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Abstract

The evaluation and validation of surrogate endpoints have been extensively studied in the last
decade. Prentice (1989) and Freedman, Graubard and Schatzkin (1992) laid the foundations for
the evaluation of surrogate endpoints in randomized clinical trials. Buyse et al. (2000) proposed
a meta-analytic methodology, producing different methods for different settings, which was further
studied by Alonso and Molenberghs (2006), in their unifying approach based on information theory.
In this paper, we propose alternative procedures to evaluate the so-called trial-level surrogacy and
a correction based on cross-validation ideas. We then apply the various strategies to data from
three clinical studies: Pharmacological Therapy for Macular Degeneration Study Group (1977), Four
Meta-analyses of 28 Clinical Trials in Advance Colorectal Cancer (1996) and a Meta-analysis of Five
Clinical Trials in Schizophrenia (1996). The results obtained indicate that using random forest or
bagging models produces larger estimated values for the surrogacy measure, which were in general
stabler and the confidence interval narrower than the other methods employed to estimate this
quantity.

Some Keywords: Linear mixed model; Macular degeneration; Meta-analytic approach; Oncology;
Random effects; Surrogate endpoint.

1 Introduction

Prentice (1989) and Freedman, Graubard and Schatzkin (1992) laid the foundations for the evaluation

of surrogate endpoints in randomized clinical studies. Prentice proposed a definition as well as a set of

operational criteria, while Freedman, Graubard and Schatzkin (1992) supplemented these criteria with a

quantity called proportion explained (PE), which was meant to indicate the proportion of the treatment

effect mediated by the surrogate. Later, Buyse and Molenberghs (1998) proposed to use instead the

relative effect (RE), linking the effect of treatment on both endpoints and a second measure called

individual-level which measure the agreement between both endpoints, after adjusting for the effect of

treatment (adjusted association). This suffers from to untestable assumptions and low statistical power.

In order to overcome these problems, several authors (Daniels and Hughes, 1997; Buyse et al., 2000;

Gail et al., 2000) have proposed methods that combined evidence from several clinical trials, such as
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in a meta-analysis, rather than from a single study. To this end, a bivariate hierarchical model was

formulated, accommodating the surrogate and true endpoints in a multi-trial setting. In Buyse et al.

(2000), the adjusted association carries over when data are available on several randomized trials, while

the RE needed to be extended to what is now a called trial-level measure of agreement between the

effects of treatment on both endpoints. This modifies the relative effect and the adjusted association

to become a trial-level R2 and an individual-level R2, respectively. Similar routes have been followed by

Daniels and Hughes (1997) and Gail et al. (2000).

While the proposal is elegant, it suffers from several drawbacks. First, separate developments are

necessary for various types of endpoints. Buyse et al. (2000) considered normally distributed endpoints.

An overview of corresponding methods for binary, time-to-event, and longitudinal endpoints can be found

in Burzykowski, Molenberghs and Buyse (2005). The main issue is that, especially the individual-level

surrogacy, is captured through a disparate range of measures. Second, estimation within a hierarchically

formulated model framework can be challenges, for which simplified model strategies had to be developed

(Tibaldi et al., 2003), generally based on replacing a hierarchical analysis by a two-stage alternative,

where first trials are analysed separately, after which relevant summary measures are combined into a

single analysis. Finally, even when the hierarchical model is within reach, the resulting point estimates

and precision measures may be less than reliable.

Regarding the first concern, also Alonso and Molenberghs (2006) discussed in their paper the limita-

tions of the meta-analytic methodology, resulting in the aforementioned collection of definitions for the

individual-level surrogacy measure, depending on the type of endpoint. To compound the issue, these

measures are sometimes expressed at a latent level, whereas they are explicitly in terms of the observed

outcomes in other situations; this clearly compounds the issue. In response to these issues, Alonso and

Molenberghs (2006) proposed a unifying approach based on information theory. Fortunately, trial-level

surrogacy has always been measured using the determination coefficient that results from the regression

between the effect of treatment on the true and the surrogate endpoints.

In the present article, we address the other concerns, regarding the validity of the trial-level surrogacy

estimates. Conventionally, estimation is based on fitting a linear mixed-effects model (Verbeke and

Molenberghs, 2000) or one of its simplification outlined in Tibaldi et al. (2003). The corresponding
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standard errors and interval estimates for the trial-level surrogacy generally derive from the delta method.

