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Following the works of Berthet [1, 2], we �rst obtain exact clustering rates for the functional law
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of Deheuvels [5].
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1 Introduction

De�ne the uniform empirical process by αn(t) := n1/2(Fn(t) − t), where

Fn(t) := n−1]{i :, Ui ≤ t}, t ∈ [0, 1], and (Ui)n≥1 are i.i.d random variables
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2 Clustering rates for empirical processes

uniformly distributed on [0, 1]. De�ne the quantile process by

βn(t) = n1/2
(
F−1

n (t)− t
)
, t ∈ [0, 1],

where F−1
n (t) := inf{u : Fn(u) ≥ t}. These processes have been extensively

investigated in the literature (see, e.g., [6] and [7] and the references therein).

In a pioneering work, Finkelstein [3] has established the functional law of the

iterated logarithm (FLIL) for αn. Namely, the author showed that, almost

surely,

αn

bn
 S2. (1)

Here, we set bn =
√

2 log2 n and log2 u = log(log u ∨ e). In a metric space

(E , d) we set un  H whenever un is relatively compact with limit set H (see,

e.g., [4]). In (1), we set (E , d) := (B[0, 1], || · ||) where B[0, 1] stands for the set

of bounded functions on [0, 1] and || · || is the sup-norm over [0, 1]. The set S2

in (1) is given by

S2 :=
{

f(t) ∈ S1, f(1) = 0
}

, (2)

where

S1 :=
{

f(t) :=

t∫
0

f ′(t)dt,

1∫
0

f ′2(t)dt ≤ 1
}

. (3)

Note that S2 (resp. S1) is the unit ball of the reproducing kernel Hilbert space

of the Brownian bridge (resp. of the Wiener process on [0,1]). In the spirit of [3],
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Mason [4] has obtained the following FLIL for the local empirical process:

αn(an·)√
anbn

 a.s. S1. (4)

Here, an is a sequence of constants satisfying an ↓ 0, nan ↑ ∞ and

nan/ log2 n → ∞. Deheuvels and Mason [8] have established a related uni-

form functional limit law for the following sets of random trajectories.

Θn :=
{αn(t + an·)− αn(t)√

2an log(1/an)
, t ∈ [0, 1− an]

}
.

They showed that, with probability one, we have

lim
n→∞

sup
gn∈Θn

inf
f∈S1

|| gn − f ||= 0,

lim
n→∞

sup
f∈S1

inf
gn∈Θn

|| gn − f ||= 0, (5)

where an is a sequence of constants ful�lling an ↓ 0, nan ↑ ∞, nan/ log n →

∞, log(1/an)/ log2 n → ∞. Berthet [1] re�ned (5) under stronger conditions

imposed upon an. Making use of sharp upper bounds for Gaussian measures

(refer to Talagrand [9]), he proved that for some suitable ε > ε0 (where ε0 is a

universal constant), we have almost surely for all n large enough

Θn ⊂ S1 + ε log(1/an)−2/3B0. (6)

Here B0 := {f ∈ B[0, 1] :|| f ||≤ 1}. The �rst aim of the present article

is to extend the just-mentioned result of Berthet [1] to some other random

objects than that used for that given in 6 (see theorem 2.1 and 2.2 in the

sequel). Results of this kind are usually called clustering rates, as they give us
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the follwing information: results (1) and (4) assert that sequences of random

trajectories are asymptotically attracted by a given cluster set. Our results give

the rates of these attraction phenomenon. Another related problem is �nding

rates of convergence of such random sequences to a speci�ed function belonging

to the cluster set. Such results are known under the name of functional Chung-

type limit laws. We now focus on the local empirical process αn(an·), where

an ↓ 0 as n → ∞. The works of Csáki [10], de Acosta [11], Grill [12], Gorn

and Lifshits [13], and Berthet and Lifshits [14] on small ball probabilities for

Wiener processes provide some crucial tools to establish such limit laws for

(αn(an·))n≥1, as these are expected to asymptotically mimic Wiener processes

(see Mason [4]). Along this line, Deheuvels [5] has given Chung-type limit laws

for (αn(an·))n≥1, by showing that if an is a sequence of constants satisfying

nan ↑ ∞, an ↓ 0 and nan/(log2 n)3 → ∞, we have almost surely, for each

f ∈ S1 satisfying || f ||2H :=
1∫
0

f ′2(t)dt < 1

lim inf
n→∞

(log2 n)
∣∣∣∣∣∣αn(an·)√

anbn
− f

∣∣∣∣∣∣ =
π

4
√

1− || f ||H
.

