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Abstract

Recent research is showing that generalized linear mixed models (GLMM) may not
be robust against certain model misspecifications. In this work we focus on misspecify-
ing the random-effects distribution and its impact on maximum likelihood estimation.
We propose to deal with possible misspecification by way of sensitivity analysis, con-
sidering several random-effects distributions. First, we analyze a case study using the
heterogeneity model, i.e., a GLMM where the normal random-effects distribution is re-
placed by a finite mixture of normals. It is shown through simulations that this model
performs slightly better in the presence of misspecification. We complete the sensitivity
analysis of the case study with a Bayesian approach, where we fit logistic models with
different distributions for the random effects. Here the Deviance Information Criterion
(DIC) can be used as a criterion to select the most appropriate model.

Some Keywords: Bayesian Modeling, Heterogeneity model, Hierarchical models, Max-
imum likelihood, Misspecification, Random-effects.

Running Title: Misspecification in GLMM.

1 Introduction

When dealing with non-Gaussian longitudinal measurements, observations on a subject are unlikely

to be independent. This dependence can be taken into account using subject-specific parameters.
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A popular approach to handle this type of correlated data is the generalized linear mixed model

(GLMM; Agresti, 2002; Diggle, Heagerty, Liang and Zeger, 2002; Fahrmeir and Tutz, 2001;

Molenberghs and Verbeke, 2005). This model has been widely used in different areas like, e.g.,

toxicology (Molenberghs and Verbeke, 2005), epidemiology (Kleinman, Lazarus and Platt, 2004),

dairy science (Tempelman, 1998), etc., and is easy to apply using software tools such as the SAS

procedures NLMIXED and GLIMMIX. In this model, conditional on the random effects bi, the

outcome variable yi for subject i follows a pre-specified distribution Fi(yi|ϕ, bi), parameterized

through a vector ϕ of unknown parameters common to all subjects. The subject-specific effects

bi are assumed to come from a distribution G(bi|δ), which may depend on a vector δ of unknown

parameters. Estimation is usually based on maximum likelihood, assuming that the underlying

probability model is correctly specified.

A wide range of software tools are available for fitting these models. However, the analysis is

often limited to the setting of Gaussian random effects. Since random effects are not observed,

diagnostic tools to study the random-effects distribution are not straightforward. Indeed, one

should be careful in using empirical Bayes estimates of the random effects to detect departures

from normality. Even when the random effects are coming from a normal distribution, the em-

pirical Bayes estimates will usually not be normally distributed. Therefore, it is relevant to assess

the robustness of the parameter estimates with respect to this type of model misspecification.

Verbeke and Lesaffre (1997) showed that the maximum likelihood estimators for fixed effects

and variance components in linear mixed models, obtained under the assumption of normally

distributed random effects, are consistent and asymptotically normally distributed, even when

the random-effects distribution is not normal. However, results obtained in recent years show

that moving away from the realm of normality leads to qualitative differences. For instance,

Neuhaus, Hauck and Kalbfleisch (1992) examined the performance of mixed-effects logistic re-

gression models with misspecified random-effects distributions. They showed that the maximum
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likelihood estimators of the model parameters are inconsistent but that the magnitude of the bias

is typically small. Simulations by Chen, Zhang, and Davidian (2002) with a comparable model

also indicate that the estimation of the regression coefficients may be subject to negligible bias

only. According to Agresti, Caffo, and Ohman-Strickland (2004), the choice of the random-effects

distribution seems to have, in most situations, little effect on the maximum likelihood estima-

tors. However, when there is a severe polarization of subjects, e.g., by omitting an influential

binary covariate, this can affect the predictive qualities of characteristics involving the random

effects as well as the fixed effects. Similarly, Heagerty and Kurland (2001) found substantial bias

while using a random-intercept logistic model, when the random-effects distribution depends on

measured covariates.

Nevertheless, we should underscore that all these simulation studies were performed using a lim-

ited number of distributions, and in all of them, only small variances for the random effects were

considered. For example, in Agresti, Caffo, and Ohman-Strickland (2004) the largest random-

effects variance used for simulations was equal to 1. As we will illustrate with our case study

in Section 2, these small values may not always be realistic. Litière, Alonso and Molenberghs

(2007b) found, using simulations with a random-intercept logistic model and a wide range of

distributions for the random effect, that the estimates of the variance components are always

subject to considerable bias when the random-effects distribution is misspecified. Although vari-

ance components are generally treated as nuisance parameters, this bias can have an important

impact in studies where they are of main interest. This is the case, for instance, in fields like

surrogate marker validation, reliability of rating scales, or studies of the criterion and predictive

validity of psychiatric scales.