It will be shown here that the so-obtained results can be unreliable or even plain misleading. Therefore,

a collection of alternative methods, based on regression trees, random forests, and support vector

machines, combined with bootstrap-based confidence interval and, should one wish, in conjunction with

a cross-validation based correction, will be proposed and applied. The corresponding computer code is

made available through the authors’ web pages.

In Section 2, three motivating case studies are introduced, together with results from the original

analyses. The two-stage model, to be used throughout the paper, is presented in Section 3. The

proposed methods are described in Section 4. Section 5 present the results of applying these methods

to the case studies.

2 Motivating Case Studies

We consider three case studies, covering important and different therapeutic areas. Earlier analyses, to

be contrasted with ours, can be found in Burzykowski, Molenberghs and Buyse (2005).

The first one is situated within ophthalmology, the second one is from advanced colorectal cancer, and

the final one is a psychiatric study. We will compare our results regarding trial-level surrogacy with

those reported in Burzykowski, Molenberghs and Buyse (2005).

2.1 The Age-Related Macular Degeneration Study (ARMD)

These data come from a randomized clinical trial comparing an experimental treatment (interferon-α)

to placebo in the treatment of patients with age-related macular degeneration. The aim of the study

was to compare placebo and the highest dose of interferon-α. Since we have a single multi-centric trial,

i refers to center and j to patient within center. The true endpoint in this study was the change in

visual acuity at 12 months after starting the treatment. The surrogate endpoint considered is visual

acuity at 6 months.

2.2 Advanced Colorectal Cancer

We consider data from four randomized multicenter trials in colorectal cancer. These constitute the

largest source of randomized data available in advanced colorectal cancer. All data were collected and
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checked by the Meta-Analysis Group In Cancer between 1990 and 1996 (Corfu-A Group, 1995; Greco et

al., 1996) to confirm the benefits of experimental fluoropyrimidine treatments with 5-fluorouracil (5FU)

in advanced colorectal cancer. The principal investigators of all trials provided data for every patient,

whether eligible or not, and whether properly followed-up or not. Burzykowski, Molenberghs and Buyse

(2004) and Burzykowski, Molenberghs and Buyse (2005) provide full details on the trials included the

treatments tested, the patient characteristics, and the therapeutic results.

In this study, we compare 5FU plus interferon with 5FU alone. The final endpoint is survival time in

years, while the surrogate is progression-free survival time, i.e., the years between the randomization to

clinical progression of the disease or death. In agreement with previous analyses, only centers with at

least 3 patients on each treatment arm are considered. The data include 48 centers, with a total sample

size of 642 patients.

2.3 Clinical Studies in Schizophrenia

The psychiatric studies in schizophrenic patients is based on a meta-analysis containing five trials (Alonso

et al., 2002). This is insufficient to apply the meta-analytic methods. Instead, we will used country as a

unit of analysis. Note that the choice of units is an important issue, and should be carefully considered

(Cortiñas et al., 2004). The true endpoint is Clinician’s Global Impression (CGI). This is a 7-grade scale,

frequently used by the treating physician to characterize how well a subject is doing. As a surrogate

measure, we consider the Positive and Negative Syndrome Scale (PANSS, Kay et al. (1988)). The

PANSS consists of 30 items that provide an operationalized, drug-sensitive instrument, which is highly

useful for both typological and dimensional assessment of schizophrenia. There are 20 country-units,

with the number of patients per unit ranging from 9 to 128.

3 The Two-Stage Approach

Let us introduce a set of notation that will be used throughout the paper. Let YTij and YSij be random

variables denoting the true and the surrogate endpoints for subject j = 1, . . . ni in unit i = 1, . . . N .

Further, let Zij denote a binary treatment indicator.
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3.1 A Two Stage Meta-analytic Approach

The hierarchical two stage approach proposed by Buyse et al. (2000), based on the two-stage fixed-effects

representation is: {
YSij = µSi + αiZij + εSij ,

YT ij = µTi + βiZij + εT ij ,
(1)

where µSi and µTi are unit-specific intercepts, αi and βi are unit-specific treatment effects on the

endpoints in unit i, and εSij and εT ij are correlated error terms.

