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Abstract

This work investigates how generalizability, an extension of reliability, can be defined and
estimated based on longitudinal data sequences resulting from, for example, clinical studies.
Useful and intuitive approximate expressions are derived based on generalized linear mixed
models. Data from four double-blind randomized clinical trials in schizophrenia motivate
the research and are used to estimate generalizability for a binary response parameter.
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1 Introduction

Many measurements in clinical research are based on clinicians’ observations, are therefore prone

to error, and hence call for assessment of observer reliability and agreement. The latter terms

are often used interchangeably but,in principle,should be considered different concepts. Reliabil-

ity coefficients express the ability to differentiate among subjects and are ratios of variances, in

classical terms, the variance attributed to the difference among subjects divided by the total vari-

ance (Shrout and Fleiss 1979). Agreement refers to conformity, with corresponding parameters

determining whether the same value is achieved if a measurement were performed twice, either
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by the same or different observers. In homogeneous populations, one can imagine that reliability

be low while agreement be high; in a heterogeneous population, reliability and agreement mea-

sures alledgedly will correspond well (Stratford 1989). The parameters for assessment of observer

reliability and agreement differ according to the scale of measurement. For nominal and ordi-

nal categorical measurements, the κ-coefficient and the weighted κ-coefficient, respectively, are

measures of agreement. In case of continuous data, the intraclass correlation coefficient (ICC) is

commonly used to measure observer reliability, although ICC-type quantities can be defined for

binary and ordinal data as well (Fleiss 1981).

As stated by Fleiss (1986): “The most elegant design of a clinical study will not overcome

the damage by unreliable or imprecise measurement.” In clinical trials, one typically wants to

differentiate among treatments. If reliability is low, the ability to differentiate between the different

subjects in the different treatment arms decreases. Fleiss describes as consequences of un-

reliability : attenuation of correlation in studies designed to estimate correlation between variables

with poor reliability, biased sample selection in clinical studies where patients are selected based

on attaining a minimum level of an unreliable measurement, and, last but not least, an increased

sample size for trials with a primary, low-reliability parameter. For the latter, one can easily

show that, for a paired t-test, the required sample size becomes n = n∗/R where R denotes

the reliability coefficient and n∗ is the required sample size for the true score, i.e., the required

sample size when responses are measured without error. It is thus clear that a high reliability

is important to the clinical trialist. Investigators in the mental disorders traditionally have been

more concerned with the reliability of their measures than have their colleagues in other medical

specialties.

When the biostatistician and clinician are designing a new clinical study, they should have good

information on the reliability of the measurements that are planned to be used. Most often,

the strategy is to use a scale that has been validated before and for which intra-rater (i.e.,

test-retest), inter-rater reliability, and internal consistency were established. The validation is

usually done on a selected small sample from the population for which the scale is intended.
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If the population of the trial is different, a new battery of reliability and validity testing might

be warranted. Now, the classical framework may be deficient for the clinical trial setting since

conventionally an observation is assumed to be a combination of an individual’s true score and

random measurement error. The assumption that all variance in scores can be divided into true

and error variance may come across as a little simplistic. At the same time, once the trials finished

and reported, it is astonishing how little attention is given to the observed reliability of a given

scale. The focus usually is on estimating treatment effects and their significance. As a result,

rarely is there any reflection on how reliable the scale was or how large the observed measurement

error.

Vangeneugden et al. (2004) proposed a framework for studying trial- or population-specific

reliability using clinical trial data. The appeal of this extension notwithstanding, next to the

true score of an individual, multiple potential sources of error can exist. The goal is then to

obtain the most precise estimate of the score a person should have if there were no sources of

error contaminating our results. Each on among the variety of forms reliability can take, such

as inter-rater reliability, test-retest reliability, and internal consistency, identifies and quantifies

only one source of error variance at a time. Generalizability theory (GT, Cronbach 1963) enables

considering all sources of variability simultaneously. The essence of the theory is the recognition

that, in any measurement situation, there are multiple sources of error variance. The goal is to

try and identify, measure, and thereby possibly find strategies to reduce the influence of these

sources on the measurement under investigation (Shavelson, Webb, and Rowley 1989). Imagine

that we could identify the most likely sources of error in a measurement of some characteristic

of a person. We then have defined our “universe” of possible observations. If we subsequently

proceed to average each person’s score over all of these possible conditions, an unbiased estimate

would result of that person’s score over the universe as we have defined it. Note that there is

no pretense that this is the “true” score; rather, it is conditional on the universe considered. Of

course, more than one choice of universe can be considered.