The proof of this theorem relies on strong approximation methods in combina-

tion with the results of de Acosta [11]. The latter provides useful exponential

bounds for

P
(∣∣∣∣∣∣W

T
− f

∣∣∣∣∣∣ ≤ ε
)
,

with a small ε > 0 and a large T . Here, W is a Wiener process on [0, 1] and

f satis�es || f ||2H< 1. The study of related probabilities when || f ||H= 1

has required di�erent arguments. In [12], rough estimates are given covering
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this case. In [13] and [14], some exact rates are given for functions with �rst

derivatives having a variation either bounded or locally in�nite. The sets of

all functions of this type are called respectively Sbv
1 and S liv

1 . In the present

paper, we shall make use of the latter results to extend the work of [5], to the

case where f belongs to Sbv
1 ∪S liv

1 . The remainder of our paper is organized as

follows. Our main results are stated in §2 in theorems 2.1, 2.2 and 2.3. In §3,

the proofs of these theorems 2.1, 2.2 and 2.3 are provided.

2 Main Results

Our �rst result gives a re�nement of Finkelstein's FLIL [3].

Theorem 2.1 There exists a universal constant L0 >0 such that, for any

choice of ε > L0 we have almost surely, for all large n

αn

(2 log2 n)1/2
∈ S2 + ε(log2 n)−2/3B0, (7)

βn

(2 log2 n)1/2
∈ S2 + ε(log2 n)−2/3B0. (8)

Remark 1 The uniform Bahadur-Kiefer representation (see [15]) asserts that

almost surely

lim sup
n→∞

n1/4(log n)−1/2(log2 n)−1/4 || αn + βn ||= 2−1/4,

from where (8) is readily implied by (7).

Our second theorem concerns the FLIL for local increments of the empirical

process.
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Theorem 2.2 Let an be positive real numbers satisfying, as n →∞,

nan ↑ ∞,
nan

(log2 n)7/3
→∞, an ↓ 0. (9)

Then there exists a universal constant L > 0 such that, for any choice of ε > L

we have almost surely, for all large n,

αn(an·)√
2an log2 n

∈ S1 + ε(log2 n)−2/3B0. (10)

If moreover nan/(log2 n)11/3 → ∞ then we have almost surely, ultimately as

n →∞,

βn(an·)√
2an log2 n

∈ S1 + ε(log2 n)−2/3B0. (11)

Remark 2 We shall use the fact (see e.g. [16]) that under (9), we have almost

surely

lim sup
n→∞

(n/an)1/4(log2 n)−1/4(2 log2 n+log(nan))−1/2 || αn(an·)+βn(an·) ||≤ 2−1/4.

from where (11) is implied by (10) after straightforward computations.

In order to state our last result, we need to give some de�nitionss. Recall that

f ∈ Sbv
1 whenever f ′ has a derivative with bounded variation and

1∫
0

f ′2(t)dt =

1. Resulults on small ball probabilities for a Wiener process when f ∈ Sbv
1

have been established by Gorn and Lifshits [13]. For such a function f , we set

∇f (L) := L2/3, L > 0 and we denote by χf the constant which is the unique

solution of equation (3.1) in [13] (we refer to the just mentioned paper for more

details. The case where f ∈ S liv
1 (i.e. where the derivative of f ′ admits a version

with locally in�nite variation) has been treated by Berthet and Lifshits [14].
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For such a function f , we set χf := 1 and we denote by ∇f (L) the unique

solution of equation (2.1) in [2]. Note that ∇f (L) is still a function of L, as

equation (2.1) in [2] depends on the parameter L. Our third result is stated as

follows.

Theorem 2.3 Let f ∈ Sbv
1 ∪ S liv

1 be arbitrary and let an be a sequence of real

numbers satisfying, as n →∞,

nan ↑ ∞, an ↓ 0, an log2 n → 0, (12)

lim
n→∞

nan

log2 n∇2
f (log2 n)

= ∞. (13)

Then we have almost surely

lim inf
n→∞

∇f (log2 n) || αn(an·)√
2an log2 n

− f ||= χf .

Remark 3 The conditions (12) and (13) imposed upon an turn out to be the

best possible with respect to the methods used in the proof of theorem 2.3.

