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Abstract

Over the last decade a variety of models to analyze incomplete multivariate and lon-
gitudinal data have been proposed, many of which allowing for the missingness to be not
at random (MNAR), in the sense that the unobserved measurements influence the process
governing missingness, in addition to influences coming from observed measurements and/or
covariates. The fundamental problems implied by such models, to which we refer as sen-
sitivity to unverifiable modelling assumptions, has, in turn, sparked off various strands of
research in what is now termed sensitivity analysis. The nature of sensitivity originates from
the fact that an MNAR model is not fully verifiable from the data, rendering the empiri-
cal distinction between MNAR and random missingness (MAR), where only covariates and
observed outcomes influence missingness, hard or even impossible, unless one is prepared to
accept the posited MNAR model in an unquestioning way. In this paper, we show that the
empirical distinction between MAR and MNAR is not possible, in the sense that each MNAR
model fit to a set of observed data can be reproduced exactly by an MAR counterpart. Of
course, such a pair of models will produce different predictions of the unobserved outcomes,
given the observed ones. Theoretical considerations are supplemented with an illustration
based on the Slovenian Public Opinion survey, analyzed before in the context of sensitivity
analysis.

Some Key Words: Contingency table; Ignorability; Missing completely at random; Pattern-
mixture model; Selection model; Shared parameter model.

1 Introduction

Incomplete sets of data are common throughout all branches of empirical research. Incomplete
data have always posed problems of imbalance in the data matrix, but more importantly in-
completeness often destroys a trial’s randomization justification or a survey’s representativeness.
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The extent to which this happens depends on the nature of the missing data mechanism. Ru-
bin (1976) distinguished between missing complete at random (MCAR), where the outcomes
are independent of the mechanism governing missingness, missing at random (MAR), where
there is dependence between both, but only in the sense that missingness may depend on the
observed, but not further on the unobserved measurements. Finally, when a missing not at ran-
dom (MNAR) mechanism operates, missingness depends on the unobserved outcomes, perhaps
in addition to the observed ones.

Traditionally, such simple methods as a complete case analysis or simple forms of imputation
(e.g., last observation carried forward) have been in use. While they have the advantage of
restoring balance and/or a rectangular data matrix, it is sufficiently documented that such
analyses are prone to severe bias and/or losses of efficiency (Molenberghs et al, 2004; Jansen et
al, 2006) and should be avoided. Since a likelihood-based or Bayesian analysis is valid when the
missing data mechanism is MAR, as long as all observed data are included into the analysis, the
so-called ignorability property, so-called direct likelihood analyses, their Bayesian counterparts,
or multiple imputation (Rubin, 1987), are regarded by many as candidates for the primary
analyses of a study. When semi-parametric inferences are desired, the methods proposed by
Robins et al (1995) can be applied.

However, one can never exclude the possibility that MNAR models may be operating. Even
though a variety of statistical models have been proposed for the MNAR situation (Diggle, and
Kenward, 1994; Baker, 1995; Molenberghs et al, 1997; Troxel et al, 1998), and in spite of the
dramatically increased computational power, such models are prone to considerable sensitivity.
This was made clear by a variety of discussants to Diggle, and Kenward (1994), such as Laird
(1994), Little (1994b), and Rubin (1994). Several authors have laid bare such sensitivities and
proposed methods for informal and formal sensitivity analysis (Kenward, 1998; Robins et al,
1998; Molenberghs et al, 2001; Van Steen et al, 2001; Verbeke et al, 2001; Thijs et al, 2002; Jansen
et al, 2003). Overviews are provided in Verbeke, and Molenberghs (2000) and Molenberghs, and
Verbeke (2005).

One view is that testing the MAR null hypothesis against an MNAR alternative is of a conven-
tional nature. While indeed Diggle, and Kenward (1994) have conducted such tests, it is very
important to realize that they are conditional upon the alternative model holding.

The contribution of this paper is to show that, strictly speaking, the correctness of the alternative
model can only be verified in as far as it fits the observed data. Thus, evidence for or against
MNAR can only be provided within a particular, predefined parametric family, the plausibility of
which cannot be verified in empirical terms alone. We show that an overall (omnibus) assessment
of MAR versus MNAR is not possible, since every MNAR model can be doubled up with a
uniquely defined MAR counterpart, producing exactly the same fit as the original MNAR model,
in the sense that it produces exactly the same predictions to the observed data (e.g., fitted counts
in an incomplete contingency table) as the original MNAR model, and depending on exactly the
same parameter vector. We show that, while this so-called MAR bodyguard generally does not
belong to a conventional parametric family, its existence has important ramifications.

The rest of the paper is organized as follows. In Section 2 we outline the necessary concepts,
terminology, and notation. Section 3 provides the general result and sketches the proof. In
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Section 4 the specific case of incomplete contingency tables is studied. In Section 5 we apply the
ideas developed to data from the Slovenian Public Opinion Survey, analyzed before by Rubin et
al (1995) and Molenberghs et al (2001).

2 Notation and Concepts

Let the random variable Yij denote the response of interest, for the ith study subject, designed
to be measured at occasions tij, i = 1, . . . , N , j = 1, . . . , ni. Independence across subjects is
assumed. This setting covers both the longitudinal as well as the multivariate settings. In the
latter case, tij = tj would merely be indicators for the various variables studied, and typically
ni ≡ n. The outcomes can conveniently be grouped into a vector Y i = (Yi1, . . . , Yini)

′. In
addition, define a vector of missingness indicators Ri = (Ri1, . . . , Rini)

′ with Rij = 1 if Yij is
observed and 0 otherwise. In the specific case of dropout, Ri can usefully be replaced by the
dropout indicator

Di =
ni∑

j=1

Rij.

