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Abstract

In this paper we propose a very flexible estimator in the context of truncated
regression that does not require parametric assumptions. To do this, we adapt the
theory of local maximum likelihood estimation. We provide the asymptotic results
and illustrate the performance of our estimator on simulated and real data sets. Our
estimator performs as good as the fully parametric estimator when the assumptions
for the latter hold, but as expected, much better when they do not (provided that the
curse of dimensionality problem is not the issue). Overall, our estimator exhibits a fair
degree of robustness to various deviations from linearity in the regression equation and
also to deviations from the specification of the error term. So the approach shall prove
to be very useful in practical applications, where the parametric form of the regression
or of the distribution is rarely known.
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1 Introduction

In this paper we consider the problem of estimating a regression model where the support

of the continuous dependent variable is bounded at a known constant at one end and when

many of the observations are observed near this bound. This is a common case when the

dependent variable is an economic index measured within some range. One example in the

recent econometric literature of such context is the analysis of how some economic variables

determine the level of the Debreu (1951)-Farrell (1957) type efficiency score (bounded be-

tween 0 and 1 or, taking its inverse, between 1 and infinity, with many values concentrated

near unity). A similar example can be drawn for the applied consumer analysis, where the

so-called Luenberger (1994)-Chambers et al. (1996) shortage/benefit or directional distance

function (bounded between zero and infinity, with most values being close to zero) can be

used to analyze consumer benefits. An appropriate way of handling such problems is to use

the truncated regression approach (see Simar and Wilson, 2006, for a parametric case).

The traditional truncated regression approach is based on using fully specified parametric

model, where both the functional form of the relationship between the dependent and ex-

planatory variables and the functional form of the distribution of the error term is specified.

A natural estimator therefore is based on the maximum likelihood principle. An obvious

drawback of such approach is the reliability of parametric assumptions and vulnerability to

deviations from them. Indeed, a mistake in specifying a parametric form of the regression

equation or of the distribution of the error may lead to inconsistent estimation. The goal

of our study is to propose a more flexible estimator for the context of truncated regression

that does not require such parametric assumptions.

In particular, we adapt the theory of local maximum likelihood estimation (e.g., see Tib-

shirani and Hastie, 1987, Fan and Gijbels, 1996, Fan et al., 1996, and Kumbhakar et al.,

2006) to the truncated regression case. Non-parametric approach to truncated regression

was already investigated by Lewbel and Linton (2000), who used local least squares theory

to address the problem. In truncated regression models, the dependent variable is either un-

observed beyond some known threshold, or not defined beyond that threshold, with most of

observations tending towards this threshold, e.g., as firms tend to be perfect and achieve the

100% efficiency level, but cannot be “over-perfect-efficient” by definition. In the regression

context, ignoring the boundary or treating it as censoring threshold may result in serious

bias and inconsistency of the estimates of the fitted values and of the marginal effects (see

Simar and Wilson, 2006 for extensive discussions on this in a parametric setup). On the

other hand, mis-specifying the regression equation or/and the error (e.g., wrong guess about

heteroskedasticity) may also lead to biased and inconsistent estimation. The flexibility of-
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fered by the local likelihood methods help circumventing these problems substantially, as we

demonstrate with some simulated examples.

The theoretical foundation for our paper is based on a recent paper of Kumbhakar et

al. (2006) who extended and generalized the approach suggested by Fan et al. (1996). In

our work we make further extension. First, we adapt the theory to the truncated regression

case. Second, and most importantly, we provide asymptotic results for the derivatives of

regression function, which is the main focus of our paper, because many economic studies

are concerned with the marginal effects of some variables on others. Third, our treatment

includes both the cases where the shape parameter of the error distribution is an unknown

constant, and where it is an unknown smooth function. In the former case, our estimator

of the shape parameter achieves root-n consistency, and so does not suffer from the curse of

dimensionality. Fourth, we show that fitting a lower order polynomial for the shape param-

eter may jeopardize the estimator of the regression function. This justifies consideration of

higher-order local polynomial fit for the shape parameter even if one is mainly interested in

estimating the regression function and its derivatives.

Our paper is structured as follows. In Section 2, we describe the local likelihood trun-

cated regression methods. In Section 3, we present the asymptotic theory of local likelihood

adapted to the truncated regression case of our type. In Section 4, we illustrate the perfor-

mance of our estimator on several simulated data sets, considering different scenarios about

regression equation and the error. In Section 5, we illustrate our estimator for a real data set.

Section 6 concludes and Section 7 gives the regularity conditions for obtaining our results

and outlines the proof of the theorems.

2 Local Polynomial Estimation

2.1 Constant Shape Parameter Case

We observe a set of i.i.d. random variables (Xi, Yi) for i = 1, . . . , n with Xi ∈ IRd and

Yi ∈ IR, where

Yi = f(Xi) + εi ≥ c

for some unknown function f and a known positive constant c. In this model, ε, conditionally

on X = x, has a continuous distribution G(·, τ) truncated below c − f(x), where τ is an

unknown shape parameter that is assumed to be a constant. In other words, the conditional

density of Y given X = x equals

ϕ(y, f(x), τ) ≡ gε (y − f(x), τ)

1 −G (c− f(x), τ)
I(y ≥ c),
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where gε(ε, τ) = ∂G(ε, τ)/∂ε. We assume that G is known. Our main interest here is esti-

mation of the function f and its derivatives. Below we describe local polynomial estimation

of f in a general setting of multivariate X.

Note that all the results obtained in this paper could be easily adapted to the case where

the dependent variable is truncated at both sides : c1 ≤ Yi ≤ c2. This would only change

the definition of ϕ(y, f(x), τ), the conditional density of Y given X = x.

Define ℓ = logϕ. Then, the conditional log-likelihood equals
∑n

i=1 ℓ(Yi, f(Xi), τ). Let x

be a point at which one wants to estimate the values of the function f and its derivatives.

A local conditional log-likelihood is obtained by replacing f in the conditional log-likelihood

by its pth order polynomial approximation in a neighborhood of x and putting the weight

Kh(Xi−x) for each observation (Xi, Yi), where Kh(u) = h−dK(h−1u), K is a d-variate kernel

function, typically a symmetric density function defined on IRd, and h is a positive scalar,

called the bandwidth. Precisely, it is given by

Ln(θ0, θ1, . . . , θr(p)−1, τ ; x)

=
n

∑

i=1

ℓ
(

Yi, θ0 + θ1(Xi1 − x1) + · · ·+ θr(p)−1(Xid − xd)
p, τ

)

Kh(Xi − x),

where r(p)−1 is the total number of partial derivatives up to order p, i.e., r(p) =
∑p

j=0

(

j+d−1
d−1

)

.