At the second stage, it is assumed that





µSi = µS + mSi ,

µTi = µT + mTi ,

αi = α + ai,

βi = β + bi,

(2)

The authors assumed that the two endpoints were normally distributed and at the second stage the µS

and µT are fixed intercepts, mSi and mTi are random intercepts for the unit i, α and β are fixed treatment

effects and ai and bi are random treatment effects. The vector of random effects, (mSi ,mT i , ai, bi)T ,

was assumed to be zero-mean normally distributed with variance-covariance matrix

D =




dSS dST dSa dSb

dST dT T dTa dTb

dSa dTa daa dab

dSb dSa dab dbb




. (3)

Other representations, such as the random-effects representation can be used, in which both steps

are combined. In the context of surrogate endpoint validation both approaches typically perform very

similarly.

3.2 Trial-Level Surrogacy

We will focus on the evaluation of trial-level surrogacy. The key motivation for validating a surrogate

endpoint is the wish to predict the effect of treatment on the true endpoint based on the observed

effect of treatment on the surrogate endpoint. Suppose we consider a new trial, i = 0 say, for which

data are available on the surrogate endpoint but not on the true endpoint. We are interested in the

estimated effect of Z on YT , given the effect of Z on YS for this particular trial. Let us subscript all
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quantities pertaining to the particular trial under study with 0. It is easy to show (Buyse et al., 2000)

that (β + b0|mS0, a0) follows a normal distribution with mean and variance:

E(β + b0|mS0, a0) = β +

(
dSb

dab

)T (
dSS dSa

dSa daa

)−1(
µS0 − µS

α0 − α

)
, (4)

Var(β + b0|mS0, a0) = dbb −
(

dSb

dab

)T (
dSS dSa

dSa daa

)−1(
dSb

dab

)
. (5)

Related to prediction equations (4)–(5), a measure to assess the quality of the surrogate at the trial

level is the coefficient of determination

R2
trial (f) = R2

bi|mSi,ai
=

(
dSb

dab

)T (
dSS dSa

dSa daa

)−1(
dSb

dab

)

dbb
. (6)

A good surrogate, at the trial level , would have (6) close to 1, which will be associated with a surrogate

for whom the variance of (β + b0|mS0, a0) is zero.

Intuition can be gained by considering the simplified case where the prediction of b0 is done independently

of the random intercept mS0. The coefficient (6) then reduces to

R2
trial (r) = R2

bi|ai
=

d2
ab

daadbb
. (7)

This formula is useful when the full random-effects model is hard to fit but a reduced version, excluding

random intercepts, is easier to reach convergence. Note that all methods are essentially rooted in the

concept of regression the true endpoint on the surrogate endpoints, perhaps using auxiliary information

from the intercept (background effect) and properly taking the information into account, ideally through

a two-stage approach.

In practice, in many situation we found that either the surrogate, or the true endpoint, or both are of a

non-Gaussian type. In the next sections we will lay the foundations for the alternative approaches. The

starting point is method that have been applied to the case studies before.

3.3 A Copula Modeling Approach for Categorical Surrogate and Survival True Endpoint

Burzykowski, Molenberghs and Buyse (2004) extended the methodology proposed by Buyse et al. (2000),

when the surrogate is a categorical variable with K ordered categories and the true endpoint is a failure-

time random variable. The authors replace the first stage model by a bivariate copula model for the
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true and a latent continuous variable underlying the surrogate endpoint. The full bivariate model

corresponding to (1) assumed that the joint cumulative distribution of YTij (the true endpoint) and YS̃ij

(the surrogate endpoint) given Zij = z, is generated by a one-parameter copula function Cθ:

FYS̃ij
,YTij

(yT , yS ; z) = Cθ

[
FYS̃ij

(yS; z), FYT ij
(yT ; z), θ

]
, (8)

where Cθ[., .] is a distribution function on [0, 1]2 with θε<, describing the association between YS̃ij
and

YTij . An attractive feature of this model is that the marginal models (proportional odds and proportional

hazards models) and the association model can be selected without constraining each other.

