
T E C H N I C A L

R E P O R T

06109

AN INTEGRATED SENSITIVITY ANALYSIS

OF THE SLOVENIAN PUBLIC OPINION SURVEY DATA

BEUNCKENS, C., SOTTO, C., MOLENBERGHS, G. and G. VERBEKE

*

I A P S T A T I S T I C S

N E T W O R K

INTERUNIVERSITY ATTRACTION POLE

http://www.stat.ucl.ac.be/IAP



An Integrated Sensitivity Analysis of the
Slovenian Public Opinion Survey Data

Caroline Beunckens1, Cristina Sotto1, 2, Geert Molenberghs1,

and Geert Verbeke3

1 Center for Statistics, Hasselt University,

Agoralaan, Building D, B3590 Diepenbeek, Belgium.

2 School of Statistics, University of the Philippines,

Diliman, Quezon City, Philippines.

3 Biostatistical Centre, Katholieke Universiteit Leuven, Belgium.

Abstract

Many models to analyze incomplete data have been developed, which allow the miss-
ingness to be non-random. Since such models rely on unverifiable modelling assumptions,
research nowadays is devoted to assess the sensitivity of resulting inferences. A popular
sensitivity tool is based on local influence (Cook, 1986), a technique that studies the ef-
fect of small perturbations around a given null model to detect subjects which have an
unduly influence on the analysis. Jansen et al (2003) developed a local-influence approach
for binary data, subject to non-monotone missingness, focusing on the model proposed by
Baker, Rosenberger and DerSimonian (1992). These authors focus on perturbations of a
given BRD model in the direction of an alternative model with one additional parameter.
Additionally, in this paper, we will consider perturbations in the observed cell probabilities,
rather than the parameters of the model. Further, we show that not only the model para-
meters, but also the cell counts can have an important influence on the conclusions. To
this end, we derived influence measures for functions of the model parameters in general,
following the reasoning of Cook (1986). Both local influence approaches are applied to the
Slovenian Public Opinion Survey data, and juxtaposed with the interval-of-ignorance based
sensitivity analysis of Molenberghs, Kenward and Goetghebeur (2001). For the first time
bringing together a variety of sensitivity analysis tools on the same set of data, we are in a
position to sketch a rather complete sensitivity analysis picture.

Keywords: categorical data; interval of ignorance; missing at random; missing not at
random; local influence
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Table 1: Results of the Slovenian Public Opinion Survey. The Don’t Know category is indicated
by ∗.

Independence

Secession Attendance Yes No ∗
Yes Yes 1191 8 21

No 8 0 4

∗ 107 3 9

No Yes 158 68 29

No 7 14 3

∗ 18 43 31

∗ Yes 90 2 109

No 1 2 25

∗ 19 8 96

1 Introduction

In 1991 Slovenians voted for independence from former Yugoslavia in a plebiscite. To prepare

for this result, the Slovenian government collected data in the so-called Slovenian Public Opinion

Survey (SPO), a month prior to the plebiscite. Rubin, Stern and Verhovar (1995) studied the

three fundamental questions added to the SPO and, in comparing it to the plebiscite’s outcome,

drew conclusions about the missing data process.

The three questions added were: (1) Are you in favour of Slovenian independence? (2) Are you

in favour of Slovenia’s secession from Yugoslavia? (3) Will you attend the plebiscite? In spite

of their apparent equivalence, questions (1) and (2) are different since independence would have

been possible in confederal form as well and therefore the secession question is added. Question

(3) is highly relevant since the political decision was taken that not attending was treated as an

effective NO to question (1). Thus, the primary estimand is the proportion θ of people that will

be considered as voting YES, which is the fraction of people answering yes to both the attendance

and independence question. The raw data are presented in Table 1.

Clearly, the data are incomplete, hampering the straightforward estimation of θ. Missingness

indeed adds a source of uncertainty and it is useful to distinguish between two types of statistical

uncertainty. The first one, statistical imprecision, is due to finite sampling. The Slovenian Public
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Table 2: Theoretical distribution of the probability mass over complete and observed cells,
respectively, for a bivariate binary outcome with non-monotone missingness.

(a) Complete cells

π11,11 π11,12

π11,21 π11,22

π10,11 π10,12

π10,21 π10,22

π01,11 π01,12

π01,21 π01,22

π00,11 π00,12

π00,21 π00,22

(b) Observed cells

π11,11 π11,12

π11,21 π11,22

π10,1+

π10,2+
π01,+1 π01,+2 π00,++

Table 3: Observed cells for the Slovenian Public Opinion Survey, collapsed over the secession
question. A simplified cell indexing system has been used.

m1 : 1439 m2 : 78

m3 : 16 m4 : 16

m5 : 159

m6 : 32
m7 : 144 m8 : 54 m9 : 136

Opinion Survey included not all Slovenians but only 2074 respondents. However, even if all would

have been included, there would have been residual uncertainty because some fail to report at

least one answer. This second source of uncertainty, stemming from incompleteness, will be

called statistical ignorance. Statistical imprecision is classically quantified by means of estimators

(standard error and variance, confidence region,. . . ) and properties of estimators (consistency,

asymptotic distribution, efficiency,. . . ). In order to quantify statistical ignorance, it is useful to

distinguish between complete and observed data. Let us focus on two binary questions, such

as the independence and attendance questions in the Slovenian Public Opinion Survey. The 16

theoretical complete cell probabilities are as in Table 2, thus producing 15 complete data degrees

of freedom. The generic expression for the cell probabilities is πr1r2,j1j2, where r` = 0 (1) if the

answer to question ` is missing (observed) and j` = 1 (2) if the answer to question ` is yes (no).

Similarly, the 9 observed cells can be represented as in Table 2. The latter table is directly
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comparable to the observed data structure. In the SPO case, for example, these 9 counts are

obtained from collapsing Table 1 over the secession question, hence producing Table 3.

In the ensuing discussion, particular cells in Table 3 shall be referred to in terms of cell number

references. The labels used are illustrated in Table 3. Rather than probabilities, the data refer

to cell counts. We write m` for the cell counts (` = 1, . . . , 9), adopting a simplified indexing

system.

In what follows, we will refer to the mechanism governing missingness using the taxonomy intro-

duced by Rubin (1976). A mechanism is missing completely at random (MCAR) if the processes

governing missingness and outcomes are independent, perhaps conditional on covariates. Missing

at random (MAR) is the situation where missingness may depend on observed outcomes and

covariates but, given these, not further on unobserved outcomes. When, in addition to such

dependencies, the unobserved data provide further information about the missing data mecha-

nism, then we name the mechanism missing not at random (MNAR). Further concepts will be

introduced in the rest of the paper as the need arises.

