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Abstract

Adequate knowledge of timing and pattern of permanent tooth emer-
gence is useful for diagnosis and treatment planning in paediatric dentistry
and orthodontics and is essential in forensic dentistry. Based on a data set
obtained in a large dental longitudinal study, conducted in Flanders (Bel-
gium), the joint emergence distribution of seven teeth was modeled as a
function of gender and caries experience on primary teeth. Besides estab-
lishing the marginal dependence of emergence on the covariates, there was
also interest in examining the impact of the covariates on the association
among emergence times. This allows to establish the preferred rankings of
emergence and their dependence on covariates, but it necessitates to model
the covariance matrix (of a multivariate normal distribution) as a function
of covariates. Modeling the covariance matrix has received recently quite
some attention in the literature. Indeed, in a variety of statistical models
allowing the covariance matrix to depend on covariates can improve the fit
of the model to the data considerably and can imply a dramatic change in
the conclusion, especially for non-linear models. However, modeling must
to be done with care since the positive definiteness of the covariance matrix
needs to be assured. Further, it is preferable that all regression parameters
of the model are interpretable. The modified Cholesky representation of
the covariance matrix, as suggested by Pourahmadi (1999), splits up the
covariance matrix into two parts where the parameters can be interpreted
given a natural ranking of the responses. This approach was used to model
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tooth emergence data. However, the emergence times were recorded in an
interval-censored manner. Hence, we opted for a Bayesian implementation
of the Data Augmentation algorithm.

Key words: Bivariate survival; covariance matrix; data augmentation;
emergence times; interval-censored; multivariate Normality.

1 INTRODUCTION

In this paper a Bayesian approach is applied to model multivariate normal interval
censored data, whereby, besides the marginal distributions, also the covariance
matrix is allowed to depend on covariates. Modeling a covariance matrix as
a function of covariates is complex due to the requirement that it should be
positive-definite (pd). A variety of approaches have been suggested to deal with
the pd-condition. Further, in statistical modeling an important aspect is the
interpretability of the model parameters. The approach suggested by Pourahmadi
(1999) offers a trade-off between computational complexity and interpretability
of the regression coefficients of the covariates. More specifically, he suggested
to break up the covariance matrix into a unit lower triangular matrix T and a
diagonal matrix D, by making use of the modified Cholesky decomposition of the
inverse of the covariance matrix. One advantage of this parametrization is that
the covariance matrix automatically satisfies the pd-condition. In addition, the
elements of T can be interpreted as regression coefficients of conditional regression
models, while the diagonal elements of D represent conditional variances.

The motivating example is taken from dentistry. More specifically, we have
looked at the emergence times of permanent teeth. The emergence time of a
tooth is the chronological age of the child when that tooth appears in the mouth.
Adequate knowledge of timing and pattern of permanent tooth emergence is use-
ful for diagnosis and treatment planning in paediatric dentistry and orthodontics
and is essential in forensic dentistry. Further, according to Demirjian (1978)
(and others) emergence standards should be derived from the relevant popula-
tion. However, an extra complication is that it is impossible in practice to know
the emergence time precisely. Indeed, the emergence time is always recorded in
an interval-censored manner. That is, either the tooth has emerged before the
first examination (left-censored), emerged in-between two examinations (interval-
censored), or emerges after the last examination (right-censored). Consequently,
we applied Pourahmadi ’s (1999) approach on the true, but unobserved, emer-
gence times which were supposed to follow a multivariate normal distribution.
For this reason, we invoked the Data Augmentation algorithm and opted for a
Bayesian approach. In three previous publications (Bogaerts et al., 2002; Leroy
et al., 2003a,b) our group examined the emergence distribution of all perma-
nent teeth (excluding the wisdom teeth) of Flemish children. For this we have



used data from the Signal Tandmobielrproject, a 6-year prospective longitudinal
study, which collected annually dental and oral behavior data from a represen-
tative sample of Flemish children. In our previous work we focussed at the
marginal emergence distributions. Here we explored also whether the association
between the emergence times depends on gender and caries experience on decid-
uous teeth. Modeling jointly the marginal and the association structure allowed
us to establish the most preferred emergence rankings and to see how much the
ranking depends on the covariates. Indeed, for a long time dental researchers
were interested in the mean emergence ranking (obtained from the mean/median
emergence times) but also in establishing the prevalence of the most preferred
emergence rankings, see e.g.Adler (1963) and Savara and Steen (1973). However,
establishing the prevalence of each emergence ranking is not trivial due to the
large number of possible rankings. In this paper we explored the seven perma-
nent teeth of the right maxilla quadrant. Hence, there were 7! = 5040 possible
rankings to consider.

In Section 2 we describe the Signal Tandmobielr study, introduce the specific
research questions and briefly overview the literature in this respect. In Sec-
tion 3, we introduce the multivariate model and discuss approaches to model the
covariance matrix as a function of covariates. We focus in this section on the
modified Cholesky decomposition of the covariance matrix, the interpretation of
the parameters and its use in modeling the covariance matrix. Bayesian mod-
eling of multivariate interval censored normal data will be treated in Section 4.
The application of this approach to the Signal Tandmobielr data is described in
Section 5. Some concluding remarks are given in Section 6.

2 The Dental Example

2.1 A brief overview of the research on emergence times

The interest for the timing and sequence of permanent teeth dates back to the
19th century, see e.g. Adler (1963). Since then, numerous publications have ap-
peared on this topic, see e.g. Leroy et al. (2003a) and references therein. One
reason for this interest is that emergence standards should be derived from the
relevant population, as factors related to emergence may vary considerably geo-
graphically as well as over time, see e.g. Demirjian (1978). Virtanen et al. (1994)
found several factors which have a relationship with the emergence time of per-
manent teeth in a Finnish population, namely: gender, ethnicity, environmental,
socio-economic and secular factors. To establish the emergence distributions, two
study types are in use: cross-sectional studies and cohort studies. In the cross-
sectional study (e.g. Eskeli et al., 1999; Mungonzibwa et al., 2002) the eruption
stage of each tooth is established at one time point. However, in this type of study
the estimate of the distribution of the emergence times is confounded with secular



trends. In a cohort study (e.g. Virtanen et al., 1994; Parner et al., 2001, 2002),
the eruption stage is repeatedly measured in time. It is important to note that
the emergence of a tooth can never be determined precisely in practice leading
to interval-censored observations. Indeed, the only information available is that
the tooth emerged between two study visits. In the past, one often replaced the
interval wherein the tooth emerged by its mid-point thereby allowing to use clas-
sical survival methods to estimate the distribution of the emergence times, e.g.
Savara and Steen (1973). However, it is known that this procedure yields biased
parameter estimates of the emergence distribution, see e.g. Bogaerts and Lesaffre
(2006). Recently, our group (Bogaerts et al., 2002; Leroy et al., 2003a) explored
the marginal distribution of the emergence time of the 28 permanent teeth of
children from Flanders (Belgium) using the Signal-Tandmobielrdata taking into
account the interval-censored nature of emergence times. More specifically, we
fitted a log-logistic survival model to each tooth separately and found that the
emergence of permanent teeth differs by gender (inter-subject comparison), i.e.
teeth of girls emerge earlier than those of boys. We also verified whether there
are differences in the emergence distribution of contralateral (left-right) or op-
posing (upper-lower) teeth (intra-subject comparisons). In order to answer these
questions, a log-logistic multivariate survival GEE model was fitted to take into
account the dependency between teeth in the same mouth thereby treating the
association of emergence times as nuisance. A significant difference in emergence
ages for opposing teeth was found, both for girls and boys. Finally, Leroy et al.
(2003b) found that caries experience on a deciduous molar has an impact on the
emergence of the permanent successor. In general, caries on the deciduous mo-
lar accelerated the emergence of the successor. However, this was not seen for
all molars and others reported that the effect depends on whether (and when)
the deciduous molar was extracted or not, (see Kochhar and Richardson, 1998).
Summarized, caries on the deciduous teeth distort the emergence process.

