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Abstract

In this work we estimate the regression function for Poisson variables, for a deterministic
design in [0, 1]. Our final estimator which is adaptive to the data, is selected amoung a
collection of maximum likelihood estimators with respect to a penalized empirical Kullback-
Leibler risk. We obtain, an oracle inequality over the Kullback-Leibler risk for any fixed size n

of the design. Moreover, we state an asymptotic lower bound on this risk over Sobolev spaces
and prove that our estimator reaches this rate. Hence the selected estimator is asymptotically
minimax over these spaces. We also present numerical experiments, including a strategy to
adjust the constants involved in the penalty function which defines the selection criteria, which
performs as well as the ideal one.

Keywords and phrases: Adaptive estimator, Kullback-Leibler risk, maximum likelihood
estimator, minimax rate, model selection, penalization, Poisson regression, oracle inequality,
wavelets.

1 Introduction

In many practical situations the collected data are observations of counting variables that are often
modelized through Poisson regression. Many authors have already discussed different nonparamet-
ric estimation procedures and among them wavelets methods.

In (Besbeas, De Feis & Sapatinas 2004), the authors provide a quite complete presentation
of wavelets methods for estimating the intensity of a Poisson process and they examine the per-
formance of the proposed estimators via simulations. Among these methods, it is worth notic-
ing Donoho’s (Donoho 1993) using the Anscombe transformation and Fryz̀lewicz and Nason’s
(Fryzlewicz & Nason 2004) using the Fisz transformation in order to stabilize the variance. Other
authors (Kolaczyk 1997), (Kolaczyk 1999b), (Nowak & Baraniuk 1999) propose wavelet shrinkage
techniques to be applied directly to the given Poisson process. Bayesian procedures also have
been proposed by (Kolaczyk 1999a) and (Timmermann & Nowak 1999). Finally, some wavelets
techniques can be applied to a larger family of distributions containing the Poisson one (see
(Antoniadis & Sapatinas 2001), (Antoniadis, Besbeas & Sapatinas 2001) and (Sardy, Antoniadis
& Tseng 2004)). However the procedures used in the previous papers give asymptotic results and
are based on penalized or shrinked estimators minimizing Lp risks (mainly the quadratic one).

In this paper, we adopt a model selection strategy following Birgé and Massart’ ideas (see for
instance, (Barron, Birgé & Massart 1999), (Birgé & Massart 2001)). One of the advantages of
such approach is to provide non asymptotic risk upper bounds. It has already been applied to
various frameworks by different authors. Among them, we shall cite regression in a fixed design



(Baraud 2000), density estimation via histograms (Castellan 1999) and via piecewise polynomials
(Castellan 2003)) and Poisson process intensity estimation (Reynaud-Bouret 2003).

Herein, we observe n independent copies (Yi, xi)1≤i≤n, where the Yi are discrete random re-
sponses and the (xi)1≤i≤n is a deterministic design in [0, 1]. Each random variable Yi is supposed to
have a Poisson distribution with parameter µi = exp f(xi). This parametrization of the regression
function is natural in the framework of Generalized Linear Models when using the canonical link
function (see for instance (McCullagh & Nelder 1989)). Our aim is to estimate the function f in
some large space SΛ generated by wavelet basis.

We define our models as linear subspaces of a larger one SΛ. We construct the collection of
maximum likelihood estimators within each model and our goal is to select the “best” one amoung
them in the sense of the Kullback-Leibler risk.

More precisely, let (ϕλ)λ∈Λ be a basis of SΛ. For any subset m of the larger index set Λ whose
cardinal, denoted |Λ|, is finite, the model Sm of dimension denoted Dm is defined as

Sm = {
∑

λ∈m

βλφλ, (βλ)λ ∈ R
Dm}.

On each of these models, the maximum likelihood estimator on Sm is defined as

f̂m = arg min
h∈Sm

γn(h), (1.1)

where the contrast function γn is the opposite of the log-likelihood:

γn(h) = n−1
n
∑

i=1

(eh(xi) − Yih(xi)).

In order to compare the estimators of the collection, we introduce the Kullback-Leibler loss
between two functions f and h as:

K(f, h) = E f(γn(h) − γn(f)) = n−1
n
∑

i=1

eh(xi) − ef(xi) − ef(xi)(h(xi) − f(xi)).

Denoting by f̄m the function in Sm minimizing the Kullback-Leibler loss function,

f̄m = arg min
h∈Sm

K(f, h), (1.2)

we can prove that

E f(K(f, f̂m)) = K(f, f̄m) + E f(K(f̄m , f̂m)).

In this decomposition, the first term represents a deterministic projection error, whereas the second
term is an estimation error within the model Sm.

Considering the collection of estimators {f̂m, m ∈ Mn}, the best estimator in this collection in

the sense of the Kullback-Leibler loss is f̂m∗ , where

m∗ = arg min
m∈Mn

E f (K(f, f̂m)) = arg min
m∈Mn

(K(f, f̄m) + E f (K(f̄m, f̂m))).

The ideal model m∗ is therefore the one which realizes the best trade-off between the approximation
and the estimation errors. Unfortunately, this model is not available since it depends on the
unknown function f to be estimated.

Consequently, we define the penalized maximum likelihood estimator as f̂m̂ where

m̂ = arg min
m∈Mn

(γn(f̂m) + pen(m)). (1.3)

The aim of this paper is to propose penalty functions pen(·) for which we are able to prove an
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oracle inequality for a given n, such as:

E f (K(f, f̂m̂)) ' min
m∈Mn

E f (K(f, f̂m)).

The main difference between Reynaud-Bouret’s work (Reynaud-Bouret 2003) and ours lies in
that she uses penalized projection estimators and provides L2 risk for her estimators. Her method
can, like ours, be used with any wavelet basis, but also with histograms (other that Haar basis),
piecewise polynomials and Fourier basis.

In a recent paper (Baraud & Birgé 2005), Baraud and Birgé develop histograms type estimators
for nonnegative random variable, including Poisson variables. Here the method relies on the (not
necessarily dyadic nor regular) histogram structure and cannot be simply adapted to other bases.
They furnish the same kind of results as ours using a Hellinger type risk.

(Kolaczyk & Nowak 2004) and (Kolaczyk & Nowak 2005) also proposed complexity penalized
likelihood estimators in frameworks that include the Poisson model. They prove adaptivity and
minimax near-optimality of their estimators in the sense of the squared Hellinger distance. How-
ever, their method heavily depend on the (“unbalanced”) Haar basis for (Kolaczyk & Nowak 2004)
and on piecewise polynomials (Kolaczyk & Nowak 2005), whereas our is available for any wavelet
basis with compact support. Furthermore, they give no oracle inequality.

The paper is organized as follows: In Section 2, we give the main definitions and tools about
wavelets and Besov spaces and we describe the specific properties of wavelets (localisation for
example) that are required to obtain the oracle inequality presented in Section 3. Then in Section
4 is studied a lower bound for the Kullback-leibler loss, over a ball of Hölder or Sobolev Space
when an equispaced design is considered. These results provide the usual minimax rate for our
final estimator over Sobolev balls. Section 5 is devoted to the numerical experiments and in Section
6 we give the proof of the Oracle inequality. To this end we use a concentration inequality due
to Reynaud-Bouret (Reynaud-Bouret 2003). Proofs of the lower bound and technical lemmas are
postponed to the Appendix.

2 Wavelets and Besov spaces

2.1 Orthogonal wavelets on [0, 1]

We start this section by briefly reviewing some useful facts from basic wavelet theory, that will
be used to derive our estimators. A general introduction to the theory of wavelets can be found
in (Chui 1992), (Daubechies 1992), (Walter 1994) and (Vidakovic 1999). The construction of or-
thonormal wavelet bases for L2(R) is now well understood. There are many families of wavelets.
Throughout this paper we will consider compactly supported wavelets such as Daubechies’ or-
thogonal wavelets. For the construction of orthonormal bases of compactly supported wavelets for
L2(R), one starts with a couple of special, compactly supported functions known as the scaling
function ϕ and the wavelet ψ. The collection of functions ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z, then
constitutes an orthonormal basis for L2(R). For fixed j ∈ Z, the ϕj,k(x) = 2j/2ϕ(2jx− k), k ∈ Z

are an orthonormal basis for a subspace Vj ⊂ L2(R). The spaces Vj constitute a multiresolution
analysis. The subspace generated by ψj,k(x) = 2j/2ψ(2jx − k), k ∈ Z usually denoted Wj is the
orthogonal complement of Vj in Vj+1 and permits to describe the details at level j of the wavelet
decomposition. Indeed, when denoting Pjf =

∑

k∈Z
< f, ϕj,k > ϕj,k the orthogonal projection of

f on the approximation space Vj, we have Pj+1f = Pjf +
∑

k∈Z
< f, ψj,k > ψj,k.

The multiresolution analysis is said to be r-regular if ϕ is Cr, and if both ϕ and its derivatives,
up to the order r, have a fast decay. One can prove that if a multiresolution analysis is r-regular,
the wavelet ψ is also Cr and has vanishing moments up to the order r (see Corollary 5.2 in
(Daubechies 1992)).

The smoother wavelets provide not only orthonormal bases for L2(R), but also unconditional
bases for several function spaces including Besov spaces (see (Triebel 1983)).

Let us consider now orthogonal wavelets on the interval [0, 1]. Adapting wavelets to a finite
interval requires some modifications as described in (Cohen, Daubechies & Vial 1993). To sum-
marize, for J0 such that 2J0 ≥ 2r, the construction in (Cohen et al. 1993) furnishes a finite set
of 2J0 scaling functions ϕJ0,k, and for each j ≥ J0, 2j functions ψj,k, such that the collection of

3



these functions forms a complete orthonormal system of L2[0, 1]. With this notation, the L2[0, 1]
reconstruction formula is

f(t) =

2J0−1
∑

k=0

αJ0,kϕJ0,k(t) +
∑

j≥J0

2j−1
∑

k=0

βj,kψj,k(t). (2.1)

2.2 Besov spaces

In the following we will use Besov spaces on [0, 1], Bνp,q which are rather general and very well
described in terms of sequences of wavelet coefficients. In particular for a suitable choice of the
three parameters (ν, p, q) we can get Sobolev spaces or Hölder spaces. For the definition of Besov
spaces, properties and functional inclusions we refer to (Triebel 1983). Let us just point out that
the usual Sobolev space of regularity ν > 0 denoted in the followingH(ν) coincides with the Besov
one Bν2,2 and the Hölder space Σ(ν) with Bν∞,∞ when 0 < ν < 1.