In Section 2, a tour is made of a number of simple analyses. The family of Baker, Rosenberger and

DerSimonian (1992), to be used in the remainder of the paper, is introduced in Section 3. Three

main strands of sensitivity analysis are then presented in Section 4, i.e., the interval of ignorance

(Section 4.1), global influence (Section 4.3), local influence (Section 4.4), and the computation of

a so-called MNAR bodyguard to the model considered (Section 4.2). We thereby bring together

and contrast existing sensitivity assessments with new, local influence based analyses that have

never been applied to the SPO data. Moreover, the local influence technology based on cell

counts rather than parameters is new, as well as the approach of perturbing the cell probabilities

rather than the model parameters.

2 Review of Simple Analyses

The data were used by Molenberghs, Kenward and Goetghebeur (2001) to illustrate their proposed

sensitivity analysis tool, the interval of ignorance. Molenberghs et al (2006) used the data to

exemplify results about the relationship between MAR and MNAR models. An overview of

various analyses can be found in Molenberghs and Kenward (2007). These authors used the

models proposed by Baker, Rosenberger and DerSimonian (1992) for the setting of two-way
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Table 4: The Slovenian Public Opinion Survey. Some estimates of the proportion θ attending
the plebiscite and voting for independence, as presented in Rubin, Stern and Verhovar (1995)
and Molenberghs, Kenward and Goetghebeur (2001).

Voting in favour

Estimation method of independence: θ̂

Non-parametric bounds [0.694;0.905]

Complete cases 0.928

Available cases 0.929

MAR (2 questions) 0.892

MAR (3 questions) 0.883

MNAR 0.782

Plebiscite 0.885

contingency tables, subject to non-monotone missingness. Rubin, Stern and Verhovar (1995)

conducted several analyses of the data. Their main emphasis was on determining the proportion

θ of the population that would attend the plebiscite and vote for independence. Their estimates

are reproduced in Table 4.

The pessimistic (optimistic) bounds, or non-parametric bounds, are obtained by setting all in-

complete data that can be considered a yes (no), as yes (no). The complete case estimate for

θ is based on the subjects answering all three questions and the available case estimate is based

on the subjects answering the two questions of interest here. It is noteworthy that both of these

estimates are out of bounds, underscoring the growing conviction that they should routinely be

disregarded and a move towards, at least, MAR is in place (Molenberghs and Kenward, 2007).

Rubin, Stern and Verhovar (1995) considered two MAR models, also reported in Table 4, the

first one solely based on the two questions of direct interest, the second one using all three.

Finally, they considered a single MNAR model, based on the assumption that missingness on a

question depends on the answer to that question but not on the other questions. Rubin, Stern

and Verhovar (1995) concluded, owing to the proximity of the MAR analysis to the plebiscite

value, that MAR in this and similar cases may be considered a plausible assumption. As argued

before (Kenward, Goetghebeur and Molenberghs, 2001), one has to be careful with this conclu-

sion however. Arguments to support this position will be provided in Section 4.1, based on the
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BRD family to be introduced next.

3 The BRD Family of Models

Baker, Rosenberger and DerSimonian (1992) proposed a log-linear based family of models for the

four-way classification of both outcomes, together with their missingness indicators: ν10,j1j2 =

ν11,j1j2βj1j2, ν01,j1j2 = ν11,j1j2αj1j2, and ν00,j1j2 = ν11,j1j2αj1j2βj1j2γ, with

αj1j2 =
φ01|j1j2

φ11|j1j2

, βj1j2 =
φ10|j1j2

φ11|j1j2

, γ =
φ11|j1j2φ00|j1j2

φ10|j1j2φ01|j1j2

.

Furthermore, νr1r2,j1j2 is the model for the four cells, indexed by j1 and j2, in pattern (r1, r2),

where (r1, r2) = (1, 1) corresponds to completers, etc.

The α (β) parameters describe missingness in the independence (attendance) question, and γ

captures the interaction between both. The subscripts are missing from γ since Baker, Rosen-

berger and DerSimonian (1992) have shown that this quantity is independent of j and k in

every identifiable model. These authors considered nine models, based on setting αj1j2 and βj1j2

constant in one or more indices, and enumerated using the ‘BRD’ abbreviation:

BRD1 : (α.., β..) BRD4 : (α.., β.j2) BRD7 : (α.j2, β.j2)

BRD2 : (α.., βj1.) BRD5 : (αj1., β..) BRD8 : (αj1., β.j2)

BRD3 : (α.j2, β..) BRD6 : (αj1., βj1.) BRD9 : (α.j2, βj1.).

Interpretation is straightforward, for example, BRD1 is MCAR, and in BRD4 missingness in the

first variable is constant, while missingness in the second variable depends on its value. BRD6–

BRD9 saturate the observed data degrees of freedom, while the lower numbered ones leave room

for a non-trivial model fit to the observed data.

Molenberghs, Kenward and Goetghebeur (2001) and Molenberghs et al (2006) fitted the BRD

models and Table 5 summarizes the results. BRD1 produces θ̂ = 0.892, exactly the same as

the first MAR estimate obtained by Rubin, Stern and Verhovar (1995). This does not come as

a surprise, since both models assume MAR and use information from the two main questions.

A graphical representation of the original analyses and the BRD models combined is given in

Figure 2.
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Figure 1: Graphical representation of the BRD model nesting structure.

Figure 2: The Slovenian Public Opinion Survey. Relative position for the estimates of “pro-
portion of YES votes”, based on the models considered in Rubin, Stern and Verhovar (1995)
and on the Baker, Rosenberger and DerSimonian (1992) models. The vertical lines indicate
the non-parametric pessimistic–optimistic bounds. (Pess: pessimistic boundary; Opt: optimistic
boundary; MAR: Rubin et al’s MAR model; NI: Rubin et al’s MNAR model; AC: available cases;
CC: complete cases; Pleb: plebiscite outcome. Numbers refer to the BRD models.)

