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Abstract

In recent years, the cost of drug development has increased the demands
on efficiency in the selection of suitable drug candidates. Biomarkers for effi-
cacy and safety could be a plausible strategy to improve this selection process.
In the present work, we focus on the study and evaluation of different phys-
iological variables as biomarkers for pharmacological activity. We proposed
three different approaches using multivariate and univariate techniques. We
note that even though one could argue that the multivariate procedure is more
powerful than the other alternatives, the univariate methods also offer a great
flexibility to answer interesting scientific questions. The three approaches
were used to analyze a crossover study involving an opioid antagonist.
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1 Introduction

The rising costs of drug development and the challenge of facing new and re-emerging

diseases are putting considerable demands on efficiency in the selection of suitable

drug candidates. An effective strategy in improving this process is the proper selec-

tion and application of biomarkers for efficacy and safety during the different stages

of the drug development pipeline.

Some authors refer to a biological marker or biomarker as a variety of physiological,

pathological, or anatomical measurements that are thought to relate to some aspect

of a healthy or pathological process (Temple 1995, Lesko and Atkinson 2001). In

the same vein, a biomarker has also been defined as a characteristic that can be

measured and evaluated as an indicator of healthy biological processes, pathological

processes or pharmacological responses to therapeutic intervention (NIH Biomarker

Definitions Working Group, 2001). Other definitions have since emerged and the

discussion on what biomarkers should be and where to apply them continues. Bio-

markers are currently being used in various areas, including disease identification,

target discovery and validation, volunteer/patient inclusion and stratification dur-

ing clinical studies, drug efficacy and safety and prediction of drug response (Suico

et al (2006). Such biomarkers include measurements that help identifying the eti-

ology of certain medical problem or the progress of a disease. They also include

measurements related to the mechanism of response to treatments and actual clin-

ical responses to therapeutic interventions (Burzykowski, Molenberghs, and Buyse

2005).

From a regulatory perspective, a biomarker is not considered an acceptable endpoint

for a determination of efficacy of new drugs unless it has been shown to function as

a valid indicator of clinical benefit, i.e., unless it is a valid surrogate. The NIH Bio-
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marker Definitions Working Group (2001) also addressed the relationship between

biomarkers, clinical endpoints, and surrogate markers. A clinical endpoint is consid-

ered the most credible indicator of drug response and is defined as “a characteristic

or variable that reflects how a patient feels, functions, or survives”. During clinical

trials, clinical endpoints should in principle be used, unless a biomarker is avail-

able that has risen to the status of a surrogate endpoint and is expected to predict

either, clinical benefit, harm, or lack of both benefit and harm. Realistically, the

working group points out that probably only a few biomarkers are likely to achieve

a consensus surrogate endpoint status.

Biomarkers differ in their closeness to the intended therapeutic response or clinical

benefit. Some biomarkers can be thought to be valid surrogates for clinical benefits,

such as, for example, blood pressure or cholesterol, while they can also reflect the

pathological process and could be considered potential surrogate endpoints, such as,

for example, brain appearance in Alzheimer brain infarct size. The evaluation of a

biomarker as potential surrogate markers has received considerable attention over

the last decade and a detailed discussion of the main contributions in this area can

be found in Burzykowski, Molenberghs, and Buyse (2005).

Additionally, other biomarkers have a more uncertain relation to clinical outcome

but they can still reflect the drug action, such as, for example, ACE inhibition,

degree of binding to a receptor, or inhibition of an agonist. In the present work,

we focus on the evaluation of this type of biomarkers. More specifically, emphasis

will be on the evaluation of biomarkers of pharmacological activity for a certain

compound.

In Section 2, we introduce the motivating case study. Section 3 covers important

aspects of the analysis of crossover trials with repeated measurements. Three meth-
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ods to evaluate biomarkers for pharmacological activity are introduced in Section 4.

In Section 5, the case study is analyzed.