Note that the concept of dropout refers to time-ordered variables, such as in longitudinal studies.
For a complete sequence, Ri = 1 and/or Di = ni. It is customary to split the vector Y i into
observed (Y o

i ) and missing (Y m
i ) components, respectively.

In principle, one would like to consider the density of the full data f(yi, ri|θ,ψ), where the
parameter vectors θ and ψ describe the measurement and missingness processes, respectively.
Covariates are assumed to be measured and grouped in a vector xi.

This full density function can be factorized in different ways, each leading to a different frame-
work. The selection model (SeM) framework is based on the following factorization (Rubin,
1976; Little, and Rubin, 2002):

f(yi, ri|xi,θ,ψ) = f(yi|xi,θ)f(ri|xi,yi,ψ). (1)

The first factor is the marginal density of the measurement process and the second one is
the density of the missingness process, conditional on the outcomes. As an alternative, one
can consider so-called pattern-mixture models (PMM; Little (1993, 1994a)) using the reversed
factorization

f(yi, ri|xi,θ,ψ) = f(yi|xi, ri,θ)f(xi, ri|ψ).

This can be seen as a mixture density over different populations, each of which defined by the
observed pattern of missingness.

Instead of using the selection modelling or pattern-mixture modelling frameworks, the measure-
ment and the dropout process can be jointly modelled using a shared-parameter model (Wu, and
Carroll, 1988; Wu, and Bailey, 1988, 1989; TenHave et al, 1998; Follmann, and Wu, 1995; Little,
1995). One then assumes there exists a vector of random effects bi, conditional upon which the
measurement and dropout processes are independent. This shared-parameter model (SPM) is
formulated by way of the following factorization

f(yi, ri|xi, bi,θ,ψ) = f(yi|xi, bi,θ)f(ri|xi, bi,ψ). (2)



4

Here, bi are shared parameters, often considered to be random effects and following a specific
parametric distribution.

The taxonomy of missing data mechanisms, introduced by Rubin (1976) and informally described
in the introduction, can easily be formalized using the second factor on the right hand side of
selection-model factorization (1). A mechanism is MCAR if

f(ri|xi,yi,ψ) = f(ri|xi,ψ), (3)

i.e., when the measurement and missingness processes are independent, perhaps conditional on
covariates. For a given set of data, MAR holds when

f(ri|xi,yi,ψ) = f(ri|xi,y
o
i ,ψ), (4)

strictly weaker than the MCAR condition, but still a simplification of the MNAR case, where
missingness depends on the unobserved outcomes ym

i , regardless of the observed outcomes and
the covariates.

Note that MCAR is equally trivial in the pattern-mixture model framework, where ri does not
influence the mixture components, and in the shared-parameter model framework, where no
random-effects are shared between the two factors in (2).

A final useful concept we need is ignorability. Note that the contribution to the likelihood of
subject i, based on (1), equals

Li =
∫

f(yi|xi,θ)f(ri|xi,y
o
i ,y

m
i ,ψ) dym

i . (5)

In general, (5) does not simplify, but under MAR, we obtain:

Li = f(yo
i |xi,θ)f(ri|xi,y

o
i ,ψ). (6)

Hence, likelihood and Bayesian inferences for the measurement model parameters θ can be
made without explicitly formulating the missing data mechanism, provided the parameters θ
and ψ are distinct, meaning that their joint parameter space is the Cartesian product of the two
component parameter spaces (Rubin, 1976). For Bayesian inferences, further the priors need to
be independent (Little, and Rubin, 2002).

It is precisely this result which makes so-called direct likelihood analyses, valid under MAR,
viable candidates for the status of primary analysis in clinical trials and a variety of other settings
(Molenberghs et al, 2004). Since we will be concerned with expressions for MAR counterparts
to MNAR models, we will explicitly describe the missing data mechanism. This implies we
typically will not invoke the ignorability property.

3 General Result

In this section, we will show that for every MNAR model fitted to a set of data, there is an
MAR counterpart providing exactly the same fit to the data. Here, the concept of model fit
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should be understood as measured using such conventional methods as deviance measures and,
of course, in as far as the observed data are concerned. The following steps are involved: (1)
fitting an MNAR model to the data; (2) reformulating the fitted model in PMM form; (3)
replacing the density or distribution of the unobserved measurements given the observed ones
and given a particular response pattern by its MAR counterpart; (4) establishing that such an
MAR counterpart uniquely exists. Throughout this section, we will suppress covariates xi from
notation, but assume them to be present.

In the first step, we fit an MNAR model to the observed set of data. The observed data likelihood
is:

L =
∏

i

∫
f(yi

o,yi
m, ri|θ,ψ)dyi

m. (7)

Upon denoting the obtained parameter estimates, e.g., obtained by likelihood-based or Bayesian
methods, by θ̂ and ψ̂ respectively, the fit to the hypothetical full data is

f(yi
o,yi

m, ri|θ̂, ψ̂) = f(yi
o,yi

m|θ̂)f(ri|yi
o,yi

m, ψ̂). (8)

To undertake the second step, full density (8) can be re-expressed in PMM form as:

f(yi
o,yi

m|ri, θ̂, ψ̂)f(ri|θ̂, ψ̂) = f(yi
o|ri, θ̂, ψ̂)f(ri|θ̂, ψ̂)f(yi

m|yi
o, ri, θ̂, ψ̂). (9)

A similar reformulation can be considered for an SPM. In a PMM, the model will have been
expressed in this form to begin with.