The latter combines Poissonization techniques with strong approximation ar-

guments. In recent papers Deheuvels and Lifshits [17] and Shmileva [18] have

provided new tools to estimate probabilities of shifted small balls for a Poisson

process without making use of strong approximation techniques. These results

show up to be powerful enough to investigate Chung-Mogulskii limit laws for

αn(an.) without making use of strong approximation techniques, and thus re-

laxing condition (12). However, the results of Shmileva do not cover the case

where f ∈ S liv
1 at this time.
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3 Proofs

3.1 Proof of Theorem 2.1

Select an ε > 0 and consider the sequence εn := ε(log2 n)−2/3. The main tool

to achieve our goal is the exponential inequality stated in the following fact,

which follows directly from Talagrand [19]. Recall that B0 is the unit ball for

|| · ||.

FACT 3.1 Let B be a Brownian bridge. There exists three constants K, L0

and u0 >0 such that, for any 0 < u < u0 and c > 0, we have

P
(
B /∈ cS2 + uB0

)
≤ K exp

(L0

u2
− cu

2
− c2

2

)
. (14)

Let W be a Wiener process on [0, 1]. There exist two constants u1 and L1 such

that, for any 0 < u < u1 and c > 0, we have

P
(
W /∈ cS1 + uB0

)
≤ exp

(L1

u2
− cu

2
− c2

2

)
. (15)

In the proof of theorem 2.1, we will make use of blocking techniques (see,

e.g., [8] and [1]). For any real umber a, set [a] as the unique integer q ful�lling

q ≤ a < a + 1, and set

nk :=
[
exp

(
k exp

(
− (log k)1/6

))]
, k ≥ 1.

Set Nk := {nk, . . . , nk+1 − 1} for k ≥ 5. Given an integer n ≥ 1, we set k(n)

as the unique integer k such that n ∈ Nk. We shall �rst study the following
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sequence of functions

gn := (nk+1)−1/2b−1
nk+1

Hn, k = k(n),

with Hn(t) := n(Fn(t) − t) and bn := (2 log2 n)1/2. Let p1 and q1 be two

conjugates numbers (such that 1/p1 + 1/q1 = 1 ) with p1 > 1. Set, for k ≥ 1,

mp1,k := min
n∈Nk

P
( 1

(nk+1)1/2bnk+1

|| Hnk+1 −Hn ||≤
1
p1

εnk+1

)
.

A standard blocking argument based upon Ottaviani's lemma (see, e.g., [8])

yields

P
( ⋃

n∈Nk

{ 1
(nk+1)1/2bnk+1

Hn /∈ S2 + εnk+1B0

})

≤ 1
mp1,k

P
( 1

(nk+1)1/2bnk+1

Hnk+1 /∈ S2 +
1
q1

εnk+1B0

)
.

Let k be integer and select n ∈ Nk. By the Dvoretsky-Kiefer-Wolfowitz in-

equality (see e.g. [20]) we have,

P
( 1

(nk+1)1/2bnk+1

|| Hnk+1 −Hn ||≥
1
p1

εnk+1

)
≤ P

(
|| αnk+1−n ||≥

1
p1

εnk+1

( 1
1− nk

nk+1

)1/2
bnk+1

)
≤ 2 exp

(
− ε

p1

2(
(log k)−1/3 exp((log k)1/6)

(
1− nk

nk+1

)))
,

whence mp1,k ≥ 1/2 for all large k, since nk+1/nk → 1 as k → ∞. Now let

p2, q2 > 1 be two conjugate numbers (1/p2 + 1/q2 = 1). For k ≥ 1 we have,
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Bnk+1 denoting a Brownian bridge,

P
(αnk+1

bnk+1

/∈ S2 +
1
q1

εnk+1B0

)
≤ P

(
|| αnk+1 −Bnk+1 ||≥

1
p2q1

εnk+1bnk+1

)
+ P

(
Bnk+1 /∈ bnk+1S2 +

1
q2q1

εnk+1bnk+1B0

)
:= PKMT

k + PTal
k .

Making use of the KMT approximation (see, e.g., [21])), we can choose a se-

quence (Bnk
)k≥1 satisfying, for some universal constants C2, C3 and for all k

large enough,

PKMT
k ≤ C2 exp

(
− C3(nk+1)1/2 1

2p2q1
εnk+1bnk+1

)
.

On the other hand, by applying fact (14) we have, for all large k,

PTal
k ≤ K exp

[
−

( ε

q1q2
− L0(q1q2)2

2ε2

)
(log2 nk+1)1/3 − log2 nk+1

]
.

Routine analysis shows that both PKMT
k and PTal

k are summable in k for any

choice of ε > (L0/2)1/3 =: L0, provided that q1 > 1 is chosen small enough.

Now an application of (1) in combination with trivial properties of (nk)k≥1

shows that, almost surely, as n →∞,

|| gn − b−1
n αn ||= o((log2 n)−2/3).
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3.2 Proof of Theorem 2.2

Recall that bn := (2 log2 n)1/2, n ≥ 1. Let p1, q1 > 1 be two conjugate numbers.