Furthermore, the bias induced in the estimates of the mean structure parameters appears to

depend on the magnitude of the variance components, whereby large bias is associated with large

random-effects variances. Additionally, Litière, Alonso, and Molenberghs (2007a) established that
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the type I error and the power related to the tests of the mean structure parameters, can also be

severely impacted. Clearly, in any practical situation, the bias present in the variance component

estimators, under misspecification, will make it hard to distinguish between the two scenarios,

i.e., small or larger variance components. Therefore, it can be difficult to determine how severe

the impact on the mean parameters can be.

This overview illustrates the wide range of opinions that exist in the literature with respect to the

impact of misspecifying the random-effects distribution. Nevertheless, it becomes clear that more

research is needed to find models that are more robust against this type of misspecification. Some

alternative robust approaches have been suggested. Butler and Louis (1992) proposed to replace

the normal random-effects distribution by a non-parametric distribution. However, Agresti, Caffo,

and Ohman-Strickland (2004) reported that there can be some loss of efficiency, when using a

non-parametric approach, compared to a parametric assumption close to the real distribution.

Additionally, model comparison can be difficult as standard asymptotic theory does not apply.

Chen, Zhang and Davidian (2002) suggested a semi-parametric random-effects distribution, al-

lowing the random-effects density to be skewed, multi-modal, fat- or thin-tailed and including

the normal as a special case. These authors then used a Monte Carlo EM algorithm with a

rejection sampling scheme to obtain estimates of the model parameters and the semi-parametric

random-effects distribution. In the present work, we will study another approach which con-

sists in replacing the normal random-effects distribution by a finite mixture of normals (Fieuws,

Spiessens and Draney, 2004; Molenberghs and Verbeke, 2005). This allows one to cover a wide

range of shapes for the random-effects distribution, including unimodal as well as multimodal,

and symmetric as well as very skewed distributions.

We also propose to incorporate the previous approach into a more general sensitivity analysis

framework. In this scenario, different distributions are considered for the random effects. If

the estimates of the parameters of interest and the associated inferential procedures are similar,
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irrespectively of the distribution used to obtain them, we can feel relatively confident about our

results. On the other hand, if the results vary considerably, then they are obviously sensitive to

our distributional assumptions for the random effects, and caution is needed. We could also use

some known model selection criteria to select that distribution which fits the data best.

Since Bayesian models are very flexible in the choice of the random-effects distribution, they

have been used in the past to deal with possible random-effects misspecification. For instance,

Kleinman and Ibrahim (1998) suggest extending the GLMM by allowing the random effect to

have a non-parametric prior distribution. More recently, Kizilkaya, Carnier, Albera, Bittante and

Tempelman (2003) discussed a hierarchical threshold mixed model based on a cumulative t-link

specification for the analysis of ordinal data. Additionally, Kizilkaya and Tempelman (2005) pro-

posed a general Bayesian approach to model heteroskedastic error in GLMM, in which linked

functions of conditional means and residual variances were specified as separate linear combina-

tions of fixed and random effects. As a part of the sensitivity analysis, a Bayesian approach might

therefore be a good alternative to the classic frequentist methods.

We will start by analyzing, in Section 2, the motivating case study using a GLMM with normal

random effects. In Section 3, we will introduce and apply the heterogeneity model to the example.

Next, in Section 4, various aspects of the parameter estimates resulting from the heterogeneity

model are investigated through extensive simulations. Finally, in Section 5, we will consider a

Bayesian approach to fitting GLMM with non-Gaussian random effects and perform a sensitivity

analysis for our case study within the Bayesian framework.

2 Case Study: The Schizophrenia Data

Our case study consists of individual patient data from a randomized clinical trial, comparing the

effect of risperidone to conventional antipsychotic agents for the treatment of chronic schizophre-

nia (Alonso, Geys, Molenberghs, Kenward and Vangeneugden, 2004). The response variable Y
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Table 1: Parameter estimates (standard errors) and p-values for the parameters in the logistic
random-intercept model given by (1), fitted to the schizophrenia data. The SAS procedure
NLMIXED with adaptive Gaussian quadrature and 20 quadrature points was used.