A number of papers looked at the association between emergence times. For
instance, Parner et al. (2001) and Parner et al. (2002) studied the association
between the emergence times of permanent teeth in a Danish population.They
obtained maximum likelihood estimates for the correlation coefficients under the
assumption of a bivariate normal distribution for a pair of emergence times. Bo-
gaerts and Lesaffre (2006) proposed to calculate Kendall’s τ for the association
of interval-censored survival times based on a smooth estimate of the bivariate
survival distribution. This technique was applied to the emergence times of the
seven permanent teeth of the upper right quadrant of the mouth from children
of the Signal Tandmobielrstudy. The association pattern of boys was compared
to that of girls, but no significant different patterns were found. Parner et al.
(2002) estimated the correlation coefficients of the emergence times in their bi-
variate normal model, separately for boys and girls, but did not compare them
statistically.

Finally, besides the mean ranking of emergence determined by the mean/median



emergence time, there is also interest in knowing the prevalence of the emergence
rankings. Adler (1963) argues that too often the impression is given that the
emergence sequence of the teeth follows a definite and regular pattern and points
out that this concern was already pointed out in the 19th century. Savara and
Steen (1973) explored the sequences of tooth emergence for children from Oregon.
However, their sample size was too small to make any inferences.

2.2 The Signal-Tandmobielrstudy and the main goals of
this study

The Signal-Tandmobielrstudy is a prospective longitudinal survey, which was set
up in 1996 to collect dental and oral health behavior data on a representative
sample of Flemish children born in 1989. The sample represents about 7 per cent
of the child population of the same age and comprises 4468 children with 2153
(48.2 %) girls and 2315 (51.8 %) boys. Among other things, the project provides
data on permanent tooth emergence for Flemish children from 7 to 12 years of
age. They were examined annually on pre-scheduled visits by sixteen trained
dental examiners in a mobile dental clinic.

Tooth emergence was recorded at each examination by direct inspection (at
least one cusp visible). Each permanent tooth was scored according to its clinical
eruption stage (adapted from Carvalho et al., 1989). However, for this study the
emergence status of a tooth was dichotomized: not emerged versus emerged. We
refer to Vanobbergen et al. (2000) for a comprehensive description of the project.
As the children were examined annually, the emergence data are interval censored.
This means that the time of emergence of a tooth, Y , is only known to lie in an
interval [tl, tr], but for some children and teeth the emergence was left- or right-
censored. Left- and right- censored data are special cases of interval-censored
data, with tl = 0 for left-censored observations and tr = ∞ for right-censored
observations.

As seen above, previous analyses of our group showed a dependence of the
marginal distribution on gender and caries experience of the primary teeth, see
e.g., Bogaerts et al. (2002), Leroy et al. (2003a) and Leroy et al. (2003b). In
this paper, we treat the dependence of the association on the same covariates.
In fact, we have modeled both the marginal as well as the association structure
as a function of the covariates. This enabled us to estimate the prevalence of all
emergence rankings and to evaluate how the prevalence changes with the values
of the covariates.

In this paper, we study the emergence times of permanent teeth of the up-
per left quadrant of the mouth. In the European notation, these are the teeth
denoted as 1x, where x = 1, . . . , 7. The incisors are denoted as 11 and 12, the
canine as 13, the pre-molars as 14 and 15, the molars as 16 and 17. Examining all
28 permanent teeth (excluding the wisdom teeth) jointly would be computation-



ally too demanding, since it implies estimating e.g. 378 correlation coefficients.
Since the emergence times are interval-censored and to avoid the calculation of
complicated derivatives, an MCMC approach was preferred making use of the
Data Augmentation algorithm (Tanner and Wong, 1987).

3 Modeling the covariance matrix of a multi-

variate normal distribution

To allow the association to depend on covariates implies that we need to model the
covariance matrix of the multivariate normal model as a function of covariates.
A brief overview of what has been proposed in the literature is given below.

3.1 Some parameterizations of the multivariate normal
model

Assume that the response vector (of true emergences) for the i-th subject follows
a multivariate normal distribution, i.e.

Y i ∼ Np(X iβ, Σi), (i = 1, . . . , n) (1)

where Y i is a p × 1 vector of responses, β = (βT
1 , . . . , βT

p )T , with βs a q × 1
vector of regression coefficients corresponding to the sth response, and X i is a
p× (q × p) design matrix given by

X i = Ipp ⊗ xT
i ,

where Ipp is the p × p identity matrix, ⊗ the Kronecker product and xT
i =

(1, x1i, . . . , xq−1,i). Further, Σi is the covariance matrix of the ith subject.
A natural parametrization of the covariance matrix, discussed by Barnard

et al. (2000), is to use the variance-correlation decomposition. More specifically,
this decomposition implies that Σi = ΓiRiΓi, where Γi is the diagonal matrix of
the standard deviations and Ri the correlation matrix. If Σi depends on the sub-
ject, some statistical modeling is necessary to reduce the number of parameters.
This can be achieved by expressing the (components of the) covariance matrix
as a function of covariates. For the diagonal elements of Γi, σsi, it is common to
use the log link, i.e. log(σ2

si) = xT
i λs. For the elements of the correlation matrix,

various authors (Song et al., 2004; Yan and Fine, 2004) suggested that Fisher’s
(or an analogous) transformation of the correlation coefficient be linearly related
to covariates. That is, if ρst,i is the (s, t)th entry of Ri then ρst,i = tanh(xT

i ψ(s,t)).
Fisher’s transform removes the implied range constraints (due to the restrictions
on correlations) on the covariates. This is useful, but is not sufficient to ensure
positive definiteness of Ri when p > 2. In Figure 1 we display the smallest eigen-
value of a 3×3 correlation matrix where the Fisher’s transform of the correlations



depends linearly on a continuous covariate x. Clearly, positive definiteness is vio-
lated in some regions of the support of the covariate. But, even if Ri were positive
definite in the range of the observed x-values of the sample, there is no guaran-
tee that the correlation matrix remains positive definite for future values of x.
This problem can also occur in the method proposed by Browne et al. (2002).
Thus, while the approach yields interpretable parameters, this decomposition of
the covariance matrix has undesirable computational properties.
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Figure 1: Positive definiteness of correlation matrix: minimum eigenvalue versus
continuous covariate.

3.2 The modified Cholesky decomposition of the covari-
ance matrix

Pinheiro and Bates (1996) described five different parameterizations for covari-
ance matrices that ensure positive definiteness and leave the estimation process
unconstrained. In particular, they considered two types of decompositions of the
covariance matrix: the Cholesky and the spectral decomposition. In the Cholesky
decomposition Σi = LiL

T
i , where Li is a lower triangular matrix. Further, they

considered two related parameterizations. Two variations of the classical spectral
decomposition were considered, both allowing unconstrained calculations. The
classical spectral decomposition implies that Σi = UiΛiU

T
i , where Ui is the or-

thogonal matrix of orthonormal eigenvectors of Σi and Λi the diagonal matrix of
eigenvalues. Using a simulation study, they compared the performance of the five
methods. It was found that computing time was less for the Cholesky decompo-
sitions. However, all of the decompositions lack good parameter interpretability.

Pourahmadi (1999) used the modified Cholesky decomposition of Σ−1
i to pro-

pose a statistically unconstrained parametrization of the covariance matrix. The



modified Cholesky decomposition is given by

TiΣiT
T
i = Di, (2)

where Ti is a unique lower triangular matrix with 1’s as diagonal entries and Di

a unique diagonal matrix with positive diagonal entries. In the next step the
elements of Ti and Di are expressed as functions of covariates. The elements of
the decomposition enjoy a better interpretation than in the other decompositions,
as we will show below.

Suppose β is given and Σi ≡ Σ. For simplicity reasons, we temporarily omit
the dependence on the subject. Let Ŷs be the linear least-squares predictor of Ys,
the sth component of Y , on its predecessors Y(s−1), . . . , Y1 and εs = Ŷs − Ys be
its prediction error with variance τ 2

s = var(εs). Thus,

Ys = Ŷs + εs = xT βs +
s−1∑
j=1

φsj(Yj − xT βj) + εs, (3)

which is obtained by standard regression arguments. The components of this
regression model are related to the elements of T and D. More specifically, D =
diag(τ 2

1 , . . . , τ 2
p ) and −φst is the (s, t) entry of the matrix T . This decomposition

allows to introduce covariates very easily through the unconstraint entries of the
T matrix and the logarithm of the diagonal entries of the D matrix without any
concern for the pd-condition.

