and λ2 (> 0) are “smoothing” parameters. ∇k
d is the kth order difference

operator in the d-th dimension (d = 1, 2) which is iteratively defined for the first dimension
as ∇k

1aij = ∇k−1
1 aij − ∇k−1

1 ai−1,j for k > 0 and ∇0
1aij = aij and analogously defined for

the second dimension.
Given λ1, λ2, let ln denote the loglikelihood for a sample of size n and p the penalty
defined in (2). Maximizing the penalized loglikelihood lP,n = ln − p with respect to
a = (a11, . . . , ak1k2)

T , yields estimates âij(i = 1, . . . , k1, j = 1, . . . , k2).
The parameters λ1 and λ2 are assumed to be given, they determine the smoothness of the
density, i.e. the larger λ1 and λ2 the smoother the density will be. The optimum λ1 and λ2

correspond to a minimum Akaike’s Information Criterium (AIC) (Akaike [1974]) defined as
AIC = −2× log-likelihood+2×”effective number of parameters”. The ”effective number
of parameters” can be determined (Gray [1992]) as trace

[
H−1

LP
HL

]
where HL = − ∂2ln

∂a∂aT

and HLP
= − ∂2lP,n

∂a∂aT . The optimum λ1 and λ2 can be found by a grid search or a parabolic
interpolation search.

2.2 Statistical Properties

2.2.1 Consistency

When parameters a0 exist such that the truth can be written like (1), it can be shown
that the parameters are consistently estimated (Ghidey et al. [2004]). So, ân → a0.
However, in general the true distribution can not be written as a weighted sum of normal
distributions with means at a pre-specified grid. Using White’s theory (White [1982]),
one can show that all the parameter estimates asymptotically converge to a function
that minimizes the Kullback-Leibler distance. From limited simulations (results are not
reported) we observed that the Kullback-Leibler distance indeed goes to zero for a fine
enough grid and a large sample size.

2.2.2 Asymptotical Normality

Under the same conditions as in 2.2.1 it can also be shown that the estimated parameters
are asymptotically normally distributed. Namely,

√
n(ân − a0) → N (0, Σ) where Σ can

be consistently estimated by

nH−1
LP

(ân)H−1
L (ân)H−1

LP
(ân).

3 Measures of association

3.1 General concept

Our approach consists in replacing the true density function, cumulative distribution func-
tion, survival function, etc. by their estimated counterparts determined from the bivariate
smoothed function in the expression of the association measure. Two global dependence
measures: Kendall’s tau and Spearman’s rho, and two local dependence measures: the



cross ratio function and the conditional version of Kendall’s tau are estimated using our
approach in the following subsections. A SAS macro (version 8.2) has been written and
can be downloaded from http://www.med.kuleuven.be/biostat/index.htm.
Because of the promising results of our smoothing procedure (see Bogaerts and Lesaffre
[2003]), it might be expected that our plug-in estimates also have good properties.
Let f and g represent the bivariate densities of (T1, T2) and (U1, U2) ≡ (log(T1), log(T1))
respectively. F (t1, t2) and G(u1, u2) denote the bivariate cumulative distribution functions
of f and g, respectively. Let F1(t1) and F2(t2) denote the univariate marginal distribu-
tions corresponding to F (t1, t2). Analogously, G1(u1) and G2(u2) represent the univariate
marginal distributions corresponding to G(u1, u2). Finally, let SF (t1, t2) and SG(u1, u2)
denote the bivariate survival functions corresponding to F and G respectively.

3.2 Kendall’s tau

The association between two survival times can be expressed by Kendall’s tau (Hougaard
[2000]), which is equal to

τ = 4 ·
∫

F (t1, t2)dF (t1, t2)− 1

= 4 ·
∫

G(u1, u2)dG(u1, u2)− 1. (3)

Our approach consists in replacing G by the cumulative distribution of the bivariate
smoothed function in expression (3). This leads to the following expression for the esti-
mate of τ (see Appendix):

τ̂ = 4 ·
k1∑
i=1

k2∑
j=1

k1∑

k=1

k2∑

l=1

ĉij ĉklΦ(
µi − µk√

2σ1

)Φ(
νj − νl√

2σ2

)− 1 (4)

where ĉij and ĉkl are the estimated coefficients and Φ denotes the univariate cumulative
standard normal distribution. Clearly, given the coefficients ĉij, the calculation of τ̂ is
readily done.
Based on the variance-covariance matrix of â (see Section 2.2.2) and using the delta
method, one can easily derive the asymptotic variance and a (95%) confidence interval for
τ̂ . Further, for τ̂1 and τ̂2 estimated from two independent groups of subjects a two-sample
Z-test can be derived to test H0 : τ1 = τ2 (see Appendix for details).