In the context of clinical trials, by investigating sources of error, such as, for instance, country
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or sub-category of diagnosis, the clinical trialist could learn a lot about performance of scales or

other measurements in certain subgroups and what the impact of such factors is on reliability.

Vangeneugden et al. (2005) applied such generalizability concepts to interval-scaled data from

clinical trials, for which it is natural to assume a Gaussian distribution.

The present work extends generalizability to non-Gaussian outcomes. While frequently encoun-

tered in repeated-measures clinical trials, especially when of a binary type, model formulation is

less than straightforward. One distinguishes between marginal and random-effects model families

and, unlike in the Gaussian situation, there is no easy relationship between both. An example of

the marginal family is generalized estimating equations (GEE, Liang and Zeger 1986), whereas

the generalized linear mixed model (GLMM, Breslow and Clayton 1993) is likely the most promi-

nent random-effects model (Molenberghs and Verbeke 2005). Whereas GEE is convenient and

frequently used, it models the marginal regression function, treating the second and higher-order

moments as nuisance, which limits its use when the correlation is of scientific interest, e.g., in

view of the ICC. The GLMM, on the other hand, has a full likelihood basis, but fails to produce

the marginal correlations in an easy fashion, owing to the presence of a non-linear link function,

combined with a non-trivial mean-variance link, forcing the variance to change with the mean

and hence with the regressors (Molenberghs and Verbeke 2005, Chapter 16). In spite of these

considerations, we will show the GLMM provides a viable framework when correlations are of

interest, with particular emphasis on the use of generalizability theory.

In Section 2, the motivating case study is introduced, while methodology is described in Section 3.

In Section 4, we will estimate reliability and generalizability of a binary response variable, thereby

underscoring the versatile use that can be given to the generalizability framework.

2 Motivating Studies

Consider individual patient data from four double-blind randomized clinical trials, comparing

the effects of risperidone to conventional anti psychotic agents for the treatment of chronic
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schizophrenia. Schizophrenia has long been recognized as a heterogeneous disorder with patients

suffering from both “negative” and “positive” symptoms. Negative symptoms are character-

ized by deficits in social functions such as poverty of speech, apathy and emotional withdrawal.

Positive symptoms entail more florid symptoms such as delusions and hallucinations, which are

superimposed on the mental status. Several measures can be considered to assess a patient’s

global condition. The Positive and Negative Syndrome Scale (PANSS) consists of 30 items that

provide an operationalized, drug-sensitive instrument, which is highly useful for both typological

and dimensional assessment of schizophrenia (Kay, Fiszbein, and Opler 1987). Classical relia-

bility of the PANSS has been studied previously (Kay, Opler, and Lindenmayer 1988, Bell et al.

1992, Peralta and Cuesta 1994). The Clinical Global Impression (CGI) of overall change versus

baseline is a 7-grade scale used by the treating physician to characterize how well a subject has

improved since baseline. The levels are: ‘very much improved,’ ‘much improved,’ ‘minimally

improved,’ ‘no change,’ ‘minimally worse,’ ‘much worse,’ ‘very much worse.’ Clinical response is

often defined as a CGI score of ‘very much improved or ‘much improved.’ Since the label in most

countries recommend doses ranging within 4–6 mg/day, we include in our analysis only patients

who received either these doses of risperidone or an active control (haloperidol, perphenazine,

or zuclopenthixol). Depending on the trial, treatment was administered for a duration of 6–8

weeks. For example, in the international trials by Peuskens et al. (1995), Marder and Meibach

(1994), and Hoyberg et al. (1993) patients received treatment for 8 weeks, while in the study by

Huttunen et al. (1995) patients were treated over a period of 6 weeks. The sample sizes were

453, 176, 74, and 71, respectively. Measurements were taken at weeks 1, 2, 4, 6, and 8.

3 Methodology

After having given a general outline of the concepts of reliability and generalizability from a clas-

sical view-point, we will provide an introduction to the generalized linear mixed model paradigm,

thus offering a framework within with reliability and generalizability can be derived based on

longitudinal data from clinical trials or other studies, not specifically designed in view of reliability
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or generalizability.

To fix ideas, let us give an example as to how the observed clinical trial data are typically

decomposed:

Ypdt = h(µ+ bp + µd + µt + µdt) + εpdt, (1)

where h(.) is a known link function. Further, bp denotes the random effect for patient p =

1, . . . , N , µd the fixed time effect at day d = 1, . . . , np, µt the fixed effect of treatment t =

1, . . . , T , µdt their interaction. Finally, εpdt refers to the residual error, the distribution of which

is chosen in accordance with the outcome type. For example, when Ypdt is a binary indicator, it

is customary to adopt for h(·) the antilogit function and for εpdt the Bernoulli distribution with

success probability h(µ+ bp +µd +µt +µdt). When other design levels are present, e.g., country

or center, Model (1) can be extended in a straightforward fashion and various instances will be

given in subsequent sections.