Effect Parameter Estimate (s.e.) p-value

Fixed effects

Intercept β0 -7.37 (1.18) < 0.001

Treatment effect β1 2.14 (1.08) 0.049

Time effect β2 0.65 (0.10) < 0.001

Variance structure

Random intercept variance σ2

b 21.01 (6.81)

is a dichotomous version of the Clinical Global Impression (CGI) scale and equals 1 for patients

classified as normal to mildly ill, and 0 for patients classified as moderately to severely ill. The

treatment variable, Z, is set to 0 for the control group and 1 for the risperidone group. Treat-

ment was administered for 8 weeks and the outcome was measured at 6 fixed time points: at the

beginning of the study and after 1, 2, 4, 6 and 8 weeks. One hundred twenty-eight patients were

included in the study.

Previous data analysis has shown that an adequate model for these data is given by (Litière,

Alonso and Molenberghs, 2007a)

logit{P (yij = 1|bi)} = β0 + β1Zi + β2tj + bi, (1)

where yij denotes the response for the i-th patient at time tj and bi denotes a random intercept

assumed to follow a mean zero normal distribution with variance σ2

b . The estimates of the model

parameters are shown in Table 1.

They give evidence of certain treatment effect. Note that we observed a large random-intercept

variance. This could be explained by the high proportion of patients (75%) in the control group

that have a response pattern of nothing but zeros. Such a high inter-subject correlation is ac-

commodated in the model through a large value of the random-effect variance. Clearly, a large
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random-effects variance should not be considered rare in clinical trials where, for example little

variability in the response is expected in the placebo group and considerably more variability in

the treated group. As a result, this variance could imply a serious bias for the mean structure pa-

rameters, including the treatment effect, if the random-effects distribution is misspecified (Litière,

Alonso and Molenberghs, 2007b). Arguably, these circumstances could render the assumption

of a normal distribution for the random effects questionable. Nevertheless, Litière, Alonso and

Molenberghs (2007a) introduced a theoretical result which states the conditions under which the

type I error is robust to misspecification of the random-effects distribution. Applied to our case

study, this theorem implies that the type I error corresponding to the treatment effect will not be

affected by the choice of the random-effects distribution. Therefore, we can be fairly confident

about the presence of a (borderline) significant treatment effect. However, we should be careful

when interpreting the estimated size of the effect due to the bias that can be introduced by

misspecification.

As mentioned in the introduction, a plausible alternative approach to the GLMM consists in

replacing the Gaussian random-effects distribution by a finite mixture of normals. In the next

section we will study this model in more detail.

3 The Heterogeneity Model

In GLMM, the random-effects bi are assumed to be sampled from a normal distribution. The

heterogeneity model is an extension of this model, obtained by sampling the random effects

from a mixture of k normal distributions with mean vectors µr and covariance matrix D, i.e.,

bi ∼
∑k

r=1
πrN(µr, D). The probability for a subject to belong to component r is πr, with

∑k

r=1
πr = 1. Note that each component has the same covariance matrix D. This constraint is

necessary to avoid unbounded likelihoods (Böhning, 1999).

Let π′ = (π1, ..., πk) and γ be the vector containing the remaining parameters, i.e., the vector
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ϕ of unknown parameters common to all subjects, as well as all parameters in µr and D. The

joint density function of yi can then be written as fi(yi) =
∑k

r=1
πrfir(yi|γ) where

fir(yi|γ) =

∫

fi(yi|ϕ, bi)φr(bi)dbi.

Note that φr(bi) refers to the multivariate normal with mean µr and covariance matrix D.

Estimation is now based on the maximization of

ℓ(θ|y) =

N
∑

i=1

ln

{

k
∑

r=1

πrfir(yi|γ)

}

,

where θ′ = (γ ′, π′), using the Expectation-Maximization (EM) algorithm described in Laird

(1978).

3.1 Case Study: The Heterogeneity Model

To fit a heterogeneity model to the case study, some small changes have to be made to the model

formulation. For example, since there are no restrictions on the µr, the expected value of the

random effects is no longer fixed at zero. Therefore, to avoid overparameterization, we will not

include an intercept

logit{P (Yit = 1|bi)} = β1Zi + β2t + bi, (2)

however, note that β0 can be estimated from
∑k

r=1
πrµr. We will consider a random-effects

distributions with two components

bi ∼ π1N(µ1, d) + (1 − π1)N(µ2, d),

as well as with three components

bi ∼ π1N(µ1, d) + π2N(µ2, d) + (1 − π1 − π2)N(µ3, d).