3.3 Spearman’s rho

The population measure of Spearman’s correlation (Joe [1997]) is defined
as ρs = 12 · ∫ ∫

F1(t1)F2(t2)dF (t1, t2)− 3. Alternatively on the log scale,
ρs = 12 · ∫ ∫

G1(u1)G2(u2)dG(u1, u2)− 3. As for Kendall’s tau, one can derive that ρs is
estimated by

ρ̂s = 12 ·
∑

i

∑
j

∑

k

∑

l

∑
p

∑
q

ĉij ĉklĉpqΦ(
µi − µp√

2σ1

)Φ(
νk − νq√

2σ2

)− 3. (5)

Given the coefficients ĉij, the calculation of ρ̂s is again readily done but is computationally
harder than the calculation of τ̂ due to the extra summation. Similar as for Kendall’s
tau, one can derive the asymptotic variance, a (95%) confidence interval for ρ̂s and a
significance test for H0 : ρs1 = ρs2.



3.4 Cross ratio function

The cross ratio function suggested by Clayton [1978] and Oakes [1989] is a local measure
of association. It evaluates the degree of dependence at a single time point. It is defined
as

θ(t1, t2) = SF (t1, t2) · ∂2SF (t1, t2)

∂t1∂t2

/[
∂SF (t1, t2)

∂t1
· ∂SF (t1, t2)

∂t2

]
(6)

= SG(u1, u2) · ∂2SG(u1, u2)

∂u1∂u2

/[
∂SG(u1, u2)

∂u1

· ∂SG(u1, u2)

∂u2

]
. (7)

The cross ratio function has a very natural interpretation in conditional hazard rates
(Oakes [1989]), namely

θ(t1, t2) =
λ1(t1 | T2 = t2)

λ1(t1 | T2 ≥ t2)

=
λ2(t2 | T1 = t1)

λ2(t2 | T1 ≥ t1)
,

where λ1 and λ2 are the hazard functions for T1 and T2 respectively.
To illustrate this interpretation, suppose we are analyzing the time to death for the
elements of a married couple. Let X and Y represent the time to death for the wife and
husband respectively, then θ(x, y) is the ratio of the mortality risk for wifes of age x whose
husband died at the age of y, compared to the mortality risk for wifes of age x whose
husband was still alive at age y.
Our approach consists in replacing S(u1, u2) by the estimated survivor function of the
bivariate smoothed function in expression (7) and leads to the following expression for
the estimate of θ(t1, t2) ≡ θ(u1, u2)

θ̂(t1, t2) ≡ θ̂(u1, u2) =

∑
i

∑
j ĉijΦ(−u1−µi

σ1
)Φ(−u2−νj

σ2
)×∑

i

∑
j ĉijφ(u1−µi

σ1
)φ(

u2−νj

σ2
)

∑
i

∑
j ĉijΦ(−u1−µi

σ1
)φ(

u2−νj

σ2
)×∑

i

∑
j ĉijφ(u1−µi

σ1
)Φ(−u2−νj

σ2
)
, (8)

where φ denotes the univariate standard normal density. When (8) is evaluated at the

values of the grid, the evaluation of θ̂(t1, t2) can be done quite efficiently.
Based on the variance-covariance matrix of â (see Section 2.2.2) and using the delta
method, one can easily derive the asymptotic variance of the cross ratio function on the
logarithmic scale and correspondingly a (95%) confidence interval for θ̂.

3.5 Conditional version of Kendall’s tau

Oakes [1989] proposed to use a conditional version of Kendall’s tau as a local measure of
dependence. It can be defined in function of the cross ratio function as

τ(t1, t2) =
θ(t1, t2)− 1

θ(t1, t2) + 1
.

Given the cross ratio function, estimation of τ(t1, t2) is readily done. For more details
about the conditional version of Kendall’s tau, we refer to the article of Oakes [1989].



