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Abstract

We suggest a new approach to wavelet threshold estimation of spectral densities of stationary
time series. It is well known that choosing appropriate thresholds to smooth the periodogram is
difficult because non-parametric spectral estimation suffers from problems similar to curve esti-
mation with a highly heteroscedastic and non-Gaussian error structure. Possible solutions that
have been proposed are plug-in estimation of the variance of the empirical wavelet coefficients
or the log-transformation of the periodogram.

In this paper we propose an alternative method to address the problem of heteroscedasticity
and non-normality. We estimate thresholds for the empirical wavelet coefficients of the (tapered)
periodogram as appropriate linear combinations of the periodogram values similar to empirical
scaling coefficients. Our solution permits the design of “asymptotically noise-free thresholds”,
paralleling classical wavelet theory for nonparametric regression with Gaussian white noise er-
rors. Our simulation studies show promising results that clearly improve the classical approaches
mentioned above. In addition, we derive theoretical results on the near-optimal rate of conver-
gence of the minimax mean-square risk for a class of spectral densities, including those of very
low regularity.
Key words: spectral density estimation, wavelet thresholding, wavelet-Fisz, periodogram,
Besov spaces, smoothing.

1 Introduction

The estimation of spectral densities is a fundamental problem in both theoretical and applied
time series analysis. Priestley (1981) provides a comprehensive introduction to the spectral
analysis of time series. Typically, inference in the spectral domain is based on the periodogram
of the data xt. Often, a data taper is applied prior to computing the periodogram, in order
to reduce leakage (Dahlhaus (1983)). It is well known that the (tapered) periodogram is an
inconsistent estimator of the spectral density and needs to be smoothed to achieve consistency.

Depending on the theoretical properties of the underlying stationary stochastic process Xt

and the associated spectral density f(ω), various periodogram smoothing techniques have been
proposed. For spectral densities with a high degree of regularity, linear smoothing techniques
(e.g. kernel smoothing) are appropriate. They are covered extensively in the literature: we
refer the reader, for example, to the monographs of Brillinger (1981), Koopmans (1995) and
Shumway and Stoffer (2000). The application of multiple tapers leads to, both leakage-reduced
and smoothed, multitaper spectrum estimators, see e.g. Cristan and Walden (2002) and the
references therein.

However, it is well known that linear smoothing methods are incapable of achieving the
optimal mean-square rate of convergence in cases where the underlying regression function
possesses a low degree of regularity. Thus, in the case of discontinuous (or otherwise irregular)
spectral densities, smoothing the periodogram using a nonlinear method might be more suitable.
Two such methods were recently proposed by Comte (2001) and Davies and Kovac (2004).

In the “function + iid Gaussian noise” regression model, wavelet thresholding, first proposed
by Donoho and Johnstone (1994), has become the nonlinear smoothing method of choice for
many theoreticians and practitioners if the regression function is of low regularity. Thus, the
idea of smoothing the periodogram using a nonlinear wavelet method might seem appealing.
However, the periodogram approximately follows a multiplicative regression set-up where the
variance of the “noise” is not constant over frequencies but is proportional to the level of the
underlying spectral density. This represents a hurdle for nonlinear wavelet thresholding, where
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the variance of the noise needs to be either known or easily estimable. To tackle this problem,
two main approaches have been proposed in the literature.

The first approach consists in taking the logarithmic transform of the periodogram to stabilize
the variance and transform the model from multiplicative to additive, and only then proceeding
with the wavelet smoothing. This idea was first proposed by Gao (1993, 1997). Moulin (1994)
derived wavelet thresholds for the logged periodogram using saddle point estimation techniques.
Pensky and Vidakovic (2003) derived thresholds for the log-periodogram using the Bayesian
paradigm but also demonstrated their frequentist mean-square properties. The “price” for
using the log transform is that it flattens out the data, often obscuring interesting features, such
as peaks or troughs. Also, the resulting exponentiated estimators of the spectrum are biased,
and even after the bias correction, their mean-square properties are not easy to establish.

The second approach (Neumann, 1996) consists in pre-estimating the variance of the peri-
odogram via kernel smoothing, so that it can be supplied to the wavelet estimation procedure.
As with other plug-in estimators, the question of the choice of the pre-estimation procedure and
its parameters arises. Also, kernel pre-estimation may not be appropriate in cases where the
underlying spectral density is, for example, discontinuous.

To overcome the drawbacks of the above log-based and plug-in estimators, we propose a new
nonlinear wavelet smoothing technique for the periodogram, where thresholds for the empirical
wavelet coefficients are constructed as appropriate local weighted l1 norms of the periodogram,
as opposed to the l2 norm used in Neumann (1996). As explained in Section 2, the use of the
l1 norm is motivated by the fact that, asymptotically, the mean of the periodogram is equal to
its standard deviation. Also, unlike Neumann (1996), we avoid the kernel pre-estimation of the
spectral density. Our approach yields a rapidly computable, mean-square consistent estimator
which performs well in practice. Also, it permits the construction of noise-free reconstruction
thresholds which produce visually appealing estimates and offer particularly impressive empirical
performance.

The paper is organised as follows. In the next section we recall the set-up of nonparamet-
ric estimation of spectral densities and give a non-technical motivation for our new approach.
Section 3 contains our main theoretical achievements where we show near-optimal rates of con-
vergence of the mean-square risk of our new spectral estimator over a class of spectral densities
which also includes those of low regularity. The following section addresses the construction of
so-called “noise-free thresholds” which are designed to work better in non-asymptotic settings.
In a simulation section we compare our new approach with some of the established estimation
methods mentioned above. Proofs, and additional theoretical results that complete them, are
in the Appendix.

2 Set-up and motivation

In this introductory section, we both establish the technical assumptions for our set-up and give,
by a simplified presentation of the spectral estimation problem, the essential motivation for our
new approach. It is only in Section 3 that we turn to a more formal asymptotic treatment of
wavelet estimation of spectral densities.
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2.1 Problem set-up

Assume that we observe a sample path {Xt}Nt=1 of a real-valued, zero-mean, second-order sta-
tionary process {Xt}∞t=1. Our aim is to estimate the spectral density

f(ω) =
1

2π

∞∑

s=−∞

cov(Xt, Xt+s) exp(−iωs), ω ∈ [−π, π].

Throughout the paper, we restrict our interest to processes whose spectral densities satisfy the
following assumption.

Assumption 2.1 The spectral density f(ω) satisfies

(i) f(ω) ≥ µ > 0,

(ii) f is of finite total variation over [−π, π].