3.1 Reliability

In the classical test theory, reliability frequently materializes as the intraclass correlation coefficient

(ICC). For instance, if one wishes to estimate test-retest reliability in case of Gaussian data, the

outcome of a test can be modeled as

Ypd = µ+ bp + µd + εpd, (2)

where µ is an overall intercept, bp ∼ N(0, σ2
p) a random effect for patient, µd a fixed effect

for day of measurement, and εpd ∼ N(0, σ2
E) the corresponding measurement error. Then, the

reliability is a function of two sources of variability, deriving from the patient and residual levels,

respectively:

R̂ =
σ̂2

p

σ̂2
p + σ̂2

E

=
BMS − WMS

BMS + (nD − 1)WMS
, (3)

where nD is the number of measurements per patient, i.e., the number of days at which mea-

surements are taken. The time effect should be zero because the classical theory assumes strictly
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parallel measurements (Shavelson, Webb, and Rowley 1989). It is easy to show that R is the cor-

relation between measurements of the same patient, on different but given days, i.e., conditioning

on days and thereby keeping them fixed:

R = Corr(Ypd, Ypd′ | d, d′), (4)

with notation as in (2). For parallel measurements, this correlation coefficient indeed coincides

with the ICC of reliability.

3.2 Generalizability

Generalizability theory recognizes that, in virtually all measurement situation, there are multiple

sources of error variance. The goal is to try and identify, measure, and thereby possibly find

strategies to reduce the influence of these sources on the measurement in question. For instance,

if one measures a patient, not only on different days but also by different raters, one could

investigate both test-retest reliability and inter-rater reliability, assuming that rater and day of

observation are the most important sources of error, in addition to residual measurement error.

For Gaussian data, a linear version of (2) allowing for rater effects, is:

Yprd = µ+ bp + µr + µd + εprd, (5)

where, in addition to effects already included, µr now represents the fixed effect pertaining to

rater r = 1, . . . , R. The associated sources of variability are denoted by σ2
p for the patient level,

σ2
r for the rater level, etc. Model (5) enables estimation of the variances’ magnitude stemming

from the various sources of error, which are patient, rater, day, and residual in the example above.

If the sources that we have identified are trivial, while we have missed any important source of

error, then the residual variance will typically be large.

In GT terminology, ‘person’ is a so-called facet of differentiation, while ‘rater’ and ‘day’ are called

facets of generalization. The levels of the facets of generalization are named conditions. It

is common to use ANOVA for estimating the various variance components, which in turn lead
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to a generalizability coefficient, analogous to a reliability coefficient, found as the ratio of the

estimated person variance component and a so-called estimated observed score variance.

GT distinguishes between decisions based on the relative standing of individuals and decisions

based on the absolute value of a score (Shavelson, Webb, and Rowley 1989). Let us explain these

in turn.

Error in relative decisions arises from all nonzero variance components associated with rank

ordering of individuals, other than the component for the object of measurement (persons).

Specifically, variance components associated with the interaction of person with each facet or

combinations of facets define error. For Model (5), we distinguish between σ2
pr, σ

2
pd, and σ2

prd =

σ2
e . So, if one wishes to generalize from a rating by one rater on a particular day to a rating

by a different rater at another point in time, the following generalizability coefficient can be

constructed as the ratio of the universe-score variance to the expected rater-score variance:

Eρ2Rel = Corr(Yprd, Ypr′d′ | r, r′, d, d′) =
σ2

p

σ2
p + σ2

Rel. Error

=
σ2

p

σ2
p + σ2

pr + σ2
pd + σ2

prd

, (6)

having the form of an ICC. Indeed, it is easy to show that (6) can be derived as a conditional

correlation coefficient where we condition on rater and day, while at the same time allowing each

one of them to take on different values. Alternatively, we can derive a test-retest or an inter-rater

reliability coefficient, by either merely generalizing over day of observation and fixing rater or by

merely generalizing over rater and fixing day of observation:

Rtest-retest, Rel = Corr(Yprd, Yprd′ | r, d, d′) =
σ2

p + σ2
pr

σ2
p + σ2

pr + σ2
pd + σ2

prd

, (7)

Rinter-rater, Rel = Corr(Yprd, Ypr′d | r, r′, d) =
σ2

p + σ2
pd

σ2
p + σ2

pr + σ2
pd + σ2

prd

. (8)