Following Pourahmadi (1999), it is proposed here to model the dependence of
the association structure on covariates as follows:

log(τ 2
s,i) = xT

i λs, (4)

φst,i = xT
i γst, (5)

where λs (s = 1, . . . , p) and γst (s = 2, . . . , p; t = 1, . . . , (p − 1)) are vectors
of regression coefficients for the log-transformed conditional variances and the
dependence parameters, respectively. Expressions (4) and (5) can be generalized
by allowing different covariates for the conditional variances and dependence
parameters.

Summarized, the parameters to be estimated in model (1) are:

• The regression parameters of the marginal distribution: β = (βT
1 , . . . , βT

p )T ;

• The regression parameters of the conditional variances: λ = (λT
1 , . . . , λT

p )T ;

• The regression parameters of the dependence parameters: γ = (γT
21, . . . , γ

T
p,(p−1))

T .

For the interpretability of the parameters, the approach of Pourahmadi is
based on the assumption that there is some logical ranking of the components



of Y . Such a natural ranking is present in longitudinal studies or time series.
However, in our dental example, we cannot claim that there is a unique ranking
of the emergence times in each subject. In fact, one of our goals is to look for the
preferred rankings. Therefore, we have ranked the components of Y according
to the estimated mean emergence time. While the statistical interpretation of
the regression parameters remains the same their practical interpretability is less
straightforward. An excellent overview of modeling covariance matrices can be
found at the Website http://www.math.niu.edu/ pourahm/.

4 Modeling multivariate interval censored nor-

mal data

For the estimation of the regression parameters, we have followed the approach of
Daniels and Pourahmadi (2002). Hence, we refer to that paper for more technical
details. Briefly, the prior distributions for the parameter vectors β, λ and γ are

β ∼ N(β∗, Σβ), λ ∼ N(λ∗, Σλ), γ ∼ N(γ∗, Σγ).

The normal priors for β and γ are conditionally conjugate to the full condi-
tionals of the respective parameter vectors. Indeed, the full conditionals for β
and γ are normals, which allows straightforward Gibbs sampling. The param-
eter vector λ can be sampled using a Random Walk Metropolis with a normal
proposal. The covariance matrix of the normal proposal was chosen as a multiple
of (XT X)−1, where the scale factor was tuned to achieve an acceptance rate of
about 26%.
Up to now, we have modeled the true, but unobserved, emergence times Y i. How-
ever, in our study we only have the interval censored emergence time, Ỹ i. An
extra Gibbs step using the Data Augmentation algorithm allows to generate eas-
ily the latent emergence times, given the interval censored observed emergence
times. Basically, at each iteration of the MCMC chain, all ’true’ observations
are imputed from their full conditional distribution and then the parameter vec-
tor is updated based on the complete imputed sample. Under the assumption
that the true emergence times Y i follow a multivariate normal distribution, the
full conditional distribution of Y i, given the remaining parameters and the ob-
served data Ỹ i, is multivariate normal truncated to the region determined by
the Cartesian product of the intervals where each Ysi, (s = 1, . . . , p) lies. Let
Ci = [l1,i, r1,i]× . . .× [lp,i, rp,i] be the region where Y i (i = 1, 2, . . . , n) lies and let
D = {Ci}1≤i≤n be the observed n hyper-cubes. Since the observations are inde-
pendent given β, γ and λ and assuming that censoring occurs non-informatively
(as in the Signal Tandmobielrstudy), it follows that

Y i ∼ N(X iβ, Σi)× ICi
, (6)



where ICi
is the characteristic function of the hyper-cube Ci, and Σi = Σi(X iλ, X iγ).

In order to sample from distribution (6), at each iteration of the Gibbs sam-
pler, we sampled iteratively the components of Y i which have truncated univari-
ate normal distributions using the inverse function method (Ripley, 1987).

5 Application of the Bayesian approach to the

Signal Tandmobielrstudy

5.1 Details on the implemented Bayesian modeling pro-
cedure

Since many authors have found that the normal distribution fits the emergence
times quite well, see e.g. Parner et al. (2001) and Parner et al. (2002), we assumed
here that the true emergence times follows a multivariate normal distribution.

The Bayesian approach was programmed in C using the Scythe library (Quinn
and Martin, 2002). One chain was run for 25, 000 iterations as burn-in. The
convergence of the Gibbs sampler was monitored by examining trace plots of the
parameters and using the convergence diagnostics of Heidelberger and Welch and
of Raftery and Lewis, implemented in the R Coda package (Plummer et al., 2005).
Since a large number of parameters needed to be sampled, a 1:5 thinning was
applied for reasons of computer storage. For the estimation of the parameters,
a further 25, 000 iterations were run, yielding 25, 000/5 = 5, 000 samples from
which the estimates were obtained. 95% highest posterior density (HPD) intervals
were determined using the approach of Chen and Shao (1999) implemented in
the R BOA package (Smith, 2005). As mentioned in Section 3.2, there is no
unique ranking of the components of the response vector. Based on the mean
ranking of the emergence times, we have taken the following ranking for the
teeth: 16-11-12-14-13-15-17. This ranking defines the components of the vector
Y . The prevalence of all possible sequences of emergence was calculated for each
gender×dmft combination separately. Let a sequence of emergence times be
denoted as i1i2i3i4i5i6i7, then the prevalence of this sequence was determined by

P (Yi1 < Yi2 < Yi3 < Yi4 < Yi5 < Yi6 < Yi7) =

∫

S

φ(x|µ, Σ)dx,

where φ(x|µ, Σ) represents the multivariate normal density with mean vector µ
and covariance matrix Σ; and S = {(yi1 , yi2 , yi3 , yi4 , yi5 , yi6 , yi7) ∈ R7| yi1 < yi2 <
yi3 < yi4 < yi5 < yi6 < yi7}. This integral was numerically calculated using Quasi-
Monte Carlo Integration techniques. In contrast to the Monte Carlo Integration,
the technique of Quasi Monte Carlo relies on point sets in which the points
are not chosen i.i.d from the uniform distribution but rather interdependently
using pseudo-random sequences (see e.g. Hickernell and Owen, 2005). In order to



implement the Quasi Monte Carlo Integration, we slightly modified the rmvnorm
function of Genz et al. (2005) changing the random generation from a normal
distribution by the rnorm.halton function implemented in Wuertz (2005). This
function calculates a matrix of normal distributed pseudo random numbers.

5.2 Results

We considered two determinants for emergence: (1) gender (0=boy, 1=girl) and
(2) caries experience on the deciduous teeth at the age of seven. As indicated
in Section 2, a gender effect on emergence has been established by several re-
searchers. Namely, teeth emerge earlier in girls than in boys. Further, in Leroy
et al. (2003b) the effect of caries experience in a deciduous molar on its successor
has been examined for each premolar separately. Here, we have taken as covariate
the dmft-index at the age of seven. The dmft-index is a popular measure for
caries experience and is the sum of the deciduous teeth which are either decayed,
or missing due to extraction because of caries, or filled. Thus, the dmft-index
in our study is a surrogate marker for the brushing- and dietary behavior of the
child in its first seven years. In Figure 2 the histogram of the dmft-index for
the seven-year old children from the Signal Tandmobiel rStudy is shown. About
44% of the children were caries-free at the level of cavitation, but the very skewed
distribution of the dmft-index shows that there are subgroups of children with
quite some caries experience, already in their early childhood. Summarized, we
fitted model (1) to the above defined seven permanent teeth and modeled Σi ac-
cording to expressions (2), (4) and (5). The dmft-index was included linearly in
the model for all components as a result of some exploratory parametric analyses
using PROC LIFEREG (SAS Version 9.1) on the marginal distributions of the
teeth emergences.