Note that, in line with PMM theory, the final term on the right hand side of (9), f(yi
m|yi

o, di, θ̂, ψ̂),
is not identified from the observed data. In this case, it is determined solely from modelling
assumptions. Within the PMM framework, identifying restrictions have to be considered (Little,
1994a; Molenberghs et al, 1998; Kenward et al, 2003).

The third step requires replacing this factor by the appropriate MAR counterpart. To this end,
we need the following lemma, formulating MAR equivalently within the PMM framework.

Lemma 1 In the PMM framework, the missing data mechanism is MAR if and only if

f(ym
i |yo

i , ri,θ) = f(ym
i |yo

i ,θ).

This means that, in a given pattern, the conditional distribution of the unobserved components
given the observed ones equals the corresponding distribution marginalized over the patterns.
The proof, which is rather straightforward and similar to what can be found in Molenberghs et
al (1998), is deferred to the appendix. Note that, owing to this result, MAR can be formulated
in terms of R given Y , but also in terms of Y given R.

Using Lemma 1, it is clear that f(yi
m|yi

o, ri, θ̂, ψ̂) needs to be replaced with

h(yi
m|yi

o, ri) = h(yi
m|yi

o) = f(yi
m|yi

o, θ̂, ψ̂), (10)

where the h(·) notation is used for shorthand purposes. Note that the density in (10) follows
from the SeM-type marginal density of the complete data vector. Sometimes, therefore, it may
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be more convenient to replace the notation yi
o and yi

m by one that explicitly indicates which
components are observed and missing in pattern ri under consideration:

h(yi
m|yi

o, ri) = h(yi
m|yi

o) = f [(yij)rj=0|(yij)rj=1, θ̂, ψ̂]. (11)

Thus, (11) provides a unique way of extending the model fit to the observed data, belonging
to the MAR family. As stated before, the above construction does not lead to a member of a
conventional parametric family. While this obviously implies limitations on its use, such is not
dissimilar to the construction of some semi- and non-parametric estimators. Also, it helps to
understand that an overall, definitive conclusion about the nature of the missing data mechanism
is not possible, even though one can make progress if attention is confined to a given parametric
family, in which one puts sufficiently strong prior belief. To show formally that the fit remains
the same, we consider the observed-data likelihood based on (7) and (9):

L̂ =
∏

i

∫
f(yi

o,yi
m|θ̂)f(ri|yi

o,yi
m, ψ̂)dyi

m

=
∏

i

∫
f(yi

o|ri, θ̂, ψ̂)f(ri|θ̂, ψ̂)f(yi
m|yi

o, ri, θ̂, ψ̂)dyi
m

=
∏

i

f(yi
o|ri, θ̂, ψ̂)f(ri|θ̂, ψ̂)

=
∏

i

∫
f(yi

o|ri, θ̂, ψ̂)f(ri|θ̂, ψ̂)h(yi
m|yi

o)dyi
m.

The above results justify the following theorem:

Theorem 1 Every fit to the observed data, obtained from fitting an MNAR model to a set of
incomplete data, is exactly reproducible from an MAR decomposition.

The key computational consequence is the need to compute h(yi
m|yi

o) in (10) or (11). This
means, for each pattern, the conditional density of the unobserved measurements given the
observed ones needs to be extracted from the marginal distribution of the complete set of
measurements. Molenberghs et al (1998) have shown that, for the case of dropout, the so-called
available case missing value restrictions (ACMV) provide a practical computational scheme.
Precisely, ACMV states that

∀t ≥ 2,∀s < t : f(yit|yi1, · · · , yi,t−1, di = s) = f(yit|yi1, · · · , yi,t−1, di ≥ t). (12)

In other words, the density of a missing measurement, conditional on the measurement history, is
determined from the corresponding density over all patterns for which all of these measurements
are observed. For example, the density of the third measurement in a sequence, given the first
and second ones, in patterns with only 1 or 2 measurements taken, is determined from the
corresponding density over all patterns with 3 or more measurements. Thijs et al (2002) and
Verbeke, and Molenberghs (2000)(p. 347) derived a practical computational method for the
factors in (12):

f(yit|yi1, · · · , yi,t−1, di = s) =
∑n

d=s αdfd(yi1, . . . , yis)∑n
d=s αdfd(yi1, . . . , yi,s−1)

(13)

=
n∑

d=s

(
αdfd(yi1, . . . , yi,s−1)∑ni

d=s αdfd(yi1, . . . , yi,s−1)

)
fd(ys|yi1, . . . , yi,s−1). (14)
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Here, αd is the probability to belong to pattern d.

The above identifications for the monotone case are useful in case an MNAR pattern-mixture
model has been fitted to begin with, since then the identifications under MAR can be calculated
from the pattern-specific marginal distributions. When a selection model has been fitted in
the initial step, f(yi1, . . . , yini |θ̂) has been estimated, from which all conditional distributions,
needed in (11), can be derived. When the initial model is an MNAR PMM model and the
missing data patterns are non-monotone, then it is necessary to first rewrite the PMM in SeM
form, and derive the required conditional distributions from the so-obtained SeM measurement
model. This essentially comes down to calculating a weighted average of the pattern-specific
measurement models. In some cases, such as for contingency tables, this step can be done in an
alternative way by fitting a saturated MAR selection model to the fit obtained from the PMM
model.