Here we just give the following characterization of the Besov space Bνp,q in terms of wavelet
coefficients of its elements.

Lemma 2.1. Let 0 < p, q ≤ ∞ and ν > max{(1/p − 1), 0}. If the scaling function ϕ and the
wavelet function ψ correspond to a multiresolution analysis of L2[0, 1] that is ([ν ] + 1)−regular
(here [·] stands for the integer part), then a function f in Lp[0, 1] belongs to the Besov space Bνp,q
if and only if it admits the decomposition (2.1) such that

‖f‖Bν
p,q

≡ ‖(αJ0,k)k‖lp +





∑

j≥J0

2jq(ν+1/2−1/p)‖(βj,k)k‖qlp





1/q

< +∞

for J0 ∈ N. The ‖f‖Bν
p,q

is equivalent to the Besov space norm.

For a proof see (Delyon & Juditsky 1995).

2.3 Notations and wavelet properties

In the sequel we shall use the following notations :

∀f ∈ L2[0, 1] : ‖f‖2
2 =

∫

[0,1]

f2(t)dt and ‖f‖∞ = sup
x∈[0,1]

|f(x)|.

∀(ak)k ∈ R
q : |a|22 =

∑

k

a2
k and |a|∞ = sup

k
|ak|.

∀(bk)k ∈ R
n and ∀(ck)k ∈ R

n : < b, c >n=
1

n

n
∑

k=1

bkck and |b|2n =< b, b >n .

Moreover, the notation |f |2 (resp. |f |∞, |f |n, < f, g >n) will abusively stand for |(f(xi))i|2 (resp.
|(f(xi))i|∞, |(f(xi))i|2/n, < (f(xi))i, (g(xi))i) >n).

We let J such that 2J = n and the set of indices which permits to describe the space Vl is given
by:

Λl = {(−1, 0)}∪{λ = (j, k); j = 0, ..., l−1; k= 0, ..., 2j−1} ∀1 ≤ l ≤ J ; Λ0 = {(−1, 0)} and Λ = ΛJ .

We put φ(−1,0) = ϕ and for any λ = (j, k) 6= (−1, 0), φλ = ψj,k. Our results are deeply based on
the following crucial property of wavelets:

For any 0 ≤ l ≤ J, the basis of the linear space SΛl is localized in the following sense: there

exists some constant c(ψ) such that for any a ∈ R
2J

:

‖
∑

λ∈Λl

aλφλ‖∞ ≤ c(ψ)2l/2 |a|∞. (2.2)
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This property is a direct consequence of the localization of wavelets. Indeed, since the support
of ψj,k has a size proportionnal to 2r2−j, at any fixed level j, only a finite number of wavelets

ψj,k are overlapping. Hence there exist some constant c(ψ) such that for any (βj,k)k ∈ R
2j

,
‖∑k=0,...,2j−1 βj,kψj,k‖∞ ≤ c(ψ)/(1 +

√
2)2j/2|β|∞. Assertion (2.2) immediately follows since

∑l−1
j=0 2j/2 ≤ (1 +

√
2)2l/2 .

A second important property of the wavelet basis is that (φλ)λ is also an orthonormal family
for the scalar product < ·, · >n when the equispaced design is considered. It is also the case for
any design where xi ∈ [(i− 1)/n, i/n] when working with Haar basis since the support of the basis
functions are not overlapping.

3 Wavelet model selection

3.1 Wavelet models

Among the three following collections of models, we concentrate over the two first one. Let Ln ∈
{0, ..., J} and set Λ∗

n = ΛLn .

1. We want to select amoung the estimators whose all coefficients until a given level l − 1 of
details (i.e. estimate the projection over Vl) are kept, that is :

M(Ln) = {Λl, 0 ≤ l ≤ Ln}, (3.1)

and in this case ml = Λl. Here, the dimension of the model Sml is given by Dml = 2l. With
a least squared criterium, this choice should be compared to adaptive linear procedure.

2. We consider the estimators where all coefficients are kept up to a given level (l−2) of details
and only some of them at level l−1 (i.e. estimate the projection over Vl−1 and some directions
of Wl−1):

M(Ln) = {Λ0} ∪ {m(l,Il) = {Λl−1 ∪ {(l− 1, k), k ∈ Il
| Il ⊂ {0, ..., 2l−1 − 1} and Il 6= ∅}, 1 ≤ l ≤ Ln},

and in this case Sm(l,Il)
= Vl−1 ⊕W Il

l−1 where W Il

l−1 ⊂Wl−1 . Here the dimension of Sm(l,Il)

is Dm(l,Il)
= 2l−1 + |Il| where 1 ≤ |Il| ≤ 2l−1. For any given l and 1 ≤ d ≤ 2l−1 there

are

(

2l−1

d

)

models with dimension 2l−1 + d. With this choice, our procedure should be

compared, to usual procedures based on hard thresholding.

3. We could also define models built on the coefficients complete binary tree. In such a case, a
model would be a sub-tree containing the root (corresponding to the V0 space). This should
be compared to soft threshold procedures.

Property 1. For any m ∈ M(Ln), there exists some constant bloc such that for any a ∈ R
|m|

‖
∑

λ∈m

aλφλ‖∞ ≤ blocDl/2
m |a|∞.

For the first collection it is an immediate application of (2.2) with bloc = c(ψ), whereas for the
second one we take bloc =

√
2c(ψ), since 2l−1 ≤ Dml ,Il ≤ 2l.

3.2 Oracle inequality

Assumption 1. The family (φλ)λ∈Λ is orthonormal for the scalar product < ·, · >n.

We have already noticed that this is fulfilled for wavelet basis and for the equispaced design.
Next, for technical reasons, we will need to bound the dimension of the largest model in the

considered collection M(Ln).
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Assumption 2. Suppose that the maximal dimension 2Ln is bounded by n1−θ, where 1/2 < θ < 1.

This constraint imposes to visit the models only up to the level Ln < J/2 = lnn/(2 ln2).
Nevertheless, this condition being purely technical, in practice, we will visit all the models up to
the level J = lnn/ ln 2.

Assumption 3. For any function f such that |f |∞ <∞ and such that for any model m ∈ M(Ln)
we have |f̄m|∞ ≤ B̄ and |f |∞ ≤ |f̄Λ∗

n
|∞.

Note that the condition |f |∞ ≤ |f̄Λ∗
n
|∞ is fullfilled as soon as f is supposed to belong to SΛ∗

n
.

Moreover, the first part of the assumption is satisfied for any function f when considering the Haar
basis.

Before anouncing the main result we first give an upper bound for the Kullback-Leibler risk on
a given model.

Proposition 3.1. Suppose Assumptions 1 and 2 satisfied and let τ ∈]0, 1[ be some constant. For
any n, any function f satisfying Assumption 3, there exists some event Ωn such that

P

(

ΩCn
)

≤ c(|f |∞, B̄, bloc, τ )
n2

,

and for any model m ∈ M(Ln),

E(K(f, f̂m)1lΩn) ≤ K(f, f̄m) + 2eτ/2+B̄+|f|∞
Dm
n
.

Next, we propose some penalty function which enables to select some model m̂ which behaves
as well as the ideal but unknown model m∗.

Theorem 3.1. Let Assumptions 1 and 2 be satisfied, α be some positive constant and τ ∈]0, 1[.
Let {Lm}m∈M(Ln) be positive numbers such that

∑

m∈M(Ln)

e−LmDm ≤ Σ < +∞. (3.2)

Define the penalty function as:

pen(m) = e|f̂m|∞+|f̂Λ∗
n
|∞+τ (

c1
2

+ c2Lm)
Dm
n
,

where c1 = (1 + α)4 and c2 = (1 + α)4(1 + 6/α). For any f satisfying Assumption 3, there exists
some set Ωn such that

P

(

ΩCn
)

≤ c(|f |∞, B̄, bloc, α, τ)
n2

,

and such that for any model m ∈ M(Ln), we have:

E(K(f, f̂m̂)1lΩn) ≤ (1 + α)2

α
inf

m∈M(Ln)

(

K(f, f̄m) + 2 E(pen(m)1lΩn)
)

+
3C(|f |∞, B̄, α, τ)Σ

n
.

The previous risk inequality can be seen as an oracle inequality: indeed the penalty term can
be bounded by:

E(pen(m)1lΩn) ≤ e2(τ+B̄)(
c1
2

+ c2Lm)
Dm
n
.

3.3 Choice of the weights {Lm, m ∈ M(Ln)}
The choice of these weights is done in order to check the constraint (3.2), hence it depends on the
complexity of the model family. Let us consider the following two cases:

1. Family with a polynomial number of models per dimension
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Assumption 4. There exist some integer r and some constant R such that the number of
models with a given dimension D is bounded by RDr.

In this case, the weights can be choosen as constants Lm = L for all models m since

∑

m∈M(Ln)

e−LmDm ≤
+∞
∑

D=1

∑

m,Dm=D

e−LD ≤
+∞
∑

D=1

RDre−LD = Σ < +∞.

This assumption is fulfilled when using the first collection of models (3.1). Indeed, in this
case there is a single model per dimension D ∈ {1, ..., 2Ln} and the previous assumption
holds for r = 0 and R = 1. Then in (3.2) Σ = 1/(expL − 1). Herein we recover the usual
bound Dm/n up to a constant for the stochastic term in the risk decomposition.

2. Family with an exponential number of models per dimension

Assumption 5. There exist some constants A and a such that the number of models with a
given dimension D is bounded by AeaD.

In this case, the weights have to be choosen larger than in the previous case in order to
satisfy condition (3.2). Nevertheless, we take them as small as possible to avoid a too large
risk bound in the oracle inequality. We can choose Lm = lnn for all models m since

∑

m∈M(Ln)

e−LmDm ≤
+∞
∑

D=1

∑

m,Dm=D

e−D ln n ≤
+∞
∑

D=1

AeaDe−D ln n = Σ < +∞.