For these mixtures, the overall variance of the random-effects can be calculated using the following

expression

σ2

b =

k
∑

j=1

πjµ
2

j −

(

k
∑

j=1

πjµj

)2

+ d, (3)
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Table 2: Parameter estimates (standard errors) and p-values for the parameters in the model
given by (2) with 2 and 3 mixture components, fitted to the schizophrenia data

k = 2 k = 3

Effect Parameter Estimate (s.e.) p-value Estimate (s.e.) p-value

Fixed effects

Intercept β0 -7.88 (1.23) < 0.001 -7.77 (4.28) 0.070

Treatment β1 1.99 (0.94) 0.034 2.70 (0.85) 0.002

Time β2 0.67 (0.10) < 0.001 0.68 (0.10) < 0.001

Variance structure

µ1 -9.19 (1.33) < 0.001 -10.76 (5.37) 0.045

µ2 -5.31 (0.95) < 0.001 -6.51 (1.97) 0.001

µ3 -2.95 (2.03) 0.146

π1 0.66 (0.01) 0.51 (0.45)

π2 0.25 (0.58)

d 24.66 (7.66) 9.53 (11.9)

AIC 395.1 396.0

with k = 2 or 3, depending on the number of components in the mixture. The parameter

estimates obtained for the case study, using these two models, are shown in Table 2.

The estimates of the fixed effects for both models are very similar, and they are also close to the

results of the one-component or homogeneity model shown in Table 1. The overall variance of

the random effects can be calculated using (3) and the estimates given in Table 2. This leads

to σ̂2

b = 28.03 for the two-component model, and σ̂2

b = 20.21 for the three-component model.

These results are in the same order of magnitude of σ̂2

b = 21.01 reported in Table 1. Additionally,

there is not so much difference between the AIC of these models and the AIC corresponding to

the homogeneity model, given by 391.0. Therefore, the one-component model seems to be most

appropriate for the data at hand. Evidently, this result increases the level of confidence in our

previous findings.

As illustrated here, the heterogeneity model could be a plausible alternative or extension to the
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classical GLMM. Still, little research has been done to study the actual performance of this model

in the presence of random-effects misspecification. Therefore, in the next section, we will explore

the capabilities of the model via simulations.

4 A Simulation Study

In this simulation study, binary data were generated using the model given by (1). For the fixed

effects, values close to the estimates in Table 1 were chosen: β0

0
= −8, β0

1
= 2 and β0

2
= 1.

Further, 5 different random-effects distributions, each with variances σ2

0b = 1, 4, 16, and 32

were included in the study. These distributions were a mean zero normal density, a uniform

distribution, a lognormal distribution, a power function distribution and an asymmetric mixture

of two normal densities. When needed, they were transformed to satisfy the mean zero condition

of the random effects. The distributions considered here cover a wide range of densities varying

from very symmetric to very skewed; with potentially very heavy tails. Note that on the one hand,

the variances σ2

0b = 16 and 32 of the random effects will help us to investigate scenarios with

variances in the same order of magnitude as the one observed in the case study. On the other hand,

the smaller values considered for σ2

0b should allow us to study the performance of the maximum

likelihood estimators in less extreme settings. In this way, we cover a wide range of practically

relevant situations. Further, we considered 3 different sample sizes: 50, 100 and 200, and for

each of these settings 100 data sets were generated. Model (2) was then fitted to the generated

data assuming a mixture of two normals for the random-effects distribution. At the same time,

the generated data were also analyzed using the model given by (1), i.e., the one-component or

homogeneity model, assuming normal random effects (using the SAS procedure NLMIXED with

gaussian quadrature and 50 quadrature points). This allows us to study whether the heterogeneity

model is more robust than the GLMM in the presence of random-effects misspecification.
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4.1 Consistency

Consistency was studied through the evolution of the relative distance between the estimates

and their real value, over increasing sample size. Let γ
0

= (−8, 2, 1, 32)′ represent the vector of

true parameter values and γ̂n = (β̂0, β̂1, β̂2, σ̂
2

b )
′ the corresponding vector of maximum likelihood

estimates. We can then define the relative distance between γ
0

and γ̂n as

dγ =
||γ̂n − γ

0
||

||γ
0
||

,

where ||.|| denotes the Euclidean distance. The relative distance between the treatment effect

estimate and its real value is similarly given by

dβ1
=

∣

∣

∣

∣

∣

β̂1 − β0

1

β0

1

∣

∣

∣

∣

∣

.

If the estimators remain consistent after misspecifying the model then these relative distances

should go to zero with increasing sample sizes. Figure 1 shows the evolution of the relative distance

dγ between γ
0

and γ̂n over increasing variance and sample size, for both the homogeneity and

the heterogeneity model.