4 Alternative approaches of estimating measures of

association

4.1 Midpoint method

In principle the problem of interval censored data is overcome by approximating the event
time by the midpoint of the interval. However, it has been reported by several authors
that this approach can induce serious bias (e.g. Odell et al. [1992], Law and Brookmeyer
[1992]). The midpoint method was implemented for the simulation study using the fol-
lowing algorithm: an interval or left censored observation was replaced by the midpoint
of the interval, a right censored observation was left unchanged. Kendall’s tau was then
estimated for these adjusted data according to the method of Oakes [1989].

4.2 Approach of Betensky and Finkelstein

The method of Betensky and Finkelstein [1999] starts with modelling the bivariate sur-
vivor function, either in a parametric or a non-parametric way. The parametric approach
has the obvious drawback that it is hard to choose the correct distribution, especially with
interval censored observations. For the non-parametric fit, there are two drawbacks. First,
the non-parametric maximum likelihood estimate (NPMLE) is not necessarily unique for
bivariate interval censored data. Unfortunately, Betensky and Finkelstein [1999] do not
describe how this affects their estimator. Secondly, although some recent progress in
the computation of the NPMLE (e.g. Bogaerts and Lesaffre [2004], Maathuis [2005]) has
been made, the estimation of the NPMLE is still quite computationally intensive for
moderate to large data sets. This implies for the analysis of emergence times of the
Signal-Tandmobiel r©study that the calculation of the NPMLE for a pair of teeth is im-
possible with the current computing power due to an excessive large number of regions
of possible support. The procedure of Betensky and Finkelstein [1999] can therefore even
not be performed with the NPMLE as starting point.
Further, for right censored data, Wang and Wells [2000] reported that the estimator of
Oakes [1982] is not consistent when the true value of τ is not equal to zero. The bias
even increases as the degree of dependence increases. As the estimator of Betensky and
Finkelstein [1999] is based on Oakes’s approach, it is likely that their estimator is also
biased when the true value of τ is not equal to zero. In their simulations, Betensky and
Finkelstein [1999] only examine a situation where the true τ equals 0.224. For this setting,
the mean bias was limited to 0.01. Situations with a true higher association were not ex-
amined. We performed for our simulations also the method of Betensky and Finkelstein
[1999], but only for a sample size of 100 since for higher sample sizes the method becomes
prohibitively computer intensive, e.g. for n = 500 estimating Kendall’s tau takes more
than 2 hours.

5 Simulation Study

A simulation study was set up where independent failure times were simulated from a
bivariate log-normal distribution (scenario 1, τ = 0) and a bivariate log t-distribution
with 3 degrees of freedom (scenario 2, τ = 0). In addition, failure times were simulated
from scenarios with τ different from zero (scenarios 3 to 8): 1) a bivariate log-normal



distribution (τ = 0.41), 2) an equal mixture of two bivariate log-normal distributions
with the same variance (τ = 0.63), 3) an equal mixture of two bivariate log-normal dis-
tributions with different variances (τ = 0.49), 4) an unequal mixture (π1 = 0.3, π2 = 0.7)
of two bivariate log-normal distributions with the same variance and with two modes for
both marginal distributions (τ = 0.54), 5) an unequal mixture (π1 = 0.4, π2 = 0.6) of
two bivariate log-normal distributions with the same variance but with only one mode
for one marginal and two modes in the other marginal (τ = 0.26) and 6) a bivariate log
t-distribution with 3 degrees of freedom (τ = 0.48).
Four different independent censoring schemes were applied to the (uncensored) data: 1)
about 10% left, 70% interval and 20% right censoring; 2) about 10% left, 50% interval
and 40% right censoring; 3) about 5% left, 20% interval and 75% right censoring and 4)
about 75% left, 20% interval and 5% right censoring. This was done by generating 6 visit
times and a drop out process both independently of the failure times.
The sample sizes were 100 and 500. Two gridsizes were examined i.e. 10×10 and 20×20,
but the 10 × 10 grid was not always satisfactory and is therefore not further considered
here. For each setting 1000 simulations were performed. For the smoothing parameters,
a grid search with 10 values ranging from 0.001 to 500 in both dimensions was performed
in order to choose the smoothing parameters. For N = 100, both smoothing parameters
were assumed to be equal to each other (λ1 = λ2) since without this restriction many
simulations had computational problems during the grid search. An explanation for this
is that the amount of information for N = 100 is rather low. Third order differences were
used in the penalty. The variances σ2