2 Case Study

The case study is a three-period, two-treatment cross-over trial in which 15 male

subjects received either Naltrexone or a matching placebo in each period on 3 con-

secutive days (Suico et al 2006).

Naltrexone is an opioid receptor antagonist, i.e., it acts by blocking the activation of

opioid receptors. The goal of the study was to identify the best biomarker of phar-

macological activity for this kind of compound. Several biomarkers were considered

in the study: essentially, a group of variables was measured, under different condi-

tions and at two different days. At day 1, measurements of 5 neurohormones took

place: Adrenocorticotropic (Acth), Cortisol, Luteinizing (LH), Follicle-stimulating

hormone (FSH), and Prolactin were taken following single dose administration of ei-

ther Naltrexone or placebo. Additionally ,pupil diameter under three different light

conditions: scotopic (low luminosity — 0.04 lux), mesopic Lo (medium luminosity

— 0.4 lux), and mesopic Hi (high luminosity — 4.0 lux) was taken. At day 3, mea-

surements of neurohormones and pupil diameter following a two-minute fentanyl

dose infusion were recorded. A cold pressor test was also carried out at the third

day, following the fentanyl infusion.

Day 1 measurements were taken following a single dose of Naltrexone; they represent

the direct pharmacological action. Day 3 measurements followed a short infusion of

the opioid receptor agonist fentanyl, that is, a substance that increases the activation

of opioid receptors. Therefore, measurements taken at the third day show the ability

of Naltrexone, an antagonist, to block the pharmacological effects of the agonist. We
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Table 1: Candidate biomarkers.

Biomarkers Day 1 Day 3

Acth ? ?

Cortisol ? ?

LH ? ?

FSH ? ?

Prolactine ? ?

Mesopic Hi ? ?

Mesopic Lo ? ?

Scotopic ? ?

Cp ?

can then consider that these measurements represent another way of evaluating the

pharmacological activity of the antagonist compound.

The cold pressor test (Cp) is typically used to evaluate the analgesic effects of a

compound (such as fentanyl). Thereupon, this test will show the ability of Naltrex-

one to block the effects of fentanyl. The test consisted in rating the pain felt by

a subject during 2 minutes following immersion of the subject’s hand in warm and

cold baths.

The variables recorded for each subject are displayed in Table 1. Eight biomarkers

were measured at the first and third days whereas one (Cp) was measured only at

day three. Each combination biomarker-day is of scientific interest and hence 17

responses in total will be analyzed.

The main objective of the study is to identify biomarkers for pharmacological activity

and therefore, we are primarily interested in determining for which biomarker the

difference between Naltrexone and placebo is largest.
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3 Crossover Designs and Repeated Measurements:

Remarks for the Analysis

This was a crossover study with repeated measurements in which two treatments,

three periods and two sequences were considered: ABB and BAA. This design is

optimal in the sense that it allows for a minimum variance unbiased estimator for

the treatment effect.

Let us denote by Yih` the response observed on the `th subject in period h and in

sequence group i. Additionally, we will denote by t, p, and s, the number of treat-

ments, periods, and sequences, respectively. Note that for the ABB–BAA design,

t = 2, p = 3, and s = 2. Further, we will define

Y ih. =
1

ni

ni∑

`=1

Yih`,

where ni is the number of patients in sequence group i. According to Jones and

Kenward (2003) one of the issues in modeling crossover data with repeated measure-

ments is how best to handle both the between-period and within-period covariance

structure. These authors observed that, in the two sequence design, one can avoid

the need to introduce a between-period structure by exploiting the fact that all es-

timators take the form A1 − A2, where Ai =
∑p

h=1 ahY ih. and, for within-subject

estimators,
∑p

h=1 ah = 0. Conventional repeated measurement methods can then

be applied to the derived subject contrast:

Ci` =

p∑

h=1

ajYih`.