Marginal emergence distributions

The posterior means and the 95% HPD intervals of the regression parameters of
the mean structure (β) are shown in Table 1. Table 1 shows that the permanent
teeth emerge earlier in girls than in boys, corroborating the findings of others.
This also confirms the findings of an earlier analysis (not involving dmft-index)
yielding as estimates (based on the median posterior summary statistic) for the
mean emergence times (mean (tooth number)) in years for girls: 6.30 (16), 6.86
(11), 7.89 (12), 10.34 (14), 10.95 (13), 11.31 (15) and 12.02 (17). For boys
the same ranking was found with values: 6.44 (16), 7.11 (11), 8.29 (12), 10.76
(14), 11.59 (13), 11.71 (15) and 12.35 (17). The present analysis shows that the
emergence of all teeth is accelerated when there is (more) caries on the deciduous
teeth, because of a negative regression coefficient for dmft. But only for teeth
13 (canine), 14 and 15 (pre-molars) the 95% HPD-interval does not encompass
0. These results confirm what has been reported by Leroy et al. (2003b).
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Figure 2: Signal Tandmobiel rStudy: distribution of dmft-index at the age of
seven.

Table 1: Posterior means (95 % HPD) of regression coefficients (β) for the
marginal part of the multivariate normal model.

Tooth Intercept Gender (1=Girls) dmft (×100)

Y1 16 6.44 −0.13 −0.45
(6.40,6.49) (−0.19,−0.07) (−1.48,0.55)

Y2 11 7.11 −0.24 −0.07
(7.07,7.16) (−0.30,−0.19) (−1.00,0.84)

Y3 12 8.30 −0.39 −0.48
(8.25,8.35) (−0.45,−0.33) (−1.56,0.54)

Y4 14 11.03 −0.41 −12.63
(10.96,11.10) (−0.49,−0.33) (−14.16,−11.11)

Y5 13 11.64 −0.63 −2.39
(11.55,11.71) (−0.73,−0.54) (−3.87,−0.79)

Y6 15 11.89 −0.37 −10.46
(11.80,11.99) (−0.49,−0.27) (−12.47,−8.39)

Y7 17 12.38 −0.32 −0.98
(12.28,12.49) (−0.45,−0.19) (−3.35,1.01)



Table 2 expresses the dependence of the (log)-conditional variance on the
covariates. Again, there is a (significant) effect of the covariates for some of the
teeth. The problem, however, is that it is not immediately clear what the impact
is of these covariates on the marginal variances. For instance, it can be read
off from this table is that, given teeth 16 and 11 have emerged, the variability
of emergence of tooth 12 is higher for girls than for boys (λ31 = 0.24). On the
whole it seems that the variability is less for girls than for boys. Further, a
higher dmft-index implies overall a higher conditional variance. Since the effect
of the dmft-index is quite consistent over teeth (except for tooth 16 where there
seems to be a slight negative effect), we speculated that the marginal variance of
emergence is higher in children with an inadequate diet- and/or brushing behavior
in the first six years of their life.

Table 2: Posterior means (95 % HPD) of regression coefficients (λ) for the log of
conditional variances of the multivariate normal model.

Tooth Intercept Gender (1 = Girls) dmft (×100)

Y1 16 −0.94 −0.21 −0.10
(−1.05,−0.85) (−0.36,−0.07) (−2.04,1.79)

Y2 11 −0.91 −0.04 0.24
(−1.01,−0.81) (−0.17,0.11) (−1.97,2.09)

Y3 12 −0.88 0.24 0.51
(−0.99,−0.77) (0.10,0.34) (−1.97,3.11)

Y4 14 −0.05 −0.32 8.05
(−0.16,0.06) (−0.47,−0.16) (5.89,10.13)

Y5 13 −0.37 −0.21 3.74
(−0.50,−0.23) (−0.33,−0.06) (0.57,6.65)

Y6 15 −0.59 0.04 11.85
(−0.78,−0.44) (−0.17,0.21) (9.15,14.52)

Y7 17 −1.04 0.18 6.54
(−1.31,−0.80) (−0.16,0.61) (2.28,12.59)

The marginal variance is a highly non-linear function of the covariates. A
simple way to obtain an estimate of the marginal variances is to sample the
posterior predictive distributions of the marginal emergences given a priori chosen
gender× dmft-combinations. As an illustration, Table 3 shows the marginal
variances of tooth 14 for boys and girls separately and for the subgroups dmft =
0, 1, 5, 10, and 15. It is clear that the above speculations based on the conditional
variances were correct. In Table 4 we show the marginal variances for all teeth
split up according to gender and dmft-index. Further, in Table 5 we compare
the marginal variances of boys with girls at the average dmft-index. For all teeth



except 12, the marginal variance of girls is lower than that of boys, but only for
teeth 16 (molar) and 14 (pre-molar) the 95% HPD interval does not include 0.
Table 6 shows the significant differences in marginal variances by gender at the
average dmft.

Table 3: Posterior mean of marginal variances for tooth 14 as a function of dmft.

dmft Girls Boys

0 1.25 1.53
1 1.27 1.57
5 1.40 1.82
10 1.80 2.43
15 2.52 3.49

Table 4: Posterior mean of marginal variances by gender×dmft.

Girls Boys
dmft dmft

Tooth Node 0 1 5 10 15 0 1 5 10 15

16 σ2
11 0.32 0.32 0.32 0.32 0.32 0.39 0.39 0.39 0.39 0.39

11 σ2
22 0.53 0.53 0.51 0.5 0.49 0.56 0.55 0.54 0.52 0.52

12 σ2
33 0.91 0.9 0.9 0.91 0.92 0.82 0.81 0.81 0.81 0.82

14 σ2
44 1.25 1.27 1.4 1.8 2.52 1.53 1.57 1.82 2.43 3.49

13 σ2
55 1.48 1.45 1.39 1.43 1.6 1.61 1.59 1.56 1.62 1.85

15 σ2
66 1.66 1.71 2.08 3.04 4.87 1.82 1.87 2.22 3.13 4.87

17 σ2
77 1.2 1.19 1.21 1.43 1.94 1.23 1.21 1.18 1.33 1.77

Dependence of association structure of emergence times on
gender and dmft-index

The estimated γ regression coefficients, which determine the elements φst,i (s =
2, . . . , 7; t = 1, . . . , 6) of the lower unit triangular matrix T are shown in Table 7.
While, some of the regression coefficients γst are significantly different from zero
it is difficult, if not impossible, to get a clear picture of the impact of gender and
dmft-index on the correlation coefficients. Therefore, we have shown in Table 8
the posterior mean of the correlations as a function of gender and the five dmft-
subgroups. We see that for all teeth the correlation coefficient decreases with



Table 5: Posterior mean of marginal variances (95% HPD) at mean dmft by
gender.

Tooth Girls Boys

16 σ2
11 0.32 0.39

(0.29,0.34) (0.36,0.42)
11 σ2

22 0.52 0.55
(0.48,0.57 (0.51,0.59)

12 σ2
33 0.90 0.81

(0.84,0.97) (0.76,0.87)
14 σ2

44 1.29 1.63
(1.19,1.39 ) (1.50,1.79)

13 σ2
55 1.42 1.57

(1.31,1.56) (1.41,1.73)
15 σ2

66 1.80 1.95
(1.63,1.96) (1.74,2.18)

17 σ2
77 1.18 1.19

(1.03,1.33) (1.01,1.38)

Table 6: Posterior mean of differences in marginal variances by gender at mean
dmft.

Tooth Node Mean (95% HPD)

16 σ2g
11 − σ2b

11 −0.07
(−0.13,−0.03)

14 σ2g
44 − σ2b

44 −0.33
(−0.53,−0.16)



increasing dmft-index. The explanation of this phenomenon is found in the fact
that the impact of decayed deciduous teeth is complex and thereby increases the
variability of the emergence process. Overall, caries on primary teeth distorts
the emergence process and this has been indicated in several publications, see
e.g. Leroy et al. (2003b) and Kochhar and Richardson (1998). Therefore, the
distortion is more important for large values of dmft and hence the association
of the emergence times must be lower for higher dmft-values. In Table 9, we
present the posterior correlation matrix by gender at the mean of dmft. Overall
the correlations are quite similar, but some significant differences (in a Bayesian
sense) are found, e.g. the correlation between emergence times of teeth 12 and
17 is lower for girls than for boys (Table 10).