4 Sensitivity Analysis

We will use the working definition that a sensitivity analysis is one in which several statistical

models are considered simultaneously and/or where a statistical model is further scrutinized using

specialized tools, such as diagnostic measures. This informal definition encompasses a wide variety

of useful approaches. The simplest procedure is to fit a selected number of (non-random) models

which are all deemed plausible or in which a preferred (primary) analysis is supplemented with a

number of variations. The extent to which conclusions (inferences) are stable across such ranges

provides an indication about the belief that can be put into them. Variations to a basic model can

be constructed in different ways. The most obvious strategy is to consider various dependencies of

the missing data process on the outcomes and/or on covariates. Alternatively, the distributional
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Table 5: The Slovenian Public Opinion Survey. Analysis, restricted to the independence and
attendance questions. Summaries on each of the Models BRD1–BRD9 are presented, with obvious
column labels. The column labelled ‘θ̂MAR’ refers to the model corresponding to the given one,
with the same fit to the observed data, but with missing data mechanism of the MAR type.

Model Structure d.f. loglik θ̂ C.I. θ̂MAR

BRD1 (α, β) 6 -2495.29 0.892 [0.878;0.906] 0.8920

BRD2 (α, βj1) 7 -2467.43 0.884 [0.869;0.900] 0.8915

BRD3 (αj2 , β) 7 -2463.10 0.881 [0.866;0.897] 0.8915

BRD4 (α, βj2) 7 -2467.43 0.765 [0.674;0.856] 0.8915

BRD5 (αj1 , β) 7 -2463.10 0.844 [0.806;0.882] 0.8915

BRD6 (αj1 , βj1) 8 -2431.06 0.819 [0.788;0.849] 0.8919

BRD7 (αj2 , βj2) 8 -2431.06 0.764 [0.697;0.832] 0.8919

BRD8 (αj1 , βj2) 8 -2431.06 0.741 [0.657;0.826] 0.8919

BRD9 (αj2 , βj1) 8 -2431.06 0.867 [0.851;0.884] 0.8919

assumptions of the models can be changed. This route will be followed in Section 4.1.

Related to this, we can assess how an MNAR model, or a collection of MNAR models, differ from

the set of models with equal fit to the observed data but that are of a MAR nature. This path

is followed in Section 4.2.

Additionally, a sensitivity analysis can also be performed on the level of individual observations

instead of on the level of the models. In that case, interest is directed towards finding those indi-

viduals who drive the conclusions towards one or more MNAR models. Therefore, the influence

of every individual separately will be explored. Two techniques exist, i.e., global influence (Sec-

tion 4.3) and local influence (Section 4.4, Cook 1986). The global influence methodology, also

known as the case-deletion method (Cook and Weisberg, 1986), is introduced by Cook (1979,

1986) in linear regression, and by Molenberghs et al (2003) and Thijs, Molenberghs and Verbeke

(2000) in linear mixed models. Verbeke et al (2001); Thijs, Molenberghs and Verbeke (2000)

already used local influence on the Diggle and Kenward (1994) model, which is based on a se-

lection model, integrating a linear mixed model for continuous outcomes with logistic regression

for dropout. Later, Van Steen et al (2001) adapted these ideas to the model of Molenberghs,

Kenward and Lesaffre (1997), for monotone repeated ordinal data.
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4.1 Interval of Ignorance

A sample from Table 2 produces empirical proportions representing the π’s with error. This im-

precision disappears as the sample size tends to infinity. What remains is ignorance regarding the

redistribution of all but the first four π’s over the missing outcomes value. This leaves ignorance

regarding any probability in which at least one of the first or second indices is equal to 0, and

hence regarding any derived parameter of scientific interest. For such a parameter, θ say, a region

of possible values which is consistent with Table 2 is called a region of ignorance. Analogously

an observed incomplete table leaves ignorance regarding the would-be observed complete table,

which in turn leaves imprecision regarding the true complete probabilities. The region of esti-

mators for θ consistent with the observed data provides an estimated region of ignorance. The

(1−α)100% region of uncertainty is a larger region in the spirit of a confidence region, designed

to capture the combined effects of imprecision and ignorance. Various ways for constructing

regions of ignorance and regions of uncertainty are conceivable. For a single parameter, the

regions obviously become intervals. These ideas have been developed in Molenberghs, Kenward

and Goetghebeur (2001) and Kenward, Goetghebeur and Molenberghs (2001) and formalized by

Vansteelandt et al (2006).

The estimated intervals of ignorance and intervals of uncertainty are shown in Table 6, while a

graphical representation of the YES votes is given in Figure 3. Model 10 is defined as (αj2, βj1j2)

with

βj1j2 = β0 + βj1 + βj2 , (1)

while Model 11 assumes (αj1j2, βj1) and uses

αj1j2 = α0 + αj1 + αj2 , (2)

Finally, Model 12 is defined as (αj1j2, βj1j2), a combination of both (1) and (2). Model 10 shows

an interval of ignorance which is very close to [0.741, 0.892], the range produced by the models

BRD1–BRD9, while Model 11 is somewhat sharper and just fails to cover the plebiscite value.

However, it should be noted that the corresponding intervals of uncertainty contain the true

value.

Interestingly, Model 12 virtually coincides with the non-parametric range even though it does not

saturate the complete data degrees of freedom. To do so, not 2 but in fact 7 sensitivity parameters
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Table 6: The Slovenian Public Opinion Survey. Intervals of ignorance and intervals of uncertainty
for the proportion θ (confidence interval) attending the plebiscite following from fitting.

θ̂

Model d.f. loglik II IU

Model 10 9 -2431.06 [0.762;0.893] [0.744;0.907]

Model 11 9 -2431.06 [0.766;0.883] [0.715;0.920]

Model 12 10 -2431.06 [0.694;0.905]

Figure 3: The Slovenian Public Opinion Survey. Relative position for the estimates of “proportion
of YES votes”, based on the models considered in Rubin, Stern and Verhovar (1995) and on the
BRD Models. The vertical lines indicate the nonparametric pessimistic-optimistic Bounds. (Pess:
pessimistic boundary; Opt: optimistic boundary; MAR: Rubin et al’s MAR model; NI: Rubin et
al ’s MNAR model; AC: available cases; CC: complete cases; Pleb: plebiscite outcome. Numbers
refer to the BRD models. Intervals of ignorance (Models 10–12) are represented by horizontal
bars.)

would have to be included. Thus, it appears that a relatively simple sensitivity analysis is sufficient

to increase the insight in the information provided by the incomplete data about the proportion

of valid YES votes.