Here and below, Xi ≡ (Xi1, . . . , Xid)
T and x ≡ (x1, . . . , xd)

T . The pth order local polynomial

estimators of f and its derivatives at x are obtained by maximizing Ln(θ0, θ1, . . . , θr(p)−1, τ ; x).

For example, f̂(x) = θ̂0(x) and the estimator of f ′(x) ≡ [∂f(x)/∂x1, . . . , ∂f(x)/∂xd]
T is given

by f̂ ′(x) = [θ̂1(x), . . . , θ̂d(x)]
T , where

(

θ̂0(x), θ̂1(x), . . . , θ̂r(p)−1(x), τ̃(x)
)

= arg max
θ0,...,θr(p)−1,τ

Ln(θ0, θ1, . . . , θr(p)−1, τ ; x). (2.1)

The estimator τ̃ is obtained locally in the above local polynomial estimation procedure,

and thus it depends on x. It can be improved by maximizing the full likelihood with f being

replaced by its estimator f̂ , i.e, a better estimator is given by

τ̂ = arg max
τ

n
∑

i=1

ℓ(Yi, f̂(Xi), τ). (2.2)

One may further update the estimators θ̂j(x) by maximizing Ln(θ0, θ1, . . . , θr(p)−1, τ̂ ; x) where

τ on the right hand side of (2.1) is replaced by τ̂ , now with respect to θ0, θ1, . . . , θr(p)−1 only.

2.2 Functional Shape Parameter Case

In this subsection we discuss the local likelihood truncated regression when the shape pa-

rameter τ is also a smooth function. A preliminary experiment showed that when the shape
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parameter is not a constant, fitting a local constant for τ as in the previous subsection pro-

duced poor estimates of f and its derivatives. This motivated us to consider fitting a higher

order local polynomial for the function τ . As illustrated in the simulation study reported in

Section 4 below, fitting a local linear for τ worked particularly well.

When the shape parameter is a function, the conditional log-likelihood is given by
∑n

i=1 ℓ(Yi, f(Xi), τ(Xi)), where ℓ(y, ν, ω) = log [gε(y − ν, ω)I(y ≥ c)/ {1 −G (c− ν, ω)}]. We

fit a qth order local polynomial for the function τ , i.e., we take the following local conditional

log-likelihood:

Ln(θ0, . . . , θr(p)−1, τ0, . . . , τr(q)−1; x)

=
n

∑

i=1

ℓ
(

Yi, θ0 + θ1(Xi1 − x1) + · · · + θr(p)−1(Xid − xd)
p,

τ0 + τ1(Xi1 − x1) + · · · + τr(q)−1(Xid − xd)
q
)

Kh(Xi − x).

The local polynomial estimators of f, τ and their derivatives at x are obtained by maximizing

Ln(θ0, θ1, . . . , θr(p)−1, τ0, . . . , τr(q)−1; x), i.e.,

(

θ̂0(x), . . . , θ̂r(p)−1(x), τ̂0(x), . . . , τ̂r(q)−1(x)
)

(2.3)

= arg max
θ0,...,θr(p)−1,τ0,...,τr(q)−1

Ln(θ0, θ1, . . . , θr(p)−1, τ0, . . . , τr(q)−1; x).

3 Theoretical Properties

Here, we provide the asymptotic distributions of the estimator defined at (2.1) and (2.3).

The theory we present here does not rely on the assumption that the log-likelihood function

ℓ(y, ν, ω) as a function of (ν, ω) is globally concave for each y. The latter assumption is

usually imposed for methods based on the local likelihood approach, see Fan et al. (1995)

or Carroll et al. (1997), for example.

3.1 Constant Shape Parameter Case

The results we present below is closely related to those of Kumbhakar et al. (2006). However,

the latter treated only the local linear estimator for multivariate X in some different setting.

We give more general results for the local polynomial estimators defined at (2.1).

For 0 ≤ i, j ≤ 2 with i+ j = 1, 2, let

ℓij(y, ν, ω) = ∂i+jℓ(y, ν, ω)/(∂νi∂ωj).
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For a d-vector u, let zp(u) = (1, u1, . . . , u
p
d)

T , an r(p)-vector. For a vector a ≡
(

a0, . . . , ar(p)−1

)T

and a scalar b, define Q(a, b) = [Q1(a, b)
T , Q2(a, b)]

T where

Q1(a, b) =

∫

E
[

ℓ10
(

Y, f(x) + a0 + a1u1 + · · · + ar(p)−1u
p
d, τ + b

)

∣

∣

∣
X = x

]

zp(u)K(u) du,

Q2(a, b) =

∫

E
[

ℓ01
(

Y, f(x) + a0 + a1u1 + · · · + ar(p)−1u
p
d, τ + b

)

∣

∣

∣
X = x

]

K(u) du.

Our results require that the system of equations Q(a, b) = 0 has a unique solution (aT , b)T .

Let

ρij(x) = −E [ℓij(Y, f(x), τ) | X = x] .

It can be shown that if ρ20(x) > 0, ρ20(x)ρ02(x) − ρ11(x)
2 > 0, and K ≥ 0 is supported on a

set which contains a d-dimensional open rectangle, then Qn(a, b) = 0 has a unique solution.

As in Kumbhakar et al. (2006), the uniqueness of the solution plays an important role for a

stochastic expansion of the estimators.

The presentation needs some careful notations to treat the multivariate X and the higher

order approximating polynomial. First, for a d-tuple k ≡ (k1, . . . , kd) and a d-vector x, write

k! = k1! × · · · × kd! , |k| =
d

∑

i=1

ki , xk = xk1
1 × · · · × xkd

d .

For a function η defined on IRd, write

(

∇kη
)

(x) =
∂|k|η(x)

∂xk1
1 · · ·∂xkd

d

.

Let mj =
(

j+d−1
d−1

)

for j ≥ 0. Arrange mj number of d-tuples k with |k| = j in a counter-

lexicographical order: put (j, 0, . . . , 0) first and (0, 0, . . . , j) last. Let ξj denote the function

which maps an integer s for 1 ≤ s ≤ mj to the one located at the sth position in the ar-

rangement of the d-tuples of size j. For example, ξj(1) = (j, 0, . . . , 0). Let µk =
∫

ukK(u) du

for a d-tuple k. For j, l ≥ 0 denote by Njl the mj ×ml matrix whose (s, t)th entry equals

µξj(s)+ξl(t). Define r(p) × mj matrices N
(p)
j =

(

NT
0j , . . . , N

T
pj

)T
for j = 0, . . . , p + 1, and a

r(p) × r(p) matrix N (p,p) =
(

N
(p)
0 , . . . , N

(p)
p

)

. Likewise, define Mjl, M
(p)
j and a r(p) × r(p)

matrix M (p,p) by replacing µk in the definitions of Njl, N
(p)
j and N (p,p) by κk =

∫

ukK2(u) du.