At the first stage Burzykowski, Molenberghs and Buyse (2004) proposed using the maximum likelihood

estimates of the parameters of model (8), assuming a fixed-effects representation. In (8), trial-specific

treatment effects αi and βi on the surrogate and the true endpoint were estimated. At the second stage,

the authors proposed to evaluate the trial-level surrogacy using the determination coefficient from the

linear regression of βi on αi.

3.4 A Joint Modelling Approach for Longitudinal Surrogate and True Endpoints

Alonso et al. (2003) extended the methodology proposed by Buyse et al. (2000) to the case where both

endpoints are longitudinal. This setting poses important challenges in terms of, first, finding a model

that can accommodate such multivariate structures of the data and finally new measures that allow us

to evaluate surrogacy when both endpoints are of this type.

Assume further that ξijk is the time corresponding to the kth occasion (k = 1, . . . , pi) when subject j

in trial i was measured. Following the ideas of Galecki (1994), Alonso et al. (2003) proposed a specific

joint model at the first stage for both responses:

{
YSijk

= µSi + αiZij + gTij (ξijk) + εSij ,

YT ijk
= µTi + βiZij + gSij (ξijk) + εT ij ,

(9)

where µSi and µTi are as for model (1) unit-specific intercepts, αi and βi are unit-specific effects of

treatment Zij on the two endpoints and gSij and gTij are trial and subject-specific time functions. Note

that, even though in practice YSij and YT ij are frequently measured at the same time points, model (9)

does not preclude the more general case. The random vectors associated to the error for both endpoints
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are assumed to jointly follow a mean-zero multivariate normal distribution with variance-covariance

matrix

Σi =

(
σSSi dST i

dST i dT T i

)
⊗ Ri, (10)

where Ri reflects a general correlation matrix for the repeated measurements. More details can be

found in Alonso et al. (2003). If treatment effect is assumed constant over time, then the R2
trial

measure proposed by Buyse et al. (2000) would be used to evaluate surrogacy at the trial level.

3.5 The Original Analyses of the Case Studies

For the ARMD trial, Buyse et al. (2000) experienced problems in fitting the full random-effects models.

Therefore, they entertained a (unweighted) fixed-effects approach instead, based on ideas of Tibaldi et

al. (2003). This produced a moderate trial-level surrogacy: R2
trial (f) = 0.692. The standard errors were

calculated by means of a straightforward application of the delta method, based on deriving the variance

of R2 from its Fisher’s z transform variance and then producing a confidence interval of [0.518; 0.866].

Equipped with our newly proposed tools, we will revisit this conclusion in Section 5.1.

For the advanced colorectal cancer case, Burzykowski, Molenberghs and Buyse (2004) considered a

so-called landmark time of 3 months, which produced a trial-level surrogacy of R2
trial (r) = 0.15 with 95%

confidence interval [0; 0.41]. This clearly is absolutely too low to even consider moving forward with this

particular candidate for surrogacy. However, we will shed a different light on this case in Section 5.2.

Considering the schizophrenia trials, a two-stage model was fitted to these data, incorporating a linear

trend over time, found to be the best fitting, parsimonious model, as a result of a model-building exercise

that set out by allowing for random splines (Verbyla et al., 1999; Alonso et al., 2004). The trial-level

surrogacy obtained for this case study was: R2
trial (f) = 0.820 with 95% confidence interval [0.611; 0.920].

Details can be found in Alonso et al. (2004). We will return to this study in Section 5.3.

4 Alternative Procedures to Evaluate Trial-Level Surrogacy

In this section, we present other techniques that can be used to obtain the trial-level surrogacy using

the two-stage approach proposed by Buyse et al. (2000). In their approach, they proposed to use the

determination coefficient that comes out from the regression between the effects on treatment from

both endpoints (α = (α1, α2, . . . , αN ) and β = (β1, β2, . . . , βN )). There are two major points that
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need to be carefully revised in this definition of trial level surrogacy. First, the estimates that we

are obtaining to evaluate trial level surrogacy are over-optimistic, in the sense that the data used to

build the model are also used to evaluate the fit of the final model. To appropriately account for this

issue, we will use a k-fold cross-validation method to obtain a fair estimate of the trial-level surrogacy

measure. All alternative methods used to estimate trial level surrogacy will be subjected to a 10-fold

cross-validation correction. Second, in general, the relation between these effects does not necessarily

need to be linear. This is why we propose the use of more flexible regression techniques instead, which

allow for a more general functional relation between the effects of treatments on both endpoints. We

will focus on regression trees (Breiman et al., 1984), bagging algorithms (Breiman, 1996a,b), random

forest (Breiman, 2001) and support vector regression (Vapnik, 1995).