4.2 An MAR Bodyguard for an MNAR Model

Molenberghs et al (2007) showed that, strictly speaking, the correctness of the alternative model

can only be verified in as far as it fits the observed data. Thus, evidence for or against MNAR

can only be provided within a particular, predefined parametric family, the plausibility of which

cannot be verified in empirical terms alone. This implies that an overall (omnibus) assessment of

MAR versus MNAR is not possible, since every MNAR model can be doubled up with a uniquely

defined MAR counterpart, producing exactly the same fit as the original MNAR model, in the

10



sense that it produces exactly the same predictions to the observed data (e.g., fitted counts in

an incomplete contingency table) as the original MNAR model, and depending on exactly the

same parameter vector. While this so-called MAR bodyguard generally does not belong to a

conventional parametric family, its existence has important ramifications. Let us illustrate the

use of the MAR bodyguard by means of 4 models from the BRD family, fitted to the independence

and attendance outcomes, i.e., collapsing Table 1. We select models BRD1, BRD2, BRD7, and

BRD9. Model BRD1 assumes missingness to be MCAR. All others are of the MNAR type. Model

BRD2 has 7 free parameters, and hence does not saturate the observed data degrees of freedom,

while models BRD7 and BRD9 saturate the 8 data degrees of freedom. The collapsed data,

together with the model fits, are displayed in Table 7. Each of the four models is doubled up

with its MAR counterpart.

Table 7 presents, apart from the raw data, for each of the models and its MAR counterpart,

the fit to the observed and the hypothetical complete data. The fits of models BRD7, BRD9,

and their MAR counterparts to the observed data, coincide with the observed data. As the

theory states, every MNAR model and its MAR counterpart produce exactly the same fit to the

observed data, which is therefore also seen for BRD1 and BRD2. However, while Models BRD1

and BRD1(MAR) coincide in their fit to the hypothetical complete data, this is not the case for

the other three models. The reason is clear: since model BRD1 belongs to the MAR family from

the start, its counterpart BRD1(MAR) will not produce any difference, but merely copies the fit of

BRD1 to the unobserved data, given the observed ones. Finally, while BRD7 and BRD9 produce

a different fit to the complete data, BRD7(MAR) and BRD9(MAR) coincide. This is because the

fits of BRD7 and BRD9 coincide with respect to their fit to the observed data, and indeed, due to

their saturation, coincide with the observed data as such. This fit is the sole basis for the models’

MAR extensions. It is noteworthy that, while BRD7, BRD9, and BRD7(MAR)≡BRD9(MAR) all

saturate the observed data degrees of freedom, their complete-data fits are dramatically different.

Let us consider the results for the primary estimand θ obtained from fitting each of the nine

BRD models (Table 5). BRD1 produces θ̂ = 0.892, exactly the same estimate as the first MAR

estimate obtained by Rubin, Stern and Verhovar (1995). This should not come as a surprise, since

both BRD1 and Rubin’s model assume MAR and use information from the two main questions.

Before continuing with the models’ interpretation, it is necessary to assess their fit. Conducting

likelihood ratio tests for BRD1 versus the ones with 7 parameters, BRD2–BRD5, and then in turn
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for BRD2–BRD5 versus the saturated modes BRD6–BRD9, suggests the lower numbered models

do not fit well, leaving us with BRD6–BRD9. The impression might be generated that the poor

model fit of BRD1 might be seen as evidence for discarding the MAR-based value 0.892. However,

studying the MAR values from each of the models BRD1(MAR)–BRD9(MAR), as displayed in

the last column of Table 5, it is clear that this value is remarkably stable and hence a value

of θ̂ = 0.892, based on the four bodyguards BRD6(MAR)–BRD9(MAR), is a sensible choice

after all. Thus, a main contribution resulting from considering the bodyguards in this particular

example, is the provision of a solid basis for the MAR-based estimate. Obviously, since Models

BRD6(MAR)–BRD9(MAR) are exactly the same and exhibit a perfect fit, the corresponding

probabilities θ̂MAR are exactly equal, too. In this particular case, even though BRD2(MAR)–

BRD5(MAR) differ among each other, the probability of being in favor of independence and

attending the plebiscite is constant across these four models. This is a mere coincidence, since

all three other cell probabilities are different, but only slightly so. For example, the probability of

being in favour of independence combined with not attending ranges over 0.066–0.0685 across

these four models.

We have made the following two-stage use of Models BRD6(MAR)–BRD9(MAR). At the first

stage, in a conventional way, the fully saturated model is selected as the only adequate descrip-

tion of the observed data. At the second stage, these models are transformed into their MAR

counterpart, from which inferences are drawn. As such, the MAR counterpart usefully supple-

ments the original models BRD6–BRD9 and provide one further, important scenario to model the

incomplete data. In principle, the same exercise can be conducted when the additional secession

variable would be used.

4.3 Global Influence

One of the tools to perform a sensitivity analysis with an eye on individual observations is global

influence, starting from case deletion. The methodology is based on the difference in log-likelihood

between the model fitted to the entire data set on the one hand, and the data set minus one

subject on the other hand. One might also consider, as we do here, the reverse operation of

adding single case. Denoting by `i(φ) the contribution of the ith individual to the log-likelihood,

where φ is the s-dimensional vector of unknown parameters of the particular BRD model, the
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complete log-likelihood is

`(φ) =
N∑

i=1

`i(φ). (3)

Further, denote by
`(±i)(φ) (4)

the log-likelihood function, where the contribution of the ith subject has been removed (−i)
or added (+i). Cook’s distances (CD) are based on measuring the discrepancy between either

the maximized log-likelihoods (3) and (4) or (subsets of) the estimated parameter vectors φ̂ and

φ̂(±i), with obvious notation. Precisely, we can consider

CD1i(φ) = 2
[
̂̀(φ) − ̂̀

(±i)(φ)
]
, (5)

however, the focus in this paper is on

CD2i(φ) = 2(φ̂− φ̂(±i))
′ L̈−1 (φ̂− φ̂(±i)), (6)

with L̈ the matrix of second-order derivatives of `(φ), with respect to φ, evaluated at φ̂.

Performing a global influence analysis on data with categorical outcomes is less time consuming

than on data with continuous outcomes, since the data can then be organized into cells, as in

Table 3. Thus, instead of removing subjects on a one by one basis, we only need to remove one

subject per cell and per covariate level, in case covariates are considered too.

Figure 4 shows a selection of the results for the global influence analysis on the SPO survey

data. Only results for BRD4, 7, and 8 are presented. Observe that, for BRD4, adding a single

observation to cell #3 has a large influence on the parameters, as well as deletion from either

cells #3 or #5. Cell #3 represents subjects with a NO on the attendance question and a YES on

the independence question. An addition or removal of one such respondent can largely affect the

parameters of BRD4. Similarly, exclusion of a single respondent with a YES on the attendance

question but a missing response on the independence question (cell #5), also influences BRD4’s

model parameters, though to a lesser extent.