Prevalence emergence times rankings

Above we have seen that for boys and girls the ranking obtained from the mean
emergence times is: 16-11-12-14-13-15-17. Our analyses showed that this is also
the most prevalent ranking for almost all gender×dmft-combinations with preva-
lence varying between 10% and 18%. Further, the mean emergence times confirm
what is known, namely that there are two phases of emergence. In the upper part
of the mouth the first phase occurs between the ages of six and eight and involves
teeth 16, 11 and 12 whereas the second phase occurs between the ages of 10 and
12. Thus, it did not come as a surprise that the next prevalent rankings differ
from the most prevalent only by permutations within the phase. For example,
the second most prevalent is often (but not always) the ranking: 16-11-12-14-15-
13-17. We could have used this fact already from the start, which would have
reduced the computations. However, we found it more elegant to analyze in this
paper a whole quadrant of the mouth at once.

An important finding of our model is that caries distorts the ranking of emer-
gence. This has been already indicated by others, see e.g. Adler (1963) and
Savara and Steen (1973) but here this conclusion is based on a large number of
children from a well controlled longitudinal dental study. The proof of this dis-
tortion is seen in Table 11. Firstly, we reported the number of rankings needed
to cover 90% of the probabilities of the 7! possible rankings. For this, we first
ranked the rankings in decreasing prevalence. It is seen in Table 11, that with
increasing dmft-index the necessary number of rankings increases. A second
measure is given by Shannon’s entropy coefficient (see e.g., Shannon and Weaver,
1963). The higher the entropy the more dispersed the multinomial probabilities
(of the 7! possible rankings) are. Clearly, the entropy coefficient increases with
dmft-index indicating the ranking probabilities tend to show a more uniform
profile when there is more caries in the deciduous teeth. In Tables 12-21 we show
the estimated probabilities for the different rankings (up to cover 90% of the



Table 7: Posterior mean (95 %HPD) of the regression coefficients (γ) of the
entries of the T -matrix.

Tooth Intercept Gender (1=Girls) dmft ×100

11 φ12 0.63 0.04 −1.02
(0.54,0.71) (−0.07,0.15) (−2.88,0.87)

12 φ13 0.11 0.09 −0.78
(−0.01,0.23) ( −0.09,0.25) (−3.27,1.77)

φ23 0.80 −0.04 0.27
(0.72,0.88) (−0.16,0.06) (−1.48,1.97)

14 φ14 0.28 0.29 −3.37
(0.09,0.47) (0.05,0.53) (−7.61,0.69)

φ24 0.66 −0.32 0.66
(0.50,0.83) (−0.51,−0.11) (−2.89,4.46)

φ34 0.22 0.13 −2.02
(0.10,0.32) (−0.01,0.25) (−4.43,0.38)

13 φ15 0.06 0.01 −0.58
(−0.13,0.26) (−0.21,0.25) (−4.58,3.52)

φ25 0.27 −0.07 3.63
(0.10,0.45) (−0.27,0.12) (0.42,7.17)

φ35 0.26 0.03 −0.11
(0.15,0.37) (−0.10,0.15) (−2.18,2.10)

φ45 0.52 0.06 −3.40
(0.45,0.58) (−0.02,0.14) (−4.67,−2.04)

15 φ16 0.19 0.06 −0.28
(−0.01,0.39) ( −0.20,0.31) (−5.12,3.99)

φ26 0.23 −0.17 −0.44
(0.06,0.41) (−0.38,0.05) (−4.72,3.66)

φ36 0.01 0.05 0.69
(−0.11,0.11) (−0.08,0.19) (−1.77,3.27)

φ46 0.62 0.11 −0.37
(0.54,0.70) (0.00,0.20) (−2.11,1.32)

φ56 0.18 −0.09 −0.12
(0.09,0.26) (−0.19,0.02) (−2.10,1.85)

17 φ17 0.95 −0.20 −5.80
(0.69,1.18) (−0.62,0.27) (−10.98,−0.61)

φ27 0.10 −0.06 5.04
(−0.13,0.33) (−0.34,0.20) (0.64,9.76)

φ37 0.07 −0.001 −0.68
(−0.06,0.20) (−0.15,0.15) (−3.07,1.87)

φ47 0.11 −0.04 −0.22
(−0.01,0.22) (−0.17,0.09) (−2.43,1.99)

φ57 0.03 0.05 0.41
(−0.08,0.14) (−0.07,0.16) ( −1.83,2.47)

φ67 0.17 0.12 −1.03
(0.07,0.28) (0.01,0.23) (−2.69,0.77)



Table 8: Posterior mean of correlation coefficients by gender × dmft

Girls Boys
dmft dmft

Node 0 1 5 10 15 0 1 5 10 15

ρ12 0.52 0.51 0.48 0.45 0.41 0.52 0.52 0.49 0.45 0.41
ρ13 0.42 0.41 0.37 0.33 0.29 0.42 0.41 0.37 0.32 0.27
ρ14 0.53 0.5 0.38 0.23 0.11 0.42 0.39 0.27 0.13 0.03
ρ15 0.47 0.45 0.37 0.29 0.23 0.4 0.38 0.31 0.25 0.21
ρ16 0.51 0.48 0.36 0.23 0.13 0.46 0.44 0.32 0.2 0.11
ρ17 0.67 0.64 0.51 0.33 0.16 0.75 0.73 0.61 0.43 0.25
ρ23 0.64 0.63 0.62 0.61 0.6 0.7 0.7 0.69 0.67 0.66
ρ24 0.56 0.54 0.44 0.32 0.22 0.58 0.56 0.46 0.33 0.23
ρ25 0.58 0.58 0.57 0.56 0.55 0.6 0.59 0.57 0.55 0.53
ρ26 0.52 0.49 0.4 0.28 0.19 0.61 0.59 0.49 0.36 0.26
ρ27 0.53 0.53 0.53 0.52 0.49 0.61 0.61 0.61 0.59 0.55
ρ34 0.56 0.53 0.41 0.27 0.15 0.5 0.47 0.36 0.23 0.13
ρ35 0.61 0.6 0.55 0.5 0.47 0.56 0.55 0.51 0.47 0.45
ρ36 0.51 0.49 0.38 0.26 0.17 0.51 0.48 0.39 0.28 0.2
ρ37 0.5 0.49 0.44 0.37 0.31 0.51 0.51 0.47 0.42 0.36
ρ45 0.74 0.72 0.61 0.43 0.2 0.7 0.68 0.56 0.38 0.13
ρ46 0.79 0.77 0.69 0.59 0.5 0.8 0.78 0.7 0.6 0.51
ρ47 0.65 0.63 0.53 0.39 0.26 0.6 0.58 0.49 0.36 0.24
ρ56 0.65 0.62 0.5 0.34 0.18 0.68 0.66 0.54 0.39 0.22
ρ57 0.59 0.58 0.51 0.44 0.38 0.55 0.54 0.49 0.43 0.36
ρ67 0.69 0.67 0.58 0.45 0.32 0.65 0.63 0.53 0.39 0.23

Table 9: Posterior correlation matrix at mean dmft by gender (Girls/Boys, be-
low/above diagonal).

Tooth 16 11 12 14 13 15 17
16 1 0.53 0.46 0.45 0.43 0.47 0.66
11 0.5 1 0.69 0.49 0.56 0.47 0.58
12 0.4 0.63 1 0.47 0.56 0.46 0.53
14 0.46 0.51 0.5 1 0.68 0.78 0.64
15 0.42 0.57 0.58 0.69 1 0.61 0.6
16 0.45 0.47 0.45 0.75 0.58 1 0.69
17 0.6 0.53 0.48 0.6 0.56 0.64 1



Table 10: Significant differences in correlation coefficients by gender at mean
dmft.

Teeth pair Node
16-12 ρg

13 − ρb
13 −0.06

(−0.09,−0.03)
11-12 ρg

23 − ρb
23 −0.06

(−0.1,−0.03)
11-17 ρg

27 − ρb
27 −0.04

(−0.09,−0.01)
12-17 ρg

37 − ρb
37 −0.05

(−0.09,−0.01)
14-15 ρg

45 − ρb
45 −0.04

(−0.07,−0.01)

probabilities of the total rankings).