This assumption is fulfilled when using the second collection of models (3.2). Indeed, in this
case, each dimension D ∈ {2, ..., 2Ln} can be decomposed as D = 2l−1 + d with 1 ≤ l ≤ Ln

and 1 ≤ d ≤ 2l−1 and there are

(

2l−1

d

)

models with dimension D. Furthermore

(

2l−1

d

)

≤
(

e2l−1

d

)d

= ed(1+ln(2l−1/d)) ≤ ed(1+2l−1/d) = eD .

Hence, Assumption 5 holds for a = 1 and A = 1. Moreover, we get easily:

∞
∑

D=1

eDe−D lnn =
e/n

1 − e/n
≤ e/3

1 − e/3
,

as soon as n ≥ 3. Then in (3.2), Σ = e/3
1−e/3 . Herein we recover the bound (Dm lnn)/n up to

a constant for the stochastic term in the risk decomposition. This is the usual price to pay
for investigating a large collection of models, when the true function lies in a Besov space
rather than in a Sobolev one.

4 Lower bounds on Besov spaces

Set ν ≥ 0, ν = k + α with k ∈ N and 0 ≤ α < 1. Let us consider the Hölder class F = Σ(ν, L)
of functions f defined over the interval [0, 1] which admit k derivatives and such that the k-th
derivative satisfies:

|f(k)(x) − f(k)(y)| ≤ L|x− y|α, ∀(x, y) ∈ [0, 1]2. (4.1)

We also consider the Sobolev Class H(ν, L) of regularity ν ∈ N
∗ over the interval [0, 1] of

functions whose Sobolev norm (i.e. the L2-norm of the ν-th derivative of f) is bounded by L. Note
that for any integer ν ≥ 1 such a class contains the Hölder class F = Σ(ν, L). Furthermore we
denote C∞(S) the space of functions uniformly bounded by S.

7



In this section we will state that the minimax rate of convergence for the estimation problem
with Poisson response is the same as the usual minimax rate of convergence in nonparametric
regression estimation. The following lower bound is stated in the case of a deterministic and
equispaced design (xi)1≤i≤n in [0, 1] and over a Hölder class.

Theorem 4.1. Set ν > 1/2, there exists a constant C such that

lim inf
n→∞

inf
f̂n∈C∞(S)

sup
f∈Σ(ν,L)∩C∞(S)

E
f
(K(f, f̂n)v−2

n ) ≥ Ce−3SL2 > 0,

where vn = n− ν
2ν+1 and C is an explicit positive constant.

The lower bound over the Sobolev class H(ν, L) is a direct consequence of the previous one
since this class contains the Hölder one when ν is a nonzero integer.

In the Gaussian regression case, it is now well known, that when the quadratic risk is considered,
the linear wavelet estimator reaches the minimax rate of convergence n−2ν/(ν+1) over the Sobolev
Class H(ν, L) as soon as the optimal resolution level j∗ is choosen such that 2j

∗

= O(n1/(2ν+1)).

Here when considering the collection (3.1), the selected estimator f̂m̂ reaches the rate n1/(2ν+1)

over the Sobolev class H(ν, L) and hence is minimax. Indeed, since K(f, f̄ml ) ≤ K(f, Plf) due to
definition of f̄ml and since over a Sobolev class K(f, Plf) is of the same order as ‖f − Plf‖2

2 =
O(2−2lν) the bias term K(f, f̄ml ) is also of order O(2−2lν). Furthermore the dimension Dml of the
model Sml is 2l. Hence the trade of between the bias term and the penalization term in Theorem
3.1 is obtained for 2l = O(n1/(2ν+1)). Moreover, the residual term in the oracle inequality being

of order 1/n the risk E(K(f, f̂m̂)1lΩn) is estimated by O(n1/(2ν+1)).
We guess that on Besov classes the obtained lower bound for the Kullback-Leibler risk should

be the same as the usual one for quadratic risk, that is O(n1/(2ν′+1)) with ν ′ = ν − 1/p + 1/2,
ν ≥ 1/2 and p ≤ 2. For this larger class of functions, the richest collection of models (3.2) should
be considered, in order to obtain an upper bound for the bias term of order O(n1/(2ν′+1)). Due to
the choice of weights Lm = lnn, the selected estimator can only reach the rate O(n1/(2ν′+1)) up
to a lnn factor which is the usual price to pay for adaptivity.

5 A simulation study

In this part, we present some results in order to illustrate our results. Our aim is to compare our
procedure with the projection procedure proposed by Patricia Reynaud (Reynaud-Bouret 2003).
More precisely, we want to answer the following questions:

1. Does the e|f̂m|∞+|f̂Λ∗
n
|∞ factor in the penalty make any sense in practice ?

2. How to choose the constants involved in the penalty term in practice ?

3. How much the penalized maximum likelihood estimator is preferable to the penalized projection
estimator as defined by (Reynaud-Bouret 2003) ?

5.1 Choice of the penalty functions

In the proof of the Theorem, it can be seen that the term |f̂m|∞ + |f̂Λ∗
n
|∞ in the penalty term

comes from an estimation of |f |∞. Therefore, in order to see the sensibility of the penalty function
to |f |∞, we choose functions that only differ from their infinity norms.

More precisely, we choose n = 27 = 128, and we choose the functions f and regular models so
that the function f belongs to one of the following models:

a. f = f4 is a regular piecewise constant function on [0, 1], f4 = 1l[1/4,1/2]−1l[1/2,3/4], that we try
to estimate using the Haar basis. In this case, such models may be described, for J ≥ 0, by:

SHJ = {
J
∑

j=0

j−1
∑

k=0

βj,k 1l[k2−j,(k+1)2−j[, β ∈ R
2J−1}.
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b. f = 2f4 and the models are the same as above.

c. f = f4/2 and the models are the same as above.

d. Let g be defined by g(x) = a(x2(1 − x))3 − 1, where a is some positive constant such that
|g|∞ = 1. We define the models for J ≥ 0 by:

SψJ = {
J
∑

j=0

j−1
∑

k=0

βj,kψj,k, β ∈ R
2J−1},

where the ψj,k are the Symmlet basis with 4 vanishing moments (see (Daubechies 1992) and
(Wickerhauser 1994)). The true function is then defined as:

fsmooth = P2(g).

In these 4 cases, the true function belongs to the model SH2 which dimension is 22 = 4.
For L = 100 simulations, we generate n = 128 = 27 independant random variables Yi with

Poisson distribution with parameter ef(i/n). For each simulation, we calculate, on each model
SJ , the maximum likelihood estimator f̂J and the projection estimator êJ , which is simply the
L2-projection of Y onto the model SJ . Since there is only one model with a given dimension, we
then select the “best” model with the following penalized criteria:

ĴML = arg min
0≤J≤7

(γn(f̂J) + c2J/n), ĴP = arg min
0≤J≤7

(n−1
n
∑

i=1

(Yi − êJ,i)
2 + c2J/n).

The final estimators are the penalized maximum likelihood estimator (PMLE) f̂ĴML
and the penal-

ized projection estimator (PPE) êĴP
. Note that, in the Haar basis case, the maximum likelihood

estimator and the projection estimator coincide in each model SHJ (êJ = exp f̂J ) whereas this is
not the case in the Symmlet case. Nevertheless, the chosen model is not necessarily the same since
the selection criteria are not the same.

The constant c in the penalty term is first chosen equal to 0.1 and then grows by steps of 0.1.
For lower values of c, the chosen dimension is the maximum one (here 27) and for a particular
value of c suddenly jumps down to lower dimensions. For each simulation, we detect the lowest
constant c selecting the true “model” (J = 2). Figure 1 shows the dispersion of these constants
over the L = 100 simulations.

We can remark that these constants seem more stable with the PMLE than with the PPE. In
particular, we see that the distribution of the PMLE constants is of the same order for the four
functions whereas it seems to depend on |f |∞ for the PPE. If we divide the constants by e|f|∞ in
the PPE case, as described in Figure 2, we recover constants of the same order as ones obtained
in the PMLE case.

Therefore, we have decided to skip the e|f̂m|∞+|f̂Λ∗
n
|∞ factor in the penalty term for the PMLE

and to keep it for the PPE. More precisely, in the sequel, we shall take a penalty term of the form
penML(J) = cML2J/n for the PMLE and penP (J) = cP |êJ |∞2J/n for the PPE. Furthermore,
note that we choose |êJ |∞ rather than |êΛ|∞ = |ê7|∞, as our Theorem would suggest, since we
suspect that this latter would over-estimate exp(|f |∞).

5.2 Choice of the constant in the penalty functions

Next, we consider the constants cKL,p, cMC,p, p = 0.75, 0.80, 0.85, 0.90, 0.95, 0.99, 1 corresponding
to the 0.75, 0.80, 0.85, 0.90, 0.95, 0.99, 1 quantiles of the former constants for each procedure. We
still choose the functions f so that they belong to one of the models:

a. f = f16 is a regular piecewise constant function on [0, 1], equal to 1 on in-
tervals [1/16, 2/16[, [5/16, 6/16[, [9/16, 10/16[, [13/16, 14/16[ and to −1 on intervals
[2/16, 3/16[, [6/16, 7/16[, [10/16, 11/16[, [14/16, 15/16[ and 0 elsewhere. The true dimen-
sion is then 24 = 16. We try to estimate f16 via the Haar basis on the models SHJ , 0 ≤ J ≤ 7.

9
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Figure 1: Distribution of the lowest constants selecting the “true” model: (1-2) f = f4, (3-4)
f = 2f4, (5-6) f = f4/2, (7-8) f = fsmooth via (1,3,5,7) penalized maximum likelihood criterium,
(2,4,6,8) penalized projection criterium.
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Figure 2: Distribution of the lowest constants selecting the “true” model: (1-2) f = f4, (3-4)
f = 2f4, (5-6) f = f4/2, (7-8) f = fsmooth via (1,3,5,7) penalized maximum likelihood criterium,
(2,4,6,8) penalized projection criterium, (2,4,6,8) contants are divided by exp(|f |∞).
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b. f = fsmooth like described in case d, the models are the SψJ , 0 ≤ J ≤ 7, so that the true
dimension still is 4 = 22.

We perform L = 100 new simulations of n = 128 random variables Yi and for each simulation,
we calculate the penalized maximum likelihood estimator and penalized projection estimator, cal-
culated with the previous seven constants. We present in Table 1 the distribution of the selected
dimensions over the 100 simulations. We also present in Figures 3 and 4 the distribution of the
Average Square Error and in Figures 5 and 6 the Kullback-Leibler divergence of both estimators
over the L = 100 simulations and for each of the seven constants.