Now we define [r(p) + 1] × [r(p) + 1] matrices

D(x) =

[

N (p,p)ρ20(x) N
(p)
0 ρ11(x)

N
(p)T
0 ρ11(x) N00ρ02(x)

]

, V (x) =

[

M (p,p)v20(x) M
(p)
0 v11(x)

M
(p)T
0 v11(x) M00v02(x)

]

,

where v20(x) = E [ℓ210(Y, f(x), τ) | X = x], v02(x) = E [ℓ201(Y, f(x), τ) | X = x], and v11(x) =

E [ℓ10(Y, f(x), τ)ℓ01(Y, f(x), τ) | X = x]. Note that if ρ20(x) > 0, ρ20(x)ρ02(x) − ρ11(x)
2 > 0
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and K ≥ 0 is supported on a set which contains a d-dimensional open rectangle, then D(x) is

positive definite. Under the latter condition on K, the matrix V (x) is also positive definite

unless there exists a nonzero constant c such that ℓ10(Y, f(x), τ) = c ℓ01(Y, f(x), τ) with

probability one, conditionally on X = x. Let D(p,p)(x) be the r(p)× r(p) upper-left block of

D(x) = D(x)−1.

To translate each of θ̂i(x) defined at (2.1) to an estimator of f(x) or its derivatives, we

consider blocks of size mj , j = 0, . . . , p, in the vector of θ̂i(x). Write θ̂(0)(x) = θ̂0(x), and let

θ̂(j)(x) for j ≥ 1 be the jth block of size mj defined by

θ̂(j)(x) = [θ̂r(j−1)(x), . . . , θ̂r(j)−1(x)]
T .

Thus, θ̂(1)(x) =
[

θ̂1(x), . . . , θ̂d(x)
]T

, and so on. Furthermore,

θ̂(x) ≡ [θ̂0(x), . . . , θ̂r(p)−1(x)]
T = [θ̂(0)(x), θ̂(1)T (x), . . . , θ̂(p)T (x)]T .

Define E (p)
j by E (p)T

j =
[

Omj×r(j−1), Imj
, Omj×(r(p)−r(j))

]

, where Or×s denote the r × s zero

matrix, and Ir is the r-dimensional identity matrix. For j = 0, . . . , p, E (p)
j is a r(p) × mj

matrix which maps the whole θ̂(x) to θ̂(j)(x) by

θ̂(j)(x) = E (p)T
j θ̂(x).

Let θ(j)(x) be the mj-vector of all the jth partial derivatives of f(x) divided by the corre-

sponding factorials, arranged in the counter-lexicographical order, i.e.,

θ(j)(x) = [∇ξj(1)f(x)/ξj(1)!, . . . ,∇ξj(mj)f(x)/ξj(mj)!]
T . (3.1)

Then, θ̂(j)(x) is the local polynomial estimator of θ(j)(x).

Let g(x) denote the marginal density function ofX. Let U (p:0)
j,f be the [r(p)+1]×mj matrix

obtained by adding the row vector O1×mj
at the bottom of E (p)

j , i.e., U (p:0)T
j,f = (E (p)T

j , Omj×1).

Also, write U (p:0)
0,τ for the [r(p) + 1]-dimensional unit vector (0, 0, . . . , 0, 1)T . We obtain the

following theorem.

Theorem 3.1. Under the assumptions (A1)–(A9) given in Section 7, it follows that for each

j = 0, . . . , p
√
nh2j+d

[

θ̂(j)(x) − θ(j)(x) − hp−j+1ρ20(x)E (p)T
j D(p,p)(x)N

(p)
p+1θ

(p+1)(x) + o(hp−j+1)
]

d−→ Nmj

[

0,U (p:0)T
j,f D(x)V (x)D(x)U (p:0)

j,f /g(x)
]

,

where Nr denotes an r-variate normal distribution. For τ̃(x), denoting the (r+2)-dimensional

unit vector (0, 0, . . . , 0, 1)T by er+2, we have
√
nhd (τ̃(x) − τ)

d−→ N1

[

0,U (p:0)T
0,τ D(x)V (x)D(x)U (p:0)

0,τ /g(x)
]

.
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The theorem tells that the pth order local polynomial estimators of the jth partial deriva-

tives converge to the true values at the rate hp−j+1 + n−1/2h−d/2−j . In fact, if all the odd

order moments of K vanish, i.e.,
∫

ukK(u) du = 0 for all d-tuples k with |k| = 1, 3, . . . , and

p− j is even, then it can be shown that the leading bias term of order hp−j+1 is zero. In this

case, if θ(p+2)(x) as defined at (3.1) exists and is continuous, then the bias is of order hp−j+2.

The theorem also gives the rate of the convergence of τ̃ (x) as an estimator of the constant

τ , which is n−1/2h−d/2. Note that it does not have a bias term since the true value τ is a

constant whose derivatives are all zero. However, the rate n−1/2h−d/2 is inferior to the usual

n−1/2 for the parametric components. This is because one only takes a fraction of data of

size nhd in the local fitting procedure at (2.1). The estimator defined at (2.2), which uses

the full likelihood with f being replaced by its estimator f̂ = θ̂0, may be shown to achieve

the n−1/2 rate, see Carroll et al. (1997) for a proof of this kind in a different setting.

3.2 Functional Shape Parameter Case

In this subsection we present the asymptotic distributions of θ̂j(x) for j = 0, 1, . . . , r, and

τ̂j(x) for j = 0, 1, . . . , s, defined at (2.3). We slightly modify the definitions of the terms

that are used in Subsection 3.1, whenever necessary, and introduce more to treat the case

where the shape parameter τ is an unknown function.

With slight abuse of notation, we continue to use the same notation ρij and vij , which

are now defined as

ρij(x) = −E [ℓij(Y, f(x), τ(x)) | X = x] ,

v20(x) = E
[

ℓ210(Y, f(x), τ(x)) | X = x
]

,

v02(x) = E
[

ℓ201(Y, f(x), τ(x)) | X = x
]

,

v11(x) = E [ℓ10(Y, f(x), τ(x))ℓ01(Y, f(x), τ(x)) | X = x] .

For r(p)-vectors a ≡ (a0, . . . , ar(p)−1)
T and b ≡ (b0, . . . , br(p)−1)

T , we also modify the defini-

tions of Qj(a, b) as

Q1(a, b) =

∫

E
[

ℓ10
(

Y, f(x) + a0 + a1u1 + · · ·+ ar(p)−1u
p
d,

τ(x) + b0 + b1u1 + · · ·+ br(q)−1u
q
d

)

∣

∣

∣
X = x

]

zp(u)K(u) du,

Q2(a, b) =

∫

E
[

ℓ01
(

Y, f(x) + a0 + a1u1 + · · ·+ ar(p)−1u
p
d,

τ(x) + b0 + b1u1 + · · ·+ br(q)−1u
q
d

)

∣

∣

∣
X = x

]

zq(u)K(u) du.