For models BRD7–8, an additional observation in cell #6 or a deletion from cell #4 leads to sig-

nificant influence on these models’ parameters. Thus, adding a subject with a NO for attendance

and a missing independence response, or excluding a respondent with NO on both questions,

yields changes in the model parameters of BRD7–8. These finding hint on the influential na-

ture of subjects with a NO on the attendance question, which is likely related with this group’s

sparseness.
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Figure 4: The Slovenian Public Opinion Survey. Global influence analysis for BRD4, BRD7 and
BRD8. Cook’s distance measure, CD2i, is evaluated when an observation is added to a specific
cell (first row) and when an observation is deleted from a specific cell (second row).

For all other models, Cook’s distance measure CD2i was approximately zero for all cells, indicating

no substantial influence when adding or removing a single case from a particular cell.

4.4 Local Influence

A drawback of global influence is that the specific cause of the influence is hard to retrieve since,

by deleting or adding a subject, all types of influence stemming from it are lumped together.

Local influence, studying the effect of infinitesimally small model perturbations around a given

null model, is more suitable for this purpose.

Let us now introduce the key concepts of local influence (Cook, 1986; Verbeke et al , 2001). Since

the resulting influence diagnostics can in many cases be expressed analytically, they often allow

for a decomposition into interpretable components, thus yielding additional insight. We denote

the log-likelihood corresponding to a particular BRD model by `(φ|ω) =
∑N

i=1 `i(φ|ωi), in
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which `i(φ|ωi) is the contribution of the ith individual, and where φ=(θ,ψ) is the s-dimensional

vector, grouping, respectively, the parameters of the measurement and dropout models, but not

including the N × 1 vector ω = (ω1, ω2, . . . , ωN)′ of weights defining the perturbation. Assume

that ω belongs to an open subset Ω of RN . For ω equal to ωo = (0, 0, . . . , 0)′, `(φ|ωo) is the

log-likelihood corresponding to the simpler of the two models.

Let φ̂ be the maximum likelihood estimator for φ, obtained by maximizing `(φ|ωo), and let φ̂ω

denote the maximum likelihood estimator for φ under `(φ|ω). The local influence approach

compares φ̂ω with φ̂. Similar values indicate that the parameter estimates are robust with

respect to perturbations in the direction of the extended model. Cook (1986) proposed to

measure the distance between φ̂ω and φ̂ by the likelihood displacement, defined as LD(ω) =

2[`(φ̂|ωo) − `(φ̂ω|ωo)]. This takes into account the variability of φ̂. Indeed, LD(ω) will be

large if `(φ|ωo) is strongly curved at φ̂, which means that φ is estimated with high precision,

and small otherwise. Therefore, a graph of LD(ω) versus ω contains essential information on

the influence perturbations. It is useful to view this graphs as the geometric surface formed by

values of the N + 1 dimensional vector ζ(ω) = (ω′, LD(ω))′ as ω varies throughout Ω. Since

this so-called influence graph (Lesaffre and Verbeke, 1998) can only be depicted when N = 2,

Cook (1986) proposed to consider local influence, i.e., at the normal curvatures Ch of ζ(ω) in

ωo, in the direction of some N -dimensional vector h of unit length. Let ∆i be the s-dimensional

vector defined by:

∆i =
∂2`i(φ|ωi)

∂ωi∂φ

∣∣∣∣
φ=φ̂,ωi=0

, (7)

and define ∆ as the (s×N) matrix with ∆i as its ith column. Let L̈ denote the (s× s) matrix

of second order derivatives of `(φ|ωo) with respect to φ, also evaluated at φ = φ̂. Cook (1986)

has then shown that Ch can be written as

Ch = 2
∣∣∣h′ ∆′ (L̈)−1 ∆ h

∣∣∣ , (8)

for any direction h. One choice is the vector hi containing one in the ith position and zero

elsewhere, corresponding to the perturbation of the ith subject only, reflecting the influence of

allowing the ith subject to drop out in a more general fashion than the others. The corresponding

local influence measure, denoted by Ci, then becomes Ci = 2
∣∣∣∆′

i (L̈)−1 ∆i

∣∣∣. Another important

direction is the direction hmax of maximal normal curvature Cmax. It shows how to perturb

the model to obtain the largest local changes in the likelihood displacement. It is readily seen
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that Cmax is the largest eigenvalue of −2 ∆′ (L̈)−1 ∆, with hmax the corresponding eigenvector.

Calculation of local influence measures reduces to evaluation of ∆ and L̈ and a convenient

computational scheme can be used whenever a program is available to fit the full alternative

model, i.e., the model at the end of an edge in Figure 1 since it then suffices to compute the

second derivative at (φ̂, ωi = 0), for each observation separately, from which the ∆i = (φ, ωi)

subvector is selected.

It should be noted that Ch is a measure of the local influence on the log-likelihood function, i.e.,

quantifying the effect of perturbations in terms of the displacement in the log-likelihood. At times,

however, it might be more meaningful to assess the influence that infinitesimal changes may have

on a particular function of the parameters, rather than on the log-likelihood itself. In the case

of contingency tables, for instance, one might be more interested in the impact of perturbations

on the predicted cell counts, Zr1r2,j1j2 , which are functions of the parameter vector φ. In such

cases, when Z(φ) denotes a particular function of the model parameters, the expression for Ch

can be further generalized as:

Ch = 2
∣∣∣h′ ∆′ (L̈)−1 Z̈ (L̈)−1 ∆ h

∣∣∣ , (9)

with ‖h‖ = 1 and ∆, L̈, and Z̈ defined as follows:

∆ij =
∂2`(φ|ω)

∂φi∂ωj

∣∣∣∣
φ=φ̂,ω=ωo

, (10)

L̈i` =
∂2`(φ|ωo)

∂φi∂φ`

∣∣∣∣
φ=φ̂

(11)

Z̈il =
∂2Z(φ)

∂φi∂φ`

∣∣∣∣
φ=φ̂

, (12)

with i, ` = 1, . . . , p and j = 1, . . . , q. It is easy to see that (9) reduces to (8) when the function

of interest, Z(φ), is the log-likelihood `(φ|ω) itself. Whereas (8) quantifies influence in terms of

the displacement in the log-likelihood function, (9) describes influence through the displacement

in the particular function of interest.