For the design considered in this study, i.e., ABB–BAA, one can estimate the treat-

ment effect using the contrast CTi` = −2Yi1` + Yi2` + Yi3`. Note that the treatment

effect is then represented by the difference in the mean values of the two-sequence

group contrast. In the following section, we introduce three possible methods to

determine the biomarker on which this effect is largest.
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4 Three Strategies for the Selection of the Best

Biomarker

4.1 Approach I: The Ellipsoid Method

Let us now denote by µij the mean for the ith sequence at the jth time point, with

i = 1, 2 and j = 1, . . . , m. Further, let us denote the mean evolution over time for

the ith sequence by µi = (µi1, µi2, . . . , µim)′.

We shall further denote by µ̂i the maximum likelihood estimator for the previous

mean profile, computed based on a saturated linear model. The treatment effect over

time ∆T = µ1 − µ2 can then be estimated as ∆̂T = µ̂1−µ̂2, where ∆̂T has asymptotic

distribution ∆̂T ∼ N(∆T , Σ∆T ). Note that Σ∆T can be estimated using the estimate

for the variance-covariance matrix of (µ̂1, µ̂2). From multivariate analysis it is known

that, asymptotically:

(∆̂T − ∆T )′Σ̂−1
∆T (∆̂T − ∆T ) ∼ χ2

m,

producing confidence region:

R = {∆T : (∆̂T − ∆T )′Σ̂−1
∆T (∆̂T − ∆T ) ≤ C(α)},

where the constant is chosen so that P (R) = 1 − α. Testing the hypothesis

H0 : ∆T = 0 can now be done by verifying whether 0 ∈ R or, equivalently, using

the test ∆̂′
T Σ̂−1

∆T ∆̂T > C(α). Further, let us denote by r the distance between zero

and the ellipsoid defined by the frontier of R:

∂R = {∆T : (∆T − ∆̂T )′Σ̂−1
∆T (∆T − ∆̂T ) = C(α)}.

Note that r is the solution of the optimization problem:

r = min
∆T∈∂R

‖ ∆T ‖2 . (1)
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Similar to the univariate setting, we note that the larger r is, the further the ellipsoid

is from the origin and therefore the larger the treatment effect is. The problem is

then reduced to finding the solution of the optimization problem given in (1). The

following theorem offers an analytic expression for this solution.

Theorem 1 The solution of the optimization problem (1) is given by

r =
∑

i

(
qiλ

αi + λ

)2

, (2)

where:

a) αi are the eigenvalues of Σ∆T ,

b) q′ = (q1, q2, . . . , qm) = P∆T with P an orthogonal matrix so that Σ∆T = P ′D0P ,

and D0 = (αi)ii,

c) λ is a root of
∑

i

αiq
2
i

(αi + λ)2
= C(α).

An outline of the proof can be found in the appendix. Under Approach I, one

can then calculate, for each biomarker, the distance from zero to the corresponding

ellipsoid and then choose as the best biomarker the one for which its ellipsoid is

furthest away from the origin.

4.2 Approach II: The L2–Norm Method

Let us start by considering the following model:




Y1(t) = f1(t) + ε1(t),

Y2(t) = f2(t) + ε2(t),

where t denotes time and Yi the response variable for group i (i = 1, 2), fi is a general

function that describes the average time evolution for group i, and (ε1(t), ε2(t))
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follows a bivariate Gaussian distribution with mean zero and variance-covariance

matrix Σ(t).

In the absence of treatment effect, f1(t) = f2(t) and therefore it is intuitively appeal-

ing to use the distance between f1 and f2 as a measure of the effect’s magnitude. If

we further denote the time interval by I = [a, b], then we can measure the distance

between f1 and f2 using the L2 norm:

d2(f1, f2)
2 =‖ f1(t) − f2(t) ‖2=

∫ b

a

[f1(t) − f2(t)]
2dt. (3)

In practice, g(t) = f1(t) − f2(t) is unknown and hence needs to be estimated. We

can estimate g, for instance, through fitting a saturated linear model for f1 and f2

in such standard software packages as SAS, R, or Splus. Given that we can only

consider a fixed set of time points {t1, t2, . . . , tm}, fitting a saturated model merely

leads to estimates of g at these prespecified values:

µ∗
j = g(tj) = f1(tj) − f2(tj) = µ1j − µ2j,

(j = 1, . . . , m). Using the points (tj, µ
∗
j), we can approximate (3) using the trape-

zoidal integration formula:

‖ f1(t) − f2(t) ‖2=‖ g(t) ‖2≈ υ(f1, f2) =

m−1∑

j=1

µ∗2
j + µ∗2

j+1

2
∆j,

where ∆j = tj+1 − tj. Note that υ(f1, f2) can also be written as:

υ(f1, f2) =

m∑

j=1

αjµ
∗2
j =

m∑

j=1

αj(µ1j − µ2j)
2,

where αj =
∆j−1+∆j

2
and ∆0 = ∆m = 0. In terms of the original time points, the

weights αj take the form αj = (tj+1 − tj−1)/2, with t0 = t1 and tm+1 = tm.

If we further denote by µ̂′
i = (µ̂i1, µ̂i2, . . . , µ̂im) the maximum likelihood estimator of

µi, (i = 1, 2), then we have that:

υ̂(f1, f2) =

m∑

j=1

αj(µ̂1j − µ̂2j)
2. (4)
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Taking into account that ∆̂T ∼ N(∆T , Σ∆T ) with ∆̂T = µ̂1 − µ̂2 we can apply now

the delta method to obtain:

υ̂(f1, f2) =

m∑

j=1

αj∆̂
2
Tj ∼ N(υ(f1, f2), σ

2
N(f1,f2)), (5)

where σ2
N(f1,f2)

= δ′Σ∆T γ and δ = (2α1∆T1, 2α12∆T2, . . . , 2αm∆Tm)′. Finally, using

(5) the following confidence interval is obtained:

CIα[υ(f1, f2)] =
[
υ̂(f1, f2) − z1−α

2
σN(f1,f2), υ̂(f1, f2) + z1−α

2
σN(f1,f2)

]
. (6)

We should like to point out that υ(f1, f2) has been considered under the current

Approach II as an approximation to the distance between f1 and f2. We are then

constructing confidence intervals, not for the parameter of interest ‖ f1(t)−f2(t) ‖2,

but rather for an approximation of this distance. If (6) contains zero, then the data

are not in contradiction with the equal treatment effects hypothesis.

4.3 Approach III: Different Weights Method

In Approach II, υ(f1, f2) was considered an approximation for the L2 distance be-

tween f1 and f2. However, we could consider this parameter in the following, more

general, way:

υ(f1, f2) =

m∑

j=1

αj(µ1j − µ2j)
2, (7)

with alphaj > 0 and
∑

j αj = 1. By using different sets of weights one can study

a variety of interesting questions, such as, for instance, for which biomarker the

treatment effect is largest at the end of the study. Alternatively, we may be interested

in finding the biomarker for which the treatment effect is mainly expressed at the

beginning of the study, and so on. All of these situations can be explored using (7),

by selecting an appropriate set of weights. Here again, we can construct confidence

intervals in a similar way as we did in the previous subsection and finally we could

select the biomarker with interval farthest away from the origin.
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5 Analysis of Case Study

We will apply the methods introduced in the previous section to the data intro-

duced in Section 2. A logarithmic transformations was used for the neurohormones

variables.

5.1 Exploratory Analysis

Let us start by noting that conventional graphical techniques for longitudinal data

would ignore the crossover design of our study. For instance, in a mean profile

by treatment graph, each patient would contribute to both treatment groups ig-

noring the between-period association. Hence, it is more appropriate to base our

exploratory analysis on the individual contrast introduced in Section 3. The contrast

profile per patient is presented in Figure 1.

The difference of the two mean contrast profiles for each sequence gives an estimate

of the evolution of the treatment over time. This treatment effect evolution over

time is displayed in Figure 2. Note that any deviation from the horizontal zero-line

indicates a treatment effect.