We will illustrate and contrast the monotone and non-monotone cases using a bivariate and
trivariate outcome with dropout on the one hand and a bivariate non-monotone outcome on the
other hand. While the theorem applies to both the monotone and non-monotone settings, it is
insightful to see that only for the former relatively simple and intuitively appealing expressions
arise, while the latter setting involves the need for iterative computation. In the next section,
the aforementioned general contingency table setting to which a PMM has been fitted, will be
studied.

3.1 A Bivariate Outcome With Dropout

Here and in the following examples, we will present and equate the SeM and PMM decom-
positions, enabling us to derive expressions for the MAR bodyguards. It is interesting and
straightforward to derive results for the MCAR case, and hence these will be presented, too.

Dropping covariates, parameters, and the subject index i from notation, the SeM-PMM equiv-
alence for the case of two outcomes, the first of which is always observed but the second one
partially missing, is given by:

f(y1, y2)g̃(d = 2|y1, y2) = f2(y1, y2)α̃(d = 2),
f(y1, y2)g̃(d = 1|y1, y2) = f1(y1, y2)α̃(d = 1).

Note that this is the setting considering by Glynn et al (1986). Here, g̃(·) is used for the SeM
dropout model, with α̃(·) denoting the PMM probabilities to belong to one of the patterns.
Since α̃(d = 1) + α̃(d = 2) = 1 and a similar result holds for the g̃(·) functions, it is convenient
to write:

f(y1, y2)g(y1, y2) = f2(y1, y2)α (15)
f(y1, y2)[1 − g(y1, y2)] = f1(y1, y2)[1 − α]. (16)

Assuming MCAR, it is clear that α = g(y1, y2), producing, without any difficulty:

f(y1, y2) = f2(y1, y2) = f1(y1, y2). (17)
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Under MAR, y2 has to be removed from g(·) for incomplete observations, but since we assume a
single parametric function for the missingness model, it follows that g(y1, y2) = g(y1) and hence
(15) produces

f(y1)f(y2|y1)g(y1) = f2(y1)f2(y2|y1)α.

Upon reordering, we find:
f(y1)g(y1)
f2(y1)α

=
f2(y2|y1)
f(y2|y1)

. (18)

The same arguments can be applied to (16), from which we derive:

f(y2|y1) = f2(y2|y1) = f1(y2|y1). (19)

Note that (19) is strictly weaker than (17). The last term in (19) is not identified by itself, and
hence, we see it needs to be set equal to its counterpart from the completers which, in turn, is
equal to the marginal distribution. This is in agreement with (11) as well as with the specific
identifications applicable in the monotone and hence ACMV setting.

3.2 A Trivariate Outcome With Dropout

Note that identification (19) does not involve mixtures. This changes as soon as there are three
or more outcomes. The equations corresponding to (15)–(16), specialized to the MAR case, are:

f(y1, y2, y3)g0 = f0(y1, y2, y3)α0, (20)
f(y1, y2, y3)g1(y1) = f1(y1, y2, y3)α1, (21)

f(y1, y2, y3)g2(y1, y2) = f2(y1, y2, y3)α2, (22)
f(y1, y2, y3)g3(y1, y2) = f3(y1, y2, y3)α3. (23)

We have chosen to include pattern 0, the one without follow-up measurements, as well, and will
return to this one. We could write g3(·) as a function of y3 as well, but because the sum of the
gd(·) equals one, it is clear that g3(·) ought to be independent of y3. With arguments similar to
the ones developed in the case of two measurements, we can rewrite (23) as:

f(y1, y2)
f3(y1, y2)

· g3(y1, y2)
α3

=
f3(y3|y1, y2)
f(y3|y1, y2)

.

Exactly the same consideration can be made based on (22), and hence

f3(y3|y1, y2) = f(y3|y1, y2) = f2(y3|y1, y2). (24)

The first factor identifies the second one, and hence also the third one. Starting from (21), we
obtain:

f1(y2, y3|y1) = f(y2, y3|y1),

which produces, in fact, two separate identities:

f1(y2|y1) = f(y2|y1), (25)
f1(y3|y1, y2) = f(y3|y1, y2) = f3(y3|y1, y2) = f2(y3|y1, y2). (26)
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For the latter one, identity (24) has been used as well. The density f(y2|y1), needed in (25), is
determined from the general ACMV result (14):

f(y2|y1) =
α2f2(y2|y1) + α3f3(y2|y1)

α2 + α3
.

Finally, turning attention to (20), it is clear that g0 = α0 and hence also f0(y1, y2, y3) =
f(y1, y2, y3). From the latter density, only f(y1) has not been determined yet, but this one
follows again very easily from the general ACMV result:

f(y1) =
α1f1(y1) + α2f2(y1) + α3f3(y1)

α1 + α2 + α3
.

In summary, the necessary MAR identifications easily follow from both the PMM and the SeM
formulations of the model.