4.4.1 Perturbation in Parameters: One BRD Model vs. Another

We first consider perturbations of a given BRD model in the direction of another BRD model with

one or more parameters in which the first model is nested, implying that perturbations lie along the
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edges of Figure 1. For such a nested pair, the simpler of the two models equates two parameters

from the more complex one. For example, BRD4 includes the parameter β.j2, (j2 = 1, 2), whereas

for BRD1, only β.. is included. For the influence analysis, ωi is then included as a contrast between

two such parameters; for the perturbation of BRD1 in the direction of BRD4, one considers β..

and β..+ωi. The vector of all ωi’s defines the direction in which such a perturbation is considered.

To illustrate this approach, we begin by first defining the log-likelihood for the BRD family of

models. We have

`(φ|ω) =
∑

j1,j2

Z11,j1j2 ln π11,j1j2 +
∑

j1

Z10,j1+ ln π10,j1+

+
∑

j2

Z01,+j2 ln π01,+j2 + Z00,++ ln π00,++, (13)

where πr1r2,j1j2 = pj1j2 qr1r2|j1j2, with p11 = p1, p12 = p2, p21 = p3, p22 = 1 − p1 − p2 − p3, and

qr1r2|j1j2 =
exp {αj1j2(1 − r1) + βj1j2(1 − r2) + γ(1 − r1)(1 − r2)}
1 + exp (αj1j2) + exp (βj1j2) + exp (αj1j2 + βj1j2 + γ)

. (14)

Distinction among the 9 BRD models occurs in the latter expression. For instance, for BRD4

with (α.., β.j2), expression (14) yields:

qr1r2|j11 =
exp {α..(1 − r1) + β..(1 − r2) + γ(1 − r1)(1 − r2)}

1 + exp (α..) + exp (β..) + exp (α.. + β.. + γ)
,

qr1r2|j2 =
exp {α..(1 − r1) + (β.. + ωi) (1 − r2) + γ(1 − r1)(1 − r2)}

1 + exp (α..) + exp (β.. + ωi) + exp (α.. + β.. + ωi + γ)
.

Note that, for ωi = 0, the two previous expressions are equivalent and BRD4 reduces to the

simpler BRD1. For this pair of nested models, BRD4 contains one parameter more than BRD1,

this extra parameter being the distinguishing feature between both models. That is, under the

more complicated model BRD4, the extra parameter ωi defines a difference between the dropout

probabilities above, while under the simpler (null) model BRD1, the two expressions reduce to a

single dropout probability. Similar motivations hold for the other pairs of nested BRD models.

Given now the fully-defined log-likelihood, one can proceed with deriving local influence measures

(8) and (9).

Note that the influence analysis focuses on the missingness model, rather than on the measure-

ment model parameters. This may be seen as slightly odd, since often scientific interest focuses on

the measurement model parameters. However, it has been documented (Rubin, 1994; Kenward,

1998; Verbeke et al , 2001) that the missingness model parameters are often the most sensitive
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ones to take up all kinds of misspecification and influential features. These may then, in turn,

impact conclusions coming from the measurement model parameters, such as time evolution, or

combinations thereof, such as covariate effects for certain groups of responders.

For the SPO data, we consider local influence measures on both the likelihood displacement

(8) and the predicted cell counts (9) for different model pairs. Although 12 model nestings are

possible(Figure 1), we focus on the model pairs BRD1 vs. BRD4, BRD3 vs. BRD7, and BRD4 vs.

BRD7. The rationale for these choices, in addition to conciseness, is that in these 3 model pairs

substantial influence was seen when considering local influence on the likelihood displacement. In

addition, for the local influence on the predicted cell counts, discussed in the next section, these

three model pairs are indicative for the various features that were seen across all 12 comparisons.

Figure 5 shows, for the 3 comparisons considered, the influence measures Ci, plotted against

the ith observed cell, as well as against each subject within that cell, and hmax against the ith

observed cell. A peak in the graph at a particular cell indicates that the corresponding cell drives

the data towards the more complex, rather than the simpler model. For the comparison of BRD1

vs. BRD4, a peak is observed at cell #6, for both Ci and hmax, implying that respondents

in this cell drive the data more towards BRD4 (α.., β.j2) rather than BRD1 (α.., β..). That is,

subjects with a NO on the attendance question and a missing value on the independence question

are influential when perturbing the model such that missingness in the independence question

depends on the corresponding unobserved answer (BRD4) rather than being constant (BRD1).

For BRD3 vs. BRD7, a peak is observed at cell #9, subjects with a missing response on both

questions, implying that such subjects drive the data in the direction of BRD7 (α.j2, β.j2) rather

than BRD3 (α.j2, β..). That is, missingness in the independence question is driven to depend on

the corresponding unobserved answer by subjects with missing responses on both questions, and,

also slightly by those with a NO on attendance and a missing value on independence (cell #6).

Finally, it is primarily subjects with missing responses on both questions (cell #9) that seem

to push the data towards BRD7 (α.j2, β.j2) from BRD4 (α.., β.j2). These subjects, along with

those that have a YES on attendance and a missing value on independence (cell #5), make the

missingness in the attendance question depend on the response of the independence question.

We now turn to the results of the local influence analysis on the fitted cell counts. Graphs

of the local influence measure (9) on the predicted cell counts are presented in Figure 6, with
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the graphs for the 16 predicted cell counts arranged in their respective positions as in Table 2.

From the first panel, for model pair BRD1 vs. BRD4, we observe that the influence graphs

show similar shapes, albeit with differing magnitudes, for a particular cell (j1, j2), across the

four missingness patterns. For instance, the influence curves for Zr1r2,11 (upper left corners) for

(r1, r2) = (1, 1), (1, 0), (0, 1), (0, 0) have more or less identical shapes. Occurrences of peaks at

particular cells are thus common across the missingness patterns, yielding more or less a clear result

for each cell (j1, j2). For (j1, j2) = (1, 1), it is cell #2 that shows influence, and also slightly cell

#8. Respondents with either a YES or a missing value on attendance and a NO on independence

therefore drive the predicted cell count Zr1r2,11 towards a model in which the missingness in the

independence question depends on its value (BRD4). For (j1, j2) = (1, 2), cells #2 and #5, as

well as #6 and #9, stand out. Cells #2 and #5 denote, respectively, respondents having YES on

attendance/NO on independence, and YES on attendance/missing value on independence, and

these respondents make the predicted cell count Zr1r2,11 seem to have come more from BRD4

rather than from BRD1. For (j1, j2) = (2, 1) and (j1, j2) = (2, 2), similar curves are obtained

across the four missingness patterns, with a clear peak at cell #6, implying that the “NO-on-

attendance/missingness-on-independence” responses perturb predicted cell counts Zr1r2,21 and

Zr1r2,22 in the direction of a model in which the missingness in the independence question is

dependent on its value, rather than on one in which missingness in the independence question is

constant.