1 and σ2
2 of expression (1) were set to the square of

2/3 of the gridsize (see Bogaerts and Lesaffre [2003]).
For each setting, both Kendall’s tau and Spearman’s correlation and their corresponding
variances were calculated. As a benchmark, Kendall’s tau and Spearman’s correlation
was also estimated for the uncensored failure times using the standard expressions.
For scenarios 1 and 2 we investigated the type I error, after applying a Fisher transfor-
mation, for testing H0 : τ = 0 and H0 : ρs = 0. Only the results for Kendall’s tau will
be discussed in detail because similar conclusions can be drawn for Spearman’s correla-
tion. For the two more reasonable censoring schemes 1 and 2, our results showed that
the probability of the type I error was inflated for sample size 100 (mean 7.2%, range
5.4%-8.8%). However for sample size 500, it approached the nominal level (mean 5.1%,
range 3.9%-5.5%). For the extreme censoring schemes 3 and 4, our results showed a se-
rious inflation in the probability of the type I error for sample size 100 (mean 16.8%,
range 14.3%-21.9%). And even for sample size 500, the probability on a type I error was
still almost doubled (mean 9.0%, range 7.1%-10.2%). But in an additional simulation for
scenario 1 with a sample size of 1000, the probability on a type I error was further reduced
to 4.8% and 8.0% for censoring schemes 3 and 4 respectively.
Figures 1 and 2 display a box plot of the difference between Kendall’s tau calculated using
our method and the true population Kendall’s tau from which data was simulated for the
sample sizes 100 and 500, respectively. The median bias for censoring schemes 1 and 2 is
already very small for sample size 100. For censoring schemes 3 and 4, the median bias
is much larger and increases as the true τ is larger. In general the median bias reduces
if the sample size is increased to 500. Only for censoring schemes 3 and 4, the median
bias remains important in some settings. The variability for censoring schemes 3 and 4 is
also substantially larger than for censoring schemes 1 and 2. Also the difference between
Kendall’s tau calculated using our method for the censored observations and using the
standard formulae for the uncensored observations was examined. A similar conclusion
as for the difference with the true population value can be made and therefore the results



Table 1: Simulation study: Median difference of τ̂i − τ (i = 1, . . . , 1000), where τ̂i is
given by our method (B&L), the midpoint method (MID) and the method of Betensky
& Finkelstein (B&F ) in the simulated data sets of size 100 and τ is the true Kendall’s
tau. λ1 = λ2 was imposed for B&L.

Censoring Censoring Censoring Censoring
10% left 10% left 5% left 75% left

70% interval 50% interval 20% interval 20% interval
20% right 40% right 75% right 5% right

sc. τ B&L MID B&F B&L MID B&F B&L MID B&F B&L MID B&F
1 0 −0.00 0.03 −0.00 −0.01 −0.00 −0.01 −0.02 −0.00 0.03 −0.02 0.26 0.05
2 0 0.00 0.04 0.01 −0.01 0.01 −0.00 −0.03 0.02 0.04 −0.04 0.32 0.06
3 0.41 0.01 −0.09 0.03 0.00 −0.18 0.02 −0.01 −0.31 −0.05 −0.07 0.14 −0.04
4 0.63 0.00 −0.12 0.02 −0.01 −0.19 0.02 −0.08 −0.45 −0.17 −0.16 0.03 −0.27
5 0.49 0.02 −0.07 −0.03 −0.02 −0.19 −0.01 −0.07 −0.40 −0.22 −0.03 0.21 −0.13
6 0.54 −0.01 −0.13 0.02 −0.01 −0.17 0.00 −0.09 −0.36 −0.23 −0.12 0.12 −0.18
7 0.26 0.00 −0.02 0.01 0.00 −0.10 −0.00 −0.03 −0.19 −0.08 −0.04 0.24 −0.07
8 0.48 −0.03 −0.07 0.05 0.00 −0.16 −0.00 −0.02 −0.32 −0.15 −0.07 0.12 −0.10

Table 2: Simulation study: Mean Squared error (×103) of τ̂i according to our method
(B&L), the midpoint method (MID) and the method of Betensky & Finkelstein (B&F )
from the 1000 simulated data sets of size 100. λ1 = λ2 was imposed for B&L.