Note that Assumption 2.1(i) would be natural in the context of log-spectrum estimation as
it would guarantee that the log-spectrum was bounded from below. Since our wavelet-Fisz
estimation method can also be viewed as based on the principle of variance stabilization (albeit
carried out in the wavelet domain), it is perhaps not surprising that we also require Assumption
2.1(i) to hold. Assumption 2.1(ii) is a mild smoothness assumption on f .

We also place the following technical assumption on the process itself.

Assumption 2.2 Assume

sup
1≤t1<∞

(
∞∑

t2,...,tk=1

| cum(Xt1 , . . . , Xtk)|
)

≤ Ck(k!)1+γ ,

for all k = 2, 3, . . ., where C is a generic positive constant and γ ≥ 0.

As in Neumann (1996), Assumption 2.2 implies asymptotic normality of the (appropriately
scaled) local cumulative sums of Xt. The supremum on the left-hand side guarantees that the
asymptotic normality is, in a sense, uniform over time t. By Remark 3.1 in Neumann (1996),
if Xt is α-mixing an an appropriate rate and its marginal distribution is Gaussian, exponential,
gamma, or inverse Gaussian, then γ can be set equal to zero. For heavier-tailed distributions, a
positive value of γ might be required.

Our nonparametric estimator will be based on the periodogram of the (possibly tapered)
observations

IN (ω) = (2πH
(N)
2 )−1

∣∣∣∣∣

N∑

s=1

h
( s
N

)
Xs exp(−iωs)

∣∣∣∣∣

2

,

where H
(N)
k =

∑N
s=1 h

k(s/N) and the taper function h(x) : [0, 1] → R satisfies the following
assumption.

Assumption 2.3 The taper function h is of bounded variation and satisfies H :=
∫ 1

0 h
2(x)dx >

0.

With this assumption, we obtain, in particular, that H
(N)
2 ∼ NH . Note that h(x) ≡ 1 yields the

non-tapered periodogram. We refer the reader to Dahlhaus (1983) for a discussion of some in-
teresting properties of tapered periodograms. A classical example of a non-trivial taper function
is the so-called Hanning window (see e.g. Priestley, 1981, Section 7.4.1), defined by

h(u) =

{
1
2 (1 − (cos 2πu)), if u ∈ [0, 1

2 ]
h(1 − u), if u ∈ [ 12 , 1]

.
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The Hanning window is well known to reduce leakage effects which occur in spectra with a high
dynamic range.

It is well known that the (tapered) periodogram is an inconsistent estimator of the spectral
density and thus needs to be smoothed to achieve consistency. The next section describes our
wavelet-Fisz method for smoothing IN (ω).

2.2 Motivation for the wavelet-Fisz approach

As mentioned in Section 2.1, our estimation methodology allows spectral densities which are
discontinuous, since we only impose a total variation constraint. Ignoring for a moment these
discontinuities, we base our motivation on the following well known facts of spectral estimation
theory (see e.g. Brockwell and Davis, 1987, Section 10.3). Periodogram ordinates IN (ωk),
computed at the Fourier frequencies ωk = 2πk/N − π, k = N/2, . . . , N , are asymptotically
independent and exponentially distributed with means f(ωk) (except, in most cases, the “edge”
frequencies 0 and π, but we shall ignore this fact for the time being).

Motivated by this observation, we choose to demonstrate the basic mechanics of our estima-
tion procedure on the following simplified model:

Jn(ωk) = f(ωk) ek, (1)

where {ek}nk=1 is a sequence of iid variables distributed as Exp(1). In the model (1) we are now
faced with the problem of estimating the means f(ωk) of Jn(ωk). The model (1) is considered
merely for pedagogical purposes: our rigorous results in Section 3 concern estimation in the full
model specified in Section 2.1. The quantity modelled in (1) is labelled as Jn to avoid confusion
with IN .

As mentioned in the Introduction, we base our estimation theory on wavelets. Since the sem-
inal work of Donoho and Johnstone (1994), nonlinear estimation techniques based on wavelets
have become a popular and extensively studied tool for non-parametric regression. Many of them
combine excellent finite-sample performance, linear computational complexity, and optimal (or
near-optimal) asymptotic mean-square error behaviour over a variety of function smoothness
classes. A general overview of wavelet methods in statistics can be found, for example, in
Vidakovic (1999).

A convenient starting point for wavelet estimation is the formulation of the regression prob-
lem at hand in a “function + noise” setting, where the noise has mean zero and its variance is
either known or can easily be estimated. Note that the logarithmic transformation transforms
the model (1) from multiplicative to additive:

log Jn(ωk) = log f(ωk) + E log ek + εk, (2)

where εk = log ek−E log ek has mean zero and a variance independent of k. Thus, many authors
(some references are given in the Introduction) considered wavelet estimation of the log-spectral
density in the logged model (2). However, one drawback of using the log transformation is
that it flattens out the data, often obscuring interesting features, e.g. spectral peaks which
indicate hidden periodicities of the process. Also, the mean-square properties of the resulting
exponentiated estimator of the spectral density f are not easy to establish.

To avoid these problems, it might be beneficial to work with the model (1) directly, without
the prior logarithmic transform. The model (1) can be rewritten as

Jn(ωk) = f(ωk) + ε̃k,
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where ε̃k = f(ωk)(ek − 1). Applying the Discrete Wavelet Transform (DWT), a multiscale
orthonormal linear transform, gives

ϑ̃j,k = ϑj,k + ε̃j,k, j = 0, . . . , log2 n− 1, k = 1, . . . , 2j ,

and k = 1 for j = −1, where j and k are (respectively) scale and location parameters, and ϑ̃j,k,
ϑj,k and ε̃j,k are the wavelet coefficients of Jn(ωk), f(ωk) and ε̃k, respectively. For a large class
of functions f , the sequence ϑj,k is sparse, with most ϑj,k’s being equal, or close, to zero, which

motivates the use of simple thresholding estimators ϑ̂j,k which estimate ϑj,k by zero if and only

if the corresponding empirical wavelet coefficient ϑ̃j,k falls below certain threshold in absolute
value. This ensures that a large proportion of the noise ε̃j,k gets removed. The inverse DWT of

the thresholded coefficients ϑ̂j,k then yields an estimate f̂ of the original function f .
Drawing inspiration from the “universal” threshold theory first developed by Donoho and

Johnstone (1994) in the Gaussian regression case, Neumann (1996) estimates ϑj,k by ϑ̂j,k =

ϑ̃j,kI(|ϑ̃j,k | > tj,k), where the thresholds tj,k are set equal to

tj,k = σ̃j,k
√

2 log n (3)

with σ̃j,k = {var(ε̃j,k)}1/2. In the simplified model (1), each σ̃j,k is of the form

σ̃j,k =





Lj∑

l=1

ψ2
j,lf

2(ωl+τ )





1/2

, (4)

where τ is a shift parameter dependent on j and k, ψj are discrete wavelet vectors (as described,
for example, in Nason et al. (2000)), and Lj are their support lengths. Obviously, f 2 is unknown,
and Neumann (1996) overcomes this by pre-estimating f(ωk) via kernel smoothing, and using
the pre-estimate to obtain estimates of σ̃j,k which are then used in (3). Although simple and
intutive, this approach generates a number of questions.