It seems from Figure 2 that Prolactine at day3 is the biomarker in which a largest

treatment effect is observed. This pattern is also present in Figure 1 where two

clearly differentiated groups can be observed for Prolactine at day3.

Another important issue emerging from the exploratory analysis is the difference

between the relative behavior of Naltrexone and placebo at days one and three.

For the biomarkers on which the treatment effect seems to be largest, the mean

evolution of the Naltrexone group lies above the mean evolution of the control group

at day one, provoking a positive treatment effect. However, this behavior seems to

be reversed at the third day. This could be explained by the infusion of fentanyl
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Figure 1: Contrast profiles.

administrated to the patients at day 3 before the measurements were taken.

Fentanyl is an opioid receptor agonist, i.e., it increases the activation of opioid re-

ceptors. This could explain the lower mean evolution of the treatment group relative

to the placebo. Nevertheless, Figure 2 illustrates that, in spite of the initial time

decrease in the treatment effect, a tendency to recover over time appears towards

the end of the time interval.

5.2 Assessment of Biomarker Quality

Let us first note that all methods are based on confidence regions and on the as-

sumption that they actually contain the true value of the parameter. Given the
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Figure 2: Mean treatment effect over time: Naltrexone-Placebo.

large number of biomarkers we are considering here, in all of the following analyzes

a Bonferroni correction was applied to account for the multiple comparisons effect.

Table 2 displays the results obtained after applying the procedure described in Sec-

tion 4.1 to the data. Using Theorem 1, we calculated the distance from the origin to

each of the ellipsoids defined by each of the biomarkers. For Mesopic Lo-day3, the

saturated model did not converge and therefore this biomarker was not included in

the analysis.

Note that Cp, Mesopic Lo at day 1, and ACTH at day 1 have negative values for

the r-distance; this is merely a convention to point out that the origin is inside their

ellipsoids. Table 2 is in complete agreement with the findings of the exploratory
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Table 2: Ellipsoid method.

Biomarker r-distance

ACTH-day1 -0.02

ACTH-day3 1.75

Cortisol-day1 0.00

Cortisol-day3 0.28

LH-day1 0.17

LH-day3 0.38

FSH-day1 0.00

FSH-day3 0.00

Prolactine-day1 0.03

Prolactine-day3 23.87

Mesopic Hi-day1 0.04

Mesopic Hi-day3 1.25

Mesopic Lo-day1 -0.01

Scotopic-day1 0.00

Scotopic-day3 3.03

Cp -0.01

analysis. Prolactine at day 3 was clearly the biomarker with ellipsoid furthest away

from zero, followed by Scotopic at day 3 and ACTH at day 3.

Additionally, we estimated the distance between f1 and f2, as described in Sec-

tion 4.2. The results are summarized in the first three columns of Table 3, where LL

and UL denote the lower and upper limits of the corresponding confidence interval,

respectively.

Here again, the Prolactine at day 3 is the clear winner, followed by the Scototopic

at day 3 and LH at day 1. Note that for other biomarkers, like ACTH at day 3

or Cortisol at day 3, the confidence interval contains the origin and therefore the

hypotheses of no treatment effect could not be rejected in these cases. This seems to

contradict the results found with the ellipsoid method with which these biomarkers
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Table 3: L2 and different weights results.