Let k ≥ 5 be an integer and, select n ∈ Nk. Set

mk,p1 := inf
n∈Nk

P
( 1

(nk+1ank+1)1/2bnk+1

|| Hn(ank+1 ·)−Hnk+1(ank+1 ·) ||≤
1
p1

εnk+1

)
.

A standard blocking argument (see, e.g., [8], lemma 3.4) yields

P
( ⋃

n∈Nk

{ Hn(ank+1 ·)
(nk+1ank+1)1/2bnk+1

/∈ S1 + εnk+1

})

≤ 1
mk,p1

P
( Hnk+1(ank+1 ·)

(nk+1ank+1)1/2bnk+1

/∈ S1 +
1
q1

εnk+1

)
.

Now, for any integer k ≥ 5 and n ∈ Nk, we have

P
( 1
√

nk+1 − n
|| Hnk+1(ank+1 ·)−Hn(ank+1 ·) ||≥

1
p1

εnk+1bnk+1

(nk+1ank+1

nk+1 − n

)1/2
)

≤P
(

sup
t≤ank+1

| αnk+1−n(t) |
1− t

≥ 1
p1

εnk+1bnk+1

(nk+1ank+1

nk+1 − nk

)1/2
)
.

It is well known (see, e.g., [6], proposition 1, p. 133) that for each n, the process

(1− t)−1αn(t) is a martingale in t. The Doob-Kolmogorov inequality yields

1−mk,p1 ≤
p2
1(1− ank+1)(1− nk

nk+1
)(log nk+1)1/3

2ε2
.

Hence for all k large enough we have mk,p1 ≥ 1/2. Now set for each integer

n ≥ 1

Π̃n(t) := n−1/2
( ηn∑

i=1

1{Ui≤t} − t
)
, t ∈ [0, 1],
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where ηn is a Poisson variable with expectation equal to n and independent of

(Ui)i≥1. Let Π̃ denote a standard centered Poisson process on R+ and let W

be a Wiener process that we assume to be constructed on the same underlying

probability space as Π̃. Notice that Π̃n(·) and n−1/2Π̃(n·) are equal in distri-

bution as processes on [0, 1]. Now let p2, q2 > 1 be two conjugate numbers.

By making use of Poissonization techniques (see, e.g., [8]) we see that for all

su�ciently large k,

P
(αnk+1(ank+1 ·)

a
1/2
nk+1bnk+1

/∈ S1 +
1
q1

εnk+1B0

)

≤ 2P
(Π̃nk+1(ank+1 ·)

a
1/2
nk+1bnk+1

/∈ S1 +
1
q1

εnk+1B0

)

= 2P
( Π̃(nk+1ank+1 ·)

(2nk+1ank+1 log2 nk+1)1/2
/∈ S1 +

1
q1

εnk+1B0

)
≤ 2P

(
|| W (nk+1ank+1 ·)− Π̃(nk+1ank+1 ·) ||≥

1
q1p2

(nk+1ank+1)
1/2bnk+1εnk+1

)
+ 2P

( W (nk+1ank+1 ·)
(nk+1ank+1)1/2bnk+1

/∈ S1 +
1

q1q2
εnk+1

)
:= PKMT

k + PTal
k .

Now, making use of the strong approximation theorem of Komlós, Major ad

Tusnady [22], we can assume that the process W involved in the former ex-

pression is satis�es, for some universal constants C1, C2, C3 > 0, and for all

T > 0, z > 0,

P
(
|| Π̃(T ·)−W (·) ||≥ z + C1 log T

)
≤ C2 exp

(
− C2z

)
. (16)
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Notice that, as k →∞,

(nk+1ank+1)1/2bnk+1εnk+1

log(nk+1ank+1)
→∞.

Thus, we have, ultimately as k →∞,

PKMT
k ≤ C2 exp

(
− εC3√

2q1p2

(nk+1ank+1)
1/2(log nk+1)−1/6

)
. (17)

Recalling the assumption nan/(log2 n)7/3 →∞ we see that PKMT
k is summable

in k. Now, recalling (15), we have for all large k,

PTal
k = P

(
W /∈ bnk+1S1 +

1
q1q2

εnk+1bnk+1B0

)
≤ exp

(
−

( ε

q1q2
− L1(q1q2)2

2ε2

)
(log2 nk+1)1/3 − log2 nk+1

)
.