Censoring Censoring Censoring Censoring
10% left 10% left 5% left 75% left

70% interval 50% interval 20% interval 20% interval
20% right 40% right 75% right 5% right

sc. τ B&L MID B&F B&L MID B&F B&L MID B&F B&L MID B&F
1 0 7.4 4.4 11.8 7.1 2.1 9.0 32.7 0.9 12.8 52.3 75.6 25.3
2 0 9.4 7.2 15.2 10.0 3.5 9.9 35.1 1.4 12.4 44.0 112.4 28.5
3 0.41 5.3 10.9 9.4 4.9 33.8 6.4 29.6 94.2 18.5 44.0 26.5 25.9
4 0.63 1.8 16.8 4.5 1.9 39.6 2.6 16.2 202.5 37.1 60.7 7.0 83.3
5 0.49 7.2 8.3 12.8 4.2 40.3 4.2 32.3 160.1 56.0 26.6 48.9 26.8
6 0.54 3.0 20.2 4.0 3.5 30.8 3.7 34.2 133.0 57.3 49.6 18.9 42.9
7 0.26 9.4 4.1 5.9 10.0 12.8 6.8 35.1 35.6 13.6 44.0 62.7 14.5
8 0.48 8.0 9.2 21.8 6.1 28.7 12.2 23.3 105.6 34.6 34.0 21.1 36.3

are not shown.
In addition to our method, both the midpoint approach and the method of Betensky and
Finkelstein [1999] have been applied to the simulated data of sample size 100. Tables 1
and 2 show the median bias and Mean Squared Error for the three methods. Except for
the midpoint method under censoring scheme 4, all the three methods show a very small
bias under all censoring schemes for the scenarios with τ = 0. However, when there is
dependence (scenarios 3 to 8), the midpoint method induces a severe bias. For censoring
schemes 1 and 2, both the method of Betensky and Finkelstein [1999] and our method
show a very low median bias. In general, our method performs somewhat better when
when looking at the MSE. For censoring schemes 3 and 4, the median bias using the
method of Betensky and Finkelstein [1999] is larger than with our method. However, also
our method underestimates the true dependence substantially for some settings. More
specifically, the median bias increases as the true dependence is larger. The conclusion for
the MSE is less clear. For the lower values of τ the method of Betensky and Finkelstein
[1999] has a lower MSE, whereas for the higher values of τ our method has the lower MSE.
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Figure 1: Simulation study: Box plot of τ̂i−τ (i = 1, . . . , 1000), where τ̂i is given by (4) in
the simulated data set of size 100 and τ is the true Kendall’s tau. λ1 = λ2 was imposed.
The Box plot was created using the function “boxplot” from S-plus version 6.0.
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Figure 2: Simulation study: Box plot of τ̂i − τ (i = 1, . . . , 1000), where τ̂i is given by (4)
in the simulated data set of size 500 and τ is the true Kendall’s tau. The Box plot was
created using the function “boxplot” from S-plus version 6.0.



Table 3: Signal-Tandmobiel r©study: Median emergence times and censoring distribution
for the teeth of the right side of the upper jaw for boys and girls.

Boys (N=2315) Girls (N=2153)
Tooth Median % censoring Median % censoring

number Tooth name (years) left interval right (years) left interval right
11 Central incisor 7.08 49 45 6 6.85 62 34 4
12 Lateral incisor 8.25 9 77 14 7.84 21 68 11
13 Canine 11.53 0 39 61 10.91 0 56 44
14 First premolar 10.73 1 56 43 10.31 0 68 32
15 Second premolar 11.62 1 37 62 11.26 0 47 53
16 First molar 6.31 83 15 2 6.14 89 10 1
17 Second molar 12.27 0 19 81 11.95 0 29 71

6 Application to Signal Tandmobiel r©Study

The emergence age of a tooth is the chronological age of a child at which that tooth ap-
pears in the mouth. Not only the timing, but also the association pattern of (permanent)
tooth emergence is of interest to dentists.
The Signal-Tandmobiel r©study is a prospective longitudinal survey, which collected dental
and oral health behaviour data from a representative sample (N=4468) of Flemish chil-
dren born in 1989. A detailed description of the Signal-Tandmobiel r©project can be found
in Vanobbergen et al. [2000]. The children were examined annually on pre-scheduled visits
(from the age of 7 to the age of 12) by 16 trained dentist-examiners in a mobile dental
clinic on the school premises. The ages at examination over the six years ranged from 6.1
to 12.5 years. Tooth emergence was recorded at each examination by direct inspection.
Each permanent tooth was scored according to its clinical eruption stage (adapted from
Carvalho et al. [1989]). However, for the present analysis, the status of tooth eruption
was dichotomized: not emerged versus emerged. As the children were examined annually,
the emergence times are interval-censored. However, since a tooth can emerge before the
first or after the last visit also left and right censored emergence times are encountered.
In Europe, the teeth are numbered with a two digit number as follows: the first digit
represents the quadrant numbered from 1 to 4 (the upper right quadrant is “1”, upper
left “2”, lower left “ 3” and lower right “4”), the second digit refers to the place within
the quadrant starting from the midline towards the back of the mouth. The last molar
(tooth 18, a wisdom tooth) emerges (if it emerges) at the age of 17 years or later. Since its
emergence time could not be recorded in our study we discarded that tooth here. Based
on data obtained from the Signal-Tandmobiel r©study the distribution of the emergence
times for each of the 28 permanent teeth separately were determined for Flemish children
from 7 to 12 years of age (Leroy et al. [2003]). Table 3 displays the median emergence
times and the censoring distribution for teeth 11 to 17 for for the 2315 boys and 2153 girls
of the Signal-Tandmobiel r©study, separately. The median emergence times were estimated
by fitting a log-logistic model to the data.