Decisions based on the level of observed score, disregarding the performance of others, are called

absolute decisions. All variance components associated with such a score, except the component
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for the object of measurement, are considered error. Then, (6) transforms to

Eρ2Abs = Corr(Yprd, Ypr′d′) =
σ2

p

σ2
p + σ2

Abs. Error

=
σ2

p

σ2
p + σ2

r + σ2
d + σ2

pr + σ2
pd + σ2

rd + σ2
prd

. (9)

Also here, (9) can be considered an ICC, this time conditioned neither on rater nor on day. Similar

to the above, we can derive an absolute test-retest or inter-rater reliability coefficient:

Rtest-retest, Abs = Corr(Yprd, Yprd′) =
σ2

p + σ2
r + σ2

pr

σ2
p + σ2

r + σ2
d + σ2

pr + σ2
pd + σ2

rd + σ2
prd

, (10)

Rinter-rater, Abs = Corr(Yprd, Ypr′d) =
σ2

p + σ2
d + σ2

pd

σ2
p + σ2

r + σ2
d + σ2

pr + σ2
pd + σ2

rd + σ2
prd

.

This example, aimed to enhance insight in the various uses of GT, was based on a simple so-

called crossed design with two factors, each one occurring at all levels of the other. GT can be

used with more complex designs as well, for example, including more factors, and even in nested

designs, exhibiting a more complex factor structure. As discussed in Streiner and Norman (1995),

the general principle remains untouched: one begins by isolating the various sources of variance

in the scores, and then generating a family of coefficients that depend on the particular factors

and that are allowed either to vary or to remain fixed.

A first type of study, designed to estimate variance components underlying a measurement

process, is called a G-study. Second, having generated the variance estimates, one can then

study the impact on generalizability of such decision as changing the number of observations or

adding a further rater. Since this second type of study explores the impact of certain decisions,

they are termed Decision studies or D-studies. Interestingly, D-studies can be undertaken solely

using paper and pencil, or a computer. In planning a D-study, the decision maker defines the

universe of generalization and specifies the proposed interpretation of the measurement. The

goal is to identify important sources of variability in a particular measurement situation from the

outset, and then one quantifies these sources.

Obviously, GT is broad and versatile. In the next section, we will show how this can be expanded

9



by embedding it in the flexible generalized linear mixed model framework. Apart from dealing

with non-Gaussian outcomes, it will be possible to include further sources of variability, such as

serial (temporal) correlation, commonly encountered in longitudinal studies, superimposed on the

random-effects structure.

3.3 Generalized Linear Mixed Models

The generalized linear mixed model (GLMM, Breslow and Clayton 1993) has been the most

frequently used random effects model for non-Gaussian outcomes, although alternative paradigms,

such as laid out in Lee, Nelder, and Pawitan (2006), exist and are of interest, too.

With notation similar to the one used in previous sections, let Ypd be the outcome recorded on

day d = 1, . . . , np for subject p = 1, . . . , N , and let Y p be the np-dimensional vector of all

measurements available for subject (cluster) p. The GLMM assumes that, conditionally on a

q-dimensional random bp, alledgedly drawn independently from a N(0, D), the outcomes Ypd are

independent with densities of the form

fp(ypd|bp,β, φ) = exp

[
ypdθpd − ψ(θpd)

φ
+ c(ypd, φ)

]
, (11)

where the mean µpd = ∂ψ(θpd)/∂θpd is modeled through a linear predictor containing fixed regres-

sion parameters β as well as subject-specific parameters bp, i.e., h−1(µpd) = h−1(E(Ypd|bp)) =

x′
pdβ + z′

pdbp for a known link function h(·), with xpd and zpd r-dimensional and q-dimensional

vectors of known covariate values, respectively, with β an r-dimensional vector of unknown fixed

regression coefficients, and with φ a scale parameter. Employing a natural link function (Mc-

Cullagh and Nelder 1989), this becomes θpd = x′
pdβ + z′

pdbp. Estimation of model parameters

is slightly cumbersome, since no explicit formula for a subject’s likelihood contribution exists.