Firstly, as mentioned in Section 2.1, the spectral density f may not be smooth as we only
impose the total variation constraint of f . In this case, pre-estimating f via kernel smoothing
might not be suitable in practice as discontinuities and/or other irregularities in f will be

smoothed out. This is then likely to affect the performance of the final estimator f̂ . Also, as
with any other non-parametric plug-in estimator, the kernel estimator would demand a choice
of smoothing parameter, which might not be easy to select optimally.

To circumvent this, it may be advantageous to pre-estimate f(ωk) in (4) by the inherently
local estimate Jn(ωk), for most scales j coarser than the observation scale. To the best of
our knowledge, this approach has not been considered in literature. With this approach, the
estimated σ̃j,k is simply a local weighted l2 norm of {Jn(ωk)}k.

Our wavelet-Fisz methodology is inspired by this observation, but instead of the local
weighted l2 norm, it estimates thresholds using a local weighted l1 norm of {Jn(ωk)}k. The
heuristic reason for this is as follows. As the wavelet vectors ψj are compactly supported and
well localised, and the function f(ω) is likely to be “mostly smooth” (possibly with occasional
irregularities), the hope is that for most values of j and k, the function f(ω) can be well ap-
proximated by a constant over the support of ψj . Denoting the approximating constant by fj,k,
and using the fact that ‖ψ2

j‖2 = 1, formula (4) implies that σ̃j,k is approximately equal to fj,k.
Thus, estimating σ̃j,k is approximately equivalent to estimating the constant fj,k, which is sim-
ply the local mean of an iid exponential sample. Because the maximum likelihood estimator of
the mean (= standard deviation) of an iid exponential sample is the sample mean, rather than
the sample standard deviation, we propose to estimate thresholds as a local weighted l1 norm of
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{Jn(ωk)}k, rather than the local l2 norm. The hope is that this provides a better estimator as it
is known that the sample mean is a more regular statistic than the sample standard deviation.

The added benefit of using the local l1 norm, as opposed to l2, is that it permits the con-
struction of noise-free reconstruction thresholds, as detailed in Section 4.

The idea of using a local weighted l1 norm also underlies the Haar-Fisz estimation theory,
introduced by Fryzlewicz and Nason (2005) and Fryzlewicz et al. (2006) for other multiplicative
models, namely for wavelet spectrum and locally stationary volatlity estimation, respectively.
The fundamental novelty of our approach is that we use general wavelets, as opposed to the
Haar wavelets used in the latter work. This generalisation is essential as it permits us to include
some commonly encountered spectral densities (such as those corresponding to AR processes)
in our estimation theory, which would not have been possible had we just used Haar wavelets.
On the other hand, more general wavelets require the use of different proof techniques. We also
note that Haar-Fisz estimation was first proposed by Fryzlewicz and Nason (2004), albeit in the
non-multiplicative context of Poisson intensity estimation.

3 Wavelet-Fisz spectral density estimation

3.1 Preparing the asymptotic set-up

In order to demonstrate asymptotic mean-square consistency of our proposed estimator, we
embed our approach into the appropriate framework for theory, i.e. using orthonormal wavelets
defined as continuous square-integrable functions over a unit interval. For the remainder, we
mean our wavelet bases to be 2π−periodic and defined on the [−π, π] in the (periodised) fre-
quency domain, as both our target function to estimate and our estimators themselves are
2π−periodic. In order to keep our presentation sufficiently simple, we will use a notation with a
“classical” wavelet basis; details of how to periodise it can be found in, e.g., Daubechies (1992).

Assumption 3.1 {φ0,k}k ∪ {ψj,k}j≥0;k are chosen to form an orthonormal basis of L2[−π, π],
where the functions φ and ψ satisfy, for any r > m (with m ≥ 1 given by Theorem 3.1 below),

(i) φ and ψ are in Cr, which implies, in particular, that they have finite total variation over
[−π, π],

(ii)
∫
φ(x) dx = 1,

(iii)
∫
ψ(x)xl dx = 0 for 0 ≤ l ≤ r.

As usual in multiscale wavelet theory, we use the notation gj,k(x) := 2j/2 g(2j x − k), where
g = ψ, φ, so that the scaled and shifted functions ψj,k and φ0,k are all normalised to square-
integrate to one. The indices j and k are “scale” and “location” parameters, respectively.

To set up the notation for our wavelet threshold spectral estimator, let

f̂(ω) =
∑

k

α̃k φ0,k(ω) +
∑

(j,k)∈JN

ρ(.)(α̃j,k , λj,k) ψj,k(ω) , (5)

where ρ(.)(α, λ) denotes either the hard or the soft threshold rule applied to the coefficient α us-
ing the threshold λ, and the empirical wavelet coefficients are defined as α̃j,k =

∫
ψj,k(ω)IN (ω)dω

and α̃k =
∫
φ0,kIN (ω)dω. The corresponding true coefficients are defined by αj,k =

∫
ψj,k(ω)f(ω)dω

and αk =
∫
φ0,kf(ω)dω.

As in Neumann (1996), we define JN = {(j, k) | 2j ≤ C N1−δ} for some δ > 0 ; thus, the

estimator f̂(ω) includes a growing number of coarsest scales j, and excludes a growing number
of finest scales. This is done to ensure that a certain asymptotic normality effect holds, see
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formula (23) in the Appendix. The parameter δ is chosen so that
∑

(j,k)/∈JN
α2
j,k = O(N−1).

As will be seen from equation (11) below, the choice of 0 < δ ≤ 1/3 and an arbitrary C <∞ is
sufficient.