Table 11: Number of rankings to cover 90% of the total probability of rankings
and Shannon’s entropy coefficient for each gender×dmft-index combination.

Girls Boys

dmft N Entropy N Entropy
0 27 3.226 24 3.205
1 27 3.229 25 3.189
5 32 3.303 30 3.315
10 51 3.720 47 3.700
15 96 4.352 83 4.281

Table 12: Estimated probabilities (up to 90% of the total
probability of rankings) for Boys × dmft = 0.

Teeth sequence π̂
6 1 2 4 3 5 7 0.152
6 1 2 4 5 3 7 0.121
6 1 2 3 4 5 7 0.079
6 1 2 4 3 7 5 0.075
Continued . . .



Table 12 – Continued

Teeth sequence π̂
6 1 2 4 5 7 3 0.062
6 1 2 3 4 7 5 0.049
6 1 2 4 7 3 5 0.043
6 1 2 4 7 5 3 0.041
1 6 2 4 3 5 7 0.041
6 1 2 5 4 3 7 0.034
1 6 2 4 5 3 7 0.032
1 6 2 3 4 5 7 0.024
6 1 2 3 5 4 7 0.021
6 1 2 5 4 7 3 0.019
6 1 2 7 4 3 5 0.019
6 1 2 7 4 5 3 0.015
6 1 2 3 7 4 5 0.015
6 1 2 5 3 4 7 0.013
6 1 2 7 3 4 5 0.011
1 6 2 5 4 3 7 0.009
1 6 2 4 3 7 5 0.008
6 1 2 7 5 4 3 0.006
1 6 2 4 5 7 3 0.006
1 6 2 3 5 4 7 0.006

Table 13: Estimated probabilities (up to 90% of the total
probability of rankings) for Girls × dmft = 0.

Teeth sequence π̂
6 1 2 4 3 5 7 0.171
6 1 2 3 4 5 7 0.104
6 1 2 4 5 3 7 0.103
6 1 2 4 3 7 5 0.077
6 1 2 3 4 7 5 0.061
1 6 2 4 3 5 7 0.049
6 1 2 4 5 7 3 0.039
1 6 2 3 4 5 7 0.037
6 1 2 5 4 3 7 0.032
6 1 2 4 7 3 5 0.026
1 6 2 4 5 3 7 0.024
6 1 2 4 7 5 3 0.020
6 1 2 3 5 4 7 0.017
Continued . . .



Table 13 – Continued

Teeth sequence π̂
6 2 1 4 3 5 7 0.015
6 1 2 5 4 7 3 0.015
1 6 2 3 4 7 5 0.015
1 6 2 4 3 7 5 0.014
6 2 1 3 4 5 7 0.012
6 1 2 5 3 4 7 0.011
6 1 2 3 7 4 5 0.011
6 2 1 4 5 3 7 0.008
6 1 2 7 4 3 5 0.008
1 6 2 5 4 3 7 0.008
6 2 1 4 3 7 5 0.006
6 1 2 7 4 5 3 0.006
6 2 1 3 4 7 5 0.006
1 6 2 3 5 4 7 0.005

Table 14: Estimated probabilities (up to 90% of the total
probability of rankings) for Boys × dmft = 1.

Teeth sequence π̂
6 1 2 4 3 5 7 0.15
6 1 2 4 5 3 7 0.13
6 1 2 4 3 7 5 0.07
6 1 2 3 4 5 7 0.07
6 1 2 4 5 7 3 0.07
6 1 2 3 4 7 5 0.04
6 1 2 4 7 5 3 0.04
6 1 2 4 7 3 5 0.04
6 1 2 5 4 3 7 0.04
1 6 2 4 3 5 7 0.04
1 6 2 4 5 3 7 0.03
6 1 2 5 4 7 3 0.02
1 6 2 3 4 5 7 0.02
6 1 2 3 5 4 7 0.02
6 1 2 7 4 3 5 0.01
6 1 2 5 3 4 7 0.01
6 1 2 3 7 4 5 0.01
6 1 2 7 4 5 3 0.01
1 6 2 5 4 3 7 0.01
Continued . . .



Table 14 – Continued

Teeth sequence π̂
6 1 2 7 3 4 5 0.01
1 6 2 4 3 7 5 0.01
1 6 2 4 5 7 3 0.01
6 2 1 4 3 5 7 0.01
6 1 2 7 5 4 3 0.01
1 6 2 3 5 4 7 0.01

Table 15: Estimated probabilities (up to 90% of the total
probability of rankings) for Girls × dmft = 1.

Teeth sequence π̂
6 1 2 4 3 5 7 0.18
6 1 2 4 5 3 7 0.12
6 1 2 3 4 5 7 0.09
6 1 2 4 3 7 5 0.07
6 1 2 3 4 7 5 0.05
1 6 2 4 3 5 7 0.05
6 1 2 4 5 7 3 0.04
6 1 2 5 4 3 7 0.04
1 6 2 3 4 5 7 0.03
1 6 2 4 5 3 7 0.03
6 1 2 4 7 3 5 0.03
6 1 2 4 7 5 3 0.02
6 1 2 5 4 7 3 0.02
6 2 1 4 3 5 7 0.02
6 1 2 3 5 4 7 0.02
1 6 2 4 3 7 5 0.01
1 6 2 3 4 7 5 0.01
6 1 2 5 3 4 7 0.01
6 2 1 3 4 5 7 0.01
6 2 1 4 5 3 7 0.01
1 6 2 5 4 3 7 0.01
6 1 2 3 7 4 5 0.01
6 1 2 7 4 3 5 0.01
6 2 1 4 3 7 5 0.01
1 6 2 3 5 4 7 0.01
6 1 2 7 4 5 3 0.01



Table 16: Estimated probabilities (up to 90% of the total
probability of rankings) for Boys × dmft = 5.

Teeth sequence π̂
6 1 2 4 3 5 7 0.168
6 1 2 4 5 3 7 0.133
6 1 2 4 3 7 5 0.077
6 1 2 4 5 7 3 0.062
6 1 2 3 4 5 7 0.059
6 1 2 5 4 3 7 0.047
1 6 2 4 3 5 7 0.036
6 1 2 4 7 3 5 0.033
6 1 2 4 7 5 3 0.032
1 6 2 4 5 3 7 0.031
6 1 2 3 4 7 5 0.029
6 1 2 5 4 7 3 0.027
6 1 4 2 3 5 7 0.018
6 1 2 5 3 4 7 0.017
6 1 2 3 5 4 7 0.017
1 6 2 5 4 3 7 0.013
1 6 2 3 4 5 7 0.012
6 1 2 5 7 4 3 0.009
1 6 2 4 3 7 5 0.009
1 6 2 4 5 7 3 0.008
6 1 4 2 5 3 7 0.008
6 1 2 7 4 5 3 0.008
6 2 1 4 3 5 7 0.007
6 1 4 2 3 7 5 0.007
6 1 2 7 4 3 5 0.007
6 2 1 4 5 3 7 0.007
6 1 2 3 7 4 5 0.006
6 1 2 7 5 4 3 0.005
1 6 2 5 4 7 3 0.004
6 1 2 5 3 7 4 0.004



Table 17: Estimated probabilities (up to 90% of the total
probability of rankings) for Girls × dmft = 5.