Therefore, one has to resort to numerical integration or expansion methods. Molenberghs and

Verbeke (2005) provide an overview. We also refer to Lee, Nelder, and Pawitan (2006) for details

on the computation using so-called h-likelihood methods. Most inferential approaches are based

on maximum likelihood, Bayesian methods, or a variation there upon.
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3.4 Correlation Between Two Observations Using the GLMM Framework

We will now derive a general formula for the correlation between two observations, within the

GLMM framework. In the spirit of (1), and with notation consistent with Section 3.3, we can

write the general model as:

Ypdt = µpdt + εpdt, (12)

where

µpdt = µpdt(ηpdt) = h(x′
pdtβ + z′

pdtbpdt). (13)

Model (13) allows for a variety of distributions for the outcome variable and a wide range of

link functions, while the modeler has the freedom to include or leave out serial correlation. To

calculate correlation Corr(Ypdt, Yp′d′t′), we first derive a general expression for the variance:

Var(Ypdt) = Var(µpdt + εpdt) = Var(µpdt) + Var(εpdt) + 2Cov(µpdt, εpdt). (14)

It is easy to show that

Cov(µpdt, εpdt) = Cov[E(µpdt|bpdt),E(εpdt|bpdt)] + E(Cov(µpdt, εpdt|bpdt)] = 0,

since the first term is zero and the second term equals E[E(µpdt −E(µpdt))(εpdt)|bpdt] = 0 as µpdt

is constant when conditioning on bpdt. For the first term in (14) we have:

Var(µpdt) = Var(µpdt(ηpdt)) = Var[µpdt(x
′
pdtβ + z′

pdtbpdt)]

∼=

(
∂µpdt

∂bpdt

∣∣∣∣
bpdt=0

)
Var(bpdt)

(
∂µpdt

∂bpdt

∣∣∣∣
bpdt=0

)′

∼=

(
∂µpdt

∂ηpdt

∂ηpdt

∂bpdt

∣∣∣∣
bpdt=0

)
D

(
∂µpdt

∂ηpdt

∂ηpdt

∂bpdt

∣∣∣∣
bpdt=0

)′

∼= ∆pdtz
′
pdtDzpdt∆

′
pdt. (15)

For the second term in (14), we have:

Var(εpdt) = Var[E(εpdt|bpdt)] + E[Var(εpdt|bpdt)] = E[Var(εpdt|bpdt)] =
(
Φ

1
2 ΣΦ

1
2

)
pdt
, (16)
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where Φ is a diagonal matrix with the overdispersion parameters along the diagonal. In case

there are no overdispersion parameters, Φ is set equal to the identity matrix. We can express the

variance function Σp so that

Var(εp) = Φ
1
2A

1
2
pRpA

1
2
p Φ

1
2 , (17)

where εp groups all error terms within subject p, Rp is the correlation matrix, and Ap is a diagonal

matrix containing the variances following from the generalized linear model specification of Ypdt

given the random effects bpdt = 0, i.e., with diagonal elements v(µpdt|bpdt = 0). If the canonical

link is used, we have Ap = ∆p and then (14) becomes

Var(Y p) ∼= ∆pZpDZ
′
p∆

′
p + Φ

1
2 ∆

1
2
p Rp∆

1
2
p Φ

1
2 . (18)

To determine Corr(Ypdt, Yp′d′t′), we still need to calculate Cov(Ypdt, Yp′d′t′). Similarly to the

above, we have that Cov(µpdt, εp′d′t′) = Cov(εpdt, µp′d′t′) = 0. Therefore, we only need to derive

Cov(µpdt, µp′d′t′):

Cov(Ypdt, Yp′d′t′) = Cov(µpdt, µp′d′t′)

= Cov[µpdt(x
′
pdtβ + z′

pdtbpdt), µp′d′t′(x
′
p′d′t′β + z′

p′d′t′bp′d′t′)]

∼=

(
∂µpdt

∂bpdt

∣∣∣∣
bpdt=0

)
Cov(bpdt, bp′d′t′)

(
∂µp′d′t′

∂bp′d′t′

∣∣∣∣
bp′d′t′=0

)′

∼=

(
∂µpdt

∂ηpdt

∂ηpdt

∂bpdt

∣∣∣∣
bpdt=0

)
Cov(bpdt, bp′d′t′)

(
∂µp′d′t′

∂ηp′d′t′

∂ηp′d′t′

∂bp′d′t′

∣∣∣∣
bp′d′t′=0

)′

∼= ∆pdtz
′
pdtCov(bpdt, bp′d′t′)zp′d′t′∆

′
p′d′t′ . (19)

The covariances Cov(bpdt, bp′d′t′) depend on which of the random effects are common when

correlating Ypdt and Yp′d′t′ . Using (18) and (19), we can calculate the correlation for any given

situation, any give GLMM. In the next section, we will specialize the correlation to the case of

binary data with random effects and without serial correlation.
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4 Data Analysis

Let us now apply the concepts of reliability and generalizability to the pooled data described in

Section 2. We will investigate the impact of ‘country’ on measurement error. First, we will assess

the overall reliability for CGI response, ignoring country effects. Subsequently, country effects will

be extracted by including country as a fixed effect into the model. Next, we will investigate the

impact of country on reliability through application of the same model to each country separately.