(a)

J ĴML ĴP
p 0.75 0.80 0.85 0.90 0.95 0.99 1 0.75 0.80 0.85 0.90 0.95 0.99 1
cp 0.9 0.9 1.0 1.1 1.2 1.6 1.9 0.85 0.96 1.04 1.18 1.4 1.97 3.4
0 0 0 0 0 0 1 5 0 0 0 0 0 7 59
1 0 0 0 0 0 0 0 0 0 0 0 0 0 2
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 1 1 2 6 10 1 2 2 5 21 66 39
4 94 94 96 98 98 93 85 99 98 98 95 79 27 0
5 6 6 3 1 0 0 0 0 0 0 0 0 0 0

2 72 72 79 84 89 96 98 66 75 82 87 94 100 100
3 21 21 18 15 10 4 2 34 25 18 13 6 0 0
4 4 4 1 1 1 0 0 0 0 0 0 0 0 0
5 1 1 1 0 0 0 0 0 0 0 0 0 0 0
6 2 2 1 0 0 0 0 0 0 0 0 0 0 0

(b)

J ĴML ĴP
p 0.75 0.80 0.85 0.90 0.95 0.99 1 0.75 0.80 0.85 0.90 0.95 0.99 1
cp 0.9 0.9 1.0 1.1 1.2 1.6 1.9 0.85 0.96 1.04 1.18 1.4 1.97 3.4
0 0 0 0 0 0 1 5 0 0 0 0 0 7 59
1 0 0 0 0 0 0 0 0 0 0 0 0 0 2
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 1 1 2 6 10 1 2 2 5 21 66 39
4 94 94 96 98 98 93 85 99 98 98 95 79 27 0
5 6 6 3 1 0 0 0 0 0 0 0 0 0 0

2 72 72 79 84 89 96 98 66 75 82 87 94 100 100
3 21 21 18 15 10 4 2 34 25 18 13 6 0 0
4 4 4 1 1 1 0 0 0 0 0 0 0 0 0
5 1 1 1 0 0 0 0 0 0 0 0 0 0 0
6 2 2 1 0 0 0 0 0 0 0 0 0 0 0

Table 1: Distribution of the selected dimensions over the 100 simulations: (a) f = f16, Haar basis,
(b) f = fsmooth , Symmlet basis.

From these results, it seems reasonable to keep, among the seven quantiles, for each procedure
the 0.95 quantile, namely cML = 1.2 and cP = 1.4 in the penalty term for the next simulations.

5.3 Comparison with the penalized projection estimator

In this part, we compare our penalized maximum likelihood procedure with the penalized projection
estimator for different values of n and for two criteria, namely Average Square Error and Kullback-
Leibler divergence. For that purpose, we choose
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Figure 3: Distribution of the Average Square Error for f = f16 of the (1-7) penalized maximum
likelihood estimator, (8-14) penalized projection estimator, with constant in the penalty term: (1)
cML,0.75 = 0.9, (2) cML,0.80 = 0.9, (3) cML,0.85 = 1.0, (4) cML,0.90 = 1.1, (5) cML,0.95 = 1.2, (6)
cML,0.99 = 1.6, (7) cML,1 = 1.9, (8) cP,0.75 = 0.85, (9) cP,0.80 = 0.96, (10) cP,0.85 = 1.04, (11)
cP,0.90 = 1.18, (12) cP,0.95 = 1.4, (13) cP,0.99 = 1.97, (14) cP,1 = 3.4.
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Figure 4: Distribution of the Average Square Error for f = fsmooth of the (1-7) penalized
maximum likelihood estimator, (8-14) penalized projection estimator, with constant in the penalty
term: (1) cML,0.75 = 0.9, (2) cML,0.80 = 0.9, (3) cML,0.85 = 1.0, (4) cML,0.90 = 1.1, (5) cML,0.95 =
1.2, (6) cML,0.99 = 1.6, (7) cML,1 = 1.9, (8) cP,0.75 = 0.85, (9) cP,0.80 = 0.96, (10) cP,0.85 = 1.04,
(11) cP,0.90 = 1.18, (12) cP,0.95 = 1.4, (13) cP,0.99 = 1.97, (14) cP,1 = 3.4.
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Figure 5: Distribution of the Kullback-Leibler divergence for f = f16 of the (1-7) penalized
maximum likelihood estimator, (8-14) penalized projection estimator, with constant in the penalty
term: (1) cML,0.75 = 0.9, (2) cML,0.80 = 0.9, (3) cML,0.85 = 1.0, (4) cML,0.90 = 1.1, (5) cML,0.95 =
1.2, (6) cML,0.99 = 1.6, (7) cML,1 = 1.9, (8) cP,0.75 = 0.85, (9) cP,0.80 = 0.96, (10) cP,0.85 = 1.04,
(11) cP,0.90 = 1.18, (12) cP,0.95 = 1.4, (13) cP,0.99 = 1.97, (14) cP,1 = 3.4.
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Figure 6: Distribution of the Kullback-Leibler divergence for f = fsmooth of the (1-7) penalized
maximum likelihood estimator, (8-14) penalized projection estimator, with constant in the penalty
term: (1) cML,0.75 = 0.9, (2) cML,0.80 = 0.9, (3) cML,0.85 = 1.0, (4) cML,0.90 = 1.1, (5) cML,0.95 =
1.2, (6) cML,0.99 = 1.6, (7) cML,1 = 1.9, (8) cP,0.75 = 0.85, (9) cP,0.80 = 0.96, (10) cP,0.85 = 1.04,
(11) cP,0.90 = 1.18, (12) cP,0.95 = 1.4, (13) cP,0.99 = 1.97, (14) cP,1 = 3.4.
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a. f = f4, the true dimension is then 22 = 4. We estimate f4 via the Haar basis on the models
SHJ (case a).

b. f = g like described in case d, the models are the SψJ . Hence, the true function belongs to none
of the models.

We perform L = 100 new simulations of n = 128 = 27, n = 256 = 28, n = 512 = 29 random
variables Yi and the collection of models are defined by

M128 = {SJ , 0 ≤ J ≤ 7},M256 = {SJ , 0 ≤ J ≤ 8},M512 = {SJ , 0 ≤ J ≤ 9}.

For each simulation, we calculate the penalized maximum likelihood estimator and the penalized
projection estimator, computed with the constants determined in the previous section. We describe
in Table 2 the distributions of the selected dimensions over the 100 simulations and in Table 3
the number of simulations for which the maximum likelihood procedure selects a lower, resp.
equal, resp. higher dimension than the projection procedure. We also present in Figure 7 the
distributions of the Average Square Error and in Figures 8 and 9 the Kullback-Leibler divergence
of both estimators over the L = 100 simulations.

J n = 128 n = 256 n = 512

ĴML ĴP ĴML ĴP ĴML ĴP
2 96 100 97 100 93 98

(a) 3 4 0 3 0 7 2

2 80 92 78 60 39 6
(b) 3 18 8 21 40 60 94

4 2 0 1 0 1 0

Table 2: Distribution of the selected dimensions over the 100 simulations for different sample sizes
(n = 128, 256, 512): (a) f = f4, Haar basis, (b) f polynomial, Symmlet basis.

n ĴML < ĴP ĴML = ĴP ĴML > ĴP
128 0 96 4

(a) 256 0 97 3
512 0 95 5
128 1 86 13

(b) 256 19 79 2
512 33 66 1

Table 3: Comparison of the selected dimensions by the penalized Maximum Likelihood cri-
terium and by the Projection criterium over the 100 simulations for different sample sizes
(n = 128, 256, 512): (a) f = f4, Haar basis, (b) f polynomial, Symmlet basis.

5.4 Conclusion

From a statistical point of view, this simulation study suggests that the penalized maximum
likelihood estimator behaves better than the projection estimator. Indeed, for the first one, an
estimation of |f |∞ is not required in the procedure although it is for the second one. Secondly,
even if both procedures are equivalent when estimating a piecewise constant function (f4), the
penalized maximum likelihood estimator performs better than the penalized projection estimator
when estimating a smooth function (here, a polynomial) and this, with both loss functions, Average
Square Error and Kullback-Leibler divergence.

Nevertheless, the computing cost is much heavier in the maximum likelihood case than in the
projection case, since the latter provides an explicit estimator whereas the first one requires the
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Figure 7: Distribution of the Average Square Error for (1-6) f = f4 and (7-12) f = fsmooth for
different sample size: (1,2,7,8) n = 128, (3,4,9,10) n = 256, (5,6,11,12) n = 512, (1,3,5,7,9,11)
PMLE, (2,4,6,8,10,12) PPE.
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Figure 8: Distribution of the Kullback-Leibler divergence for f = f4 for different sample size:
(1,2) n = 128, (3,4) n = 256, (5,6) n = 512, (1,3,5) PMLE, (2,4,6) PPE.
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Figure 9: Distribution of the Kullback-Leibler divergence for f = fsmooth for different sample
size: (1,2) n = 128, (3,4) n = 256, (5,6) n = 512, (1,3,5) PMLE, (2,4,6) PPE.

minimization of a function, except in the particular case of the Haar basis: in this case indeed,
just compute the estimator on each model by projection, and then select the best one using our
penalized maximum likelihood criterium.

The constants 1.2 and 1.4 are calibrated for piecewise constants and smooth functions. For
other kinds of functions (for instance, functions with bumps or angles), our constant calibration
method should be applied with an adapted wavelet basis. Thus, the constants may change.

6 Proofs

6.1 Proof of the oracle inequality given in Theorem 3.1

We aim at proving that f̂m̂ is a better estimator than f̂m in the sense of the Kullback-Leibler risk.
By definition (1.3) of m̂ and (1.1) of f̂m , we have:

γn(f̂m̂) + pen(m̂) ≤ γn(f̂m) + pen(m) ≤ γn(f̄m) + pen(m). (6.1)

Furthermore, with the notation εi = Yi − E(Yi) = Yi − efi .

K(f, f̂m̂) = K(f, f̄m) + γn(f̂m̂) − γn(f̄m)+ < f̂m̂ − f̄m, ε >n .

Using (6.1), we get:

K(f, f̂m̂) ≤ K(f, f̄m) + pen(m) − pen(m̂)+ < f̂m̂ − f̄m, ε >n .