From these graphs it can be seen that, under the heterogeneity model, the smallest relative bias

is observed for the correctly specified models, i.e., when the random-effects distribution is normal

or an asymmetric mixture of normals. Additionally, note that, in the latter case, the heterogeneity

clearly outperforms the homogeneity model, especially as σ2

0b increases.

Further, when the random-effects variance is small, the relative bias under both models is low.

However, the relative bias of γ̂n can be as high as 50% when σ2

0b = 16 or 67% when σ2

0b = 32,

as was the case for the data generated with lognormal random effects and analyzed using the

heterogeneity model.

In general, the heterogeneity model seems to perform slightly better for smaller sample sizes.

For example, Figure 1(e) clearly illustrates that when the sample size is 50 and σ2

0b = 32, the
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Figure 1: Consistency of the parameter estimates under the homogeneity and heterogeneity
model: the relative distance dγ for each distribution over increasing σ2

0b and sample size: asym-
metric mixture (solid line), normal (dotted line), lognormal (dash-dotted line), uniform (dashed
line), and power function (dash-triple dotted line).

overall bias exceeds 60% only when the random effects are generated from a lognormal or uniform

distribution. On the other hand, Figure 1(f) shows that for the homogeneity model the overall
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bias is above 60% for all the misspecified random-effects distributions and it is near 100% when

the random effects are generated from a lognormal distribution. The differences between both

models are less dramatic for larger sample sizes.

Since interest often lies in the observed treatment effect, we also studied in more detail how its

estimate can be influenced by the presence of random-effects misspecification. Figure 2 shows the

relative distance dβ1
between the treatment effect and its estimate from fitting a heterogeneity

and a homogeneity model respectively, for the different values of σ2

0b. As before, the difference

between the two models is negligible when the variance of the random effect is small. However,

as the variance increases, the heterogeneity model seems to be more efficient in the estimation

of this parameter, especially when the sample size is small.

Additionally, the simulations showed (results not included here) that the heterogeneity model is

very robust to the random-effects misspecification when estimating the time effect. The relative

bias remained under 5% in all scenarios considered, even for σ2

0b = 32. However, we observed some

substantial bias when estimating the variance of the random-effects (up to 57% for lognormal

random effects, for sample size 200 and σ2

0b = 16). As expected, using the heterogeneity model

considerably improved the bias in the case of the asymmetric mixture of normals. For instance,

even for σ2

0b = 32 we observed a decrease from 73% bias under the homogeneity model down to

less than 40% under the heterogeneity model.

Markedly, Figures 1(b), (d) and (f) show large relative distances for β1, even under the correctly

specified model with normal random effects. This result is counterintuitive since, under these

conditions, the maximum likelihood method is expected to provide consistent estimates. However,

it should be emphasized that consistency is an asymptotic result. After considerably increasing the

sample size, the curve corresponding to the correctly specified (normal) model slowly decreases,

while the other curves stabilize.
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(b) Homogeneity model - σ2
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(c) Heterogeneity model - σ2
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(d) Homogeneity model - σ2
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(e) Heterogeneity model - σ2
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(f) Homogeneity model - σ2
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Figure 2: Consistency of the parameter estimates under the homogeneity and heterogeneity
model: the relative distance dβ1

for each distribution over increasing σ2

0b and sample size: asym-
metric mixture (solid line), normal (dotted line), lognormal (dash-dotted line), uniform (dashed
line), and power function (dash-triple dotted line).

4.2 Hypothesis Testing

In many situations, data analysts consider test statistics and corresponding p-values to evaluate,

for example, whether or not a drug has a significant influence. Litière, Alonso and Molenberghs
14



(2007a) showed that the type I error and the power can be seriously impacted by misspecifying

the random-effects distribution. To study whether the heterogeneity model offers a solution to

this problem, additional simulations were carried out for different values of the treatment effect

β1 to investigate the robustness of the inferential procedures. These simulations were performed

for 3 different sample sizes (50, 100, and 200) and a total of 5 different β0

1
values (0, 0.5, 1,

2, and 5). For each setting, 100 data sets were generated and the proportion of cases in which

the heterogeneity and the homogeneity model detected a treatment effect different from zero

(on a 5% significance level) was determined. When there is no treatment effect, this proportion

corresponds to the type I error; for the other values of β0

1
, this proportion represents the power

of the analysis. The results of these simulations are summarized in Figure 3 for the heterogeneity

model, and for comparison in Figure 4 for the homogeneity model.