It can be also shown that if ρ20(x) > 0, ρ20(x)ρ02(x)−ρ11(x)
2 > 0, and K ≥ 0 is supported on
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a set which contains a d-dimensional open rectangle, then the system of equations Q1(a, b) =

0 and Q2(a, b) = 0 has the unique solution.

To state an analogue of Theorem 3.1, we need further notation. Define an r(p) × r(q)

matrix N (p,q) =
(

N
(p)
0 , . . . , N

(p)
q

)

. Also, define N (q,p) =
(

N
(q)
0 , . . . , N

(q)
p

)

and N (q,q) =
(

N
(q)
0 , . . . , N

(q)
q

)

, which are r(q) × r(p) and r(q) × r(q), respectively, matrices. Likewise,

define M (p,q), M (q,p) and M (q,q) with µk being replaced by κk =
∫

ukK2(u) du. With these

matrices, definitions of D(x) and V (x) are modified as

D(x) =

[

N (p,p)ρ20(x) N (p,q)ρ11(x)
N (q,p)ρ11(x) N (q,q)ρ02(x)

]

, V (x) =

[

M (p,p)v20(x) M (p,q)v11(x)
M (q,p)v11(x) M (q,q)v02(x)

]

.

These are [r(p) + r(q)] × [r(p) + r(q)] matrices.

As in Subsection 3.1, let D(p,p)(x) be the r(p) × r(p) upper-left block of D(x) = D(x)−1.

Let D(p,q)(x) be the r(p)×r(q) upper-right block, D(q,p)(x) be the r(q)×r(p) lower-left block,

and D(q,q)(x) be the r(q)× r(q) lower-right block of D(x). Define τ (j)(x) in the same way as

θ(j)(x) with f replaced by τ in (3.1). Also, define

τ̂ (j)(x) = E (q)T
j τ̂(x).

To express the biases of the estimators, define

B1,f (x) = ρ20(x)D(p,p)N
(p)
p+1θ

(p+1)(x) + ρ11(x)D(p,q)(x)N
(q)
p+1θ

(p+1)(x),

B2,f (x) = ρ11(x)D(p,p)N
(p)
q+1τ

(q+1)(x) + ρ02(x)D(p,q)(x)N
(q)
q+1τ

(q+1)(x),

B1,τ (x) = ρ20(x)D(q,p)N
(p)
p+1θ

(p+1)(x) + ρ11(x)D(q,q)(x)N
(q)
p+1θ

(p+1)(x),

B2,τ (x) = ρ11(x)D(q,p)N
(p)
q+1τ

(q+1)(x) + ρ02(x)D(q,q)(x)N
(q)
q+1τ

(q+1)(x).

Finally, extending the definition of U (p:0)
j,f in Subsection 3.1, let U (p:q)

j,f be the [r(p) +

r(q)] ×mj matrix obtained by adding the zero matrix Or(q)×mj
at the bottom of E (p)

j , i.e.,

U (p:q)T
j,f = (E (p)T

j , Omj×r(q)). Also, let U (p:q)
j,τ be the [r(p)+r(q)]×mj matrix obtained by adding

the zero matrix Or(p)×mj
at the top of E (q)

j , i.e., U (p:q)T
j,τ = (Omj×r(p), E (q)T

j ). We obtain the

following theorem.

Theorem 3.2. Under the assumptions (B1)–(B9) given in Section 7, it follows that for each

j = 0, . . . , p
√
nh2j+d

[

θ̂(j)(x) − θ(j)(x) − E (p)T
j (B1,fh

p−j+1 +B2,fh
q−j+1) + o(hp−j+1 + hq−j+1)

]

d−→ Nmj

[

0,U (p:q)T
j,f D(x)V (x)D(x)U (p:q)

j,f /g(x)
]

,

where Nr denotes an r-variate normal distribution. Also, for each j = 0, . . . , q
√
nh2j+d

[

τ̂ (j)(x) − τ (j)(x) − E (q)T
j (B1,τh

p−j+1 +B2,τh
q−j+1) + o(hp−j+1 + hq−j+1)

]

d−→ Nmj

[

0,U (p:q)T
j,τ D(x)V (x)D(x)U (p:q)

j,τ /g(x)
]

,

8



The theorem tells that both θ̂(j) and τ̂ (j) have the same order of bias even if one fits

locally polynomials of different degrees for f and τ . The leading biases for θ̂(j) and τ̂ (j) are

of the same order h(p∧q)−j+1, where p ∧ q = p if p ≤ q and p ∧ q = q otherwise. Thus,

the smaller of p and q determines the order of the bias for both θ̂(j) and τ̂ (j). This means

that fitting a lower order polynomial for τ may jeopardize the estimator of f . This is a new

theoretical finding. It explains the failure of the local constant fit for τ in our preliminary

experiment, and justifies consideration of higher-order local polynomial fit for τ even if one

is interested in estimating the function f and its derivatives.

Here again, as discussed in Subsection 3.1, if all the odd moments of K vanish and

(p∧q)−j is even, then the leading bias terms of θ̂(j) and τ̂ (j) are of order h(p∧q)−j+2 provided

that θ((p∧q)+2)(x) and τ ((p∧q)+2)(x) exist and are continuous.

4 Simulation Results

While constructing scenarios we had in mind a dependent variable bounded between 1 and

infinity, with distribution skewed towards the unity bound, with most observations falling

in between 1 and 2. Intuitively, this would be an index (e.g., the Debreu-Farrell efficiency

index), whose reciprocal is then bounded between 0 and 100%, and most of which are between

50% and 100%. This is adequate to, for example, what many empirical studies report about

production efficiencies of firms or countries (e.g., see Kumar and Russell, 2002, Zelenyuk

and Zheka, 2006, etc. . . ). Such scenarios, with relatively small variation in the dependent

variable and most of which being near the bound, are especially difficult to handle and so

would be a good assessment experiment for our estimator.

In all the applications below, local linear fit was used for the shape parameter τ and we

will compare the local linear and local quadratic fit for the regression function f . We used

the Gaussian kernel and the bandwidth was determined by cross validation in the lines of

e.g. Kumbhakar et al. (2006).

We first consider the univariate case. This exercise is useful for visually observing the

scenario and performance of our estimator relative to the plot of the true model and its

traditional, fully parametric estimator. So our true model would be

Yi = f(Xi) + εi, i = 1, . . . , n, (4.1)

where εi ∼ N1

(

0, σ2
ε(Xi)

)

, with εi ≥ 1 − f(Xi).