The latter term can be splitted in two parts:

< f̂m̂ − f̄m, ε >n=< f̂m̂ − f̄m̂, ε >n + < f̄m̂ − f̄m, ε >n .

Furthermore, using that for any numbers, a, b and any positive θ

2ab ≤ θa2 +
1

θ
b2, (6.2)
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we can write

< f̂m̂ − f̄m̂, ε >n ≤ sup
h∈Sm̂

< h, ε >n
|h|n

|f̂m̂ − f̄m̂|n

≤ θ1
2
χ2
n(m̂) +

1

2θ1
|f̂m̂ − f̄m̂|2n,

where

χn(m′) = sup
h∈Sm′

< h, ε >n
|h|n

= sup
h∈Sm′ ,|h|n≤1

< h, ε >n .

and where θ1 is a positive number to be defined later. Next we link |f̂m̂− f̄m̂|2n with the Kullback-

Leibler divergence K(f̄m̂, f̂m̂) thanks to (7.5), and we have:

K(f, f̂m̂) ≤ K(f, f̄m)+pen(m)−pen(m̂)+
θ1
2
χ2
n(m̂)+

e|f̄m̂|∞+|f̂m̂−f̄m̂|∞

θ1
K(f̄m̂, f̂m̂)+ < f̄m̂−f̄m, ε >n .

(6.3)
In order to control the term χ2

n(m̂), we need to introduce some set Ωn[A], for some positive
constant A, which will become the set Ωn of the theorem for a certain value of A. This set will
also allow the control of |f̂m̂ − f̄m̂|∞.

Let A be some positive number and ρ such that

1 − θ < 2ρ < θ, (6.4)

where θ is defined in Assumption 2. We define

Ωn[A] =

{

sup
λ∈Λ∗

n

| < ϕλ, ε >n | ≤ An−ρ

bloc|Λ∗
n|1/2

}

.

The next proposition, which is the key point of this proof, states the control of the term χ2
n(m̂).

Proposition 6.1. Let (xm′ )m′∈M(Ln) be some positive numbers and suppose that A ≤ 12αe−|f|∞

κ(α) ,

where κ(α) is defined in (6.17). Then, there exists some set Ω1
n such that P

(

Ω1
n
C
)

≤
∑

m′∈M(Ln) e
−xm′ , and on the set Ω1

n

χn(m̂)1lΩn[A] ≤ (1 + α)e|f|∞/2

(

(
Dm̂
n

)1/2 + (
12xm̂
n

)1/2
)

. (6.5)

The proof of this proposition, which can be found in Section 6.3.2, relies on P. Reynaud’s
concentration inequality.

In the next proposition, we control the latter term < f̄m̂ − f̄m, ε >n.

Proposition 6.2. Let (ym′ )m′∈M(Ln) be some positive numbers and θ2 and θ3 be some positive

constants. Then, there exists some set Ω2
n such that P

(

Ω2
n
C
)

≤ 2
∑

m′∈M(Ln) e
−ym′ , and on the

set Ω2
n

< f̄m̂ − f̄m, ε >n ≤ e|f̄m̂−f|∞

2
(1 +

1

θ2
)
ym̂
n

+ θ2K(f, f̄m̂)

+
e|f̄m−f|∞

2
(1 +

1

θ3
)
ym
n

+ θ3K(f, f̄m). (6.6)

The proof of this proposition which relies on a Bernstein type inequality can be found in section
6.3.3.
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Gathering (6.3), (6.5) and (6.6), we obtain that, on the set Ω1
n ∩ Ω2

n,

K(f, f̂m̂)1lΩn[A] ≤ 1lΩn[A]

{

K(f, f̄m) + pen(m) − pen(m̂)

+
θ1
2

(1 + α)2e|f|∞

(

(

Dm̂
n

)1/2

+ (
12xm̂
n

)1/2

)2

+
e|f̄m̂|∞+|f̂m̂−f̄m̂|∞

θ1
K(f̄m̂, f̂m̂)

+(1 +
1

θ2
)
e|f̄m̂−f|∞ym̂

2n
+ θ2K(f, f̄m̂) + (1 +

1

θ3
)
e|f̄m−f|∞ym

2n
+ θ3K(f, f̄m)

}

(6.7)

Let us now choose
xm′ = ym′ = Lm′Dm′ + ζ.

When using the following consequence of (6.2),

(a+ b)2 ≤ (1 + θ)a2 + (1 +
1

θ
)b2,

we get

(

(

Dm̂
n

)1/2

+ (
12xm̂
n

)1/2

)2

≤ (1 + θ4)
Dm̂
n

+ (1 +
1

θ4
)
12(Lm̂Dm̂ + ζ)

n

= (1 + θ4)(1 +
12Lm̂
θ4

)
Dm̂
n

+ (1 +
1

θ4
)
12ζ

n
, (6.8)

for some positive θ4 to be choosen later. Hence, when substituting (6.8) in inequality (6.7) and
factorizing the terms K(f, f̄m), Dm̂

n and ζ
n we obtain:

K(f, f̂m̂)1lΩn[A] ≤ 1lΩn[A]

[

(1 + θ3)K(f, f̄m) + pen(m) − pen(m̂) + (1 +
1

θ3
)
e|f̄m−f|∞LmDm

2n

+

{

θ1
2

(1 + α)2e|f|∞(1 + θ4)(1 +
12Lm̂
θ4

) + (1 +
1

θ2
)
e|f̄m̂−f|∞

2
Lm̂
}

Dm̂
n

+

{

6θ1(1 + α)2(1 +
1

θ4
)e|f|∞ + (1 +

1

θ2
)
e|f̄m̂−f|∞

2

}

ζ

n
+

+
e|f̄m̂|∞+|f̂m̂−f̄m̂|∞

θ1
K(f̄m̂, f̂m̂) + θ2K(f, f̄m̂)

]

.

Now we choose 0 < θ2 < 1 and θ1 = e|f̄m̂|∞+|f̂m̂−f̄m̂ |∞

θ2
. Since K(f̄m̂, f̂m̂) +K(f, f̄m̂) = K(f, f̂m̂),

we get

e|f̄m̂|∞+|f̂m̂−f̄m̂|∞

θ1
K(f̄m̂ , f̂m̂) + θ2K(f, f̄m̂) = θ2K(f, f̂m̂).

Substituting this expression in the previous inequality and noticing that (1 + 1/θ2) ≤ 2/θ2, we
have:

(1 − θ2)K(f, f̂m̂)1lΩn[A] ≤ 1lΩn[A]

{

(1 + θ3)K(f, f̄m) + pen(m) − pen(m̂)

+(1 +
1

θ3
)
e|f̄m−f|∞LmDm

2n
+ T1(m̂)

Dm̂
n

+ T2(m̂)
ζ

n

}

, (6.9)
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where

T1(m̂) =
e|f̄m̂|∞+|f̂m̂−f̄m̂|∞

2θ2
(1 + α)2e|f|∞(1 + θ4)(1 +

12Lm̂
θ4

) +
e|f̄m̂−f|∞

θ2
Lm̂

T2(m̂) =

{

12
e|f̄m̂|∞+|f̂m̂−f̄m̂|∞

θ2
(1 + α)2(1 +

1

θ4
)e|f|∞ +

e|f̄m̂−f|∞

θ2

}

Now, we need on the one hand to bound the quantities |f |∞ and |f̄m̂−f |∞ in T1(m̂) and to choose
the constant θ2, θ4 in such a way that

(−pen(m̂) + T1(m̂)
Dm̂
n

)1lΩn[A] ≤ 0, (6.10)

and on the other hand, to bound T2(m̂) by a deterministic constant. To this end, the following
proposition enables us to bound the terms of the type |f̄m′ − f |∞ for any m′ ∈ M(Ln).

Proposition 6.3. Suppose Assumptions 1 and 3 satisfied. Set τ ∈]0, 1[. If

A ≤ τ

4e1+B̄
, (6.11)

then, on the set Ωn[A], for any model m′ ∈ M(Ln) we have :

|f̂m′ − f̄m′ |∞ ≤ τ/2

Since the results in Proposition 6.3 are given for any m′ ∈ M(Ln), they obviously hold true
for the particular m′ = m̂.

In the sequel of the proof, we take A = inf(12αe−|f|∞

κ(α)
, τ

4e1+B̄ ) and we put Ωn = Ωn[A] for this

choice of A.
On Ωn we can bound T1(m̂) using that:

(|f̄m̂|∞ + |f̂m̂ − f̄m̂|∞)1lΩn ≤ (|f̂m̂|∞ + 2|f̂m̂ − f̄m̂|∞)1lΩn ≤ (|f̂m̂|∞ + τ )1lΩn

|f̄m̂ − f |∞ 1lΩn ≤ (|f |∞ + |f̄m̂|∞)1lΩn ≤ (|f̄Λ∗
n
|∞ + |f̂m̂|∞ + τ/2)1lΩn

≤ (|f̂Λ∗
n
|∞ + |f̂m̂|∞ + τ )1lΩn . (6.12)

On Ωn we also bound T2(m̂) using that |f̄m̂|∞ 1lΩn ≤ B̄ 1lΩn , |f̂m̂ − f̄m̂|∞ 1lΩn[A] ≤ τ/2 1lΩn

and furthermore due to Assumption 3 we also have

|f̄m̂ − f |∞ ≤ |f̄m̂|∞ + |f |∞ ≤ B̄ + |f̄Λ∗
n
|∞ ≤ 2B̄. (6.13)

Now, we choose θ2 = 1/(1 + α), θ4 = α, and α such that

(1 + α)4 = c1

(1 + α)4(
6

α
+ 1) = c2,

where c1 and c2 are the constants in the penalty term. With these choices of θ2 and θ4, substituting
the bounds given in (6.12) and in (6.13) in expressions of T1(m̂) and of T2(m̂), we check (6.10) and
we bound T2(m̂) with some constant C ′(B̄, α).

Hence inequality (6.9) over Ω1
n ∩ Ω2

n gives :

α

1 + α
K(f, f̂m̂)1lΩn ≤ 1lΩn

{

(1 + θ3)K(f, f̄m) + pen(m) + (1 +
1

θ3
)
e|f̄m−f|∞LmDm

2n
+C ′(B̄, α)

ζ

n

}

.
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Next, when choosing θ3 = α we bound the third term of the previous right hand side as follows

1lΩn(1 +
1

θ3
)
e|f̄m−f|∞LmDm

2n
≤ 1lΩn(1 +

1

α
)
e|f̂m|+|f̂Λ∗

n
|∞+1LmDm
2n

≤ pen(m)1lΩn .