3.3 A Bivariate Outcome With Non-Monotone Missingness

The counterparts to (15)–(16) and (20)–(23) for a bivariate outcome with non-monotone miss-
ingness are

f(y1, y2)g00(y1, y2) = f00(y1, y2)α00, (27)
f(y1, y2)g10(y1, y2) = f10(y1, y2)α10, (28)
f(y1, y2)g01(y1, y2) = f01(y1, y2)α01, (29)
f(y1, y2)g11(y1, y2) = f11(y1, y2)α11. (30)

Clearly, under MCAR, the gr1r2(·) functions do not depend on the outcomes and hence fr1r2(y1, y2) =
f(y1, y2) for all four patterns. For the MAR case, (27)–(30) simplify to

f(y1, y2)g00 = f00(y1, y2)α00, (31)
f(y1, y2)g10(y1) = f10(y1, y2)α10, (32)
f(y1, y2)g01(y2) = f01(y1, y2)α01, (33)

f(y1, y2)g11(y1, y2) = f11(y1, y2)α11. (34)

Observe there are four identifications across the gr1r2(y1, y2) functions:

g00 + g10(y1) + g01(y2) + g11(y1, y2) = 1,

for each (y1, y2). Also
∑

r1,r2
αr1,r2 = 1. Applying the usual algebra to (31)–(34), we obtain

three identifications for the unobservable densities:

f00(y1, y2) = f(y1, y2), (35)
f10(y1|y2) = f(y1|y2), (36)
f01(y2|y1) = f(y2|y1). (37)

Using these in conjunction with the identifiable parts of the distributions yields the MAR body-
guard.
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4 The General Case of Incomplete Contingency Tables

In Sections 3.1–3.3 we have derived general identification schemes for an MAR extension of a
fitted model to a binary or trivariate outcome with dropout, as well as to a bivariate outcome
with non-monotone missingness. Whereas the monotone cases provide explicit expressions in
terms of the pattern-specific densities, (35)–(37) provide an identification only in terms of the
marginal probability. This in itself is not a problem, since the marginal density is always
available, either directly when a SeM is fitted, or through marginalization when a PMM or an
SPM is fitted.

In the specific case of contingency tables, further progress can be made. Indeed, we can show
a saturated MAR model is always available, for any incomplete contingency table setting. This
implies one can start from the fit of an MNAR model to the observed data, and then extend it,
using this result, towards MAR. We will present the general result and then discuss its precise
implications for practice.

Assume we have a
∏n

k=1 ck contingency table with supplemental margins, where k indexes the
n dimensions in the table and ck is the number of alternatives the kth categorical variable can
take. The table of completers is indexed by r = 1 = (1, . . . , 1). A particular incomplete table is
indexed by a r 6= 1. The full set of tables can but does not have to be present. The number of
cells is:

#cells =
∑

r

n∏

k=1

crk
k . (38)

Denote the measurement model probabilities by pj = pj1...jn for jk = 1, . . . ck and k = 1, . . . , n.
Clearly, these probabilities sum to one. The missingness probabilities, assuming MAR, are:

p(r|j) =





p(r|jk with rk = 1) if r 6= 1,

1 −
∑
r 6=1 p(r|j) if r = 1.

(39)

Summing over r implies summing over those patterns for which actual observations are available.
The number of parameters in the saturated model is

#parameters =

(
n∏

k=1

ck − 1

)
+

∑

r 6=1

n∏

k=1

crk
k . (40)

The first term in (40) is for the measurement model, the second one is for the missingness model.
Clearly, the number of parameters equals one less than the number of cells, establishing the claim.
The situation where covariates are present is covered automatically, merely by considering one
extra dimension in the contigency table, j = 0 say, with c0 referring to the total number of
covariate levels in the set of data.

We will now study the implications for the simple but important settings studied in Sections 3.1
and 3.3.
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4.1 A Bivariate Contingency Table With Dropout

In Section 3.1 identifications have been derived for the bivariate case with monotone missingness.
For contingency tables, these can be derived as well by further fitting the saturated MAR model,
described in the previous section, to the fit obtained from the original MNAR model. Denote
the counts obtained from the fit of the original model by z2,jk and z1,j, for the completers and
dropouts, respectively. Denote the measurement model probabilities by pjk and the dropout
probabilities by qj. Then, due to ignorability, the likelihood factors into two components:

`1 =
∑

j,k

z2,jk ln pjk +
∑

j

z1,j ln pj+ − λ


∑

j,k

pjk − 1


 , (41)

`2 =
∑

j,k

z2,jk ln qj +
∑

j

z1,j ln(1 − qj). (42)

We have used an undetermined Lagrange multiplier λ to incorporate the sum constraint on the
marginal probabilities. Solving the score equations for (41) and (42) produces, with simple and
well-known algebra:

p̂jk =
1
n

z2,jk

(
z2,j+ + z1,j

z2,j+

)
, (43)

q̂j =
z2,j+

z2,j+ + z1,j
, (44)

where n is the total sample size. Combining parameter estimates leads to the new, MAR-based,
fitted counts:

ẑ2,jk = np̂jkq̂j = z2,jk, (45)

ẑ1,jk = np̂jk(1 − q̂j) = z1,j
z2,jk

z2,j+
, (46)

ẑ1,j+ = z1,j+. (47)

From (45) and (47) it is clear that the fit in terms of the observed data has not changed. The
expansion of the incomplete data into a complete one is described by (46). Equations (45) and
(46) can be used to produce the MAR counterpart to the original model, without any additional
calculations. This is not so simple for the non-monotone case, as we will show next.

4.2 A Bivariate Contingency Table With Non-Monotone Missingness

The counterparts to (41)–(42) for this case are:

`1 =
∑

j,k

z11,jk ln pjk +
∑

j

z10,j ln pj+ +
∑

k

z01,k ln p+k + z00 ln p++ − λ


∑

j,k

pjk − 1


 , (48)

`2 =
∑

j,k

z11,jk ln(1 − q10,j − q01,k − q00) +
∑

j

z10,j ln q10,j +
∑

k

z01,k ln q01,k + z00 ln g00. (49)
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Notation has been modified in accordance with the design. The q quantities correspond to the
g(·) model in Section 3.3.