3.2 Construction of the wavelet-Fisz thresholds

As thoroughly motivated in Section 2.2, we require “theoretical” thresholds λj,k in (5) which
could be estimated as local weighted l1 norms of the periodogram. For this to be possible, we
define our λj,k as

λj,k = θj,k
√

2 log(#JN ), (6)

with

θj,k = cN

∫ π

−π

κj,k(ω)f(ω)dω, (7)

where, for reasons outlined in Section A.1, we take cN =
√

2π/N H4/H2
2 =: cN−1/2. The κj,k

are nonnegative functions on L2[−π, π] which are normalised to integrate to one. Although our
approach allows for a relatively general choice of these weight functions, we focus our attention
on “mod-wavelets”, defined by κj,k(·) := 2j κ(2j · −k), where κ(ω) := |ψ(ω)|/

∫
|ψ(ω)|dω. Our

particular choice of κj,k is motivated by the derivation of the “noise-free reconstruction thresh-
olds”, see Section 4. Note that since

∫
κj,k(ω)dω = 1, the parameters θj,k can be interpreted as

local weighted l1 norms of f at scale j and location k.
Since, obviously, thresholds λj,k are impracticable as they involve the unknown function f ,

we need to define our estimated thresholds λ̂j,k. We propose the choice

λ̂j,k = θ̂j,k
√

2 log(#JN ) , (8)

where

θ̂j,k = cN

∫ π

−π

κj,k(ω) IN (ω)dω. (9)

With this choice, our final estimator becomes

f̃(ω) =
∑

k

α̃k φ0,k(ω) +
∑

(j,k)∈JN

ρ(.)(α̃j,k , λ̂j,k) ψj,k(ω) . (10)

3.3 Near-optimal rate of mean-square convergence

The near-optimal mean-square convergence rate of our coordinatewise thresholded wavelet spec-
tral estimator f̃ is formulated in Theorem 3.1 below. As the rate of convergence will be faster
the higher the regularity of the target function to estimate, we assume that the spectral density
f lies in a ball F of a quite general function space: a Besov space Bm

p,q (with m, p ≥ 1). This
means a slightly more general set-up than a Sobolev regularity for f , in that f is assumed to
have m generalised derivatives in Lp, with the parameter q allowing for additional spatial inho-
mogeneity. For these function balls, the optimal rate of mean-square convergence, the so-called

“minimax rate”, is N− 2m
2m+1 . More details on Besov spaces in the context of wavelet thresholding

can be found, e.g., in Donoho et al. (1995). In this context, it is known that for the wavelet
coefficients αj,k of f in any ball F of Bmp,q ,

sup
f∈F

∑

j>J

2j−1∑

k=0

α2
j,k = O (2−2J(m+1/2−1/(min(p,2))) , (11)
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which is of order O(N− 2m
2m+1 ) if 2−J = O(N− 2

3 ) (see Theorem 8 in, again, Donoho et al. (1995)).
This suggests choosing 0 < δ ≤ 1/3 in the definition of JN = {(j, k) | 2j ≤ C N1−δ}.

The proof of Theorem 3.1 works via showing the analogous result for our ‘bona fide’ estimator
f̂ defined in (5), based on thresholds λj,k which can be as defined in formula (6), but, more
generally, are required to satisfy the following assumption.

Assumption 3.2 Let σ2
j,k = var(α̃j,k) (see Lemma A.1 for the exact formula for σ2

j,k), and let
m be as in the statement of Theorem 3.1. Thresholds λj,k are such that

∑

(j,k)∈JN

(
λj,k
σj,k

+ 1

)
φ(λj,k/σj,k) = O(N1/(2m+1)) (12)

sup
(j,k)∈JN

λj,k = O(N−1/2
√

log N), (13)

where φ is the standard normal density.

Note that by Lemma A.2 (with αN = 1), our thresholds λj,k , defined in formula (6), satisfy

Assumption 3.2. As the result on the near-optimal convergence rate of the estimator f̂ is of
purely theoretical interest, its statement appears in the Appendix, as Theorem A.1.

Heuristically speaking, Assumption 3.2 controls the distance between the thresholds λj,k and

the benchmark “universal” thresholds λNj,k = σj,k
√

2 log(#JN ), used, for example, by Neumann
(1996). This is needed as the latter are motivated by the universal threshold theory in the
Gaussian regression case, and our thresholds λj,k also rely on asymptotic Gaussianity arguments.

Theorem 3.1 works for our thresholds λ̂j,k defined in formula (8), and, in more generality,

for any thresholds λ̂j,k satisfying the following assumption.

Assumption 3.3 Let λj,k be any thresholds satisfying Assumption 3.2, and let m be as in the

statement of Theorem 3.1. Thresholds λ̂j,k are such that

(i) There exists a ν < 1/(2m + 1) and a positive sequence αN approaching 1 from below as
N → ∞ such that ∑

(j,k)∈JN

P(λ̂j,k < αN λj,k) = O(Nν);

(ii) There exists a constant C̃ <∞ such that

∑

(j,k)∈JN

P(λ̂j,k > C̃ N−1/2
√

log N) = O(N− 2m
2m+1 ).

In the final part of the Appendix, we demonstrate that if λj,k are as defined in (6), then our

random thresholds λ̂j,k, defined in formula (8), satisfy Assumption 3.3.

Essentially, Assumption 3.3 requires that the random thresholds λ̂j,k are not “too far off”,
in an appropriate sense, from the theoretical thresholds λj,k.

We are now in a position to state our main theorem.

Theorem 3.1 Suppose that Assumptions 2.1, 2.2, 2.3 and 3.1 hold. Let λ̂j,k be any thresholds
satisfying Assumption 3.3; for example, those defined in formula (8). Let Bm

p,q(C) be a Besov
ball of radius C <∞ with m, p ≥ 1. We have

sup
f∈Bm

p,q(C)

{IE ‖f̃ − f‖2
L2([−π,π])} = O

(
(log N/N)2m/(2m+1)

)
. (14)
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Theorem 3.1 shows that our data-driven wavelet threshold estimator f̃ achieves near-minimaxity
in the mean-square sense over a large class of function spaces, and hence enjoys the same opti-
mality properties as the analogous estimators in the “function + i.i.d. Gaussian noise” setting.

4 Noise-free thresholds

Although our wavelet-Fisz estimator f̃ enjoys good theoretical properties as stated in Theorem
3.1, in practice it often oversmooths. This is not surprising as the thresholds λ̂j,k contain the
same logarithmic term as the universal thresholds in Gaussian regression, and the latter tend
to oversmooth. The aim of this section is to propose an alternative wavelet-Fisz thresholding
estimator of f which performs better in practice.

The new estimator is constructed to possess the following noise-free reconstruction property:
if the true function f(ω) is a constant function of ω, then, with high probability, our estimate of
f is also constant and equal to the empirical mean of {IN (ωk)}Nk=1. The noise-free reconstruction
property guarantees that asymptotically, no noise survives the estimation procedure and thus
the resulting estimate is visually appealing and does not display spurious spikes.