The last inequality is due to Talagrand [19], with L1 a universal constant. Now

if ε > (L1/2)1/3 =: L1 and if q1, q2 > 1 are chose su�ciently small, then PTal
k

is summable in k. By the Borel-Cantelli lemma, we see that for any ε > L1 we

have almost surely, for all large n,

gn ∈ S1 + εnk+1B0,

where gn := (nk+1ank+1)−1/2b−1
nk+1

Hn(ank+1 ·), n ∈ Nk. To conclude the proof

of theorem 2.2, it remains to control the distance between a
−1/2
n b−1

n αn(an·)

and gn, which is the purpose of the following lemma.

Lemma 3.2 We have almost surely

lim sup
n→∞

(log2 n)2/3
∣∣∣∣∣∣ αn(an·)

(2an log2 n)1/2
− gn

∣∣∣∣∣∣ = 0.
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Proof

Set Γn := 1 − (n/nk+1)1/2(an/ank+1)1/2(log2 n/ log2 nk+1)1/2. The triangle

inequality yields

∣∣∣∣∣∣ αn(an·)
(2an log2 n)1/2

− gn

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣ αn(an·)
(2an log2 n)1/2

Γn

∣∣∣∣∣∣ +
∣∣∣∣∣∣ Hn(an·)−Hn(ank+1 ·)

(2nk+1ank+1 log2 ank+1)1/2

∣∣∣∣∣∣
(18)

:= An + Bn.

Clearly we have, as k →∞,

max
n∈Nk

log2 nk+1 Γn ≤
(

1−

√
nk log2 nk

nk+1 log2 nk+1

)
(log2 nk+1)2/3 → 0.

Now, by applying (4) we have almost surely

lim sup
n→∞

∣∣∣∣∣∣ αn(an·)
(2an log2 n)1/2

∣∣∣∣∣∣ = 1. (19)

Obviously (19) implies that, almost surely

lim
n→∞

(log2 nk+1)2/3 max
n∈Nk

An = 0.

We now focus on controlling Bn. Set ρk := ank

ank+1
and notice that

P
(

max
n∈Nk

(log2 n)2/3
∣∣∣∣∣∣ Hn(an·)−Hn(ank+1 ·)

(2nk+1ank+1 log2 ank+1)1/2

∣∣∣∣∣∣ ≥ ε
)

≤ P
(

max
n∈Nk

sup
1≤ρ≤ρk, 0≤t≤1

(log2 nk+1)2/3
∣∣∣αn(ank+1ρt)− αn(ank+1t)

(2ank+1 log2 nk+1)1/2

∣∣∣ ≥ ε
)
.

Now consider the Banach space B
(
[0, 1]× [0, 2]

)
of all real bounded functions

on [0, 1]× [0, 2], endowed with the usual sup norm || · ||[0,1]×[0,2]. We shall now

make use of the powerful maximal inequality of Montgommery-Smith-Latala
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(see, e.g., [23]). This inequality implies that there exists a constant c̃ > 0 such

that, for any �nite sequence of i.i.d random variables (Xi)i=1...n taking values

in B
(
[0, 1] × [0, 2]

)
and for all λ > 0 we have, assuming that the involved

expressions are meaningful,

P
(

max
i=1,...,n

∣∣∣∣∣∣ i∑
j=1

Xj

∣∣∣∣∣∣
[0,1]×[0,2]

≥ λ
)
≤ c̃ P

(∣∣∣∣∣∣ n∑
i=1

Xi

∣∣∣∣∣∣
[0,1]×[0,2]

≥ λ

c̃

)
. (20)

For �xed k ≥ 1, we apply (20) to the �nite sequence (Xi)i∈Nk
, with Xi(t, ρ) :=

1[t,ρt](Ui), t ∈ [0, 1], ρ ∈ [1, ρk], rhot ≤ 1 and Xi(t, ρ) = 0 elsewhere. Hence

P
(

max
n∈Nk

sup
1≤ρ≤ρk, 0≤t≤1

(log2 nk+1)2/3
∣∣∣αn(ank+1ρt)− αn(ank+1t)

(2ank+1 log2 nk+1)1/2

∣∣∣ ≥ ε
)

≤c̃ P
(

sup
1≤ρ≤ρk, 0≤t≤1

(log2 nk+1)2/3
∣∣∣αnk+1(ank+1ρt)− αnk+1(ank+1t)

(2ank+1 log2 nk+1)1/2

∣∣∣ ≥ ε/c̃
)