While p++ = 1 and hence z00 does not contribute information to the measurement probabilities,
it does add to the estimation of the missingness model.

Deriving the score equations from (48) and (49) is straightforward but, unlike in the previous
section, no closed form exists. Chen, and Fienberg (1974) derived an iterative scheme for the
probabilities pjk, based on setting the expected sufficient statistics equal to their complete-data
counterparts:

npjk = z11,jk + z10,j
pjk

pj+
+ z01,k

pjk

p+k
+ z00

pjk

p++
,

(with p++ = 1) and hence

(n − z00)pjk = z11,jk + z10,j
pjk

pj+
+ z01,k

pjk

p+k
. (50)

The same equation is obtained from the first derivative of (48). Chen and Fienberg’s iterative
scheme results from initiating the process with a set of starting values for the pjk, e.g., from the
completers, and then evaluating the right hand side of (50). Equating it to the left hand side
provides an update for the parameters. The process is repeated until convergence.

While there are no closed-form counterparts to (43) and (44), the expressions equivalent to
(45)–(47) are

̂z11,jk = z11,jk, (51)

̂z10,jk = z10,j
pjk

pj+
, (52)

̂z01,jk = z01,k
pjk

p+k
, (53)

̂z00,jk = z00pjk. (54)

However, there is an important difference between (45)–(47) on the one hand and (51)–(54)
on the other hand. In the monotone case, the expressions on the right hand side are in terms
of the counts z only, whereas here the marginal probabilities pjk intervene, which have to be
determined from a numerical fit.

The practical use of the results in this section are illustrated next on data from the Slovenian
Public Opinion Survey.

5 The Slovenian Public Opinion Survey

In 1991 Slovenians voted for independence from former Yugoslavia in a plebiscite. To prepare
for this result, the Slovenian government collected data in the Slovenian Public Opinion Survey
(SPO), a month prior to the plebiscite. Rubin et al (1995) studied the three fundamental
questions added to the SPO and, in comparing it to the plebiscite’s outcome, drew conclusions
about the missing data process.
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Table 1: Data from the Slovenian Public Opinion Survey. The Don’t Know category is indicated
by ∗.

Independence
Secession Attendance Yes No ∗
Yes Yes 1191 8 21

No 8 0 4
∗ 107 3 9

No Yes 158 68 29
No 7 14 3
∗ 18 43 31

∗ Yes 90 2 109
No 1 2 25
∗ 19 8 96

The three questions added were: (1) Are you in favour of Slovenian independence? (2) Are you
in favour of Slovenia’s secession from Yugoslavia? (3) Will you attend the plebiscite? In spite
of their apparent equivalence, questions (1) and (2) are different since independence would have
been possible in confederal form as well and therefore the secession question is added. Question
(3) is highly relevant since the political decision was taken that not attending was treated as
an effective NO to question (1). Thus, the primary estimand is the proportion θ of people that
will be considered as voting YES, which is the fraction of people answering yes to both the
attendance and independence question. The raw data are presented in Table 1. We will return
to this question in Section 5.2.

Molenberghs et al (2001) reanalyzed these data and used them as motivation to introduce
their so-called intervals of ignorance, a formal way of incorporating uncertainty stemming from
incompleteness into the analysis of incomplete contingency tables. To this end, they used the
convenient model family proposed by Baker et al (1992). We will now introduce the model
family.

5.1 The BRD Models

Baker et al (1992) proposed a log-linear based family of models for the four-way classification
of both outcomes, together with their respective missingness indicators: ν10,jk = ν11,jkβjk,
ν01,jk = ν11,jkαjk, and ν00,jk = ν11,jkαjkβjkγ, with

αjk =
φ01|jk
φ11|jk

, βjk =
φ10|jk
φ11|jk

, γ =
φ11|jkφ00|jk
φ10|jkφ01|jk

.

Furthermore νr1r2,jk is the model for the four cells, indexed by j and k, in pattern (r1, r2), where
(r1, r2) = (1, 1) corresponds to completers, etc.
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The α (β) parameters describe missingness in the independence (attendance) question, and γ
captures the interaction between both. The subscripts are missing from γ since Baker et al
(1992) have shown that this quantity is independent of j and k in every identifiable model.
These authors considered nine models, based on setting αjk and βjk constant in one or more
indices, and enumerated using the ‘BRD’ abbreviation:

BRD1 : (α, β) BRD4 : (α, βk) BRD7 : (αk, βk)
BRD2 : (α, βj) BRD5 : (αj , β) BRD8 : (αj , βk)
BRD3 : (αk, β) BRD6 : (αj , βj) BRD9 : (αk, βj).

Interpretation is straightforward, for example, BRD1 is MCAR, and in BRD4 missingness in
the first variable is constant, while missingness in the second variable depends on its value.
BRD6–BRD9 saturate the observed data degrees of freedom, while the lower numbered ones
leave room for a non-trivial model fit to the observed data.