Delta-method confidence intervals can be misleading, as we will show by comparison. This motivates the

use of a bootstrap alternative, which is generally applicable. Also, specifically for the linear-regression

case, Ding’s method can be used (Ding, 1996), based on reporting the 2.5 and 97.5 quantiles of the

cumulative distribution function of R2.

We used the R statistical computing environment (Ihaka and Gentleman, 1996) and the R packages

RPART version 3.1-27 (Therneau and Atkinson, 1997), randomForest version 4.5-15 (Liaw and Wiener,

2002) and the interface libsvm from e1071 version 1.5-12 (Meyer, 2001).

4.1 Regression Tree Analysis

The regression tree methodology is a very well-known and widely used technique (Therneau and Atkin-

son, 1997). Unlike classical regression techniques for which the relationship between the response and

predictors is pre-specified, such as linear or quadratic, and the test is performed to confirm or reject the

relationship, regression tree analysis (RTA) assumes no such relationship. It is primarily a method for

constructing a set of decision rules on the predictor variables (Breiman et al., 1984; Verbyla, 1987). The

rules are constructed by recursively partitioning the data into successively smaller groups with binary

splits based on a single predictor variable. Splits for all of the predictors are examined by an exhaustive

search procedure and the best split is chosen. For regression trees, the selected split is the one that

maximizes the homogeneity of the two resulting groups with respect to the response variable, the split

that maximizes the between-group sum of squares, as in analysis of variance, although other options
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may be available. The output is a tree diagram with the branches determined by the splitting rules

and a series of terminal nodes that contain the mean response. The procedure initially grows maximal

trees and then uses techniques such as cross-validation to prune the overfitted tree to an optimal size

(Therneau and Atkinson, 1997). RTA has clear advantages over classical statistical methods. It is

effective in uncovering structure in data with hierarchical or non-additive variables. Because no a priori

assumptions are made about the nature of the relationships among the response and predictor variables,

RTA allows for the possibility of interactions and non-linearity among variables (Moore, Lees and Davey,

1991). Details about the methods can be found in Therneau and Atkinson (1997).

The trial-level surrogacy measure that will be employed when regression tree analysis is used is given by

the relative reduction in deviance of the final tree.

RDtree =
D(β) − D(β | α)

D(β)
, (11)

where D(β) denotes the deviance or total variability of the effects of treatments for the true endpoint;

it is given by the following expression:

D(β) =
N∑

i=1

(βi − β̄)2. (12)

Furthermore, D(β | α) denotes the deviance of the final pruned tree when the information of the effects of

treatments for the surrogate endpoint is used. Assuming that we have m final nodes (M1,M2, . . . ,Mm),

then D(β | α) can be calculated as follows:

D(β | α) =
m∑

h=1


 ∑

βi∈Mh

(βi − βMh
)2


 , (13)

where βMh
is the mean of the effects of treatment on the true endpoint in terminal node Mh.

4.2 Bagging Regression Trees

Bagging, a contraction of ‘bootstrap aggregating’, is a technique proposed by Breiman (1996a,b) that

can be used with many regression methods so as to reduce the variance associated with prediction,

thereby improving the prediction process. It is a relatively simple idea: many bootstrap samples are

drawn from the available data, some prediction method is applied to each bootstrap sample, and then

the results are combined, by averaging for regression, to obtain the overall prediction, with the variance
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being reduced due to the averaging. It can be used to improve both the stability and predictive power

of regression trees, but its use is not restricted to improving tree-based predictions. It is a general

technique that can be applied in a wide variety of settings to improve predictions. Details about the

method can be found in Breiman (1996a).

The trial-level surrogacy measure will be the median of the list of relative reduction in deviance RDtree of

each tree constructed for each bootstrap sample. In our case 1000 bootstrap samples were constructed.