In the examples that follow we chose specific values for the parameters, but we have also

tried many different values for parameters and the results were similar to those presented

below.
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4.1 Example 1. Linear Model with Homoskedasticity

In this scenario we assume homoskedastic variance before truncation, i.e., σε(Xi) = σ. So

we mean here that the shape parameter of the error term is homoskedastic whereas, after

truncation the model obviously is heteroskedastic, because the variance would depend on

the truncation point (1 − f(Xi)). In addition, we assume also that the regression equation

is linear:

f(Xi) = β0 + β1Xi (4.2)

In this case, the traditional truncated regression model with linear regression function, and

with homoskedactic shape parameter (before truncation) would be based on fully parametric

maximum likelihood methods and would provide efficient estimators of the parameters. This

is the approach studied in Simar and Wilson (2006). The goal of doing this experiment is

to investigate how much do we lose (in a univariate case) by using our flexible approach and

by not imposing the true parametric structure globally. Figure 1 visualizes this scenario and

the estimation results for σ = 0.3, β0 = 1.5, β1 = 0.5. The Xi were generated according a

uniform U(−2, 2) and the sample size n = 200.
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Figure 1: Example 1: linear model and homoskedastic shape parameter. Left panel is the
model and right panel is the derivative.

Left panel of Figure 1 shows the plot of the true function (solid line) we want to estimate

and the fit of three estimators: parametric ML estimator (dotted line) and local linear like-

lihood estimator (dash-dotted line) and local quadratic likelihood estimator (dashed curve).

We see that all the estimators give a very good fit virtually indistinguishable from each other

and from the true function. (One might also notice that the quadratic fit has just a bit of

curvature.)

The right panel of Figure 1 shows the plot of the corresponding true and the three esti-

mates of the first derivative for each value of the regressor and we see that all three estimators
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give fairly good fit of derivatives as well. Note that the local linear likelihood estimator sug-

gests that the true derivative is constant (as it is in reality). The local quadratic likelihood

estimator suggests that the true derivative is slightly diminishing, which corresponds to a

slight curvature we observed in the left panel of Figure 1. This should not be surprising: the

linear approximation in the likelihood is the best approximation in this case. In practice,

however, one can hardly know what the true parametric form of the regression equation is,

so taking quadratic approximation is likely to give a better fit, as we will see from other

examples where non-linearity or even linearity but with heteroskedasticity for the shape pa-

rameter is present in the true model. Overall, for the univariate case, both linear and the

quadratic local likelihood estimators perform very well relative to the truth and virtually as

good as when we know and use the appropriate parametric assumptions.

4.2 Example 2. Linear Model with Heteroskedasticity

In this scenario we assume heteroskedastic of the shape parameter before truncation, i.e.,

σε(Xi) now depends on x. Several diffrent scenarios have been tried here providing qualita-

tively the same kind of results. For saving space we present here only two interesting cases

for the practitian.

• Case a. The more x forces Y to be closer to the bound the larger it makes σε(Xi).

This results in a lot of observations appearing very near the bound. (Figure 2 visualizes this

scenario and the estimation results for σε(Xi) = (6−Xi)/10 with as above β0 = 1.5, β1 = 0.5.

Here Xi ∼ U(−4, 4) and n = 200.

• Case b. The more x forces Y to be away from the bound the larger it makes σε(Xi).

This results in a lot of observations appearing very near the bound. (Figure 3 visualizes this

scenario and the estimation results for σε(Xi) = 0.2
√
Xi + 3 with as above β0 = 1.5, β1 = 0.5.

Here Xi ∼ U(−1, 1) and n = 200.
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Figure 2: Example 2, case a: linear model and heteroskedastic shape parameter. Left panel
is the model and right panel is the derivative.
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Figure 3: Example 2, case b: linear model and heteroskedastic shape parameter. Left panel
is the model and right panel is the derivative.

Intuitively, Case a suggests that the explanatory variable is negatively affecting the level

(indicated by the first moment) of dependent variable, but increases the risk (indicated by

the variance) causing it being further away from the bound. On the other hand, Case b

suggests that the explanatory variable is negatively affecting the level of dependent variable

and reduces the random risk. For example, in a production context, x can be number of

employees: the more employees the greater is the principle-agent problem and the more

human-driven mistakes can cause inefficiency in production process and so on.

The goal of this exercise is to see if heteoskedasticity in the shape parameter is a problem

and whether our estimator handles it adequately. For brevity, we have the same style of

results as we had in Example 1. The first thing to note is that now, when heteroskedasticity
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is present, the fully parametric MLE that we used in the previous example performs poorly.

This is because it does not take into account the form of heteroskedasticity, which is usually

unknown in practice. On the other hand, both the linear and the quadratic local likelihood

estimators capture the heteroskedasticity nature of the model and perform very well for the

fit of the model and for the derivative. In this sense, our estimators should be very useful

even when the regression model is linear but the form of heteroskedasticity is not known.

Note that in our simulation scenarios we do not restrict f(X) to be bounded or to

have any particular shape. However, for modeling some particular phenomena, f(X) might

be required to be above the threshold and so, for example, the linear model would be

inappropriate there. For instance, the true f(X) might be a non-linear that asymptotes

the threshold or makes a U -shape or has some periodicity, etc., but what exactly the form

should be is hardly known in practice and so a non-parametric estimator is very desired. It

might also be unknown if f(X) needs to be restricted or not. In all these cases, imposing

particular form of f(X) in parametric ML estimation might lead to erroneous results and

conclusions. The problem might be even more complicated if the shape parameter of the

distribution is not a constant. Remarkably, without knowing anything about f(X) and the

shape parameter, our non-parametric estimator is capable of recognizing, from the data, what

shall be attributed to the curvature of f(X) and what shall be understood as a curvature

of the shape parameter, as we illustrate with further simulations and with the empirical

illustration below.

4.3 Example 3. Quadratic Model with Heteroskedasticity

In this scenario we assume the same true model as before but with an additional quadratic

term β2x
2
2 in model (4.2). We also assume heteroskedastic shape parameter, i.e., σε(Xi)

depends on x (we also investigate a scenario with homoskedastic shape parameter, providing

very good results, but to save space we only present the more challenging case here). The

goal of the exercise is to see if our estimators perform well in this non-linear case, complicated

by heteroskedasticity. Figure 4 presents a typical estimation results, where σε(Xi) = 0.5 −
0.05(Xi + 1)2 with β0 = 1.3, β1 = 0.4 and β2 = 0.2. Here Xi ∼ U(−3.5, 1.5) and n = 200.

Note that here the heteroskedasticity on σε is designed such that the variance increases

near the truncation level, which complicates the estimation problem. Nevertheless, the

performance is quite good for both the linear and the quadratic estimators. For both,

we see slight overestimation near the boundary, where the truncation problem occurs, but

overall the fit is fairly good. Not surprisingly, the quadratic approximation exhibits better

performance than the linear one for the estimation of both the regression equation and its

derivative.
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Figure 4: Example 3: quadratic model with heteroskedastic shape parameter. Left panel is
the model and right panel is the derivative.