To set the scene, we recall that our estimation procedure described in Section 3 essentially
consists in “testing” whether each empirical wavelet coefficient

∫
ψj,k(ω)IN (ω) exceeds, in abso-

lute value, the quantity tj,N
∫
|ψj,k(ω)|IN (ω), for a particular choice of tj,N . Our new noise-free

estimator follows the same principle, but uses a different set of tj,N ’s, which we construct as
follows.

For the noise-free reconstruction property to hold, we require that for a constant spectral
density f , all empirical wavelet coefficients fall below their corresponding thresholds, with a
high probability. In other words, we require that

P


⋃

j,k

{∫
ψj,k(ω)IN (ω) > t̃j,N

∫
|ψj,k(ω)|IN (ω)

}
→ 0 as N → ∞. (15)

Deriving t̃j,N from (15) in an exact manner is possible, although computationally inefficient.
Below, we describe a set of approximations to (15), which facilitate the computation, although
obviously yield a slightly different set of t̃j,N . Simulations described in Section 5.2 demonstrate
good practical performance of the approximate noise-free thresholding estimator.

We first note that in practice, the integrals in (15) are replaced by sums, which gives the
condition

P



⋃

j,k

[ ∑Lj

l=1 ψj,l IN{2π(l/N + k/2j) − π}
∑Lj

l=1 |ψj,l| IN{2π(l/N + k/2j) − π}
> t̃j,N

]
→ 0 as N → ∞, (16)

where, as in Section 2.2, ψj are discrete wavelet vectors and Lj are their support lengths. By
the Bonferroni inequality, (16) is implied by

∑

j,k

P

( ∑Lj

l=1 ψj,l IN{2π(l/N + k/2j) − π}
∑Lj

l=1 |ψj,l| IN{2π(l/N + k/2j) − π}
> t̃j,N

)
→ 0 as N → ∞. (17)

Denote Y +
j,k :=

∑
l:ψj,l>0 ψj,l IN (2π(l/N + k/2j) − π) and Y −

j,k := −∑l:ψj,l<0 ψj,l IN (2π(l/N +

k/2j) − π). Note that the distribution of each Y +
j,k (similarly, each Y −

j,k) is asymptotically the

10



same, since IN (ωk) is asymptotically a sequence of independent exponential variables centred
at f . We rewrite (17) as

∑

j,k

P

(
Y +
j,k

Y −
j,k

>
1 + t̃j,N

1 − t̃j,N

)
→ 0 as N → ∞. (18)

Note that by Satterthwaite approximation (see e.g. Johnson and Kotz (1975)), Y +
j,k and Y −

j,k are

approximately independently distributed as β1jχ
2
ν1j

and β2jχ
2
ν2j

, for appropriate values of the
constants β·j and ν·j . Thus (18) can be approximated as

∑

j

2j
(

1 − Fν1j ,ν2j

(
β2j(1 + t̃j,N )

β1j(1 − t̃j,N )

))
→ 0 as N → ∞, (19)

where Fa,b(·) is the cdf of the F distribution with a, b degrees of freedom. To derive t̃j,N , we
now mimick standard Gaussian universal thresholding, where the speed of convergence of the
quantity analogous to (19) is 1

2{π log2(N/2)}−1/2, and the analogues of the probabilities

αj(N) := Fν1j ,ν2j

(
β2j(1 + t̃j,N )

β1j(1 − t̃j,N )

)
(20)

are constant across scales; that is αj(N) = α(N). To find t̃j,N , we first solve

∑

j

2j(1 − α(N)) =
1

2
{π log2(N/2)}−1/2

for α(N), and then obtain each t̃j,N numerically from (20).

5 Implementation and simulations

5.1 Implementation

We now outline some implementational details of our wavelet-Fisz spectral density estimator.
The algorithm for computing the estimator proceeds as follows.

1. Given the data {Xt}Nt=1, compute the (tapered) periodogram IN (ωk) at the Fourier fre-
quencies ωk = 2πk/N − π, k = N/2, . . . , N . Note that we do not need to compute IN (ωk)
at the negative Fourier frequencies as IN (ω) = IN (−ω).

2. Given a wavelet basis ψ, compute the standard discrete decimated (or non-decimated)
wavelet transform of IN (ωk) using a fast algorithm described by Mallat (1989) (or Coifman
and Donoho (1995)).

3. Compute the thresholds λ̂j,k from Section 3 or t̃j,N from Section 4. To construct λ̂j,k , we
need to choose the set JN . We have empirically found that the choice C = 1, δ = 0.01
(as a default “small” value) yields good practical performance of the estimator. Both λ̂j,k
and t̃j,k require the computation of the equivalent of the discrete wavelet transform but
computed using the mod-wavelets κj,k instead of the wavelets ψj,k. The latter part of this
Section explains how it is done.

4. Threshold the empirical wavelet coefficients of IN (ωk) via hard or soft thresholding, for

(j, k) ∈ JN if λ̂j,k are used, or for all j, k if t̃j,N are used.

11



5. Invert the wavelet transform to get an estimate of f at the Fourier frequencies.

Computing the mod-wavelet transform. An easy way to implement (9) would be to compute the
discrete mod-wavelets, κj , one for each scale j by computing ψj using existing software and then
taking absolute values. One can then filter IN (ω) one scale at a time. For the decimated algo-
rithm, the computational complexity would be O(N log2 N); for the non-decimated algorithm,
it would be O(N2 log2 N).

One of the key advantages of wavelet methods is their efficiency. For decimated transforms
we usually ‘expect’ O(N) algorithms and for non-decimated we would like O(N log2 N). Our
mod-wavelet transform can achieve these complexities if we adopt an approximation approach
similar to the one proposed by Herrick (2000) and subsequently used in Barber et al. (2002)
although here it is based on adapting the forward wavelet transform not the inverse. The idea
is to represent κj,k in terms of scaling functions at a finer scale as follows:

κj,0(ω) ≈
∑

`

ej+m0,`φj+m0,`(ω) (21)

where j+m0 is some fixed number of scales finer than j which controls the level of approximation
(m0 = 3 is typically very good but higher values are even better). The ej+m0,` sequence is a
finite support filter of length 2m0(bψ − aψ) + (bφ − aφ) where (aψ, bψ) is the finite support
interval for the wavelet ψ and similarly for φ. The ej,` sequence can easily be precomputed by
the appropriate inner product of κ and φ.

Then the mod-wavelet transform of some function f(ω) can, after some algebra, be approx-
imated by ∫

f(ω)κj,k(ω) dω ≈
∑

`

ej+m0,`−2m0kcj+m0,` (22)

where cj,k are the standard discrete father wavelet coefficients produced by the (non-)decimated
wavelet transform. Hence the mod-(non-)decimated wavelet coefficients can be produced by
first performing the standard (non-)decimated wavelet transform and then computing the finite
sum (22) for each coefficient.