Also here we can see that there is not much difference between the performance of both models

when σ2

b is small. However, as the variance increases, we can clearly see an increased power of

the heterogeneity model to detect a significant treatment effect. For example, let us consider in

Figures 3(e) and 4(e) the graphs corresponding to a sample of 100 patients, when β1 = 2. By

increasing the number of mixture components k in the heterogeneity model, the power to detect

a significant treatment effect increases from 31% for k = 1 to 73% for k = 2. Similarly, when the

random effects are generated from an asymmetric mixture, the use of two components increases

the power from 79% to 97%. Clearly, a valuable result.

Further, the graphs also confirm the theoretical result presented in Litière, Alonso and Molen-

berghs (2007a), and briefly discussed in Section 2, which states that the type I error associated

with the test for the presence of a covariate effect will not be affected by the (possibly wrong)

choice of the random-effects distribution, as far as this covariate is not included in the random-

effects structure. This is clearly the case for the treatment effect in our models. However, this is

not the case for β0. To study the type I error associated with β0 under the heterogeneity model,
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Figure 3: Power of the heterogeneity model (2) to detect a significant treatment effect over a
range of possible β0

1
values, for 5 random-effects distributions: asymmetric mixture (solid line),

normal (dotted line), lognormal (dash-dotted line), uniform (dashed line), and power function
(dash-triple dotted line).

a third simulation study was organized, where the binary response variable was generated using

Model (1), now with β0

0
= 0 (and β0

1
= 2, β0

2
= 1). The results using both a one-component

and two-component mixture are shown in Table 3.

In this table we study the performance of the Wald test associated with β0. The results clearly

illustrate that the type I error is severely affected by the misspecification in the homogeneity
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Figure 4: Power of the homogeneity model (1) to detect a significant treatment effect over a
range of possible β0

1
values, for 5 random-effects distributions: asymmetric mixture (solid line),

normal (dotted line), lognormal (dash-dotted line), uniform (dashed line), and power function
(dash-triple dotted line).

model. Even when the variance of the random intercept is small, e.g., when σ2

b = 4, the type

I error rate can be dramatically inflated, up to 66% in one scenario. However, this problem is

clearly solved when using the heterogeneity model.

Although we cannot provide a clear indication that the model is fully robust against misspecifica-

tion, we have seen from the simulations that the heterogeneity model tends to perform slightly
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Table 3: Type I error of the heterogeneity and the homogeneity model for detecting a significant
treatment effect when β0

0
= 0. Values for which the lower bound of the corresponding 95%

confidence interval was larger than 0.05 are highlighted.

Heterogeneity Model Homogeneity Model

Distribution σ2

0b = 4 σ2

0b = 16 σ2

0b = 32 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32

Normal n = 50 0.000 0.021 0.095 0.040 0.000 0.070

n = 100 0.000 0.020 0.030 0.080 0.040 0.040

n = 200 0.000 0.000 0.010 0.060 0.030 0.040

Asymmetric mixture n = 50 0.000 0.000 0.000 0.160 0.113 0.429

n = 100 0.026 0.010 0.025 0.370 0.370 0.910

n = 200 0.000 0.040 0.011 0.660 0.790 1.000

Lognormal n = 50 0.000 0.000 0.019 0.160 0.440 0.620

n = 100 0.000 0.000 0.028 0.180 0.540 0.880

n = 200 0.000 0.000 0.039 0.360 0.930 1.000

Uniform n = 50 0.000 0.011 0.079 0.000 0.030 0.020

n = 100 0.000 0.010 0.020 0.060 0.030 0.080

n = 200 0.000 0.030 0.040 0.050 0.040 0.060

Power function n = 50 0.000 0.000 0.084 0.050 0.160 0.120

n = 100 0.033 0.010 0.010 0.060 0.250 0.320

n = 200 0.010 0.000 0.000 0.290 0.580 0.760

or considerably better, depending on the setting, than the generalized linear mixed model, espe-

cially for small sample sizes. Further, due to computational and time constraints, it is difficult to

assess the full power of the heterogeneity model. For instance, we have limited the simulations to

two components with different means but equal variances. One could imagine that considering

two or more components with equal means and differing variances for the random effects could

significantly improve the performance in some cases. Additionally, even though the heterogeneity

model is very sensitive to the choice of starting values, in the analysis of a practical data set,

one can try out different sets of starting values in order to improve convergence. Therefore, we

believe the heterogeneity model is indeed a model worthy of consideration in the context of a

sensitivity analysis, even though it may not be a fully robust alternative.