The resulting patterns for the comparison of BRD3 against BRD7 (Figure 6b) differs from what

was observed for BRD1 vs. BRD4. Whereas for the latter, influence curves for a particular

cell (j1, j2) remained the same across the missingness patterns, for BRD3 vs. BRD7, variations

now arise across these missingness patterns, leading to a less clear-cut overall picture. For

(j1, j2) = (1, 1) and (j1, j2) = (1, 2), i.e., top row of the 4 sets of tables, although relative

peaks are observed at the same positions across the 4 sets of tables, the degree of the peak

varies across the missingness patterns, causing some to appear more like a peak and some less

so. This is further complicated by what can be observed for (j1, j2) = (2, 1) and (j1, j2) = (2, 2),

i.e., the bottom row of the tables, for which curve shapes vary across the missingness patterns.

We proceed to look at the results for (j1, j2) = (1, 1) and (j1, j2) = (1, 2). Across the 4

missingness patterns, the predicted cell counts Zr1r2,11 and Zr1r2,12 are primarily influenced by

subjects with both responses missing, and slightly by those having a YES on attendance/NO

on independence. For cell (j1, j2) = (2, 1), similar graphs are obtained for (r1, r2) = (1, 1) and
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(r1, r2) = (0, 0), i.e., the completers and double non-responders, respectively, with a peak at cell

#9. It is therefore subjects with both responses missing that influence cell counts Z11,21 and

Z00,21, in the direction of a model in which missingness in the independence question depends

on its value. For the other two missingness patterns, (r1, r2) = (1, 0) and (r1, r2) = (0, 1),

referring to subjects with a single nonresponse, peaks occur at cells #6 and #9. Thus, subjects

with a NO on attendance/missingness of independence and those with both responses missing

have an influence on predicted cell counts Z10,21 and Z01,21. These same subjects also influence

the predicted cell counts Zr1r2,22, since we observe similarly shaped influence curves across the

missingness patterns for cell position (j1, j2) = (2, 2), with peaks either at cell #9 or cell #6.

Whereas the comparison of BRD3 vs. BRD7 presents the most variable influence graphs, BRD4

vs. BRD7 shows the most consistent ones. All 16 influence curves exhibit a single shape,

although of varying magnitudes, implying that influence on any predicted cell count is coming

from a common source, regardless of the missingness pattern. Here, we see a clear peak at cells

#9 and #5, similar to what was observed for this model pair when considering influence on

the likelihood displacement. Subjects with missing responses on both questions and those with

YES on attendance/missingness on independence, have an influence that drives any predicted

cell count towards a model where the missingness in the attendance question depends on the

response of the independence question.

4.4.2 Perturbation in Cell Probabilities

Another route to studying local influence is to add an infinitesimally small value to the cell

probabilities. Such an approach leads to the following expression for the log-likelihood:

`(φ|ω) =
∑

j1,j2

(Z11,j1j2 + Nω11,j1j2) ln π11,j1j2

+
∑

j1

(Z10,j1+ + Nω10,j1+) ln π10,j1+

+
∑

j2

(Z01,+j2 + Nω01,+j2) ln π01,+j2

+ (Z00,++ + Nω00,++) ln π00,++,

where πr1r2,j1j2 = pj1j2 qr1r2|j1j2, with p11 = p1, p12 = p2, p21 = p3, p22 = 1 − p1 − p2 − p3, and

qr1r2|j1j2 =
exp {αj1j2(1 − r1) + βj1j2(1 − r2) + γ(1 − r1)(1 − r2)}
1 + exp (αj1j2) + exp (βj1j2) + exp (αj1j2 + βj1j2 + γ)

.
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Under the null model, ω = ωo = 0, and the above log-likelihood reduces to:

`(φ|ωo) =
∑

j1,j2

Z11,j1j2 ln π11,j1j2 +
∑

j1

Z10,j1+ ln π10,j1+

+
∑

j2

Z01,+j2 ln π01,+j2 + Z00,++ ln π00,++.

Computation of local influence measures (8) and (9) is straightforward once the log-likelihood,

`(φ|ω), is clearly defined.

It is important to note that the approach to local influence described in the previous section differs

from the approach proposed here, since now the perturbation is done directly in the observed cell

probabilities, rather than the parameters of the model. This implies that we are perturbing the

cells one at a time and observing which one brings about the largest changes, in likelihood or in

the predicted cell counts, within a given BRD model. Consequently, although influence measures

are computed in the same fashion, a difference in interpretation is warranted. A peak in the

influence curve now represents the particular observed cell at which a probability perturbation

causes substantial displacement in either the log-likelihood or in the predicted cell counts.

Let us consider the results of this approach to local influence for the SPO survey. We first

derive influence measures on the likelihood displacement; these are graphed in Figure 7. For

most BRD models, it seems small perturbations in the probabilities of cells #3 and/or #4

has a large influence. That is, if we slightly alter the probabilities with which the “NO-on-

attendance/YES-on- independence” or the NO/NO respondents occur, we can expect substantial

likelihood displacement. Also notable is the influence of changes in cell #6 for BRD8, implying

that under this model, changing the probability of the NO/missingness category slightly causes

displacement in the likelihood. These observations suggest that the most influential cells for

virtually all BRD models are the completers answering NO on attendance, likely attributable to

the small counts in these cells, while for BRD8, it is those subjects answering NO on attendance

and unobserved response on independence that are influential.

Figure 8 provides a summary of the results of the local influence analysis on the predicted cell

counts when perturbing a particular cell probability. No particular influence can be seen for any

BRD model when perturbing probabilities of cells #1 and #2, as might be expected since the

observed cell counts in these cells are large, and thus infinitesimal changes in their respective

cell probabilities may not have a large impact. We can also see that small perturbations in
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cell probability 3 seem to affect only the predicted cell counts in the top row (j = 1, YES on

attendance) under BRD5 and/or BRD6, while such changes impact the cell position (j1, j2) =

(1, 2) (NO on attendance/YES on independence) under BRD’s 1,2,3, 6 and/or 9. Perhaps the

most striking result that can be observed from Figure 8 is that for perturbations in cell probability

4 (NO/NO respondents), which yields influence on all 16 predicted cell counts in most of the

higher-numbered BRD models 4 to 9. Also of particular interest are the results for perturbations

in cell #6, indicating that it is primarily under BRD8 where a large influence is observed in the

most of the predicted cell counts. Finally, we note that changes in the probability of the doubly

missing category (cell #9) affects only the predicted cell counts of this missingness pattern and

only under BRD’s 1,2 and/or 3.