Biomarker L2 LL UL Eq EqLL EqUL Be BeLL BeUL End EndLL EndUL
ACTH-d1 22.46 -3.14 48.06 2.09 -0.25 4.44 2.05 -0.20 4.30 2.14 -0.37 4.647
ACTH-d3 128.75 -69.18 326.69 14.12 -8.87 37.11 20.30 -10.48 51.08 12.65 -10.25 35.549
Cort.-d1 24.34 -4.94 53.62 2.14 -0.37 4.65 1.93 -0.22 4.07 2.36 -0.55 5.262
Cort.-d3 22.54 -17.79 62.86 2.84 -2.65 8.34 3.59 -2.75 9.93 3.04 -3.45 9.538

LH-d1 28.62 5.41 51.82 2.79 0.53 5.06 2.51 0.32 4.69 3.08 0.63 5.525
LH-d3 9.96 -1.70 21.61 1.61 -0.30 3.52 1.61 -0.47 3.69 2.14 -0.25 4.530

FSH-d1 1.07 -1.41 3.55 0.10 -0.15 0.36 0.08 -0.11 0.26 0.13 -0.18 0.453
FSH-d3 0.10 -0.19 0.39 0.02 -0.04 0.07 0.02 -0.03 0.26 0.02 -0.06 0.105
Prol.-d1 10.59 2.09 19.09 1.02 0.19 1.86 0.97 0.17 1.77 1.08 0.18 1.970
Prol.-d3 206.03 103.42 308.63 23.62 11.40 35.84 32.18 16.21 48.14 22.94 10.33 35.540

Mes. Hi-d1 1.58 -1.03 4.19 0.24 -0.22 0.71 0.31 -0.33 0.95 0.17 -0.12 0.465
Mes. Hi-d3 6.41 3.61 9.21 0.74 0.43 1.05 0.98 0.56 1.41 0.74 0.43 1.044
Mes. Lo-d1 0.59 -0.14 1.32 0.08 -0.02 0.17 0.08 -0.03 0.18 0.08 -0.02 0.173

Scot.-d1 0.14 -0.06 0.33 0.01 0.00 0.03 0.01 0.00 0.02 0.02 0.00 0.039
Scot.-d3 16.64 9.55 23.73 1.75 0.97 2.54 2.51 1.45 3.57 1.58 0.79 2.372

Cp 38.75 -34.54 112.05 0.39 -0.47 1.24 0.46 -0.65 1.58 0.31 -0.29 0.913
LL,UL: Lower and upper limits of the 95% confidence interval

Eq: Weights distributed equally over the whole sequence.

Be: 67% of the weight at the beginning.

End: 67% of the weight at the end.

L2: L2–norm method.

produced an ellipsoid that did not contain the origin.

Some comments are in place. Note that the L2-norm method constructs a confi-

dence interval for υ(f1, f2), which is a summary statistic for the mean differences

∆T i, whereas the ellipsoid approach constructs a confidence region for the ∆T i in a

multivariate fashion. Arguably, the loss of information derived from using a sum-

mary statistics implies a reduction of power that could explain this discrepancy.

Note also that some of these biomarkers produced very small values for the r-

distance, which can also help to explain the results found when the L2-norm ap-

proach is used. The ACTH at day 3, which was ranked third in the previous ap-

proach, produces here a very large point estimate for υ(f1, f2) but with a very wide

confidence interval that contains zero.

Finally, we analyzed the data following the approach introduced in Section 4.3. In
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Figure 3: Summary.

this analysis three different sets of weights were considered: (a) equal weights at

all time points, denoted by ‘Eq’ in Table 3; (b) 67% of the weight equally assigned

to the first half of the longitudinal sequence, 33% equally assigned to the second

half, and denoted by ‘Be’ in Table 3; (c) 33% of the weight equally assigned to

the first half of the longitudinal sequence, 67% equally assigned to the second half,

and denoted by ‘End’ in Table 3. The same notation as before was used for the

confidence interval limits.

Note that, regardless of the set of weights used in the analysis, the Prolactine at

day 3 always produced the best results, followed by the Scotopic at day 3. However,
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some variation is seen in the third position. In the cases in which we used equal

weights or where we assigned more weight at the end of the sequence, LH at day 1

ranks first. On the other hand, if more weight is assigned at the beginning of the

sequence, then Mesopic Hi at day 3 ranks third. This is in total agreement with our

findings in the exploratory analysis. Indeed, a closer look at Figure 2 clearly shows

that, whereas Mesopic Hi at day 3 seems to have an early response to the treatment

that decreases on time, LH at day 1 shows a lower reaction at the beginning that

then consistently increases with time.