≤ 2c̃ P
(
|| Π̃(nk+1ank

·)−W (nk+1ank
·) ||≥ ε

8c̃

(2nk+1ank+1 log2 nk+1)1/2

(log2(nk+1))2/3

)
+ 2c̃ P

(∣∣∣∣∣∣ W (ρk·)−W (·)
(2 log2 nk+1)1/2

∣∣∣∣∣∣ ≥ ε

4c̃(log2 nk+1)2/3

)
. (21)

In the last expression (which is the combination of usual poissonization tech-

niques with the triangular inequality), Π̃ and W denote respectively a centered

Poisson process and a Wiener process based on the same underlying probabil-

ity space. By the KMT construction (see, e.g., [22]), W can be constructed to

satisfy (16) by making use of the same arguments as those onvoked to obtain

(17), we conclude that the �rst term in (21) is widely sumable in k. To control

the second term in (21), we shall make use of a well known inequality (see,

e.g., [6], p. 536), with a := ρk − 1, λ := (ρk − 1)−1/2(log2 nk+1)−1/6(
√

2ε/4c̃)
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and u = 1/2, to get

P
(∣∣∣∣∣∣W (ρk·)−W (·)√

2 log2 nk+1

∣∣∣∣∣∣ ≥ ε

4c̃(log2 nk+1)2/3

)
≤1024c̃√

2ε
(ρk − 1)−1/2((log2 nk+1)1/6 exp

(
− ε2

64c̃2
(ρk − 1)−1(log2 nk+1)−1/3

)
.

This expression is summable in k, and hence maxn∈Nk
Bn → 0 almost surely

as k →∞. �

3.3 Proof of theorem 2.3

Recall that χf , ∇f , Sbv
1 and S liv

1 are de�ned in �2. The main tool to achieve

the proof of theorem 2.3 is the following inequality (see [2]), which sums up

di�erent results from Gorn and Lifshits [13], Berthet and Lifshits [14] and

Grill [12] (see also de Acosta [11]).

INEQUALITY 3.3 For any f ∈ SBV
1 ∪ SLIV

1 and δ > 0, there exist γ+ =

γ+(δ, f) > 0 and γ− = γ−(δ, f) > 0 such that for T su�ciently large:

P
(
∇f

(T 2

2

)∣∣∣∣∣∣W
T
− f

∣∣∣∣∣∣ ≤ (1 + δ)χf

)
≥ exp

(
− T 2

2
+ γ+

∇2
f (T 2/2)

T 2

)
,

P
(
∇f

(T 2

2

)∣∣∣∣∣∣W
T
− f

∣∣∣∣∣∣ ≤ (1− δ)χf

)
≤ exp

(
− T 2

2
− γ−

∇2
f (T 2/2)

T 2

)
.

Select f ∈ SBV
1 ∪ SLIV

1 . We remind the two following properties of ∇f

(see [24]), namely limL→∞ L−1∇f (L) < ∞ and limL→∞ L−2/3∇f (L) > 0. We

shall �rst show that almost surely

lim inf
n→∞

∇f (log2 n)
∣∣∣∣∣∣ αn(an·)

(2an log2 n)1/2
− f

∣∣∣∣∣∣ ≥ χf .
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Select ε > 0. We start by applying Poissonization techniques in combination

with the usual KMT approximation.

P
(
∇f (log2 n)

∣∣∣∣∣∣ αn(an·)
(2an log2 n)1/2

− f
∣∣∣∣∣∣ ≤ χf (1− 2ε)

)
≤2P

(
∇f (log2 n)

∣∣∣∣∣∣ W (nan·)
(2nan log2 n)1/2

− f
∣∣∣∣∣∣ ≤ χf (1− ε)

)
+ 2P

(∣∣∣∣∣∣W (nan·)− Π̃(nan·)
∣∣∣∣∣∣ ≥ ε(2nan log2 n)1/2

∇f (log2 n)

)
.

These two terms are summable along the subsequence nk, the �rst term beign

controlled by the KMT approximation while the second is controlled by in-

equality 3.3. Now the control between nk and nk+1 follows the same line as in

lemma 3.2. We omit details for sake of brevity.

We now focus on showing that, almost surely,

lim inf
n→∞

∇f (log2 n)
∣∣∣∣∣∣ αn(an·)

(2an log2 n)1/2
− f

∣∣∣∣∣∣ ≤ χf .

Set nk := k2k, vk := nk+1 − nk and

hk :=
√

nk+1αnk+1(ank+1 ·)−
√

nkαnk
(ank+1 ·)√

2vkank+1 log2(vk)
.

Notice that the hk are mutually independent processes, and that each hk is

distributed like (2ank+1 log2 vk)−1/2αvk
(ank+1 ·). We now make use of the follow-

ing "unpoissonization" lemma. Recall that Π̃(·) denotes a centered standard

Poisson process on [0,∞).