4.3 Random Forests (RF)

The random forest method (Breiman, 2001) is a supervised learning algorithm that has previously been

successfully applied to many different types of studies. A random forest is an ensemble of many identically

distributed trees generated from bootstrap samples of the original data. Each tree is constructed via

a regression tree algorithm. The simplest random forest with random features is formed by selecting

randomly, at each node, a small group of input variables to split on. The size of the group is fixed

throughout the process of growing the forest. Each tree is grown by using the CART methodology

without pruning.

Some features of random forest worth highlighting are: (1) it is an excellent classifier, comparable in

accuracy to support vector machines; (2) it generates an internal unbiased estimate of the generalization

error as the forest building progresses; (3) it has a method for balancing error in unbalanced population

data sets; (4) it computes proximities between pairs of cases that can be used in clustering, locating

outliers, or by scaling, give useful views of the data; (5) it is well known that random forests avoid

overfitting and usually have better performance than regression trees. Details about random forest can

be found in (Breiman, 2001). The trial-level measure of surrogacy will be computed similarly to the

case in which bagging methods were used.

4.4 Support Vector Machine (SVM)

The term support vector machines (SVM) refers to a family of learning algorithms which is nowadays

considered as one of the most efficient methods in throughout a variety of applications. SVM is a

supervised learning technique for classification and regression. The SVM algorithm is a non-linear

generalization of the so-called Generalized Portrait Algorithm developed in the sixties by Vapnik and
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Figure 1: A piecewise linear ε-insensitive loss function.

Lerner (1963) and Vapnik and Chervonenkis (1964), but the first practical implementation was only

published in the early nineties. Ever since, the popularity of the method has been growing among the

machine learning and statistical communities.

SVM can also be applied to regression problems by the introduction of an alternative loss function,

(Smola, 1996). The loss function must be modified to include a distance measure. SVM regressions

uses the ε-insensitive loss function show in Figure 1.

If the deviation between the predicted and actual values is less than ε, then the regression function is

considered good, which can be mathematically expressed as: −ε ≤ ω · αi − b − βi ≥ ε.

From a geometric point of view, it can be seen as a band of size 2ε around the hypothesis function and

any point outside this band is considered as a training error. Suppose the data can be explained by a

linear model, the goal is to find a fitting hyperplane 〈w,αi〉 + b = 0. Formally, we need to minimize

‖ ω ‖2/2 subject to the following constraints:

βi − 〈w,αi〉 − b ≤ ε,

〈w,αi〉 + b − βi ≥ ε.

To account for training errors and the possibility of handling non-linearity we can map the input data

αi into a, possibly higher dimensional, so-called feature space (φ(αi)) and introduce some weights to
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our optimization problem, which now becomes:

min
‖ ω ‖2

2
+ C ·

N∑

i=1

(ξi + ξ̂i),

subject to the following constraints:

βi − 〈w, φ(αi)〉 − b ≤ ε + ξi,

〈w, φ(αi)〉 + b − βi ≥ ε + ξ̂i,

ξi, ξ̂i ≥ 0.

We then need to solve an optimization problem with some constraints. It turns out that in most cases

it can be solved more easily in its dual formulation. Moreover, the dual formulation provides the key

for extending SVM to nonlinear functions. Hence we will use a standard dualization method utilizing

Lagrange multipliers, as described in Fletcher (1989). More details can be found in Vapnik (1995).

The trial level surrogacy measure can be computed using the ratio between the portion of the variability

not explained by the model and the total variability of the effects of the treatment in the true endpoint:

RDSV MR =
D(β) − DSV MR(β | α)

D(β)
.

Here, D(β) can be calculated using (12), and DSV MR(β | α) is the sum of the squares of the differences

between the actual value (βi) and their estimated value obtained when the SVM regression model is

employed.

5 Results

The trial level surrogacy measure was calculated for each of the three case studies using the five different

approaches, in combination with or without 10-fold cross-validation correction. Parameter estimates and

standard errors are summarized in Table 1.

5.1 Age Related Macular Degeneration Study (ARMD)

Figure 2(a) shows the scatterplot of the treatment effect estimated for each center, for both endpoints.