4.4 Example 4. Periodic Model with Heteroskedasticity

In this scenario we assume the regression function has some periodicity. In particular, we

assume that

f(Xi) = β0 + β1 sin(γXi) + β2Xi, i = 1, . . . , n. (4.3)

Figure 5 shows a typical estimation result for n = 200. The specific values of the

parameters in this example are β0 = 1.1, β1 = 0.5, β2 = 0.7, γ = π and Xi ∼ U(0, 4).

Moreover, to complicate the estimation problem, we also assume heteroskedasticity of σε. In

the illustration we chose σε = 0.25
√

6 −Xi, so that the closer to the truncation bound, the

higher is the variance.

The goal of the exercise is to see if our estimators perform well for relationships that seri-

ously depart from linear or quadratic shape and, in fact, which might be fairly hard to guess

about in practice. The problem is also complicated with the presence of heteroskedasticity.

Nevertheless, Figure 5 suggests that the performance is again quite good for both the linear

and the quadratic estimators.
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Figure 5: Example 4: periodic model with heteroskedastic shape parameter. Left panel is
the model and right panel is the derivative.

Again, we see some oversmoothing of the hurdles or bumps but we still capture the

essence of the shape quite well. Again not surprisingly, the quadratic approximation exhibits

better performance than the linear one for estimation of both the regression equation and its

derivative. Also we note that that the fit of derivative appears not as good as the fit of the

regression function itself, due to the differences in rates of convergence of these estimators.

This should be expected as a rule, due to the fact that the higher the order of the derivative

(0 vs. 1 in our case), the lower the speed of convergence of the estimator, as clearly stated

in our Theorem 3.1.

4.5 Example 5. Multivariate Model with Heteroskedasticity

Here we consider two regressors that influence the dependent variable through a quadratic

form. We want to see how our estimators perform for this type of scenario because the U -

shape relationships are fairly common in economic phenomena. In addition, we want to see

the performance when the situation is complicated by dependence of the variance on some

of the regressors. For example, the employment level in a company may positively influence

not only the mean of inefficiency but also companys risk (variance) of being inefficient,

e.g., because of increased risk of principal-agent problems, of pressure from trade unions, of

strikes, etc. . . Formally, our scenario is given by (4.1), where for i = 1, . . . , n:

f(Xi) = β0 + β11X1i + β12X
2
1i + β21X2i + β22X

2
2i + γX1iX2i (4.4)

with σε(Xi) = σ − ζ(X1i + δ)2.

As before, we tried different values for the parameters and the results are quite robust.

Figure 6 presents a typical result, where in this particular simulation we had β0 = 1.2, β11 =
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−0.1, β12 = 0.2, β21 = −0.1, β22 = 0.2, γ = −0.1, σ = 0.3, ζ = 0.05, δ = 1 and n = 200. Note

that for these particular values, heteroskedasticity is such that the variance increases near

the truncation level, which complicates the estimation problem (homoskedastic case was also

studied and good performance was also observed but to save space and we do not present

them). We see that the performance of the local linear is fairly good, but the quadratic one

is much better.
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Figure 6: Example 5: Multivariate model with heteroskedastic shape parameter. Left panel
is the model and right panel is the obtained fit.

Figure 7 gives a sense of the fit of the estimates of the partial derivatives of f w.r.t. X1

and X2 , respectively. We see that the quadratic approximation substantially outperforms

the linear one.
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Figure 7: Example 5: Multivariate model with heteroskedastic shape parameter. Fit of the
partial derivatives of f w.r.t. X1 (left panel) and X2 (right panel).

The observed superiority of the quadratic approach is not surprising at least for two
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reasons. First of all, the true model is quadratic and so it is natural that the local quadratic

fit is better than the local linear one. Second, and more generally, the (finite-sample) bias

of our estimator reduces with the order of local approximation of our estimator, as precisely

stated in our Theorem 2.1. It is known that the higher the order approximations the better

shall be the fit (e.g., see Fan and Gijbels, 1996). In practice, however, researchers often stay

satisfied with local linear estimators, motivating it with similar asymptotic properties but

relative computational simplicity.

All our simulations suggest a different practical conclusion: One should definitely prefer

the local quadratic likelihood estimator of the regression function relative to the local linear

one, despite the increased computational complexity. This is especially true for the following

cases: (i) when heteroskedasticity is expected; (ii) when one has many regressors with pos-

sible interaction among them; (iii) when the goal is to estimate the first partial derivatives

of the regression function. And, these cases, are more the rules than exceptions in empirical

studies. Higher order approximations (especially odd-order) theoretically should give better

fit. However, even for third-order approximation, the programming cost and optimization

cost increase dramatically and might not worth further improvements in the fit.

5 An Empirical Illustration

The goal of this section is not to make a solid empirical investigation but to get a feeling

of the use and value of our estimator in studying economic phenomena. For this, we use

data from a study about economic growth in the world, by Kumar and Russell (2002) that

received considerable attention in the recent literature. Specifically, we take their estimated

Farrell/Debreu-type efficiency scores for 57 countries in the world and relate it to capital-

labor ratio (in the year 1990) in these countries1.

We first use the same three estimators as in the simulations and obtain quite interesting

results, presenting them in Figure 8. First of all, recall that the main argument of Kumar

and Russell (2002) was that the change in capital per labor was the major source of eco-

nomic growth in 1965-1990 and especially of the change from uni-modality to bi-modality of

distribution of income per worker. The fully parametric linear model tells us that there is

also negative (positive) relationship between the inefficiency (efficiency) of a country and its

capital intensity. That is, the more capital per labor in a country the less inefficiency (the

more efficiency) score of this country relative to the other countries. The estimated2 slope

1In the regression estimation we had to drop one observation (Switzerland) that appeared to be an outlier
in terms of capital per worker and so causing computational problem in optimization of the likelihood function
(even in fully parametric case).

2We used the Algorithm 1 of Simar and Wilson (2006) to obtain the estimates. Also note that part of the
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parameter is 2.
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Figure 8: Empirical illustration. Left panel is the model and right panel is the derivative.

On the other hand, observing the left panel of Figure 8, one can see that heteroskedas-

ticity is likely to be present in data: the less capital-labor the larger is the variance of

inefficiency variable. So the apparent negative relationship can in fact be a result of severe

heteroskedasticity.

From the plot of the linear fit in Figure 8, we might guess that the linear parametric model

might be inappropriate here, and exponential might be a better choice. Of course, in practice

such visually based conclusions on the parametric form can hardly be done for multivariate

regressions, but this is useful for illustration and discussion here. We thus estimated the

exponential (homoskedastic) model, Y = 1 + exp(X ∗ β) + ε, which corresponds to the

dotted curves in Figure 8. We see that the relationship between the capital depth and the

inefficiency is indeed suggested to be negative, with relatively high marginal effect at the low

capital per worker ratio and monotonically decreasing to almost no effect at the higher levels.