Moreover, since Ω1
n and Ω2

n satisfy

P

(

Ω1
n
C ∪ Ω2

n
C
)

≤ 3
∑

m∈Mn

e−LmDm−ζ ≤ 3Σe−ζ ,

when applying lemma 7.6 with

κ1 =
1 + α

α

C ′(B̄, α)

n
=
C(B̄, α)

n
κ2 = 3Σ

we get the oracle inequality.
It remains to prove that the set Ωn has a great probability, which is given in the following

proposition.

Proposition 6.4. Under Assumptions 1, 2 and 3, for any A there exists some positive constant c
which only depends on |f |∞, bloc such that

P

(

Ωn[A]C
)

≤ c(|f |∞, A, bloc)
n2

.

Since we have already choosen A = inf(12αe−|f|∞

κ(α) , τ
4e1+B̄ ) the control of ΩCn only depends on

|f |∞, bloc, B̄, α and τ .

6.2 Proof of Proposition 3.1

This proof is a simplier version of the preceding one, since we only have to deal with one single
fixed model m, rather than an random model m̂. With the same notations, we easily have that,
for any model m,

K(f, f̂m) = K(f, f̄m) + γn(f̂m) − γn(f̄m)+ < ε, f̂m − f̄m >n

≤ K(f, f̄m)+ < ε, f̂m − f̄m >n

≤ K(f, f̄m) +
θ1
2
χ2
n(m) +

1

2θ1
|f̂m − f̄m|22

≤ K(f, f̄m) +
θ1
2
χ2
n(m) +

e|f̂m−f̄m|∞+|f̄m|∞

θ1
K(f̄m, f̂m),

for any positive θ1. Therefore, bounding |f̂m− f̄m|∞+ |f̄m|∞ by τ/2+ B̄ on the set Ωn and setting

θ2 = eτ/2+B̄

θ1
, we have

(1 − θ2)K(f, f̂m)1lΩn ≤ (1 − θ2)K(f, f̄m) +
eτ/2+B̄

2θ2
χ2
n(m).

Now, choose θ2 = 1/2 and since E(χ2
n(m)) ≤ e|f|∞Dm/n:

E(K(f, f̂m)1lΩn) ≤ K(f, f̄m) + 2e|f|∞+B̄+τ/2Dm
n
.
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6.3 Proofs of the propositions involded in the proof of the Theorem

6.3.1 Concentration inequalities

The proofs of Propositions 6.1, 6.2 and 6.4 heavily depend on concentration inequalities established
by (Reynaud-Bouret 2003). Her results are announced in terms of Poisson processes but we can
translate them in our framework in the following way:

Let X =]0, n] and Ii =]i − 1, i], 1 ≤ i ≤ n. Let µ denote the Lebesgue measure on R and
let define dν =

∑n
i=1 e

f(xi) 1lIi dµ. Let N be a Poisson process with inhomogeneous intensity dν .
Then, the random variables

∫

1lIi dN have Poisson distributions with parameter ν(Ii) = ef(xi).
For any h ∈ R

n, let define fh =
∑n

i=1 hi 1lIi . Then,
∫

fdN =
∑n

i=1 hi
∫

1lIi dN has the
same distribution as

∑n
i=1 hiYi. So, Reynaud-Bouret’s inequalities (Reynaud-Bouret 2003) can be

re-enunced in this way:

Theorem 6.1. Bernstein’s inequality :
For any ξ > 0 and any h ∈ R

n,

P(

n
∑

i=1

hiεi ≥ ξ) ≤ exp

(

− ξ2

2
∑n
i=1 e

f(xi)h2
i + 2

3 ξ|h|∞

)

P(|
n
∑

i=1

hiεi| ≥ ξ) ≤ 2 exp

(

− ξ2

2
∑n
i=1 e

f(xi)h2
i + 2

3ξ|h|∞

)

(6.14)

For any u > 0 and any h ∈ R
n,

P

(

n
∑

i=1

hiεi ≥ (2u

n
∑

i=1

ef(xi)h2
i )

1/2 + |h|∞u/3
)

≤ e−u,

P

(

|
n
∑

i=1

hiεi| ≥ (2u

n
∑

i=1

ef(xi)h2
i )

1/2 + |h|∞u/3
)

≤ 2e−u. (6.15)

We will also need the following theorem:

Theorem 6.2. Let S be some finite dimensional linear subspace of L2 and (ϕλ)λ=1,...,D be some
orthonormal basis of S for the inner product <,>n. Let χn be the following Chi-square statistics:

χn(S) = sup
f∈S,|f|n=1

< f, ε >n=





∑

λ=1,...,D

< φλ, ε >
2
n





1/2

.

Let

MS = sup
h∈S,|h|n=1

n−1
n
∑

i=1

ef(xi)h2
i

and assume that this quantity is finite. Let ΩS(α) be the event

ΩS(α) =







|
∑

λ=1,...,D

< φλ, ε >n ϕλ|∞ ≤ 12αMS

κ(α)







, (6.16)

where

κ(α) = 5/4 + 32/α. (6.17)

Then, for any positive α and x

P

(

χn(S)1lΩS(α) ≥ (1 + α)
(

E(χ2
n(S))1/2 + (12MSx/n)1/2

))

≤ e−x. (6.18)
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6.3.2 Proof of Proposition 6.1

For sake of simplicity we use here the notations Mm′ = MSm′ and MΛ = MSΛ∗
n
. Define for any

model m′ ∈ M(Ln),

Ω1
n(m

′) =
{

χn(m
′)1lΩSm′

≤ (1 + α)
(

E(χ2
n(m′))1/2 + (12Mm′xm′/n)1/2

)}

Ω1
n =

⋂

m′∈M(Ln)

Ω1
n(m′),

where ΩSm′ is defined by (6.16). From (6.18), we have

P

(

Ω1
n
C
)

≤
∑

m′∈M(Ln)

P

(

Ω1
n(m′)C

)

≤
∑

m′∈M(Ln)

e−xm′ .

Using Property 1, since m′ ⊂ Λ∗
n we have

|
∑

λ∈m′

< φλ, ε >n φλ|∞ ≤ blocD
1/2
m′ sup

λ∈m′

| < φλ, ε >n | ≤ blocD
1/2
m′ sup

λ∈Λ∗
n

| < φλ, ε >n |.

Furthermore, for any m′, A ≤ 12αe−|f|∞

κ(α)
≤ 12αMm′

κ(α)
. Thus on the set Ωn[A] we have

|
∑

λ∈m′

< φλ, ε >n φλ|∞ ≤ 12αn−ρMm′

κ(α)
≤ 12αMm′

κ(α)
.

Therefore, for any model m′, Ωn[A] ⊂ ΩSm′ , so that on the set Ω1
n,

χn(m′)1lΩn[A] ≤ χn(m′)1lΩS
m′

≤ (1 + α)
(

E(χ2
n(m′))1/2 + (12Mm′xm′/n)1/2

)

.

Moreover, we have:

E(χ2
n(m′)) =

∑

λ∈m′

E < ϕλ, ε >
2
n≤

∑

λ∈m′

Var < ϕλ, ε >n ≤
∑

λ∈m′

Mm′

n
=
Mm′Dm′

n
.

Noticing that Mm′ ≤ e|f|∞ for any model m′ ∈ M(Ln), (6.5) holds true for any model m′. Hence
it is true for m′ = m̂.

6.3.3 Proof of Proposition 6.2

Let Ω2
n(m′) be defined for any model m′ ∈ M(Ln) by

Ω2
n(m′) =







| < f̄m′ − f, ε >n | ≤
(

2ym′

n2

n
∑

i=1

ef(xi)(f̄m′,i − fi)
2

)1/2

+ |f̄m′ − f |∞
ym′

3n







,

Ω2
n =

⋂

m′

Ω2
n(m

′).

Applying Bernstein’s inequality (6.15) for h = f̄m′ − f̄m, we deduce that P(Ω2
n
C

) ≤ 2
∑

m′ e−ym′ .
Next, using (7.4),

∑n
i=1 e

f(xi)(f̄m′,i − fi)
2

n2
=
Vf (f, f̄m′ )

n
≤ 2e|f̄m′−f|∞

n
K(f, f̄m′ ),

so that on the set Ω2
n,

| < f̄m′ − f, ε >n | ≤ (
e|f̄m′−f|∞ym′

n
2K(f, f̄m′ ))1/2 + |f̄m′ − f |∞

ym′

3n
,
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using (6.2) with a = (2K(f, f̄m′ ))1/2 and b = (
e|f̄m′−f|∞ ym′

n )1/2, for any model m′

| < f̄m′ − f, ε >n | ≤ 1

2θ2

e|f̄m′−f|∞ym′

n
+ θ2K(f, f̄m′ ) + |f̄m′ − f |∞

ym′

3n

≤ e|f̄m′−f|∞

2
(1 +

1

θ2
)
ym′

n
+ θ2K(f, f̄m′ ),

for some positive constant θ2. Since this is true for all models m′, this is in particular true for
m′ = m̂ and for m′ = m with θ2 replaced by θ3. To conclude, (6.6) follows from

| < f̄m̂ − f̄m, ε >n | ≤ | < f̄m̂ − f, ε >n | + | < f − f̄m, ε >n |.

6.3.4 Proof of Proposition 6.3

On the set Ωn[A], for any m′ ⊂ Λ∗
n, we have:

|δ̂m′ − δ̄m′ |2n =
∑

λ∈m′

< φλ, ελ >
2≤

∑

λ∈m′

A2n−2ρ

(bloc)2|Λ∗
n|

≤ A2n−2ρ

(bloc)2
.

Due to Assumption 2 and to (6.4), we have that for any model m′, n−ρ ≤ n−(1−θ)/2 ≤ 1

D
1/2

m′

. Since

A satisfies (6.11), using Assumption 3, we have for any model m′, A ≤ τ

4e1+|f̄
m′ |∞

, and thus

|δ̂m′ − δ̄m′ |n ≤ An−ρ

bloc
≤ τ

4blocD
1/2
m′ e1+|f̄m′ |∞

.