It is clear from examining Table 1 that applying cross-validation produces a downward correction across

the method applied. From the density plots, presented in Figures 2(b), we discern an asymmetric shape
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Table 1: Estimates [95% confidence intervals] for trial-level surrogacy in the age-related macular de-
generation (ARMD), advanced colorectal, and schizophrenia datasets based on the conventional linear
model, regression trees, bagging of regression trees, random forests, and support vector regression. Cal-
culations are done without and with cross-validation. Confidence interval are based on the bootstrap,
except for the linear model, in which case additionally the delta method and Ding’s method is used.

Method ARMD Adv. Colorectal Schizophrenia

Without cross-validation

Linear model 0.685 [0.477;0.841] 0.151 [0.014;0.461] 0.805 [0.602;0.900]

Linear model (delta) 0.685 [0.507;0.863] 0.151 [-0.113;0.415] 0.805 [0.638;0.971]

Linear model (Ding) 0.685 [0.463;0.822] 0.151 [0.000;0.438] 0.805 [0.556;0.915]

Regression tree 0.744 [0.604;0.921] 0.472 [0.305;0.851] 0.698 [0.628;0.967]

Bagged regr. tree 0.839 [0.763;0.961] 0.567 [0.441;0.734] 0.811 [0.633;0.936]

Random forest 0.884 [0.842;0.971] 0.623 [0.454;0.833] 0.866 [0.706;0.937]

Support vector machine 0.830 [0.633;0.950] 0.450 [0.157;0.738] 0.830 [0.625;0.949]

With cross-validation

Linear model 0.618 [0.381;0.824] 0.003 [0.000;0.297] 0.756 [0.473;0.876]

Linear model (delta) 0.618 [0.413;0.823] 0.003 [-0.041;0.047] 0.756 [0.554;0.958]

Linear model (Ding) 0.618 [0.374;0.780] 0.003 [0.000;0.156] 0.756 [0.469;0.892]

Regression tree 0.620 [0.352;0.854] 0.293 [0.021;0.654] 0.497 [0.264;0.902]

Bagged regr. tree 0.693 [0.574;0.921] 0.279 [0.099;0.654] 0.661 [0.514;0.897]

Random forest 0.712 [0.514;0.914] 0.344 [0.046;0.696] 0.621 [0.408;0.863]

Support vector machine 0.684 [0.223;0.890] 0.294 [0.022;0.630] 0.717 [0.133;0.927]
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Figure 2: Age-related macular degeneration study. (a) Scatterplot of the estimated treatment effects
for both endpoint in each center, overlaid by predictions of the final pruned tree (solid lines), modeling
the effect of the treatment on the true endpoint against the effect of the treatment on the surrogate for
the ARMD data together with the linear model predictions (dotted line). (b) Estimated density function
for the trial level surrogacy, without correction (solid line) and with cross-validation correction (dashed
line).

of the distribution for the trial-level surrogacy measures, whether or not cross-validation is applied.

This indicates that a delta interval, by definition symmetric, is less appropriate. The regression tree

model was fitted and the fit of the resulting pruned tree, together with the linear model fit is shown in

Figure 2(a). Turning to the support vector regression, several kernels and associated parameterizations

could be used. Both of these were tuned and the best choice was based on the performance of the

model using the sum of the squared residuals with cross-validation, resulting in the radial kernel.

Focusing on the cross-validation outcomes, the point estimates are all reasonable similar, with the

random forest based estimate the largest, followed by the bagged regression tree and support vector re-

gression versions. There is considerable difference between the confidence intervals, even when confining

attention to the bootstrap based ones. The SVM interval is very wide, with a length of 0.667. Then,

there is a middle group, consisting of regression trees (0.502), the linear model (0.440), and random

forests (0.400). Finally, the shortest interval is found with bagged regression trees (0.347).
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Figure 3: Advanced Colorectal Cancer. (a) Scatterplot of the estimated treatment effects for both
endpoint in each center, overlaid by predictions from support vector regression (solid line), modeling
the effect of the treatment on the true endpoint against the effect of the treatment on the surrogate,
together with the linear model predictions (dashed lines). (b) Estimated density function for the cut-off
values used in all 1000 trees and the ones obtained in the final pruned tree (vertical lines). The solid
curve refers to bagging; the dotted line represents the random forests.

5.2 Advanced Colorectal Cancer

We estimated the treatment effect for each unit using the methodology presented in Section 3.3. The

scatterplot of the estimated treatment effect for both endpoints in each center is shown in Figure 3(a).