We will also study the impact of a single country on overall reliability by leave-on-out ideas, i.e.,

by omitting one country at a time. Finally, we will assess the overall impact of country via

generalizability theory.

4.1 Overall Reliability of CGI

First, we apply a simple random-intercept model, combined with fixed effects for treatment, time

and their intercation. With the logit link, (12) becomes:

Ypdt =
exp(µ+ bp + µd + µt + µdt)

1 + exp(µ+ bp + µd + µt + µdt)
+ εpdt, (20)

where µd, µt, and µdt denote the fixed effects for day, treatment, and their interaction, respec-

tively, and bp represents the random patient effect.

The overall correlation of observations within the same subject, on the same treatment, but

on different time points, and conditioning on treatment and time points, can be expressed as

Corr(Ypdt, Ypd′t | t, d, d′). In this model, we have Z = 1 and D = σ2
p, a scalar representing the

variance of the random intercept, and since (20) does not include serial correlation we have that

Rp = I. It is therefore easy to show that the variance covariance matrix (18) reduces to

Var(Yp) ∼= ∆p(σ
2
pJ)∆′

p + Φ∆p = ∆p(dJ + Φ∆−1
p )∆′

p,

where J is a rectangular matrix of ones. Furthermore, ∆p is a diagonal matrix with Vpdt(0)

as diagonal elements, where the variance function Vpdt(0) = µpdt

∣∣
bpdt=0

(1 − µpdt

∣∣
bpdt=0

), and
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therefore we have

Var(Ypdt) ∼= diag(Vpdt(0))[σ2
pJ + Φdiag(Vpdt(0))−1]diag(Vpdt(0)), (21)

Cov(Ypdt, Ypd′t) ∼= diag(Vpdt(0))[σ2
pJ ]diag(Vpd′t(0)). (22)

Based on (21) and (22), we can determine a first-order approximation of the marginal correlation

between time point d and d′, which is the intraclass correlation coefficient of reliability:

ρ = Corr(Ypdt, Ypd′t) =
σ2

T

√
Vpdt(0)Vpd′t(0)√

[Φpdt + Vpdt(0)σ2
N ] · [Φpd′t + Vpd′t(0)σ2

N ]
, (23)

where σ2
T represents the covariance between the random effects and σ2

N is the variance resulting

from the random effects. In this model, σ2
T = σ2

N = σ2
p since all other covariates are fixed effects.

The delta method can be usefully applied to estimate the standard error:

∂ρ

∂(β,λ)
=

(
∂(η,σ2)

∂(β,λ)

)(
∂(Vpdt(0), Vpd′t(0), σ2

T , σ
2
N , φ)

∂(η,σ2)

)
,

×
(

∂ρ

∂(Vpdt(0), Vpd′t(0), σ2
T , σ

2
N , φ)

)
.

Explicit expressions for the various components follow from straightforward linear algebra. The

SAS V9.1 procedure GLIMMIX was used to estimate Φ, σ2
p, and Vpdt. Table 1(a) summarizes the

results.

In case of continuous data, a single-measure overall intraclass correlation coefficient reliability

would have been obtained (Vangeneugden et al. 2005). Here, for the binary data case, a

separate intraclass coefficient of reliability is produced for each treatment group and each time

point. From Table 1(a), we observe that the correlation is somewhat higher in the risperidone

arm and that the correlation between week 1 and other time points is lower than the correlation

between any two other time points that do not involve week 1.

4.2 Overall Reliability of CGI Response Adjusting for Country

In Section 4.1, only treatment, time, and their interaction were included. Now, we will include

countries as fixed effects, which will result in intraclass coefficients of reliability per treatment,
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time point, and country combination. We will not present all coefficients but merely present the

coefficients for one country, the U.S.A., in Table 1(b). Additionally, we list the ICC of reliability

between weeks 6 and 8 in the risperidone group for all countries in Table 2. The results for the

U.S.A. are consistent with the overall results, and when we investigate the correlation between

weeks 6 and 8 in the risperidone group, we observe from column 3 in Table 2 that the ICC is

rather stable across countries, the lowest correlation begin for Austria (0.65, s.e. 0.09) and the

highest for the U.S.A., Sweden, and Spain (0.78, s.e. 0.02).

4.3 Overall Reliability of CGI by Country and Impact on Overall Reliability by Leaving

Out a Country

When we apply the model to each country separately, we observe that the model did not always

converge and estimates were less stable, especially and not surprisingly, in countries with few

patients. Patients included in Finland had data up to week 6 only (Hoyberg et al. 1993). The

results are summarized in the third column of Table 2. A different way to investigate impact of

country on reliability is by leaving out one country at a time. If the overall reliability increases, this

would provide evidence for a poor reliability in the specific country. The results are summarized

in the fifth column of Table 2. Note that the impact was low for all countries, again suggesting

that reliability is relatively consistent across countries.