Lemma 3.4 Under assumptions (12) and (13), there exist two sumable positive

sequences (ck)k≥1, (bk)k≥1 and an integer k0 ≥ 1 such that, for any set A ⊂

B([0, 1]) that is measurable for both empirical and Poisson processes and for
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all k ≥ k0,

P
(
Π̃(vkank+1 ·) ∈ A

)
− ck − bk ≤ 2P

(
v

1/2
k αvk

(ank+1 ·) ∈ A
)
.

Proof Given two sequences (θn)n≥1 and (νn)n≥1 we shall write θn ∼ νn when-

ever θn/νn → 1 as n → ∞. Set uk := (4 log2(vk)/nk+1ank+1)1/2. By assump-

tion (13) we have uk → 0 ask → ∞. Now set Π(t) := Π̃(t) + t, ∈ [0, 1] and

R1,k := Π(vkank+1), R2,k := Π(vk)−Π(vkank+1). For �xed k, R1,k and R2,k are

independent random variables and are distributed as Poisson variables with

respective expectations vkank+1 and vk(1− ank+1). Let A ⊂ B([0, 1]) be an ar-

bitrary set that we assume to be measurable for Π̃ and αn. De�ne the following

events:

Ek :=
{

Π̃(vkank+1 ·) ∈ A
}

, k ≥ 1.

We have, for any integer k ≥ 1,

P(Ek) ≤ P
(
Ek ∩R1,k ∈ [(1− uk)vkank+1 , (1 + uk)vkank+1 ]

)
+ P

(
R1,k < (1− uk)vkank+1

)
+ P

(
R1,k > (1 + uk)vkank+1

)
.

Denote by ck and bk the two last terms of the RHS of the preceding inequal-

ity. We shall show that these two sequences have �nite sums. Making use of

Cherno�'s inequality, we have:

ck ≤ exp
(
− vkank+1

(
(1 + uk) log(1 + uk)− uk

))
.
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Since (1 + u) log(1 + u)− u ∼ u2

2 as u → 0, it follows that for all large k,

ck ≤ exp
(
− vkank+1

u2
k

2

)
=exp

(
− 2 log2 nk

)
.

We make use of a similar method to show that (bk)k≥1 is sumable. It remains

to show that, for all k ≥ k0 (with k0 independent of A), we have

P
(
Ek ∩R1,k ∈ [(1− uk)vkank+1 , (1 + uk)vkank+1 ]

)
≤ 2P

(
Ek | Π(vk) = vk

)
.

Now set

Kk := inf
{

P(R2,k = vk − j)
P(Π(vk) = vk)

j ∈ {(1− uk)vkank+1 , (1 + uk)vkank+1}
}

. (22)

We have

P
(
Ek ∩R1,k ∈ [(1− uk)vkank+1 , (1 + uk)vkank+1 ]

)
≤

[(1+uk)vkank+1 ]+1∑
j=[(1−uk)vkank+1 ]

P(Ek ∩R1,k = j)

≤ K−1
k

[(1+uk)vkank+1 ]+1∑
j=[(1−uk)vkank+1 ]

P(Ek ∩R1,k = j)
P(R2,k = vk − j)
P(Π(vk) = vk)

= K−1
k

[(1+uk)vkank+1 ]+1∑
j=[(1−uk)vkank+1 ]

P(Ek ∩R1,k = j ∩R2,k = vk − j)
P(Π(vk) = vk)

≤ K−1
k P(Ek | Π(vk) = vk).

Hence, it su�ces to show that Kk → 1. Setting l = vk − j in (22) we have, as
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k →∞,

Kk = inf
{

P(R2,k = l)
P(Π(vk) = vk)

, l ∈ [vk(1−ank+1)−vkckuk, vk(1−ank+1)+vkckuk]
}

.

For clarity of notations, set v′k := vk(1−ank+1), recalling that R2,k is a Poisson

variable with parameter v′k. Now, by Stirling's formula, we have P(Π(vk) =

vk) ∼ (2πvk)−1/2 as k →∞. A routine study of the �nite sequence

(
P(R2,k) = l, l =

[
vk(1−ank+1)− vkckuk

]
, . . . ,Covk(1−ank+1)+ vkckuk

]
+1

)

shows that

P(Π(vk) = vk)Kk = min(P1,k, P2,k),

where

P1,k := P(R2,k = [v′k − vkank+1uk])

and

P2,k := P(R2,k = [v′k + vkank+1uk] + 1).