As is clear from Table 1, especially using the linear model, and then in particular when cross-validation

is employed, the magnitude of the association in this study is much lower than what was observed with

the ARMD trial. As a result, the delta interval produces an undesirable negative lower limit in this

case. Fortunately, both Ding’s method and the bootstrap can be employed to satisfactorily overcome

this pitfall. The point estimates for the other methods are all considerable higher, ranging from 0.450

to 0.623 without, and being close to 0.300 with cross-validation.

Figure 3(b) displays the density of cut-off values obtained when random forest is used. It can be seen

here that both bagging and random forests report the cut off values obtained in the final pruned tree

as the more likely to happen, but they do report other possible cut-offs, which differ between both

methods.
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Figure 4: Clinical Studies in Schizophrenia. (b) Predictions of the final prune tree (solid lines), modeling
the effect of the treatment on the true endpoint against the effect of the treatment on the surrogate,
together with the linear model predictions (dashed line). (c) Predictions from support vector regression
(solid line), modeling the effect of the treatment on the true endpoint against the effect of the treatment
on the surrogate, together with the linear model predictions (dashed lines).

Turning to support vector machines, the best kernel was, again, the radial kernel. The predictions of

the final model are shown in Figure 3(a).

Comparing the lengths of the bootstrap-based confidence intervals, a somewhat different picture emerges

than what was seen with cross-validation. Three methods produce intervals of roughly the same length,

around 0.640: random forests, regression trees, and support vector machines. The interval for bagged

regression trees is quite a bit lower (0.555), with the linear model at first sight the clear “winner” in this

case (0.297). However, this is misleading since we have established the association to be of a different,

non-linear nature. It should therefore be discarded in this case, thereby motivating, once more, the use

of alternative, more flexible methods.

5.3 Clinical Studies in Schizophrenia

The effects of treatment on both endpoints for the schizophrenic dataset were estimated using the

methodology described in Section3.4. Figures 4(a)(b) shows the scatterplot of the estimated effects of

treatment on both endpoints, for each country involved in the study.
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All point estimates are now considerable, between roughly 0.7 and 0.85 in the non-corrected case, and

between 0.5 and 0.75 when cross-validation is applied. Figure 4(b) shows the fitted values obtained

with regression trees, together with the predictions from the linear model. Also here, the radial kernel

did best for the support vector machine method. The final model is shown in Figure 4(c).

We now obtain a very wide interval for support vector machines (0.794), followed by regression trees

(0.638). The other three are more narrow, going from 0.455 for random forests, over 0.403 for the linear

model, to the winner in this case, bagged regression trees, which produces 0.383.

6 Discussion and Recommendation

In this paper, we have investigated several issues related to the estimation of trial level surrogacy.

First, there is the issue related to the assumption of linear association between the effect of treatment

on the true and surrogate endpoints, which can be dealt with by using more flexible modeling techniques

that allows other type of association. The methodology developed in this field is not restricted to the

linear association between this effects of treatment and here we proposed a more flexible approach that

allows to predict the treatment effect on the true endpoint even if the association is not linear.

Second, the use of the delta method to calculate confidence intervals is not recommendable since it

makes assumptions valid only in very large samples. Not only are the intervals always symmetric,

even when the corresponding distribution is not, it may produce range-violating limits. We therefore

considered alternatives: bootstrap methods in general and, for the linear model, Ding’s approach. When

both of these are applied, they produce similar results.

Third, we have seen that, when no cross-validation based correction is applied, overly optimistic trial-

level surrogacy estimates will be found. Many values reported in the recent literature on surrogate

marker evaluation ought to be revisited in the light of this observation. Since the differences can indeed

be considerable, cross-validation is highly recommendable.

The alternative approaches proposed here generally perform better than the classical ones. For the

advanced colorectal cancer studies, we even found the trial-level surrogacy is considerably different from

what has been reported in the literature (Burzykowski, Molenberghs and Buyse, 2005). In terms of point
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estimates, the alternative approaches typically produce larger values and narrower confidence intervals.

This is true, not so much for support vector machines and regression trees, but strongly so for the

bagging and random forest methods. These methods in particular are highly recommendable.
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