Teeth sequence π̂
6 1 2 4 3 5 7 0.168
6 1 2 4 5 3 7 0.158
6 1 2 4 3 7 5 0.065
6 1 2 3 4 5 7 0.058
6 1 2 5 4 3 7 0.056
6 1 2 4 5 7 3 0.049
1 6 2 4 3 5 7 0.042
1 6 2 4 5 3 7 0.033
6 1 2 3 4 7 5 0.032
6 1 2 5 4 7 3 0.023
1 6 2 3 4 5 7 0.020
6 1 2 4 7 3 5 0.019
6 2 1 4 3 5 7 0.016
6 1 2 4 7 5 3 0.015
6 2 1 4 5 3 7 0.015
1 6 2 4 3 7 5 0.015
6 1 2 5 3 4 7 0.013
1 6 2 5 4 3 7 0.013
6 1 2 3 5 4 7 0.012
6 1 4 2 5 3 7 0.011
1 6 2 3 4 7 5 0.010
6 2 1 3 4 5 7 0.007
6 1 4 2 3 5 7 0.007
1 6 2 4 5 7 3 0.007
6 2 1 5 4 3 7 0.006
6 2 1 4 3 7 5 0.005
6 1 2 3 7 4 5 0.005
1 2 6 4 3 5 7 0.005
1 6 2 3 5 4 7 0.004
6 1 2 5 7 4 3 0.004
6 1 2 7 4 3 5 0.004
1 6 2 5 3 4 7 0.004



Table 18: Estimated probabilities (up to 90% of the total
probability of rankings) for Boys × dmft = 10.

Teeth sequence π̂
6 1 2 4 5 3 7 0.148
6 1 2 4 3 5 7 0.097
6 1 2 5 4 3 7 0.068
6 1 2 4 5 7 3 0.065
6 1 2 4 3 7 5 0.052
6 1 4 2 5 3 7 0.048
6 1 2 3 4 5 7 0.031
6 1 2 5 4 7 3 0.029
1 6 2 4 5 3 7 0.027
6 1 2 4 7 3 5 0.026
6 1 2 4 7 5 3 0.022
6 1 2 3 4 7 5 0.022
1 6 2 4 3 5 7 0.020
6 1 4 2 5 7 3 0.020
6 1 2 5 3 4 7 0.019
6 1 4 2 3 5 7 0.015
6 1 2 3 5 4 7 0.015
1 6 2 5 4 3 7 0.013
6 1 5 2 4 3 7 0.012
6 4 1 2 5 3 7 0.010
6 2 1 4 5 3 7 0.009
6 1 4 5 2 3 7 0.009
1 6 4 2 5 3 7 0.009
1 6 2 4 5 7 3 0.009
1 6 2 4 3 7 5 0.008
6 1 2 3 7 4 5 0.008
1 6 2 3 4 5 7 0.007
6 1 5 4 2 3 7 0.007
6 2 1 4 3 5 7 0.005
6 1 2 7 4 3 5 0.005
6 1 4 2 3 7 5 0.005
1 6 2 3 4 7 5 0.005
6 1 5 2 4 7 3 0.005
6 1 2 5 7 4 3 0.005
6 2 1 5 4 3 7 0.005
6 1 2 7 3 4 5 0.004
6 1 2 3 5 7 4 0.004
6 1 2 5 3 7 4 0.004
1 6 2 5 4 7 3 0.004
Continued . . .



Table 18 – Continued

Teeth sequence π̂
1 6 2 5 3 4 7 0.004
1 6 2 4 7 3 5 0.004
6 4 1 5 2 3 7 0.004
1 6 4 2 3 5 7 0.004
6 1 2 3 7 5 4 0.003
1 6 2 3 5 4 7 0.003
1 2 6 4 5 3 7 0.003
6 1 4 5 2 7 3 0.003

Table 19: Estimated probabilities (up to 90% of the total
probability of rankings) for Girls × dmft = 10.

Teeth sequence π̂
6 1 2 4 5 3 7 0.148
6 1 2 4 3 5 7 0.124
6 1 2 5 4 3 7 0.064
6 1 2 4 3 7 5 0.056
6 1 4 2 5 3 7 0.042
6 1 2 4 5 7 3 0.042
6 1 2 3 4 5 7 0.035
1 6 2 4 3 5 7 0.029
1 6 2 4 5 3 7 0.029
6 1 2 3 4 7 5 0.023
6 1 2 5 4 7 3 0.022
6 1 4 2 3 5 7 0.018
6 2 1 4 5 3 7 0.018
6 1 2 4 7 3 5 0.016
1 6 2 4 3 7 5 0.014
6 2 1 4 3 5 7 0.013
6 1 2 5 3 4 7 0.013
1 6 2 5 4 3 7 0.013
6 1 5 2 4 3 7 0.013
1 6 2 3 4 5 7 0.012
6 1 2 4 7 5 3 0.012
6 1 4 2 5 7 3 0.011
6 1 2 3 5 4 7 0.010
6 2 1 5 4 3 7 0.009
1 6 2 3 4 7 5 0.008
Continued . . .



Table 19 – Continued

Teeth sequence π̂
6 1 4 5 2 3 7 0.008
6 4 1 2 5 3 7 0.007
1 6 2 4 5 7 3 0.007
1 6 4 2 5 3 7 0.006
6 1 5 4 2 3 7 0.006
6 1 5 2 4 7 3 0.005
6 1 4 2 3 7 5 0.005
6 2 1 3 4 5 7 0.005
1 6 2 5 4 7 3 0.005
6 2 1 4 3 7 5 0.005
6 1 2 3 7 4 5 0.004
1 6 4 2 3 5 7 0.004
6 2 1 4 5 7 3 0.004
1 6 2 4 7 3 5 0.004
1 2 6 4 3 5 7 0.003
1 6 2 5 3 4 7 0.003
6 1 2 5 7 4 3 0.003
2 6 1 4 5 3 7 0.003
1 6 2 3 5 4 7 0.003
2 6 1 4 3 5 7 0.003
1 2 6 4 5 3 7 0.003
6 1 4 5 2 7 3 0.003
6 1 5 4 2 7 3 0.003
6 2 1 5 4 7 3 0.003
6 4 1 5 2 3 7 0.002
2 1 6 4 5 3 7 0.002

Table 20: Estimated probabilities (up to 90% of the total
probability of rankings) for Boys × dmft = 15.

Teeth sequence π̂
6 1 2 4 5 3 7 0.097
6 1 2 4 3 5 7 0.064
6 1 2 5 4 3 7 0.056
6 1 4 2 5 3 7 0.050
6 1 2 4 3 7 5 0.045
6 1 2 4 5 7 3 0.040
6 1 4 2 5 7 3 0.024
Continued . . .



Table 20 – Continued

Teeth sequence π̂
6 1 2 3 4 5 7 0.024
6 1 2 3 4 7 5 0.022
6 1 2 4 7 3 5 0.021
6 1 2 5 3 4 7 0.020
6 1 5 2 4 3 7 0.020
6 1 2 5 4 7 3 0.020
6 4 1 2 5 3 7 0.020
6 1 4 2 3 5 7 0.018
1 6 2 4 5 3 7 0.015
6 1 2 3 5 4 7 0.014
4 6 1 2 5 3 7 0.014
6 1 2 4 7 5 3 0.014
6 1 4 5 2 3 7 0.013
1 6 2 4 3 5 7 0.011
6 1 5 4 2 3 7 0.010
6 4 1 2 5 7 3 0.010
6 1 4 2 3 7 5 0.010
6 1 2 3 7 4 5 0.009
1 6 2 5 4 3 7 0.009
6 4 1 5 2 3 7 0.009
6 2 1 4 5 3 7 0.008
1 6 4 2 5 3 7 0.008
1 6 2 4 3 7 5 0.008
4 6 1 5 2 3 7 0.007
6 5 1 2 4 3 7 0.007
6 1 5 2 4 7 3 0.007
4 6 1 2 5 7 3 0.007
6 1 2 3 5 7 4 0.006
1 6 2 4 5 7 3 0.006
4 1 6 2 5 3 7 0.006
6 1 4 5 2 7 3 0.005
6 5 1 4 2 3 7 0.005
6 1 2 5 3 7 4 0.005
6 1 4 2 7 3 5 0.005
1 6 2 3 4 5 7 0.005
1 6 2 4 7 3 5 0.005
6 1 2 3 7 5 4 0.005
6 1 4 2 7 5 3 0.005
6 4 1 2 3 5 7 0.004
6 1 5 4 2 7 3 0.004
6 2 1 4 3 5 7 0.004
6 2 1 5 4 3 7 0.004
Continued . . .