We set u′k = ank+1ukvk/v′k ∼ ukank+1 . Stirling's formula yields, ultimately as
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k →∞,

P1,k =
vk
′[vk

′−vkank+1uk]

[vk
′ − vkank+1uk]!

exp(−vk
′)

∼
( vk

′

vk
′(1− uk

′)

)vk
′(1−uk

′) exp(−vk
′)

exp(−vk
′ + vkuk)

√
2πv′k

∼
√

2πvk(1− uk
′)−vk(1−uk

′) exp(−vk
′uk

′)

=
√

2πvk exp
(
− vk

(
(1− uk

′) log(1− uk) + uk
′)).

Moreover, since (1− ε) log(1− ε) + ε ∼ ε2

2 as ε → 0, we have, for all large k,

exp
(
− 2ank+1 log2(nk+1)

)
≤ exp

(
− vk

(
(1− uk

′) log(1− uk) + uk
′)).

By assumption (12) we have an log2 n → 0, which ensures that P1,k ∼
√

2πvk.

The control of P2,k is very similar. This achieves the proof of lemma 3.4. �

We now apply the preceding lemma in conjunction with the KMT approxi-

mation. Let W be a Wiener process based on the same underlying probability

space as Π̃. For an arbitrary δ > 0, we have

P
(
∇f (log2(vk)) || hk − f ||≤ (1 + 2δ)χf

)
≥ 1

2
P
(
∇f (log2(vk))

∣∣∣∣∣∣ Π̃(vkank+1 ·)
(2vkank+1 log2 vk)1/2

− f
∣∣∣∣∣∣ ≤ (1 + 2δ)χf

)
− 1

2
ck −

1
2
bk

≥ − 1
2

P
(∣∣∣∣∣∣Π̃(vkank+1 ·)−W (vkank+1 ·)

∣∣∣∣∣∣ ≥ δχf (2vkank+1 log2 vk)1/2

∇f (log2 vk)

)
+

1
2

P
(
∇f (log2 vk) ||

W

(2 log2 vk)1/2
− f ||≤ χf (1 + δ)

)
− 1

2
ck −

1
2
bk

=: − dk +
1
2

Pk −
1
2
ck −

1
2
bk.

Since vk ∼ nk+1 it is easy to conclude that dk is summable in k, by making use
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of the strong approximation (see [22]). Hence, making use of inequality 3.3, we

have asymptotically

Pk ≥ exp
(
− log2 vk

)
.

But log2 vk = log(k + 1) + log2 k + o
(
k−2(log k)−1

)
and hence

∑
k≥1

P
(
∇f (log2(vk)) || hk − f ||≤ (1 + 2δ)χf

)
= ∞.

Applying the second half of the Borel Cantelli lemma, we deduce that

lim inf
k→∞

∇f (log2 vk) || hk − f ||≤ χf .

To conclude the proof, it is enough to show that almost surely (recall that

limL→∞ L−1∇f (L) > 0),

lim
k→∞

(log2 nk+1)
∣∣∣∣∣∣hk −

αnk+1(ank+1 ·)
(2nk+1ank+1 log2(nk+1))1/2

∣∣∣∣∣∣ = 0.

Routine algebra shows that

log2 nk+1

∣∣∣∣∣∣hk −
αnk+1(ank+1 ·)

(2ank+1 log2(nk+1))1/2

∣∣∣∣∣∣
≤ log2 nk+1

((nk+1 log2 nk+1

vk log2(vk)
)1/2 − 1

)∣∣∣∣∣∣ αnk+1(ank+1 ·)
(2ank+1 log2 nk+1)1/2

∣∣∣∣∣∣
+ log2 nk+1

∣∣∣∣∣∣ n
1/2
k αnk

(ank+1 ·)
(2vkank+1 log2 nk+1)1/2

∣∣∣∣∣∣
:= Ak + Bk.

Applying theorem of Mason (4) we get Ak → 0 almost surely as k → ∞. We
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now apply Doob's inequality for positive submartingales

P
(

log2 nk+1

∣∣∣∣∣∣nk
αnk

(ank+1 ·)
((2vkank+1 log2 nk+1))1/2

∣∣∣∣∣∣ ≥ ε
)

= P
(

sup
0≤t≤ank+1

∣∣∣αn(t)
1− t

∣∣∣ ≥ ε(2vkank+1 log2 nk+1))1/2

n
1/2
k log2 nk+1

)

≤ 1
2ε2

(1− ank+1) log2 nk+1
nk

vk
.

Since nk/vk ∼ 1/e2k2 as k →∞, we conclude the proof of the lower bound in

theorem 2.3 with the Borel-Cantelli lemma. �
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