5.2 Simulations and comparison with existing estimators

In this section, we compare the empirical performance of our wavelet-Fisz estimator to the
method of Gao (1993), as well as to the kernel smoothing of IN (ω) with optimally chosen global,
and locally varying, bandwidth. For the latter two methods, we have used the routines glkerns
and lokerns (respectively) from the R package lokern. This simulation study also provides an
indirect comparison with the method of Neumann (1996) who compares the performance of this
estimator to a kernel smoother with an optimal global bandwidth.

Our “test process” is the same as in Neumann (1996) and is defined by Xt = Yt+
1
2Zt, where

Yt +
1

5
Yt−1 +

9

10
Yt−2 = εt + εt−2,

and {εt}, {Zt} are independent Gaussian white noise processes with mean zero and variance
one. All our simulations are based on sample paths of size N = 1024.

Note that Gao (1993) estimates the log-spectral density. In this simulation study, we correct
the bias of his estimator using the Euler-gamma constant, and then exponentiate it to obtain
an estimate of the spectral density. Both Gao’s and our wavelet-Fisz estimator use translation-
invariant hard thresholding with all resolution levels thresholded (results for soft thresholding are

12



glkerns lokerns Gao

Haar 26% 17% 14%
DaubExPhase 7 13% 3% 28%
DaubLeAsymm 5 20% 11% 19%

Table 1: Percentage by which the ISE of wavelet-Fisz (averaged over 100 sample paths) is lower
than that of the three competitors: glkerns, lokerns and Gao’s method, for a selection of wavelet
bases: Haar, Daubechies’ Extremal Phase 7 and Daubechies’ Least Asymmetric 5.

worse and we do not report them). We use the “noise-free” version of our estimator, described
in Section 4.

Tapering often introduces substantial correlation in the periodogram ordinates. Empirically,
we have found that the performance of the wavelet-Fisz and Gao’s estimators is not much
affected by tapering. However, the performance of glkerns and lokerns deteriorates notably
when tapering is introduced. This is due to the fact that the optimal bandwidth selection in
both these methods is based on cross-validation which often does not perform well if the data
are correlated. Thus, we only report simulation results for the untapered periodogram.

Figure 1 shows the true spectral density and sample reconstructions using all four methods
tested. Gao’s method and wavelet-Fisz use Daubechies’ “Least Asymmetric 5” wavelet. The
glkerns method oversmooths the peak, which is not surprising given that it is a linear method
which is not capable of estimating both smooth and inhomogeneous regions of the spectral
density well. The method of Gao also oversmooths the peak, which is due to the magnification
of the slight oversmooth of the peak of the log-spectral density after exponentiating the estimate.

The lokerns and wavelet-Fisz methods perform the best. Wavelet-Fisz reconstructs the
peak better than lokerns and it also flatter in the tails. On the other hand, lokerns does
a better job at reconstructing the region immediately to the right of the peak. The ISE of
wavelet-Fisz is around 12% lower than that of lokerns for this sample. It is also 39% lower
than the ISE of Gao’s method and 41% lower than that of glkerns.

We have also computed the ISE averaged over 100 sampled paths for all 4 methods (and
a selection of wavelet bases for Gao’s method and wavelet-Fisz). Table 1 shows percentage
improvements in ISE of the wavelet-Fisz method over its competitors. Clearly, wavelet-Fisz is
the best option for this inhomogeneous spectral density. We also mention that indirectly, it
appears to perform better than the estimator of Neumann (1996) which outperformed a kernel
smoother with a global bandwidth by 5% on this example. In our case, the improvement over
glkerns ranges from 13 to 26%.

Finally, it is interesting to note that (perhaps slightly surprisingly) the use of Haar wavelets
gives the two wavelet-based methods, wavelet-Fisz and Gao, the biggest advantage over the
kernel-based methods. A possible explanation for this is that the derivation of the noise-free
threshold is exact in the case of Haar wavelets, but only approximate for other wavelets. The ap-
proximation is described in Section 4. We remind the reader that in this case Haar wavelets pro-
duce smooth (as opposed to piecewise constant) reconstructions as we use translation-invariant
versions of the wavelet estimators.
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Figure 1: Top: true spectral density (solid); reconstructions using glkerns (dotted) and lokerns

(dashed). Bottom: true spectral density (solid); reconstructions using Gao’s method (dotted) and
wavelet-Fisz (dashed). See text for details.
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A Proofs

A.1 Auxiliary results

Bias, variance and cumulants of α̃j,k. We first establish the bias, variance and higher cumulants

of α̃j,k. We recall that Hp :=
∫ 1

0
hp(x) dx .

Lemma A.1 Suppose that Assumptions 2.1, 2.2, 2.3 and 3.1 hold. The following hold uni-
formly over (j, k) ∈ JN .

(a) IE α̃j,k = αj,k + O(2j/2 log N/N)

(b) σ2
j,k := var(α̃j,k) = 2π/N H4/H

2
2

∫ π
π
{f(ω)}2 ψj,k(ω) [ψj,k(ω)+ψj,k(−ω)] dω+ o(N−1) +

O(2−jN−1)

(c) |cump(α̃j,k/σj,k)| ≤ Cp (p!)2+2γ N−1 (2j/2 log N/N)−(p−2) for p ≥ 3.

For the proof we refer the reader to Neumann (1996), Proposition 3.1.

Strong asymptotic normality of α̃j,k. The technique for proving the near-optimal rate of mean-

square convergence of f̂ and f̃ is based on the following strong form of asymptotic normality of
the empirical wavelet coefficients α̃j,k:

P (±(α̃j,k − αj,k)/σj,k ≥ x)

1 − Φ(x)
→ 1, (23)

uniformly over (j, k) ∈ JN , x ≤ ∆γ , with ∆γ = o(∆1/(3+4γ)) and ∆ = O(N δ/2/ log N), where δ
is as described in the last paragraph of Section 3.1. Note that Φ(x) is the cdf of the standard
normal. The proof of (23) relies, amongst others, on the asymptotic behaviour of the cumulants
of α̃j,k of order two and higher, as specified in Lemma A.1. For details, we refer again to
Neumann (1996).

Mean-square convergence of f̂ . We now state a theorem on the mean-square convergence of our
‘bona fide’ estimator f̂ defined in (5).