As an illustration we measured the association between the emergence times by means of
Kendall’s tau for each pair of the first quadrant. A 20× 20 grid and a third order differ-
ence penalty was applied. The results are presented in Table 4. The highest association
for both boys and girls was observed between the two incisors (teeth 11 and 12) and the
two premolars (teeth 14 and 15). The lowest association was 0.28, between the second
premolar and first molar for boys. From Figure 3 the following trend can be observed
for boys: the closer the median emergence times, the higher the correlation. A similar



Table 4: Signal-Tandmobiel r©study: Kendall’s tau for the teeth of the right side of the
upper jaw compared to the results of Parner et al. [2002] (within parentheses). On each
second line the 95% confidence interval of the true value of τ based on our method is
given within parentheses. Results for boys and girls are presented in the upper and lower
part, respectively.

11 12 13 14 15 16 17
11 1 0.53(0.56) 0.45(0.48) 0.38(0.42) 0.42(0.39) 0.43(0.39) 0.42(0.39)

(0.50-0.56) (0.40-0.50) (0.34-0.41) (0.38-0.46) (0.36-0.50) (0.35-0.48)
12 0.52(0.55) 1 0.46(0.46) 0.32(0.39) 0.35(0.38) 0.33(0.36) 0.35(0.36)

(0.48-0.55) (0.43-0.50) (0.29-0.35) (0.31-0.39) (0.25-0.41) (0.30-0.41)
13 0.43(0.47) 0.46(0.46) 1 0.49(0.57) 0.49(0.48) 0.39(0.39) 0.35(0.39)

(0.39-0.47) (0.43-0.49) (0.45-0.52) (0.41-0.57) (0.31-0.47) (0.27-0.44)
14 0.36(0.43) 0.35(0.41) 0.48(0.57) 1 0.57(0.60) 0.33(0.38) 0.38(0.41)

(0.32-0.4) (0.32-0.39) (0.45-0.51) (0.53-0.60) (0.24-0.41) (0.29-0.47)
15 0.35(0.39) 0.34(0.37) 0.42(0.46) 0.56(0.59) 1 0.28(0.40) 0.35(0.44)

(0.31-0.4) (0.31-0.38) (0.38-0.47) (0.52-0.60) (0.23-0.33) (0.26-0.43)
16 0.40(0.39) 0.36(0.36) 0.42(0.36) 0.33(0.38) 0.34(0.39) 1 0.35(0.62)

(0.24-0.57) (0.25-0.48) (0.32-0.52) (0.15-0.51) (0.25-0.42) (0.19-0.50)
17 0.36(0.39) 0.32(0.36) 0.39(0.38) 0.38(0.40) 0.44(0.44) 0.48(0.60) 1

(0.30-0.41) (0.27-0.38) (0.32-0.45) (0.33-0.43) (0.38-0.50) (0.39-0.57)

pattern is found for the girls. This relates to the two emergence phases that are observed
in Table 3. Namely, there is an early emergence phase for the first molar and the two
incisors around 7 years and a later emergence phase for the canine, the two pre-molars
and the second molar around 11 and 12 year. Although the emergence times of girls are
significantly earlier than those of boys (Leroy et al. [2003]), no significant difference in
association could be shown between boys and girls using a two-sample Z-test (see Ap-
pendix). The width of the confidence interval is apparently related with the proportion
of left, right or interval censored data. Namely, the larger the proportion of left or right
censored data, the wider the confidence interval is. This can be explained by the fact that
an interval censored observation contains more information about the event time than a
left or right censored observation.
In addition, we also calculated the cross ratio function for tooth 14 given that tooth 12
emerged at 8 years. The results are displayed in Figure 4. On the y-axis one can see
the ratio of the risk on emergence of tooth 14 for children of a specific age (see X-axis)
whose tooth 12 was emerged at 8 years, compared to children of the same age whose
tooth 12 was not yet emerged at 8 years. From around 8.5 years the ratio is significantly
larger than 1 and keeps increasing over time until 10 years. Afterwards the ratio levels out.