18



5 A Bayesian Approach

As stated in the previous section, the heterogeneity model, although a valuable tool, does not offer

a comfortable degree of robustness against misspecification of the random-effects distribution.

Actually, none of the alternatives proposed till now in the literature seem to be fully robust

against this misspecification. In this work, we propose to approach the problem within a sensitivity

analysis framework. The Bayesian paradigm provides a natural framework for this type of analysis.

The Markov Chain Monte Carlo (MCMC) algorithm allows considerable flexibility and has made

Bayesian models a popular and efficient tool in the analysis of hierarchical data (Gilks, Richardson

and Spiegelhalter, 1996, and Gelman, Carlin, Stern and Rubin, 1995). In this framework, one

combines prior information on the model parameters, independent from the evidence given by the

data, with the support for different values of the parameter effects based on the available data,

i.e., the likelihood. Together, these two sources of information lead to a posterior distribution

for the parameters of interest. Samples drawn from the joint posterior distribution then allow to

estimate characteristics of the joint and marginal posterior distribution like, e.g., posterior modes

or means of the parameters of interest.

For a detailed exploration and application of Bayesian model formulation, model parametrization,

choice of prior distribution, diagnosing convergence, comparison between models and model ad-

equacy for binary longitudinal data, we refer to Albert and Jais (1998). In the next subsection

we will continue the analysis of the case study by expanding the sensitivity analysis to include a

wide range of non-normal random-effects distributions.

5.1 Case Study: The Bayesian Approach

In this section we will revisit the case study introduced in Section 2. We will use Bayesian

methods as implemented in WinBUGS to fit several models, considering different random-effects

distributions. We will include a mean zero normal with precision τ (note that τ = 1/σ2), an
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exponential with parameter λ, a chi-square with k degrees of freedom, a lognormal with scale

parameter 0 and precision parameter τ , a uniform with support between −b and b, and a discrete

distribution with unequal probability π at two support points Xi, i = 1, 2. Furthermore, we

will choose vague priors for the parameters of the random-effects distributions. For example, a

gamma distribution was chosen for τ , k, λ and b; the Xi are assumed to be sampled from a mean

zero normal distribution; and the prior for the probability π is a uniform distribution with support

between 0 and 1. For each setting, the Gibbs sampler had 3 chains with 10000 iterations as the

burn-in period, plus 100000 additional iterations with a thinning interval of 10 for the normal,

exponential and lognormal, 30 for the uniform, 60 for the chi-square and 75 for the discrete

distributions.

Note that the considered random-effects distributions do not necessarily have mean zero. It has

been suggested that this parametrization can improve convergency and stability of the samples by

reducing the autocorrelations of the Gibbs chains (Albert and Jais, 1998). Also note that keeping

the intercept in the model (in contrast to the approach in Section 3) improved the convergence

of the models. To be able to compare the new estimates with the previously obtained results, we

will use the following model

logit{P (Yij = 1|bi)} = α + β1Zi + β2tj + bi, (4)

such that β0 = α + E(b).

Convergency of the models was studied through the trace plots of the sample values of the

main parameters. As the number of iterations increases the trace plots should stabilize, varying

randomly around a mean value. Additionally we have studied the Gelman-Rubin diagnostic tool

(Gelman, Carlin, Stern and Rubin, 1996), which uses several parallel chains with widely dispersed

starting values with respect to the true posterior distribution, to check convergence. This diag-

nostic tool compares the variability between- and within-chains by estimating a scale reduction

factor. If the variance between the different chains is not larger than the variance within each
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Table 4: Parameter estimates (standard error and MC error between parenthesis) for the model
given by (4) and the corresponding deviance information criterion (DIC) for the different random-
effects distributions using MCMC in Winbugs.

Distribution β0 (s.e., MCE) β1 (s.e., MCE) β2 (s.e., MCE) σ2

b (s.e., MCE) DIC

Normal -7.91 (1.33, 0.02) 2.32 (1.21, 0.02) 0.68 (0.10, 0.001) 26.28 (9.58, 0.13) 275.72

Exponential -6.45 (1.16, 0.02) 2.10 (1.20, 0.02) 0.66 (0.10, 0.001) 19.09 (7.72, 0.14) 275.27

Chi-square -12.80 (3.08, 0.19) 2.39 (1.25, 0.04) 0.68 (0.10, 0.003) 10.86 (4.16, 0.26) 276.60

Uniform -7.83 (1.43, 0.08) 1.51 (0.99, 0.01) 0.67 (0.10, 0.003) 27.04 (9.97, 0.61) 276.20

Lognormal -4.31 (1.16, 0.01) 1.38 (0.82, 0.01) 0.56 (0.09, 0.008) 247.4 (1786, 11.2) 290.38

Discrete -4.85 (0.56, 0.01) 1.25 (0.51, 0.01) 0.53 (0.08, 0.001) 60.45 (67.9, 4.24) 344.14

individual chain, then approximate convergence can be diagnosed.