Theorem A.1 Suppose that Assumptions 2.1, 2.2, 2.3 and 3.1 hold. Let λj,k be any thresholds
satisfying Assumption 3.2; for example, those defined in formula (6). Let Bm

p,q(C) be a Besov
ball of radius C <∞ with m, p ≥ 1. We have

sup
f∈Bm

p,q(C)

{IE ‖f̃ − f‖2
L2([−π,π])} = O

(
(log N/N)2m/(2m+1)

)
. (24)

For the proof of this theorem we refer to Neumann (1996), as it is parallel to the proof of
Theorem 5.1 therein.

Choice of cN . Finally, we motivate the choice cN =
√

2π/N H4/H2
2 in formula (7). A desired

property of θj,k, required so that (12) may hold, is that θj,k should be “almost equal” to σj,k
for fine-scale coefficients. From Lemma A.1(b), we observe that

σj,k ≤
√

2πH4

N H2
2

fj,k

√
1 +

∫ π

−π

|ψj,k(ω)ψj,k(−ω)|dω + o(N−1) +O(2−jN−1) , (25)

where f j,k = sup{f(ω) : ω ∈ supp(ψj,k)} (for later purposes, we also denote f
j,k

= inf{f(ω) :

ω ∈ supp(ψj,k)}). Further we note that
∫ π
−π |ψj,k(ω)ψj,k(−ω)| dω = 0 except for a finite (and

the same) number of k at each scale j for which 0 ∈ supp{ψj,k}. This motivates setting cN to

be equal to cN =
√

2π/N H4/H2
2 =: cN−1/2.
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A.2 Proof of Theorem 3.1

To show that our data-driven wavelet-Fisz thresholds (8) fulfil Assumption 3.3, we specify what
we call, respectively, “low” and “high” deterministic thresholds. We propose

λ
(l)
j,k = αNθj,k

√
2 log(#JN )

λ
(u)
j,k = C̃ N−1/2

√
log N,

with an αN → 1−, and with an appropriate constant C̃ specified below. Both λ
(l)
j,k and λ

(u)
j,k

need to satisfy Assumption 3.2.

Lemma A.2 Suppose that Assumptions 2.1 and 2.3 hold. If C̃ ≥ c
√

2 supω f(ω), then ∀ j, k λ
(u)
j,k ≥

supj,k λ
(l)
j,k, and both λ

(l)
j,k and λ

(u)
j,k satisfy Assumption 3.2.

Proof. It is easy to check that if C̃ ≥ c
√

2 supω f(ω), then ∀ j, k λ
(u)
j,k ≥ supj,k λ

(l)
j,k. We now

check (12) for λ
(l)
j,k. The factor λ

(l)
j,k/σj,k + 1 only contributes a logarithmic term so we skip it.

Denote ZN = JN ∩ {(j, k) : 0 ∈ supp(ψj,k)}. We have


∑

ZN

+
∑

JN\ZN


φ(λ

(l)
j,k/σj,k) = O(M log N) +

∑

JN\ZN

φ(λ
(l)
j,k/σj,k),

where M is a constant. It remains to investigate the sum on the RHS. Recalling that H
(N)
p :=∑N

t=1 h
p(t/N) and using (25), we bound λ

(l)
j,k/σj,k from below as follows:

λ
(l)
j,k

σj,k
≥

αNcN
−1/2f

j,k

√
2 log(#JN )

√
2πH

(N)
4

(H
(N)
2 )2

f j,k + o(N−1) +O(2−jN−1)

.

We introduce βN = cN−1/2/

√
2πH

(N)
4 /(H

(N)
2 )2, noting that βN → 1. The above bound can be

rewritten as

αNβNfj,k

√
2 log(#JN )

fj,k + o(N−1/2) +O(2−jN−1/2)
≥

αNβNfj,k

√
2 log(#JN )

f j,k
+ o(N−1/2) +O(2−jN−1/2) =

αNβNfj,k

√
2 log(#JN )

f j,k

(
1 + o((N log N)−1/2) +O(2−j(N log N)−1/2)

)
=:

αN β̃Nfj,k

√
2 log(#JN )

f j,k
,

where the first inequality holds by the convexity of u(x) = 1/(a2 + x) for small x; note that
β̃N → 1. Denoting µ = inf f(ω), we have

f
j,k

f j,k
≥

f
j,k

f
j,k

+ TV(f)|supp(ψj,k)
≥ µ

µ+ TV(f)|supp(ψj,k)
,
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where the last inequality follows from the fact that v(x) = x/(x+a2) is increasing on [0,∞). As
in Neumann (1996), the proof of Lemma 6.1 (ii), we have

∑
k TV(f)|supp(ψj,k) ≤ O(1)TV(f)

and thus for a sequence dN → 0, at each scale j we have

#{k : TV(f)|supp(ψj,k) > dN} = O(d−1
N ). (26)

Denote DN = JN ∩ ZcN ∩ {(j, k) : TV(f)|supp(ψj,k) > dN}. Note that by (26), at each scale j

at most O(d−1
N ) coefficients are in DN . Denote further EN = JN ∩ ZcN ∩Dc

N . Let J∗ − 1 be the
finest scale in JN . We have

∑

JN\ZN

φ(λ
(l)
j,k/σj,k) =

(
∑

DN

+
∑

EN

)
φ(λ

(l)
j,k/σj,k) = O(d−1

N log N)+

J∗−1∑

j=0

2j∑

k=1

φ

(
αN β̃Nµ

√
2 log(#JN )

µ+ dN

)
≤ O(d−1

N log N) + (2π)−1/2
J∗−1∑

j=0

2
j−J∗α2

N β̃
2
N

�
µ

µ+dN � 2

= O(d−1
N log N) +O((#JN )

1−α2
N β̃

2
N

�
µ

µ+dN � 2

) = O(d−1
N log N) + o(N1/(2m+1)),

for any m > 0. The last equality follows from the fact that 1− α2
N β̃

2
N

(
µ

µ+dN

)2

→ 0. Choosing

dN = log−1 N (say), we have that (12) is satisfied irrespective of the smoothness parameter m.

Because the thresholds λ
(u)
j,k are higher than λ

(l)
j,k, (12) also holds for λ

(u)
j,k . Obviously, (13) holds

for λ
(u)
j,k , which implies that it also holds for λ

(l)
j,k, since λ

(l)
j,k are lower than λ

(u)
j,k . �

To continue the proof of Theorem 3.1, we show that our random thresholds (8) satisfy

Assumption 3.3. In order to do so, we show that our “estimators” θ̂j,k fulfil a strong form of
asymptotic normality, paralleling the one in (23) for α̃j,k.

Proposition A.1 Suppose that Assumptions 2.1, 2.2, 2.3 and 3.1 hold. Denote s2
j,k = var(θ̂j,k).