We could also try various forms of heteroskedasticity with this or another functional form,

but guessing about the two functional forms for the regression and for the shape parameter

at the same time might be too much for a scientific approach.

So, instead, we try our non-parametric procedure that is capable of handling heteroskedas-

ticity of unknown form and we get quite different conclusion than what the parametric models

told us. Both linear and quadratic local likelihood estimators suggest that there is virtually

no relationship between the Farrell/Debreu-type efficiency score of a country vs. capital-

labor of this country. Specifically, the fitted curve characterizing the relationship is almost

flat and the slope coefficient is fluctuating near zero. We see an exception at the very end

parametrically estimated curve is not observed in the left panel of Figure 8 because we trimmed the vertical
axis.
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(top 10% percentile) of the empirical range of the explanatory variable, where the quadratic

approximation suggests that the relationship might indeed be negative, but this is only in a

small interval where there is only a few observations.

The results from estimating the regression equation non-parametrically makes us conjec-

ture that the negative relationship between countries inefficiency score and its capital-labor

ratio is coming not through the level (mean) of inefficiency but through the dispersion of

inefficiency. Intuitively, we can say that the less capital-labor in a country the greater is the

risk of having high inefficiency score for that country. Figure 9 gives a plot of the estimated

variance of the error term vs. the explanatory variable, which supports our conjecture.
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Figure 9: Empirical illustration. Estimation of the heterskedastic shape function.

The result we obtained in our small application is consistent with capitalist philosophy:

if people possess a lot of capital within a country then they have a lot of incentives to

create a political system that would minimize the risk of underutilization (inefficiency) of

their capital. On the other hand, if people possess little of capital, “they have got little to

lose!”, and so not as much interested in building appropriate institutions that would protect

property rights and so minimize the risk of underdevelopment. Looking at the data confirms

that it is mostly the underdeveloped countries that are in the range of high variance of

inefficiency scores and low capital per labor levels.

Finally, it might be worth reminding that in this section we had not intended to resolve the

puzzles of economic growth and differences in efficiency across countries. Such study would

require larger data set and more variables. Our goal was just to give a small illustration of
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our estimator in practice and show how it could suggest radically different conclusions than

those obtained from commonly used parametric methods.

6 Concluding Remarks

In this work we proposed a fairly flexible estimator for the context of truncated regression

that does not require parametric assumptions. For this, we extended the theory of local

maximum likelihood estimation, in particular the recent work of Kumbhakar et al. (2006),

to the truncated case. We provided the asymptotic results of our estimator. Specifically, the

estimator is consistent and asymptotically normally distributed with variance that can be

estimated from data.

We also illustrated the performances of two variants of our estimator (namely, linear and

quadratic approximations) on various simulated data sets, comparing it to the truth and to

the parametric estimator. Remarkably, for the univariate case, our estimator performs as

good as the traditional, fully parametric estimator when the assumptions for the latter hold,

i.e., we do not lose virtually anything by allowing the flexibility. However, our estimator

performs much better when the parametric assumptions on the regression equation does

not hold or even only when the assumption of homoskedastic shape parameter of the error

term does not hold. We also illustrated the use of our estimator on a real data set from

the recent study of Kumar and Russell (2002), analyzing relationship between the efficiency

scores and the capital deepness in countries in the world. In this application we noticed that

quite different and perhaps more plausible implications can be inferred using our estimator

instead of the commonly used parametric one.

It became common that empirical researchers often are satisfied with local linear estima-

tors, motivating it with similar asymptotic properties but relative computational simplicity.

However, all our simulations suggested that, despite some increase in the computational

complexity, the local quadratic likelihood estimator of the regression function should be pre-

ferred relative to the local linear one, especially if heteroskedasticity is expected and certainly

when the focus is on estimating first derivatives.

We also found that fitting a lower order polynomial for the shape parameter τ may

jeopardize the estimator of the regression function f . This is a new theoretical finding, which

was supported with preliminary simulation results and justifies consideration of higher-order

local polynomial for τ even if one is interested in estimating the function f and its derivatives.

Noteworthy, our study can be extended in many ways. One natural extension would be

to investigate endogeneity problem. Another extension is to incorporate the use of discrete

explanatory variables. Yet another extension is to analyze the panel data framework. Our
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study is just the start, telling that the non-parametric estimator in the truncated regression

context should exhibit a fair degree of robustness to various deviations from linearity in the

regression equation and in the function defining the heteroskedastic shape parameter and

thus shall prove to be very useful in practical applications.

7 Regularity Conditions and Proof of Theorems

7.1 Regularity Conditions

First, we collect the assumptions for Theorem 3.1. For a ∈ IRr(p) and b ∈ IR, let ψ(a, b|x) ≡
[ψ1(a, b|x), ψ2(a, b|x)]T where

ψ1(a, b|x) = E
[

ℓ10
(

Y, f(x) + a0 + a1u1 + · · ·+ ar(p)−1u
p
d, τ + b

)

∣

∣

∣
X = x

]

,

ψ2(a, b|x) = E
[

ℓ01
(

Y, f(x) + a0 + a1u1 + · · ·+ ar(p)−1u
p
d, τ + b

)

∣

∣

∣
X = x

]

.

(A1) Q(a, b) = 0 has the unique solution a = 0 ∈ IRr(p) and b = 0 ∈ IR;

(A2) sup(aT ,b)T ∈A

∣

∣

∣
ψ(a, b|x + z) − ψ(a, b|x)

∣

∣

∣
→ 0 as z → 0 for some compact set A ⊂

IRr(p)+1;

(A3) for (i, j) = (1, 0) and (0, 1), the following condition holds: for any compact sets

A1,A2 ⊂ IR, there exist functions Uij such that supν∈A1,ω∈A2
|ℓij(y, ν, ω)| ≤ Uij(y) and

sup|z−x|≤εE
(

U2+δ
ij (Y )|X = z

)

<∞ for some ε, δ > 0;

(A4) for (i, j) = (2, 0), (0, 2) and (1, 1), the following condition holds: ℓij(y, ν, ω) are

continuous in (ν, ω) for each y, and for any compact sets A1,A2 ⊂ IR, there exist func-

tions Uij such that supν∈A1,ω∈A2
|ℓij(y, ν, ω)| ≤ Uij(y) and sup|z−x|≤εE

(

U2
ij(Y )|X = z

)

<

∞ for some ε > 0;

(A5) g(x) > 0, ρ20(x) > 0, ρ20(x)ρ02(x) − ρ11(x)
2 > 0, v20(x) > 0, v20(x)v02(x) −

v11(x)
2 > 0

(A6) g, all ρij and vij for (i, j) = (2, 0), (0, 2), (1, 1) are continuous at x;

(A7) K is nonnegative, bounded and supported on [−1, 1]d;

(A8) The function f has (p+ 1)th continuous partial derivatives at x;

(A9) h→ 0 and nh→ ∞ as n→ ∞, and nh2p+d+2 < C for some positive constant C.
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Now, to list the assumptions for Theorem 3.2, let ψ(a, b|x) ≡ [ψ1(a, b|x), ψ2(a, b|x)]T for

a ∈ IRr(p) and b ∈ IRr(q), where

ψ1(a, b|x) = E
[

ℓ10
(

Y, f(x) + a0 + a1u1 + · · · + ar(p)−1u
p
d,

τ(x) + b0 + b1u1 + · · ·+ br(q)−1u
q
d

)

∣

∣

∣
X = x

]

,

ψ2(a, b|x) = E
[

ℓ01
(

Y, f(x) + a0 + a1u1 + · · · + ar(p)−1u
p
d,

τ(x) + b0 + b1u1 + · · ·+ br(q)−1u
q
d

)

∣

∣

∣
X = x

]

.