The parameter estimates of fitting Model (4) are shown in Table 4. Noticeably, a lot of variability

can be observed in the estimation of β0 and σ2

b . As one would intuitively expect, the variance

components estimates seem to be very sensitive to the choice of the random-effects distribution.

However, the estimates for the treatment and time effects are similar in all considered settings,

and they are also similar to the results from the homogeneity and the heterogeneity model. Note

that Table 4 also contains the Monte Carlo error, which can be used to assess the accuracy of the

posterior estimates. This error decreases as the sample size used for posterior inference increases.

A useful tool to select the model that fits our data best, is given by the Deviance Information

Criterion (DIC; Spiegelhalter, Best, Carlin and van der Linde, 2002). It is similar to the Akaike

Information Criterium (AIC), i.e., a compromise between the deviance and the number of pa-

rameters in the model, where smaller values are better. The DIC values of the models with the

different random-effects assumptions are shown in the last column of Table 4. Based on the DIC,

the models that assume a normal and exponential distribution for the random intercept seem

to perform best and produce very similar estimates for the treatment effect. Therefore, we can

still be very confident about the results obtained from the homogeneity model for the treatment
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effect.

6 Discussion

In contrast to the conventional wisdom amongst data analysts, recent research is showing that

the choice of the random-effects distribution can be crucial to the quality of inference about

regression coefficients. Indeed, unlike for the linear mixed model, misspecifying the random-

effects distribution in GLMM can lead to inconsistent estimators for both the mean and the

covariance structure. At the present time fully robust alternatives are not available for the

analyst and therefore we strongly suggest exploring the impact of such misspecifications using

a sensitivity analysis. Along with these ideas, we have focused in the current work on two

possible approaches to do a sensitivity analysis. The heterogeneity model could be, in certain

circumstances, a plausible choice, especially when dealing with small sample sizes. However, our

simulations showed that the model can be unstable and convergency can heavily depend on initial

values. Even though the heterogeneity model performs slightly better than the GLMM, we still

observed serious bias under certain model misspecifications.

Nevertheless, we should also add that in a concrete practical application, some choices not

included in our simulations could be considered. Indeed, we could try to fit more than two

components, components with different covariance structure, etc. The results obtained in the

limited settings that were affordable in our simulation study, illustrate that there are potentials in

this model that can be explored even further if some of the previous choices are also considered.

Alternatively, we proposed to incorporate the heterogeneity model into a more general sensitivity

analysis, considering different random-effects distributions and comparing the obtained estimates

and inference results. The Bayesian paradigm offers a nice framework to carry out such an analysis.

Indeed, Bayesian models have become easy to apply in practice with the implementation of the

MCMC algorithm in freely accessible software like WinBUGS. With its flexibility in the choice of
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the random-effects distribution and the implementation of the DIC to choose the most appropriate

model, this approach offers a natural way of implementing a sensitivity analysis, as illustrated in

Section 5.

Note that our sensitivity analysis is not a robust alternative to the classical GLMM, but an

alternative to the lack of robustness of the GLMM. Indeed, given that we consider different

choices for the random-effects distribution, one would expect the outcome to be best when the

true random-effects distribution is very similar to one of these distributions. The idea is then

to see how sensitive are our conclusions with respect to the distributional assumptions for the

random effects. Similar results obtained under different assumptions will increase our confidence,

different ones will increase our caution. Therefore, simulation results are not of great value to

evaluate the performance of such an approach.

In this work we have confined attention to the impact of misspecifying the random-effects dis-

tribution. However, misspecifications of other model aspects deserve a great deal of research

attention too. It is becoming clear that there probably will not be a general easy answer on

how to deal with model misspecification. Perhaps in some specific situations, good alternative

models can be found by using e.g., random-effects distributions conjugate to the distribution of

the outcome (Lee and Nelder, 1996). Still, an important topic for future research will be the

development of diagnostic tools for detecting the lack of consistency. These tools, together with

the ability to consider several random-effects distributions, would allow for a useful and, arguably,

necessary sensitivity analysis.
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