Parner et al. [2002] fitted a bivariate normal distribution to tooth emergence data of
Danish children born in 1978. More than 12,000 children were analyzed for both boys
and girls. The children were examined annually from 3 to 18 years old. They reported
Pearson correlations for all pairs of teeth. For a bivariate normal distribution there exists
a relation between Kendall’s tau and Pearson’s correlation (ρ), namely τ = 2sin−1(ρ)/π.
When transforming the Pearson correlations reported by Parner et al. [2002] to Kendall’s
tau’s, our correlations were somewhat lower than those of Parner. However, with the
exception for 4 and 6 associations for girls and boys respectively, the estimates of Parner
et al. [2002] always lie within our 95% confidence intervals. Several reasons can explain
the discrepancy. Parner’s assumption of a bivariate normal distribution for the emergence
times is perhaps not fulfilled. Furthermore, Parner’s population is different from ours.
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Figure 3: Signal-Tandmobiel r©study: τ̂ with a 95% confidence interval versus the time
between median emergence times of two teeth of the right side of the upper jaw for boys.

Figure 4: Signal-Tandmobiel r©study: The estimated cross ratio function for tooth 14
given tooth 12 emerged at 8 years for boys. The dotted lines represent the pointwise 95%
confidence interval.



Indeed, as argued by Leroy et al. [2003], emergence standards should be derived from
the population in which they are to be applied since factors related to emergence may
vary considerably. Closer inspection of the results show that the discrepancy between
our results and those of Parner et al. [2002] was primarily observed for those teeth with
extreme right or left censoring (up to 89%) in our study. In order to measure the effect
of potential bias in such a case of extreme censoring, an additional simulation study with
1,000 repetitions was performed on a bivariate log-logistic model with a true τ equal to
0.40 (a value observed by Parner et al. [2002]) and on a sample of size 2223. One tooth was
about 75% left censored, the other tooth about 75% right censored. The mean difference
between the estimated τ ’s and the true τ was found to be −0.25. Thus, the size of this
bias can explain the difference found between our results and the results of Parner et al.
[2002]. Indeed, because the Danish children have been followed up over a longer period of
time, the proportion of left and right censored observations was much less and therefore
the association measure is estimated probably with more precision in Parner’s study.
As a conclusion, we can state that the results for the teeth that are highly left or right
censored should be interpreted with great caution due to the potential bias on the esti-
mates. However, the observed bias is mostly negative indicating that the true dependence
is potential higher than observed.

7 Concluding remarks

It is important to note that our smoothing method is not a classical mixture problem.
Indeed, only the mixing weights are estimated because the means and variances of the
bivariate standard normal densities are fixed.
The penalty was defined in the parameters aij. On first sight, it seems more natural
to define the penalty in the parameters cij. However, the computation in cij implied a
significantly higher computation time with more numerical instability. The same was true
when the penalty was expressed in terms of cij but the computations were done in aij.
In all our settings, a 20 × 20 grid provided good results. In practice, one can fit several
increasing grid sizes to the data. If the results remain similar, this would indicate that
a good fit is obtained. Given the grid, calculating the measures of association using our
macro is done in a fairly automated way. On an AMD Opteron 244 (1.8 GHz), calculation
of the measures of the measures of association for a data set of size 100 and 500 in our
simulations without restriction on the smoothing parameters took on average 12 and 26
minutes respectively. However, for smaller data sets like with N = 100 and with both
smoothing parameters not restricted to be equal to each other, there can be computa-
tional difficulties in the grid search. Manually adaption of the values used in the grid
search or better starting values can resolve the problems.
We also investigated how sensitive the estimation of Kendall’s tau is w.r.t. the choice of
the smoothing parameters λ1 and λ2. For this purpose, we looked at the estimated τ ’s
from the fit with the next best AIC value. Only very small differences in the estimated
τ ’s were observed.
Considering the quite large bias the midpoint approach can produce, it should be avoided.
The method of Betensky and Finkelstein [1999] performs well for small studies and small
values of τ but becomes impractical for moderate to large data sets due to an excessive
computation time.
In conclusion, we provide a relative easy method for estimating a measure of association
for bivariate interval censored data. It performs well for reasonable censoring schemes (up



to 40% right censoring). For heavily right or left censored data, caution must be taken as
the estimate can be severely biased for all methods.
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Appendix