Table 20 – Continued

Teeth sequence π̂
5 6 1 4 2 3 7 0.004
1 6 2 3 4 7 5 0.004
5 6 1 2 4 3 7 0.004
6 1 2 7 4 3 5 0.004
6 4 1 5 2 7 3 0.004
6 1 2 7 3 4 5 0.004
1 6 2 5 3 4 7 0.004
4 6 1 5 2 7 3 0.004
1 6 4 2 3 5 7 0.003
4 6 5 1 2 3 7 0.003
1 6 2 5 4 7 3 0.003
6 1 2 5 7 4 3 0.003
1 6 4 2 5 7 3 0.003
6 1 5 2 3 4 7 0.003
4 5 6 1 2 3 7 0.003
5 6 4 1 2 3 7 0.003
1 6 5 2 4 3 7 0.003
1 6 2 3 5 4 7 0.003
4 6 1 2 3 5 7 0.003
4 1 6 2 5 7 3 0.003
6 4 5 1 2 3 7 0.003
1 6 2 4 7 5 3 0.002
6 2 1 4 5 7 3 0.002
5 4 6 1 2 3 7 0.002
6 5 4 1 2 3 7 0.002
1 4 6 2 5 3 7 0.002
1 2 6 4 5 3 7 0.002
6 5 1 2 4 7 3 0.002
6 2 1 3 4 5 7 0.002
6 2 1 4 3 7 5 0.002
6 5 1 4 2 7 3 0.002
6 1 2 7 4 5 3 0.002
6 1 2 5 7 3 4 0.002
1 6 2 3 7 4 5 0.002



Table 21: Estimated probabilities (up to 90% of the total
probability of rankings) for Girls × dmft = 15.

Teeth sequence π̂
6 1 2 4 5 3 7 0.098
6 1 2 4 3 5 7 0.082
6 1 4 2 5 3 7 0.050
6 1 2 5 4 3 7 0.049
6 1 2 4 3 7 5 0.048
6 1 2 4 5 7 3 0.026
6 1 2 3 4 5 7 0.025
6 1 4 2 3 5 7 0.023
6 1 2 3 4 7 5 0.022
6 4 1 2 5 3 7 0.019
6 1 5 2 4 3 7 0.018
1 6 2 4 5 3 7 0.017
1 6 2 4 3 5 7 0.017
6 2 1 4 5 3 7 0.016
6 1 2 5 4 7 3 0.015
6 1 4 2 5 7 3 0.014
6 1 2 5 3 4 7 0.014
6 1 2 4 7 3 5 0.014
6 1 4 5 2 3 7 0.013
1 6 2 4 3 7 5 0.012
6 2 1 4 3 5 7 0.011
6 1 4 2 3 7 5 0.010
6 1 2 3 5 4 7 0.010
6 1 5 4 2 3 7 0.010
4 6 1 2 5 3 7 0.010
1 6 2 5 4 3 7 0.009
6 2 1 5 4 3 7 0.009
1 6 4 2 5 3 7 0.008
6 5 1 2 4 3 7 0.008
6 4 1 5 2 3 7 0.008
6 1 2 4 7 5 3 0.007
1 6 2 3 4 5 7 0.007
1 6 2 3 4 7 5 0.007
6 1 5 2 4 7 3 0.007
6 4 1 2 3 5 7 0.006
1 6 2 4 5 7 3 0.006
6 5 1 4 2 3 7 0.006
6 4 1 2 5 7 3 0.006
6 1 2 3 7 4 5 0.005
Continued . . .



Table 21 – Continued

Teeth sequence π̂
4 6 1 5 2 3 7 0.005
5 6 1 2 4 3 7 0.005
1 6 4 2 3 5 7 0.005
5 6 1 4 2 3 7 0.005
6 1 4 5 2 7 3 0.005
6 2 1 4 3 7 5 0.005
1 6 2 4 7 3 5 0.004
6 1 5 4 2 7 3 0.004
4 1 6 2 5 3 7 0.004
5 6 4 1 2 3 7 0.004
1 6 2 5 3 4 7 0.004
6 2 1 3 4 5 7 0.004
6 1 4 2 7 3 5 0.003
1 6 2 5 4 7 3 0.003
1 6 5 2 4 3 7 0.003
6 4 5 1 2 3 7 0.003
6 2 1 4 5 7 3 0.003
5 4 6 1 2 3 7 0.003
4 6 1 2 3 5 7 0.003
1 6 4 2 3 7 5 0.003
2 6 1 4 5 3 7 0.003
6 4 1 5 2 7 3 0.003
1 6 2 3 5 4 7 0.003
6 2 1 5 3 4 7 0.003
1 2 6 4 5 3 7 0.003
4 5 6 1 2 3 7 0.003
1 2 6 4 3 5 7 0.003
1 6 4 2 5 7 3 0.003
6 5 4 1 2 3 7 0.003
4 6 1 2 5 7 3 0.003
1 6 4 5 2 3 7 0.003
6 1 4 2 7 5 3 0.003
6 5 1 2 4 7 3 0.002
2 1 6 4 5 3 7 0.002
2 6 1 4 3 5 7 0.002
6 5 1 4 2 7 3 0.002
6 2 1 3 4 7 5 0.002
6 1 5 2 3 4 7 0.002
1 2 6 4 3 7 5 0.002
1 6 2 4 7 5 3 0.002
1 2 6 5 4 3 7 0.002
4 6 5 1 2 3 7 0.002
Continued . . .



Table 21 – Continued

Teeth sequence π̂
6 1 2 7 4 3 5 0.002
6 1 2 5 7 4 3 0.002
6 1 2 5 3 7 4 0.002
6 1 2 3 5 7 4 0.002
5 6 1 4 2 7 3 0.002
5 6 1 2 4 7 3 0.002
4 6 1 5 2 7 3 0.002
6 4 2 1 5 3 7 0.002
6 2 1 5 4 7 3 0.002
5 6 4 1 2 7 3 0.002
2 6 1 5 4 3 7 0.002
5 1 6 2 4 3 7 0.002
6 1 2 3 7 5 4 0.002
1 6 2 3 7 4 5 0.002
6 2 1 3 5 4 7 0.002
2 1 6 4 3 5 7 0.002

6 Concluding remarks

In this paper we have illustrated that the approach of Pourahmadi (1999) is
useful for modeling the covariance matrix, but this could be inferred also from
his original publication. However, here we have exemplified this approach for
a relatively high dimension and in a completely different application area. The
approach proved to be quite useful for taking care of the pd-condition. Further,
the interpretability of the marginal and conditional variance parameters is satis-
factory. But the parameters associated with the matrix T were too difficult to
interpret, and this is not only due to the fact that there is no logical ranking of the
responses in this example. Thus to a certain extent we could have used also one
of the other deconstraining approaches discussed in Pinheiro and Bates (1996).
However, the approach of Pourahmadi (1999) offers good interpretability of part
of the parameters and the approach implies a relatively simple MCMC sampling
approach due to the conditional conjugacy of part of the prior distributions.

Our approach of determining the most prevalent rankings in tooth emergence
differs from all previous approaches. Indeed, we calculated the prevalence of the
rankings using the multivariate normal probabilities of the latent true emergences.
This avoids the inevitable problem of ties in the observed interval-censored emer-
gence times.



Although the Signal Tandmobiel rStudy is a unique longitudinal study (large
sample size and collection of detailed dental information), it falls short with
respect to the age period that the children have been examined. Indeed, only the
period that the children were in primary school was examined. This implies that
for many children and teeth the permanent tooth had already emerged before the
start of the study and did not emerge during the study period. Consequently,
if the study period had been broader an even clearer picture of the multivariate
emergence distribution could have been obtained. Nevertheless, our analysis is
one of the very few that examined the ranking of emergence times on such a large
and detailed dental data set and with well justified statistical technique avoiding
as much as possible ad hoc procedures (like the mid-point approach).

Finally, our analysis shows that to know whether there are physiological trends
in the emergence distribution of permanent teeth either geographically or tem-
porally, it is inappropriate to look at the overall emergence distribution of the
population as this distribution is too much affected by the caries process of the
deciduous teeth. It seems, therefore, more logical to compare the emergence
distributions of the children not demonstrating a high caries profile on their
deciduous teeth, thereby hoping that they do constitute a biologically selected
subpopulation.
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