Figure 3 summarizes the results of all previous analyzes. In all panels the biomarkers,

have been ranked in decreasing order, starting by the one in which pharmacological

activity is expressed most. For the ellipsoid approach the biomarkers for which the

origin is an internal point of their ellipsoid are listed at the left side.

6 Concluding Remarks

Biomarkers are playing an increasingly important role, not only in the study and

development of new drugs and therapies, but also in the diagnostics of a medical

condition or in improving our understanding of several medical conditions. The

recent developments in genetics will likely further increase their utility and use in

the near future. Even though considerable research has been done in recent years to

study the potential of biological markers as surrogate endpoint, other possible uses

have received less attention from a statistical point of view.

In the present work, we focused on the study and evaluation of different physio-

logical variables as biomarkers for pharmacological activity. This type of studies

are typically carried out following a crossover design and include a relatively small

group of patients. The use of a crossover design in a longitudinal context will re-
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quire special analysis considerations. In all cases, we decided to use a saturated

linear model, guaranteeing the necessary flexibility to model the time evolution of

a relatively large number of biomarkers. Further, we proposed three different ap-

proaches using multivariate and univariate techniques. Note that even though one

could argue that the multivariate ellipsoid method is more powerful than the other

alternatives, the L2-norm and weighted procedures also offer a great flexibility to

answer interesting scientific questions. Choosing the right set of weights, we could

explore not only on which biomarker the treatment effect is expressed most but also

on which biomarkers the treatment effect acts in a specific way.
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Appendix

Proof of Theorem 1

To simplify the notation we will denote ∆T = x, and ∆̂T = d and Σ = Σ̂∆T . We

can then rewrite the previous expressions as:

r = min ‖ x ‖2= x′x

st: (x − d)′Σ−1(x − d) = C(α).

Using Lagrange’s method, our problem is reduced to minimizing the following func-

tion: F (x, λ) = x′x + λ(x − d)′Σ−1(x − d) − λC(α),. Equivalently, we have to solve

the simultaneous equations:

∂F

∂x
= 2x + 2λΣ−1(x − d) = 0, (8)

∂F

∂λ
= (x − d)′Σ−1(x − d) − C(α) = 0. (9)

It is not difficult to show that (8) leads to x = λ(Σ + λI)−1d. Additionally, we have

that there exist an orthogonal matrix P so that Σ = P tD0P with P tP = PP t = I.

D0 is a diagonal matrix, i.e., D0 = (αi)ii, where αi is the ith eigenvalue of Σ. Using

this orthogonal decomposition we see that x = λP t(D0 + λI)−1Pd.

If we now denote D1(λ) = λ(D0 + λI)−1 = diag
(

λ
αi+λ

)
, then x = P tD1(λ)Pd.

Combining this last expressions for x with 90 we obtain

(x − d)′Σ−1(x − d) = qt
[
D3(λ) − 2D2(λ) + D−1

0

]
q,

where D2(λ) = diag
(

λ
αi(αi+λ)

)
, D3(λ) = diag

(
λ2

αi(αi+λ)2

)
, and q = Pd.

The matrix of the previous quadratic form is symmetric with diagonal elements

equal to D3(λ) − 2D2(λ) + D−1
0 = diag

(
αi

(αi+λ)2

)
. If q′ = (q1, q2, . . . , qm) then

(x − d)′Σ−1(x − d) =
∑ αiq

2
i

(αi + λ)2
, (10)
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The previous expression clearly illustrates that (9) is equivalent to the equation (2)

defined in theorem 1

∑ αiq
2
i

(αi + λ)2
= c(α). (11)

Using (11) we calculate λ, and finally we just have to calculate the distance

r = x′x = q′D1(λ)2q =
∑ (

λqi

αi + λ

)2

.