Calculation of Kendall’s Tau and Spearman’s correlation in terms
of the coefficients c

The population measure of Kendall’s tau for a cumulative distribution function F is
defined as τ = 4 · ∫ ∫

F (t1, t2)dF (t1, t2) − 1. Note that working on the logarithmic scale
yields a similar expression, namely τ = 4 · ∫ ∫

G(u1, u2)dG(u1, u2) − 1 where G(u1, u2)
is the cumulative distribution function of the log of the event times (ui =log(ti), i =
1, 2). Denote by Φ2((µi, νj)

T , Σ) the cumulative bivariate normal distribution with mean

(µi, νj)
T and variance-covariance matrix Σ =

(
σ2

1 0
0 σ2

2

)
and let φ2((µi, νj)

T , Σ) denote

the corresponding density. When we replace G by the cumulative distribution of our
smooth estimate in the expression of τ , so Ĝ =

∑
i

∑
j ĉijΦ2((µi, νj)

T , Σ), then we obtain

τ̂ = 4 ·
∫ ∫ ∑

i

∑
j

ĉijΦ2((µi, νj)
T , Σ) ·

∑

k

∑

l

ĉklφ2((µk, νl)
T , Σ)dxdy − 1

= 4 ·
∑

i

∑
j

∑

k

∑

l

ĉij ĉkl

∫ ∫
Φ2((µi, νj)

T , Σ) · φ2((µk, νl)
T , Σ)dxdy − 1

These integrals can be simplified using the fact that in the variance-covariance matrix Σ
zero correlation is assumed. Thus∫ ∫

Φ2((µi, νj)
T , Σ) · φ2((µk, νl)

T , Σ)dxdy =

∫ ∞

−∞

∫ x

−∞

1√
2π · σ1

exp

[
−1

2

(
z − µi

σ1

)2
]

dz · 1√
2π · σ1

exp

[
−1

2

(
x− µk

σ1

)2
]

dx×
∫ ∞

−∞

∫ y

−∞

1√
2π · σ2

exp

[
−1

2

(
z − νj

σ2

)2
]

dz · 1√
2π · σ2

exp

[
−1

2

(
y − νl

σ2

)2
]

dy

Using transformations these integrals can be converted to integrals of bivariate standard
normal densities with zero correlation, i.e.

∫ ∞

−∞

∫ tσ1+µi−µk
σ1

−∞

1√
2π

exp

[
−1

2
z2

]
dz · 1√

2π
exp

[
−1

2
t2

]
dt×

∫ ∞

−∞

∫ tσ2+νj−νl
σ2

−∞

1√
2π

exp

[
−1

2
z2

]
dz · 1√

2π
exp

[
−1

2
t2

]
dt

By taking advantage of the symmetry of the bivariate standard normal distribution, we
can rewrite this product of bivariate integrals as a product of univariate cumulative stan-
dard normal distributions.



Hence, finally

τ̂ = 4 ·
∑

i

∑
j

∑

k

∑

l

ĉij ĉklΦ(
µi − µk√

2σ1

)Φ(
νj − νl√

2σ2

)− 1.

The derivation for Spearman’s rho is done analogously and leads to

ρ̂s = 12 ·
∑

i

∑
j

∑

k

∑

l

∑
p

∑
q

ĉij ĉklĉpqΦ(
µi − µp√

2σ1

)Φ(
νk − νq√

2σ2

)− 3.

Comparing Kendall’s tau or Spearman’s rho between two inde-
pendent groups

Assume we have two independent groups. Let τ1 and τ2 denote the true Kendall’s tau’s
in both groups. For a large sample sizes (n1 and n2) in both groups, we have that
τ̂i ∼ N (τi, σ

2
i /ni) for i=1,2. Therefore we can test H0 : τ1 = τ2 by a simple two-sample

Z-test, i.e. Z = (τ̂1 − τ̂2)/
√

σ2
1/n1 + σ2

2/n2.
The derivation for Spearman’s rho is done analogously.
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