Hence, we can apply Lemma 7.5 on every model m′ to get the result.

6.3.5 Proof of Proposition 6.4

From the definition of Ωn[A], we have

P

(

Ωn[A]C
)

≤
∑

λ∈Λ∗
n

P

(

| < φλ, ε >n | ≥ An−ρ

bloc|Λ∗
n|1/2

)

.

Using Bernstein’s inequality (6.14) and setting ξ(A) = An−ρ

bloc|Λ∗
n|1/2 , we get

P (| < φλ, ε >n | ≥ ξ(A)) ≤ 2 exp

(

− n2ξ2

2
∑

λ∈Λ∗
n
ef(xi)φ2

λ,i +
2
3nξ|φλ|∞

)

.

Since Assumption 1 gives orthonormality of the basis (φλ) for the <,>n inner product,

∑

λ∈Λ∗
n

ef(xi)φ2
λ,i ≤ e|f|∞n|ϕλ|2n = ne|f|∞ .

Furthermore, due to Property 1, for any λ ∈ Λ∗
n:

|ϕλ|∞ ≤ bloc|Λ∗
n|1/2,

so that

P (| < φλ, ε >n | ≥ ξ(A)) ≤ 2 exp

(

−η(A)
n1−2ρ

e|f|∞bloc
2|Λ∗

n|

)

,
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where η(A) = A2

2+2A/3
. Now, using Assumption 2, we get

P

(

Ωn[A]C
)

≤ 2|Λ∗
n| exp(−η(A)

n1 − 2ρ

e|f|∞ bloc
2|Λ∗

n|
) ≤ 2n1−θ exp(−η(A)

nθ−2ρ

e|f|∞bloc
2 )

=
2

n2
n3−θ exp(−Cnθ−2ρ),

where C is a positive constant depending on A, |f |∞ and bloc but not on n. Since θ − 2ρ > 0
from (6.4), n3−θ exp(−Cnθ−2ρ) tends to 0 when n tends to infinity, so that the sequence remains
bounded, which yields the result.

6.4 Proof of the lower bound given in Theorem 4.1

Let FM denotes a finite subset of cardinality M + 1 of F ∩C∞(S), then we have for any estimator

f̂n of f :

sup
f∈F∩C∞(S)

E
f
(K(f, f̂n)v−2

n ) ≥ sup
f∈FM

E
f
((K(f, f̂n)v−2

n ).

Next, due to inequality (7.5) which provides a lower bound in discrete quadratic norm for the

Kullback Leibler distance, we obtain that for any f ∈ FM and any f̂n ∈ C∞(S):

E
f
((K(f, f̂n)v−2

n ) ≥ e−3S

2
E
f
(|f̂n − f |2nv−2

n ) ≥ e−3S

2
P
f
(|f̂n − f |nv−1

n > ξ)ξ2.

Hence, for any ξ > 0 and any f̂n ∈ C∞(S), when denoting fk the elements of FM :

sup
f∈FM

Ef((K(f, f̂n)v−2
n ) ≥ e−3S

2
max

k=0,...,M
Pfk(|f̂n − fk|nv−1

n > ξ)ξ2. (6.19)

Therefore, the assertion of the proposition will follow from a non negative lower bound which does
not depend on f̂n, for the probability in the right hand side quantity of this last inequality.

For the convenience of the reader we recall the basic tool (Theorem 2.5 in (Tsybakov 2004)
p.85) we use to obtain such a bound. Note that for sake of simplicity we use a simplified version of
the one given in (Tsybakov 2004), since we only wish to obtain optimal rate and do not investigate
the more difficult problem of an optimal constant in the lower bound.

Lemma 6.1. Suppose that the elements f0, ..., fM ∈ FM ,M ≥ 2 are such that
a) For all k, k′, 0 ≤ k < k′ ≤M inequality holds:

|fk − fk′ |n ≥ 2sn > 0; (6.20)

b) For any k = 1, ...,M the Kullback-Leibler divergence between the likelihoods under fk and f0
satisfy

1

M

M
∑

k=1

nK(fk, f0) ≤ a ln(M) (6.21)

where 0 < a < 1/10.

Then for any estimator f̂n ∈ C∞(S)

max
0≤k≤M

Pfk(|f̂n − fk|n ≥ sn) ≥ c > 0, with c = 0.04

We construct now a convenient set of functions FM , that will verify Assumptions (6.20) and
(6.21) for M large enough that will be choosen as an increasing funtion of n.

Let us consider a real positive function Φ(·) (called basic function for the class Σ(ν, 1), with
ν = k + α) satisfying assumptions given in Lemma 6.2. Set m ∈ N with m ≥ 8 and consider the
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sequence of points bj = (j − 1/2)/m for all j = 1, ..., m, and of functions fjn defined as :

bj =
j − 1/2

m
fjn = L

(

1

m

)ν

Φ

(

x− bj
1/m

)

.

In the following lemma, we state the properties of functions fjn that are necessary for con-
structing a subset FM of functions satisfying (6.21) and (6.20).

Lemma 6.2. Let Φ ∈ Σ(ν, 1) be compactly supported over [−1/2, 1/2], such that ‖Φ‖∞ ≤ 8νS/L
and ‖Φ‖2

2 < ln 2/(60L2). Moreover we suppose that Φ has all its derivatives up to order k+ 1 with
its k + 1-th derivative uniformly bounded by 1. Let m ≥ 8 then for any j = 1...m :

i) fjn is compactly supported over [(j−1)/m, j/m], such that ‖fjn‖∞ = Lm−ν‖Φ‖∞, ‖fjn‖2
2 =

L2‖Φ‖2
2m

−(2ν+1) and ‖f ′jn‖∞ = Lm−ν+1‖Φ′‖∞.
ii) fjn ∈ F ∩ C∞(S).
iii) |‖fjn‖2

2 − |fjn|2n| ≤ ‖fjn‖∞‖f ′jn‖∞n−1

Proof. The first point of the lemma is a straightforward consequence of required assumptions on
the basic function Φ.

The Kernel Φ being compactly supported and having its k+1-th derivative uniformly bounded
by 1, the k-th derivative of fjn satisfies condition (4.1). Moreover, since ‖Φ‖∞ ≤ 8νS/L and due
to i), fjn is obviously bounded by S.

The third point is an application of Taylor expansion of fjn at order one around each point
xi = i/n of the design, indeed:

|‖fjn‖2
2 − |fjn|2n| = |

n
∑

i=1

∫ xi

xi−1

(f2
jn(x) − f2

jn(xi))dx| ≤
n
∑

i=1

∫ xi

xi−1

|f2
jn(x) − f2

jn(xi)|dx

≤ 2‖fjn‖∞
n
∑

i=1

∫ xi

xi−1

|fjn(x) − fjn(xi)|dx

≤ 2‖fjn‖∞‖f ′jn‖∞
n
∑

i=1

∫ xi

xi−1

|x− xi|dx = ‖fjn‖∞‖f ′jn‖∞n−1

Consider now the set of all binary possible vectors w̄ = (w1, ..., wm), wl ∈ {0, 1}, l = 1, ..., m.
Due to Varshanov-Gilbert Lemma (1962) (see (Tsybakov 2004) p. 89), if m ≥ 8, there exists a
subset W = (w̄0, ..., w̄M) such that w̄0 = (0, ..., 0) and for any 0 ≤ k < k′ ≤M

ρH(w̄k, w̄k
′

) = card{l : 1 ≤ l ≤ m,wkl 6= wk
′

l } ≥ m/16 and 8 ln(M)/ ln(2) ≥m. (6.22)

Next, for each binary sequences w̄k ∈ W, we define the function

fk(x) =
m
∑

j=1

wkj fjn(x).

Since the supports of fjn are non-overlapping, we have for any k = 0, ...,M , fk ∈ F ∩ C∞(S)
and ‖fk‖∞ ≤ Lm−ν‖Φ‖∞. Let us check now that functions fk also satisfy Assumptions (6.20)
and (6.21), for n and M large enough.

When using Lemma 6.2 and the Varshanov-Gilbert upper bound for ρH given in (6.22), we get
for any 0 ≤ k < k′ ≤M , and for any n and m ≥ 8:

25



On one hand,

|fk − fk′ |2n =

m
∑

j=1

(wkj − wk
′

j )2|fjn|2n ≥
m
∑

j=1

(wkj −wk
′

j )2(‖fjn‖2 − ‖fjn‖∞‖f ′jn‖∞n−1)

= ρH(w̄k, w̄k′)(L2‖Φ‖2
2m

−(2ν+1) − L2m−2ν+1‖Φ‖∞‖Φ′‖∞n−1)

≥ m−2νL2 ‖Φ‖2
2

16
Rm,n with Rm,n = 1 − ‖Φ‖∞‖Φ′‖∞m2

L2‖Φ‖2
2n

; (6.23)

on the other hand, when also using inequality (7.5):

nK(fk, f0) ≤ 1

2
e‖fk‖∞+‖fk−f0‖∞n|fk − f0|2n ≤ 1

2
e2‖Φ‖∞Lm

−ν

n





m
∑

j=1

(wkj )
2|fjn|2n





≤ 1

2
e2‖Φ‖∞Lm

−ν

n

m
∑

j=1

(‖fjn‖2
2 + L2m−2ν+1‖Φ‖∞‖Φ′‖∞n−1)

≤ 1

2
e2‖Φ‖∞Lm

−ν

n

m
∑

j=1

(L2‖Φ‖2
2m

−(2ν+1) + L2m−2ν+1‖Φ‖∞‖Φ′‖∞n−1)

≤ L2‖Φ‖2
2

1

2
e2‖Φ‖∞Lm

−ν

m

(

nm−(2ν+1) +
m−2ν+1‖Φ‖∞‖Φ′‖∞

‖Φ‖2
2

)

≤ L2‖Φ‖2
2

4 lnM

ln 2
Pm,n with Pm,n = e2‖Φ‖∞Lm

−ν

(

n

m2ν+1
+

‖Φ‖∞‖Φ′‖∞
‖Φ‖2

2m
2ν−1

)

(6.24)

Now we put m = n1/(2ν+1). For such a choice, Rm,n increases and tends to one, and Pm,n
decreases and tends to one when n tends to infinity. Hence for n large enough

√

Rm,n ≥ 1/2 and
Pm,n ≤ 3/2 and we have when substituting these bounds in (6.23) and (6.24):

|fk − fk′ |n ≥ n
−ν

2ν+1
L‖Φ‖2

8
and nK(fk, f0) ≤ 3L2‖Φ‖2

2 lnM.