4.4 Estimating Impact of Country From Generalizability Theory

Subgroup analysis by country as shown in the previous two sections can be enlightening. Now,

we want to quantify their effect on measurement error and calculate a generalizability coefficient,

thereby generalizing results across countries. We will add a random effect for country into the

previous model, so that we have a model with time, treatment, and their interaction as fixed

effects, and further country, indexed by c, and patient as random effects:

Ypdtc =
exp(µ+ bp + µd + µt + µdt + bc)

1 + exp(µ+ bp + µd + µt + µdt + bc)
+ εpdtc. (24)
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From (24) we can calculate the overall test-retest reliability coefficient as in Section 4.1, but this

time accounting for country as a random effect instead of extracting it as a random effect. Then,

σ2
T = σ2

N = σ2
p + σ2

c in (23). Table 1(c) shows that the results are consistent with the overall

reliability coefficients.

This test-retest reliability coefficient for any given country and time point follows directly from

analyzing the clinical trial, similar to generalizability coefficients that are computed after design

and analysis of a G-study. In the spirit of D-studies, we can also generalize across countries.

Indeed, although patients are nested within country in a clinical trial setting, we assume, by way

of a thought experiment, that patients could switch from one country to another, with the aim

to evaluate the impact of country. We then have that σ2
T = σ2

p and σ2
N = σ2

p + σ2
c , needed to

calculate Corr(Ypdtc, Ypd′tc′) as in (23). Table 1(d) provides the ensuing ICC coefficients.

Thus, generalizing across time points and countries, or taking account of impact of variance

of country, reduces the overall test-retest reliability approximately by 5%: for risperidone the

decrease in reliability amounted to between 4–7% and for active control this was between 3–6%.

In this situation, the price for setting up an international trial instead of a single country is rather

small. This insight is relevant and underscores the usefulness of the thought experiment.

Evidently, the methodology can easily be extended to more complex situations including, for

example, serial correlation or random time effects but also additional variables, such as, for

example, age and sex of the patient.

4.5 Estimating Impact of Baseline PANSS Negative Subtotal on Reliability of CGI

Response

In the computations reported above, a relatively high generalizability coefficient suggested that

country does not have an important impact on the test-retest reliability and on measurement

error. We now investigate the impact of baseline PANSS Negative subtotal on measurement

error. We included a random intercept for baseline PANSS Negative subtotal instead of country in
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model (24). Subsequently, we derived the variance components and calculated the generalizability

coefficient for baseline PANSS Negative subtotal, similar to how it was done for country. In this

analysis, the reduction in generalizability coefficient was more substantial: in the risperidone group

between week 6 and 8, we have that the ICC reduces from 0.55 (s.e. 0.13) to 0.39 (s.e. 0.13) when

generalizing across baseline negative subtotal. Full details are given in Table 1(e). This indicates

that baseline PANSS Negative subtotal reduces the test-retest reliability. A clinical explanation

for this phenomenon could be that patients with a higher deficit in negative symptoms at baseline,

such as poverty of speech, apathy, or emotional withdrawal, are more difficult to evaluate, resulting

in higher measurement error and lower test-retest reliability. A practical conclusion would be that

additional training is needed for professionals having to rate patients with a high baseline negative

subtotal or, even more invasive, in the recommendation to use a different scale in this type of

patients.

5 Concluding Remarks

In this paper, we have extended classical reliability measures and associated estimation procedures

in four important ways. First, fully longitudinal data can be used, rather than paired measure-

ments. Second, clinical trial data can be employed or, more generally data from other studies not

expressly designed for the investigation of reliability, through adopting a modeling framework, ob-

viating the need for parallel measurements. Third, the broad generalizability theory framework is

invoked, encompassing the various classical reliability versions, such as inter-rater and test-retest

reliability, and allowing for the study of such important factors’ impact as day of measurement,

rater, country, investigator, etc. Fourth, all calculations are conducted within the generalized

linear mixed model paradigm, allowing one not only to accommodate all aforementioned aspects,

but also to deal with Gaussian and non-Gaussian data alike. Specific emphasis was put on bi-

nary outcomes, but analogous computations for nominal, ordinal, or count data can be done as

well. Unlike in the Gaussian case, the reliability and generalizability coefficients depend on the

days, raters, countries, or whatever levels studied. This is due to the mean-variance link and the
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nonlinear nature of the model.