(B1) Q(a, b) = 0 has the unique solution a = 0 ∈ IRr(p) and b = 0 ∈ IRr(q);

(B2) sup(aT ,bT )T ∈A

∣

∣

∣
ψ(a, b|x + z) − ψ(a, b|x)

∣

∣

∣
→ 0 as z → 0 for some compact set

A ⊂ IRr(p)+r(q);

(B3)–(B7) same as (A3)–(A7);

(B8) The function f has (p + 1)th continuous partial derivatives, and the function τ

has (q + 1)th continuous partial derivatives, at x;

(B9) h→ 0 and nh→ ∞ as n→ ∞, and nh2(p∧q)+d+2 < C for some positive constant

C.

7.2 Proof of Theorem 3.2

We outline a proof of Theorem 3.2 only. Proof of Theorem 3.1 is similar and less involved

than that of Theorem 3.2.

Define u(j) =
(

uξj(1), . . . , uξj(mj)
)T

for a d-vector u, where ξj(s) is defined in Section 3.

Let f̃ be the pth order polynomial approximation of f around the point x, and τ̃ the qth

order polynomial approximation of τ , i.e.,

f̃(u) =

p
∑

j=0

θ(j)(x)T (u− x)(j),

τ̃(u) =

q
∑

j=0

τ (j)(x)T (u− x)(j),

where θ(j)(x) is defined at (3.1). Define

â(j) ≡ â(j)(x) = hj
(

θ̂(j)(x) − θ(j)
)

, j = 0, . . . , p,

b̂(j) ≡ b̂(j)(x) = hj
(

τ̂ (j)(x) − τ (j)
)

, j = 0, . . . , q.
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Also, define

Zp,i =

(

1,

(

Xi1 − x1

h

)

, . . . ,

(

Xid − xd

h

)p)T

,

ℓ̃jk(i, a, b) = ℓjk

(

Yi, f̃(Xi) + a0 + a1

(

Xi1 − x1

h

)

+ · · ·+ ar(p)−1

(

Xid − xd

h

)p

,

τ̃ (Xi) + b0 + b1

(

Xi1 − x1

h

)

+ · · · + br(q)−1

(

Xid − xd

h

)q)

Q1n(a, b) = n−1
n

∑

i=1

Zp,iℓ̃10(i, a, b)Kh(Xi − x),

Q2n(a, b) = n−1
n

∑

i=1

Zq,iℓ̃01(i, a, b)Kh(Xi − x).

Write â = (â(0)T , . . . , â(p)T )T and b̂ = (b̂(0)T , . . . , b̂(q)T )T . Then (â, b̂) is the solution of the

equation Qn(a, b) = 0, where Qn(a, b) =
(

Q1n(a, b)T , Q2n(a, b)T
)T

is a [r(p) + r(q)]-vector.

One can prove in a similar way as in Kumbhakar et al. (2006) that for any compact set A

sup
(a,b)∈A

∣

∣

∣
Qn(a, b) −EQn(a, b)

∣

∣

∣
= Op

(

n−1/2h−d/2(logn)1/2
)

, (7.1)

sup
(a,b)∈A

∣

∣

∣
EQn(a, b) −Q(a, b)

∣

∣

∣
= o(1). (7.2)

By (7.1), (7.2) and the assumption (B1) it follows that

â = op(1), b̂ = op(1). (7.3)

Next, let Sn(a, b) be a [r(p) + r(q)] × [r(p) + r(q)] matrix defined as

Sn(a, b) =





n−1
∑n

i=1 Zp,iZ
T
p,iℓ̃20(i, a, b), n−1

∑n
i=1 Zp,iZ

T
q,iℓ̃11(i, a, b)

n−1
∑n

i=1 Zq,iZ
T
p,iℓ̃11(i, a, b), n−1

∑n
i=1 Zq,iZ

T
q,iℓ̃02(i, a, b)





It can be proved that for any compact set A

sup
(a,b)∈A

∣

∣

∣
Sn(a, b) − ESn(a, b)

∣

∣

∣
= Op

(

n−1/2h−d/2(log n)1/2
)

(7.4)

A Taylor expansion of Qn(a, b) gives

0 = Qn(â, b̂) = Qn(0, 0) + Sn(a∗, b∗)

[

â

b̂

]

, (7.5)

where a∗ and b∗ are random vectors such that |(a∗T , b∗T )T | ≤ |(âT , b̂T )T |. The consistency of

(â, b̂) as given at (7.3) and the result (7.4) imply

Sn(a∗, b∗) − ESn(0, 0) = op(1). (7.6)
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Furthermore, one can show that

ESn(0, 0) = −D(x)g(x) + o(1). (7.7)

By (7.5)–(7.7) and the fact thatQn(0, 0) = Op(n
−1/2h−d/2), we obtain the following expansion

for (âT , b̂T )T :
[

â

b̂

]

= g(x)−1D(x)−1Qn(0, 0) + op(n
−1/2h−d/2). (7.8)

The mean and variance of (âT , b̂T )T come from those of Qn(0, 0). One can show

E[Qn(0, 0)] =

[

hp+1ρ20(x)N
(p)
p+1θ

(p+1)(x) + hq+1ρ11(x)N
(p)
q+1τ

(q+1)(x)

hp+1ρ11(x)N
(q)
p+1θ

(p+1)(x) + hq+1ρ02(x)N
(q)
q+1τ

(q+1)(x)

]

g(x) (7.9)

+o(hp+1 + hq+1),

var[Qn(0, 0)] = n−1h−d

[

M (p,p)v20(x) M (p,q)v11(x)
M (q,p)v11(x) M (q,q)v02(x)

]

g(x) + o(n−1h−d). (7.10)

The asymptotic normality of Qn(0, 0) follows from the assumption (B3) by a direct ap-

plication of the Lindeberg-Feller theorem. The theorem now follows from the asymptotic

normality of Qn(0, 0) and (7.8)–(7.10).
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