5.2 Analysis of the Slovenian Public Opinion Data

The ideas developed in this paper can be illustrated easily by means of 4 models from the BRD
family, fitted to the independence and attendance outcomes, i.e., collapsing Table 1. We select
models BRD1, BRD2, BRD7, and BRD9. Model BRD1 assumes missingness to be MCAR. All
others are of the MNAR type. Model BRD2 has 7 free parameters, and hence does not saturate
the observed data degrees of freedom, while models BRD7 and BRD9 saturate the 8 data degrees
of freedom. The collapsed data, together with the model fits, are displayed in Table 2. Each of
the four models is doubled up with its MAR counterpart.

Table 2 presents, apart from the raw data, for each of the models and its MAR counterpart,
the fit to the observed and the hypothetical complete data. The fits of models BRD7, BRD9,
and their MAR counterparts to the observed data, coincide with the observed data. As the
theory states, every MNAR model and its MAR counterpart produce exactly the same fit to
the observed data, which is therefore also seen for BRD1 and BRD2. However, while Models
BRD1 and BRD1(MAR) coincide in their fit to the hypothetical complete data, this is not
the case for the other three models. The reason is clear: since model BRD1 belongs to the
MAR family from the start, its counterpart BRD1(MAR) will not produce any difference, but
merely copies the fit of BRD1 to the unobserved data, given the observed ones. Finally, while
BRD7 and BRD9 produce a different fit to the complete data, BRD7(MAR) and BRD9(MAR)
coincide. This is because the fits of BRD7 and BRD9 coincide with respect to their fit to the
observed data, and indeed, due to their saturation, coincide with the observed data as such.
This fit is the sole basis for the models’ MAR extensions. It is noteworthy that, while BRD7,
BRD9, and BRD7(MAR)≡BRD9(MAR) all saturate the observed data degrees of freedom, their
complete-data fits are dramatically different.

Let us return to the implications of our results for the primary estimand θ, the proportion of
people voting YES by simultaneously being in favor of independence and deciding to take part
in the vote. Rubin et al (1995) considered, apart from simple models such as complete case
analysis (θ̂ = 0.928) and available case analyses (θ̂ = 0.929), both ignorable models (θ̂ = 0.892
when based on the two main questions and θ̂ = 0.883 when using the secession question as an
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auxiliary variable) and a non-ignorable one (θ̂ = 0.782). Since the value of the plebiscite was
θpleb = 0.885, an important benchmark obtained four weeks after the SPO, they concluded the
MAR was preferable. Molenberghs et al (2001) supplemented these analysis with a so-called
pessimistic-optimistic interval, obtained from replacing the incomplete data with NO and YES,
respectively, and obtained: θ ∈ [0.694, 0.904]. Further, they considered all nine BRD models,
producing a range for θ from 0.741 to 0.892. Ultimately, these authors devised a method to
consider overspecified models, in which point estimates are replaced by interval estimates, so-
called intervals of ignorance.

Let us consider the results obtained from fitting each of the nine BRD models. Molenberghs et
al (2001) presented a summary table but unfortunately there was a small computational error
that had to be corrected, for which reason the corrected results are reproduced here (Table 3).
BRD1 produces θ̂ = 0.892, exactly the same estimate as the first MAR estimate obtained by
Rubin et al (1995). This should not come as a surprise, since both BRD1 and Rubin’s model
assume MAR and use information from the two main questions. Before continuing with the
models’ interpretation, it is necessary to assess their fit. Conducting likelihood ratio tests for
BRD1 versus the ones with 7 parameters, BRD2–BRD5, and then in turn for BRD2–BRD5
versus the saturated modes BRD6–BRD9, suggests the lower numbered models do not fit well,
leaving us with BRD6–BRD9. The impression might be generated that the poor model fit of
BRD1 might be seen as evidence for discarding the MAR-based value 0.892. However, studying
the MAR values from each of the models BRD1(MAR)–BRD9(MAR), as displayed in the last
column of Table 3, it is clear that this value is remarkably stable and hence a value of θ̂ = 0.892,
based on the four bodyguards BRD6(MAR)–BRD9(MAR), is a sensible choice after all. Thus,
a main contribution resulting from considering the bodyguards in this particular example, is the
provision of a solid basis for the MAR-based estimate. Obviously, since Models BRD6(MAR)–
BRD9(MAR) are exactly the same and exhibit a perfect fit, the corresponding probabilities
θ̂MAR are exactly equal too. In this particular case, even though BRD2(MAR)–BRD5(MAR)
differ among each other, the probability of being in favor of independence and attending the
plebiscite is constant across these four models. This is a mere coincidence, since all three other
cell probabilities are different, but only slightly so. For example, the probability of being in
favour of independence combined with not attending ranges over 0.066–0.0685 across these four
models.

We have made the following two-stage use of Models BRD6(MAR)–BRD9(MAR). At the first
stage, in a conventional way, the fully saturated model is selected as the only adequate descrip-
tion of the observed data. At the second stage, these models are transformed into their MAR
counterpart, from which inferences are drawn. As such, the MAR counterpart usefully supple-
ments the original models BRD6–BRD9 and provide one further, important scenario to model
the incomplete data. In principle, the same exercise can be conducted when the additional
secession variable would be used.

6 Discussion

In this paper, we have shown that every MNAR model, fitted to a set of incomplete data, can be
replaced by an MAR version which produces exactly the same fit to the observed data. There
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are in particular two important implications of this. First, unless one puts a priori belief in the
posited MNAR model, it is not possible to use the fit of an MNAR model for or against MAR.
Second, one can fit a versatile MNAR model, to ensure a good fit to the observed data, and
then use the MAR version for data analysis or for sensitivity analysis.