We have
P (±(θ̂j,k − θj,k)/sj,k ≥ x)

1 − Φ(x)
→ 1,

uniformly over (j, k) ∈ JN , x ≤ ∆γ , where ∆γ = o(∆1/(3+4γ)) and ∆ = O(N δ/2/ log N).

Proof. We start with some clarifying remarks as to the orders of magnitude of θ̂j,k, θj,k and
sj,k. As each κj,k integrates to one in L1, we have θj,k = O(N−1/2) uniformly over j, k.

The bias in estimating θj,k by θ̂j,k is of order O(2j log N/N3/2). Its derivation completely

parallels the proof of Lemma A.1(a), which is Proposition 3.1(i) in Neumann (1996): IEθ̂j,k =
θj,k +O(cN2j log N/N).

The variance s2j,k can be derived using Lemma 6 in Dahlhaus (1983), which is analogous to
the proof of Lemma A.1(b):

s2j,k = c2N [c2N

∫ π

−π

f2(ω)κj,k(ω)(κj,k(ω) + κj,k(−ω))dω + o(2j N−1) +O(N−1)] .

With the normalisation
∫
κj,k(ω) dω = 1 , we remark that the first term in brackets is of order

O(2j/N), which is easy to see since κj,k(ω) = 2j κ(2jω − k) .
With this observation, one gets the following auxiliary results, useful for the remainder:∫

κ2
j,k(ω) dω = 2j and supk supω κj,k(ω) = O(2j). Thus, we note that the overall order of the
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leading term of sj,k is 2j/2N−1. By Assumption 2.1(i), we have a uniform lower bound on sj,k,
which ensures that c−1

N sj,k ≥ c̃ (2j/N)1/2.

However, as we are going to study the ratios of θ̂j,k/sj,k and of the bias divided by sj,k, the

normalisation of each of the quantities θ̂j,k, θj,k and sj,k by the factor cN (which is of order
N−1/2) will cancel out. For example, for the bias treatment considered in Theorem A.1, we get

IE{(θ̂j,k − θj,k)/sj,k} = O

(
2j log N/N

(2j/N)1/2

)
= O((2j/N)1/2 log N) . (27)

Note that since 2j ≤ C N1−δ , the rescaled bias converges to zero.
The key property to make the strong asymptotic normality work is the treatment of all

higher-order cumulants of θ̂j,k/sj,k. We first parallel Lemma A.1(c):

cump(θ̂j,k) = O(cpN (p!)2+2γ 2j/N (2j/N log N)p−2) , (28)

for all p ≥ 3. This immediately entails the result for the cumulants rescaled by the standard
deviation sj,k:

cump(θ̂j,k/sj,k) ≤ C(p, γ) (N−δ/2 log N)p−2 ,

uniformly over (j, k) ∈ JN for all p ≥ 3, with a bounded constant C(p, γ). The proof of this
last result is straightforward if we observe that the normalisation by the inverse of sj,k leads
to the division of the order of equation (28) by the factor of cpN (2j/N)p/2. (Compare also
the order of the leading term of sj,k shown to be 2j/2N−1). Elementary calculations give the
order for the normalised cumulant as ((2j/N)1/2 log N)p−2, which, however, is clearly of order
(N−δ/2 log N)p−2.

We close by noting that one can choose ∆ = N δ/2/ log N to control the bias in formula (27)
above. This completes the proof of Proposition A.1, which is similar to the proof of Neumann
(1996), Theorem 4.1. �

With this strong form of asymptotic normality, we now verify that our random thresholds
(8) satisfy Assumption 3.3.

Verifying Assumption 3.3(i):

Define ∆δ = (N δ/2/ log N)1/(3+4γ)/ log N (note that it satisfies the requirement for ∆γ of
Proposition A.1) and let Z be standard normal. All Ci’s are positive constants. Assump-
tion 3.3(i) writes as follows:

∑

(j,k)∈JN

P (λ̂j,k < λ
(l)
j,k) =

∑

(j,k)∈JN

P ((θj,k − θ̂j,k)/sj,k > θj,k(1 − αN )/sj,k) ≤

∑

(j,k)∈JN

P ((θj,k − θ̂j,k)/sj,k > min(θj,k(1 − αN )/sj,k,∆δ)) ≤

C1

∑

(j,k)∈JN

P (Z > min(θj,k(1 − αN )/sj,k,∆δ)) ≤

C1

∑

(j,k)∈JN

P (Z > θj,k(1 − αN )/sj,k) + C1

∑

(j,k)∈JN

P (Z > ∆δ) =: I + II.

Recalling the orders of θj,k and sj,k, and denoting b = exp(C2
2/2), we bound I as follows:

C1

∑

(j,k)∈JN

P (Z > C22
(J−j)/2(1 − αN ) ≤ C3

∑

(j,k)∈JN

exp(−C2
22J−j(1 − αN )2/2) =
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C3

J∗∑

j=0

2jb−(1−αN)22J−j ≤ C3b−(1−αN )22J−J∗

J∗∑

j=0

2j ≤ C42
J∗

b−(1−αN )22J−J∗

.

Recalling that 2J
∗

= N1−δ, and logging the above bound we obtain (1−δ) logbN−(1−αN)2N δ .
To ensure that it is bounded in N (say ≤ C5), we need to take

αN ≤ 1 −
√

(1 − δ) logbN − C5

N δ
.

Turning now to II , we have 2J
∗

P (Z > ∆δ) ≤ N1−δ exp(−∆2
δ/2). Logging this, we get (1 −

δ) log N −N δ/(3+4γ)/(2 log2+2/(3+4γ)N), which tends to −∞, which means that II → 0.

Verifying Assumption 3.3(ii):

∑

(j,k)∈JN

P (λ̂j,k > λ
(u)
j,k ) ≤

∑

(j,k)∈JN

P (θ̂j,k > C6) =

∑

(j,k)∈JN

P ((θ̂j,k − θj,k)/sj,k > (C6 − θj,k)/sj,k) ≤

∑

(j,k)∈JN

P ((θ̂j,k − θj,k)/sj,k > C7N
1/22(J−j)/2) ≤

∑

(j,k)∈JN

P ((θ̂j,k − θj,k)/sj,k > ∆δ) ≤ C8

∑

(j,k)∈JN

P (Z > ∆δ) ≤ C8N
1−δ exp(−∆2

δ/2).

This implies that we need to show N 1−δ exp(−N δ/(3+4γ)/(2 log2+2/(3+4γ)N)) ≤ N−2m/(2m+1).
But this is asymptotically true, which becomes obvious once both sides are logged.

The remainder of the proof of Theorem 3.1 proceeds exactly like the proof of Theorem 6.1
of Neumann (1996).
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