5 Concluding Remarks

In this paper, we have presented a variety of sensitivity analyses for the incomplete set of data

arising from the well-known Slovenian Public Opinion Survey. A first family of sensitivity analyses

is based on considering a variety of models. First, simple analyses have been augmented with

a non-parametric interval, providing absolute bounds for the proportion of people in favor of

independence, which is expressed through at the same time possessing and expressing an opinion

in favor of independence. A nonparametric interval was supplemented with a finite collection of

identifiable models from the BRD family, as well as infinite collections, resulting from overspec-

ified models. In addition, for each of these models, the corresponding MAR bodyguards were

calculated; these are models with the same fit to the observed data than their corresponding

original models, but with missingness of the MAR type. Whereas the nonparametric range is

[0.694,0.905], with the parametric ranges subsets thereof, the MAR models center around 0.89,

close to the actual plebiscite values.

A second family of sensitivity analyses studies influence of observations on the model’s conclusions,

expressed through either parameters or cell counts. Both global influence, i.e., case deletion, and

local influence, based on infinitesimal perturbation, were considered. It was found that perturbing

some, but not all, small counts can have an extremely large effect on the conclusions, often

through partially observed or unobserved cells. Such influences can strongly affect conclusions

about estimands such as the one considered here. Indeed, the proportion of people attending

the plebiscite and at the same time being in favor of independence is made up of adding up the
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(1,1) cell across all missingness patterns, and hence depends on how a model distributes partially

observed counts over the cells.

Therefore, we believe it is important to conduct a sensitivity analysis and in particular that

such an analysis that combines insight from considering families of models on the one hand and

from studying influence is able to paint a relatively complete picture. This allows one to put a

perspective on the conclusions that can confidently be reached about an estimand based on an

incomplete set of data, something that considering a single model arguably never can.
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Table 7: Analysis of the Slovenian Public Opinion Survey, restricted to the independence and
attendance questions. The observed data are shown, as well as the fit of models BRD1, BRD2,
BRD7, and BRD9, and their MAR counterparts, to the observed data and to the hypothetical
complete data. The contingency tables’ rows (columns) correspond to ‘yes’ vs. ‘no’ on the
independence (attendance) question.

Observed data &

fit of BRD7, BRD7(MAR), BRD9, and BRD9(MAR) to incomplete data

1439 78

16 16

159

32
144 54 136

Fit of BRD1 and BRD1(MAR) to incomplete data

1381.6 101.7

24.2 41.4

182.9

8.1
179.7 18.3 136.0

Fit of BRD2 and BRD2(MAR) to incomplete data

1402.2 108.9

15.6 22.3

159.0

32.0
181.2 16.8 136.0

Fit of BRD1 and BRD1(MAR) to complete data

1381.6 101.7

24.2 41.4

170.4 12.5

3.0 5.1

176.6 13.0

3.1 5.3

121.3 9.0

2.1 3.6

Fit of BRD2 to complete data

1402.2 108.9

15.6 22.3

147.5 11.5

13.2 18.8

179.2 13.9

2.0 2.9

105.0 8.2

9.4 13.4

Fit of BRD2(MAR) to complete data

1402.2 108.9

15.6 22.3

147.7 11.3

13.3 18.7

177.9 12.5

3.3 4.3

121.2 9.3

2.3 3.2

Fit of BRD7 to complete data

1439 78

16 16

3.2 155.8

0.0 32.0

142.4 44.8

1.6 9.2

0.4 112.5

0.0 23.1

Fit of BRD9 to complete data

1439 78

16 16

150.8 8.2

16.0 16.0

142.4 44.8

1.6 9.2

66.8 21.0

7.1 41.1

Fit of BRD7(MAR) and BRD9(MAR) to complete data

1439 78

16 18

148.1 10.9

11.8 20.2

141.5 38.4

2.5 15.6

121.3 9.0

2.1 3.6
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Figure 5: The Slovenian Public Opinion Survey. Local influence analysis on parameters for
model pairs (a) BRD1 vs. BRD4, (b) BRD3 vs. BRD7, and (c) BRD4 vs. BRD7. First column

shows the local influence measure Ci at the ith observed cell; the second column shows the same
measure but plotted for each of the subjects within the ith observed cell; and, the third column

shows hmax for the ith observed cell.
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Figure 6: The Slovenian Public Opinion Survey. Local influence analysis on the predicted cell counts for model pairs (a) BRD1
vs. BRD4, (b) BRD3 vs. BRD7, and (c) BRD4 vs. BRD7. Plots show Ci values for each of the 16 predicted cell counts (in their
respective positions as in Table 2) against the 9 observed cells (as labelled in Table 3).
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Figure 7: The Slovenian Public Opinion Survey. Local influence analysis on the log-likelihood
for the 9 BRD models. Plots show Ci values against the 9 observed cells for each BRD model.
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Adding omega

to cell number:

1 --- --- --- --- --- --- --- ---

--- --- --- --- --- --- --- ---

2 --- --- --- --- --- --- --- 3

--- --- --- --- --- --- --- ---

5,6 5,6 5,6 5,6 5,6 5,6 5 5

3 1,2,3,9 --- 2,3,9 --- 1,2,3,6 --- 1,2,3,6 6

4,6,7,9 4,5,6,7 4,5,6,7,9 4,5,6,7,8 4,5,6,7 4,5,6,7,8 4,5,6,7,9 3,4,5,6,7,8,9

4 4,5,6,7,9 2,3,4,5,6,7,8,9 4,5,6,7 2,3,4,5,6,7,8,9 4,5,6,7,9 2,3,4,5,6,7,8 4,5,6,7,9 2,3,4,5,7,9

5 2 --- 1,2,3 1,2 --- --- --- ---

--- --- --- --- --- --- --- ---

8 8 8 8 8 --- 8 ---

6 8 1,8 1,8 1 8 --- 8 8

7 3,9 --- 9 --- 1,2,3,9 --- --- ---

--- --- --- --- --- --- --- ---

8 --- 1,2,3,9 9 3,9 --- 1,2,3,9 9 ---

--- --- --- --- --- 1,9 --- ---

9 1,2 --- --- --- --- --- 1,2,3 1,2

--- --- --- --- --- --- 1 1

Z11 Z10 Z01 Z00

Figure 8: The Slovenian Public Opinion Survey. Local influence analysis on cell counts when
perturbing each of the 9 observed cell probabilities. Entries in boxes denote the BRD model
number for which influence is largest when the particular cell probability is perturbed.
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