A re-analysis of the Slovenian Public Opinion Survey data has shown that, while a set of MNAR
models produces a widely varying range of conclusions about the proportion of people who
are jointly in favor of independence and plan to attend the plebiscite, the corresponding MAR
models produce a very narrow range of estimates, which in addition all lie close to the outcome
of the plebiscite. This provides evidence for the claim, also made in Rubin et al (1995), that
choosing an MAR model as one’s main route of analysis is a sensible one.

The determination of the MAR version of an MNAR model is straightforward in the case of
dropout, since the ACMV restrictions, established by Molenberghs et al (1998) and translated
in a computational scheme by Thijs et al (2002), provides a convenient algorithm. In the
case of non-monotone missingness, the marginal density of the outcomes is needed. This is
straightforward when the model fitted is of the SeM type. When a PMM is fitted, the marginal
density follows from a weighted sum over the pattern-specific measurement models.

While the result of Theorem 1 is general, we have focused in the paper on SeM and PMM
formulations. It is worth re-emphasizing that also the SPM is covered without any problem. In
this case, the likelihood is expressed as

L =
∏

i

∫
f(yi

o,yi
m|θ, bi)f(ri|ψ, bi)dyi

m, (55)

with bi the shared parameter, often taking the form of random effects. To apply our result,
f(yi

o,yi
m|θ̂, bi) needs to be integrated over the shared parameter. The model as a whole

needs to be used to produce the fit to the observed data, and then (11) is used to extend the
observed-data fit to complete-data MAR version.

A Proof of Lemma 1

Suppressing parameters and covariates from notation, the decomposition of the full data density,
in both SeM and PMM fashion, whereby MAR is applied to the SeM version, produces:

f(yo
i ,y

m
i )f(ri|yo

i ) = f(yo
i ,y

m
i |ri)f(ri). (56)

Further factoring the right hand side and moving the second factor on the left to the right as
well gives:

f(yo
i ,y

m
i ) = f(ym

i |yo
i , ri)

f(yo
i |ri)f(ri)

f(ri|yo
i )

f(yo
i ,y

m
i ) = f(ym

i |yo
i , ri)

f(yo
i , ri)

f(ri|yo
i )

f(ym
i |yo

i )f(yo
i ) = f(ym

i |yo
i , ri)f(yo

i ),
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and hence
f(ym

i |yo
i ) = f(ym

i |yo
i , ri).
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Table 2: Analysis of the Slovenian Public Opinion Survey, restricted to the independence and
attendance questions. The observed data are shown, as well as the fit of models BRD1, BRD2,
BRD7, and BRD9, and their MAR counterparts, to the observed data and to the hypothetical
complete data. The contingency tables’ rows (columns) correspond to ‘yes’ vs. ‘no’ on the
independence (attendance) question.

Observed data &
fit of BRD7, BRD7(MAR), BRD9, and BRD9(MAR) to incomplete data

1439 78

16 16
159
32

144 54 136

Fit of BRD1 and BRD1(MAR) to incomplete data
1381.6 101.7

24.2 41.4
182.9

8.1
179.7 18.3 136.0

Fit of BRD2 and BRD2(MAR) to incomplete data

1402.2 108.9

15.6 22.3
159.0
32.0

181.2 16.8 136.0

Fit of BRD1 and BRD1(MAR) to complete data

1381.6 101.7

24.2 41.4

170.4 12.5

3.0 5.1

176.6 13.0

3.1 5.3

121.3 9.0

2.1 3.6

Fit of BRD2 to complete data

1402.2 108.9

15.6 22.3

147.5 11.5

13.2 18.8

179.2 13.9

2.0 2.9

105.0 8.2

9.4 13.4

Fit of BRD2(MAR) to complete data
1402.2 108.9

15.6 22.3

147.7 11.3

13.3 18.7

177.9 12.5

3.3 4.3

121.2 9.3

2.3 3.2

Fit of BRD7 to complete data

1439 78

16 16

3.2 155.8

0.0 32.0

142.4 44.8

1.6 9.2

0.4 112.5

0.0 23.1

Fit of BRD9 to complete data
1439 78

16 16

150.8 8.2

16.0 16.0

142.4 44.8

1.6 9.2

66.8 21.0

7.1 41.1

Fit of BRD7(MAR) and BRD9(MAR) to complete data

1439 78

16 18

148.1 10.9

11.8 20.2

141.5 38.4

2.5 15.6

121.3 9.0

2.1 3.6
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Table 3: Analysis of the Slovenian Public Opinion Survey, restricted to the independence and
attendance questions. Summaries on each of the Models BRD1–BRD9 are presented.

Model Structure d.f. loglik θ̂ C.I. θ̂MAR

BRD1 (α, β) 6 -2495.29 0.892 [0.878;0.906] 0.8920

BRD2 (α, βj) 7 -2467.43 0.884 [0.869;0.900] 0.8915

BRD3 (αk, β) 7 -2463.10 0.881 [0.866;0.897] 0.8915

BRD4 (α, βk) 7 -2467.43 0.765 [0.674;0.856] 0.8915

BRD5 (αj , β) 7 -2463.10 0.844 [0.806;0.882] 0.8915

BRD6 (αj , βj) 8 -2431.06 0.819 [0.788;0.849] 0.8919

BRD7 (αk, βk) 8 -2431.06 0.764 [0.697;0.832] 0.8919

BRD8 (αj , βk) 8 -2431.06 0.741 [0.657;0.826] 0.8919

BRD9 (αk, βj) 8 -2431.06 0.867 [0.851;0.884] 0.8919