The work was motivated by and applied to data from multi-country trial data collected in patients

with chronic schizophrenia. Using the generalizability framework, we were able to establish that

the reliability measures are rather stable across countries, and no single country as an undue

effect on the overall reliability. Country-specific reliabilities varied in a usefully narrow range.

An important conclusion, never reached before, is that the price to pay for a multi-country study,

rather than a single-country one, is a mere 5% in test-retest reliability. The ability to conduct

multi-country studies is important in view of the availability of a larger pool of available patients,

thereby reducing the length of the accrual period and/or increasing the sample size, and hence

power.
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Table 1: ICC matrices (standard error), accounting for treatment, time and their interaction.

Standard errors are calculated from the delta method. Five different situations are reported.

risperidone active control

Week 2 3 6 8 2 4 6 8

(a) Overall

1 .52(.04) .55(.04) .55(.04) .55(.04) .42(.04) .47(.04) .50(.04) .50(.04)

2 1 .74(.02) .74(.02) .74(.02) 1 .61(.04) .65(.03) .66(.03)

4 1 .78(.02) .78(.02) 1 .72(.03) .73(.02)

6 1 .79(.01) 1 .78(.02)

(b) By country: U.S.A.

1 .52(.06) .54(.06) .54(.05) .54(.05) .38(.07) .42(.07) .46(.06) .46(.06)

2 1 .73(.03) .74(.03) .74(.02) 1 .57(.06) .62(.05) .63(.05)

4 1 .77(.02) .77(.02) 1 .69(.04) .70(.04)

6 1 .78(.02) 1 .76(.02)

(c) Country as random effect: U.S.A.

1 .53(.05) .55(.05) .56(.05) .56(.05) .40(.06) .45(.06) .48(.05) .48(.05)

2 1 .74(.03) .75(.02) .75(.02) 1 .59(.05) .64(.04) .65(.04)

4 1 .78(.02) .78(.02) 1 .71(.03) .72(.03)

6 1 .79(.02) 1 .77(.02)

(d) Generalized across countries: U.S.A.

1 .49(.05) .51(.05) .51(.05) .51(.04) .37(.05) .41(.05) .44(.05) .45(.05)

2 1 .68(.03) .69(.03) .69(.03) 1 .55(.05) .59(.04) .60(.04)

4 1 .72(.03) .72(.03) 1 .65(.04) .66(.03)

6 1 .72(.03) 1 .71(.03)

(e) Generalized across baseline negative symptoms

1 .37(.13) .38(.13) .39(.13) .39(.13) .29(.10) .32(.11) .35(.12) .35(.12)

2 1 .51(.18) .52(.18) .52(.18) 1 .43(.15) .46(.16) .46(.16)

4 1 .54(.18) .54(.18) 1 .50(.17) .51(.17)

6 1 .55(.19) 1 .54(.18)
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Table 2: Reliability by country and impact of country on overall reliability table. ICC ρ (standard

error) between Week 6 and 8 in risperidone, with (1) country as fixed effect, (2) country-specific

analyzes, and (3) a given country omitted. (NA: not available by lack of data.)

Number of Country as By Omitting a

Country patients fixed effect country given country

Argentina 31 0.76 (0.04) NA 0.78 (0.02)

Austria 29 0.65 (0.09) 0.02 (0.04) 0.78 (0.01)

Belgium 26 0.76 (0.04) NA 0.78 (0.01)

Brazil 44 0.73 (0.05) 0.54 (0.14) 0.79 (0.01)

Canada 44 0.77 (0.02) 0.76 (0.10) 0.79 (0.01)

Denmark 47 0.77 (0.02) 0.65 (0.09) 0.80 (0.01)

Spain 32 0.78 (0.02) 0.88 (0.07) 0.79 (0.01)

Finland 71 0.66 (0.07) NA 0.79 (0.01)

France 92 0.77 (0.02) 0.40 (0.11) 0.81 (0.01)

Great Britain 21 0.77 (0.03) 0.91 (0.05) 0.78 (0.01)

Germany 25 0.73 (0.06) NA 0.78 (0.01)

Italy 39 0.70 (0.07) NA 0.77 (0.02)

Mexico 36 0.76 (0.03) 0.92 (0.06) 0.78 (0.02)

Netherlands 17 0.74 (0.06) 0.71 (0.37) 0.78 (0.01)

Norway 37 0.71 (0.06) 0.91 (0.04) 0.78 (0.01)

South Africa 79 0.71 (0.05) 0.80 (0.09) 0.78 (0.02)

Sweden 30 0.78 (0.02) 0.94 (0.03) 0.78 (0.01)

U.S.A. 122 0.78 (0.02) 0.75 (0.04) 0.79 (0.02)
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