Hence Assumptions (6.20) and (6.21) are obtained for sn = n−ν/(2ν+1)(L‖Φ‖2)/16 and a =
3L2‖Φ‖2

2, for n and M large enough, and Lemma 6.1 provides the estimate:

max
k=0,...,M

Pfk(|f̂n − fk|n > ξvn) ≥ 0.04 for ξ = L‖Φ‖2/8.

To end the proof, we substitute the previous lower bound in (6.19) which provides the result
given in Theorem 4.1 with C = 0.04‖Φ‖2

2/128.

7 Appendix

7.1 Technical lemmas

In the sequel, for sake of simplicity we put D = Dm and for any h and f we will denote :

β = (βλ)λ∈m = (< h, φλ >n)λ∈m

β̄ = (β̄λ)λ∈m = (< f̄m, φλ >n)λ∈m

β̂ = (β̂λ)λ∈m = (< f̂m, φλ >n)λ∈m.

7.1.1 Estimator and projection on a given model

Due to their definitions, (1.1) and (1.2), f̂m and f̄m have no simple analytical expression. Never-
theless, they satisfy the following relations :
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Lemma 7.1. For any m ∈ M(Ln) and any function h ∈ Sm,

n
∑

i=1

Yihi =

n
∑

i=1

ef̂m,ihi (7.1)

n
∑

i=1

efihi =

n
∑

i=1

ef̄m,ihi. (7.2)

Consequently,

n
∑

i=1

ef̄m,ihi = E f (

n
∑

i=1

ef̂m,ihi). (7.3)

Proof. Since h ∈ Sm we have h =
∑D

λ=1 βλφλ and

γn(h) = n−1
n
∑

i=1

(ehi − Yihi) = n−1
n
∑

i=1

(exp(

D
∑

λ=1

βλφλ,i) − Yi

D
∑

λ=1

βλφλ,i).

Deriving with respect to βλ0 , and f̂m =
∑

λ∈m βλφλ being a minimiser of the contrast function
γn(h) we get for any λ0 = 1, ..., D:

n
∑

i=1

(exp(

D
∑

λ=1

β̂λϕλ,i)φλ0,i − Yiφλ0,i) = 0.

Hence, for any function φλ0,i of the basis of Sm relation (7.1) being satisfied, it holds also true
for any linear combination of them. The proof of the second assertion (7.2) is analogous, so it is
omitted. The third assertion obviously follows when noticing that expectation of the left hand side
of (7.1) is equal to the left hand side of (7.2).

7.1.2 Pythagoras Equality

Lemma 7.2. For any m ∈ M(Ln) and any function h ∈ Sm, we have:

K(f, h) = K(f, f̄m) +K(f̄m, h).

Proof.

K(f, h) = n−1
n
∑

i=1

ehi − efi − efi (hi − fi)

= n−1
n
∑

i=1

ehi − ef̄m,i + ef̄m,i − efi − efi (hi − f̄m,i + f̄m,i − fi)

= K(f, f̄m) + n−1
n
∑

i=1

ehi − ef̄m,i − efi (hi − f̄m,i)

The functions h et f̄m are both in Sm, so is their difference. Therefore, when applying relation
(7.2) we obtain:

n
∑

i=1

efi (hi − f̄m,i) =

n
∑

i=1

ef̄m,i (hi − f̄m,i).

Then we get:

K(f, h) = K(f, f̄m) + n−1
n
∑

i=1

ehi − ef̄m,i − ef̄m,i(hi − f̄m,i) = K(f, f̄m) +K(f̄m, h).
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7.1.3 Links between distances

Lemma 7.3. For any functions f and h,

e−|h−f|∞
Vf (f, h)

2
≤ K(f, h) ≤ e|h−f|∞

Vf (f, h)

2
, (7.4)

e−|f|∞−|h−f|∞
|h− f |2n

2
≤ K(f, h) ≤ e|f|∞+|h−f|∞

|h− f |2n
2

, (7.5)

where

Vf (f, h) = n−1
n
∑

i=1

ef(xi)(h(xi) − f(xi))
2.

Proof. Recall the definition of the Kullback-Leibler divergence given in the introduction :

K(f, h) = E f(γn(h) − γn(f)) = n−1
n
∑

i=1

efi (ehi−fi − 1 − (hi − fi)).

Since for any x ∈ R, x
2

2
e−|x| ≤ ex − 1 − x ≤ x2

2
e|x|, we have :

n−1
n
∑

i=1

efi (e−|hi−fi|
(hi − fi)

2

2
) ≤ K(f, h) ≤ n−1

n
∑

i=1

efi (e+|hi−fi|
(hi − fi)

2

2
). (7.6)

Moreover, for any i, exp(−|hi− fi|) ≥ exp(−|h− f |∞) and exp(|hi − fi|) ≤ exp(|h− f |∞). Hence,
substituting these bounds in (7.6) we obtain (7.5). Next, since exp(−|f |∞) ≤ exp(fi) ≤ exp(|f |∞)
we have exp(−|f |∞)|h− f |2n ≤ Vf (f, h) ≤ exp(|f |∞)|h− f |2n and (7.4) follows.

The next lemma deals with links between norms of functions and norms of the coefficient vectors
in an orthonormalized basis, for the <,>n inner product.

Lemma 7.4. Suppose Assumption 1 satisfied. Then for any h ∈ Sm of dimension Dm :

|h− f̄m|∞ ≤ blocD1/2
m |β − β̄|2, (7.7)

e−|f̄m|∞

2
e−b

locD1/2
m |β−β̄|2 |β − β̄|22 ≤ K(f̄m, h) ≤ e|f̄m|∞

2
eb

locD1/2
m |β−β̄|2 |β − β̄|22.

Proof. Since |β − β̄|∞ ≤ |β − β̄|22, Assertion (7.7) follows immediately from Property 1.
For the second one we have :

K(f̄m, h) = n−1
n
∑

i=1

ehi − ef̄m,i − ef̄m,i(hi − f̄m,i) = n−1
n
∑

i=1

ef̄m,i (ehi−f̄m,i − 1 − (hi − f̄m,i)).

Applying inequalities (7.5), (7.7) and noticing that for any h ∈ Sm, |h|2n = |β|22, we obtain:

K(f̄m, h) ≤ e|f̄m|∞e|h−f̄m|∞
|h− f̄m|2n

2
≤ e|f̄m|∞eb

locD−1/2
m |β−β̄|2

|β − β̄|22
2

.

The lower bound is deduced in the same way.

7.1.4 Control of K(f̄m, f̂m)

In this section, we aim at controlling some distances between f̄m and f̂m in any model m ∈ Λ∗
n.

Remark that the vectors (β̂λ)λ∈m and (β̄λ)λ∈m of coefficients of f̂m and f̄m in the basis (φλ)λ∈m
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satisfy
G(β̄) = δ̄m and G(β̂) = δ̂m,

where the G is the function from R
Dm to R

Dm whose λ − th component is given by :

Gλ(β) = n−1
n
∑

i=1

e
P

λ βλφλ,iφλ,i

and δ̂m and δ̄m are vectors in R
Dm with λ-th coordinates

δ̂m,λ = n−1
n
∑

i=1

Yiφλ,i and δ̄m,λ = n−1
n
∑

i=1

efiφλ,i.

The following lemma is adapted from (Barron & Sheu 1991) and (Castellan 2003).

Lemma 7.5. For any τ ∈]0, 1[, if

|δ̂m − δ̄m|2 ≤ τ

(4blocD
1/2
m e1+|f̄m|)

, (7.8)

then equation G(β) = δ̂m admits a solution β̂ which satisfies

|f̂m − f̄m|∞ ≤ 2e|f̄m|+τ blocD−1/2
m |δ̂m − δ̄m|2 ≤ τ/2.

Proof. For any δ ∈ R
Dm , define Fδ as the function from R

Dm to R whose derivative with respect
to βλ is Gλ(β) − δλ :

Fδ(β) = n−1
n
∑

i=1

e
P

λ βλφλ,i −
∑

λ

δλβλ.

Due to definition of Fδ, solving equation G(β) = δ̂ comes to minimize Fδ̂. Now for any β ∈ R
Dm ,

Fδ̂(β) − Fδ̂(β̄) = n−1
n
∑

i=1

e
P

λ βλφλ,i −
∑

λ

δ̂λβλ − n−1
n
∑

i=1

e
P

λ β̄λφλ,i +
∑

λ

δ̂λβ̄λ

= K(f̄m, h(β)) + n−1
n
∑

i=1

ef̄m,i

∑

λ

(βλ − β̄λ)φλ,i− < δ̂, β − β̄ >

= K(f̄m, h(β))+ < δ̄, β − β̄ > − < δ̂, β − β̄ >

= K(f̄m, h(β))− < δ̂ − δ̄, β − β̄ >

≥ e−|f̄m|∞

2
e−b

locD1/2
m |β−β̄|2 |β − β̄|22 − |δ̂ − δ̄|2|β − β̄|2.

Let τ be some number in ]0, 1[ and consider the sphere {β, |β − β̄|2 = 2eτe|f̄m|∞ |δ̂ − δ̄|2}. For
any β on the sphere,

Fδ̂(β) − Fδ̂(β̄) > (eτ−2blocD1/2
m eτe|f̄m|∞ |δ̂−δ̄|2 − 1)2eτe|f̄m|∞ |δ̂ − δ̄|22.

Due to (7.8) and since 0 < τ < 1, 2blocD
1/2
m e1+|f̄m|∞ |δ̂ − δ̄|2 < τ < 1, hence for any β on

the sphere Fδ̂(β) − Fδ̂(β̄) > 0. Moreover the function Fδ̂(·) − Fδ̂(β̄) being continuous and equal

to zero in the center of the sphere β̄ it admits a minimizer inside the sphere, say β̂, such that
|β̂ − β̄|2 < 2eτ+|f̄m |∞ |δ̂ − δ̄|2.

Thus, from Lemma 7.4,

|f̂m − f̄m|∞ ≤ blocD1/2
m |β̂ − β̄|2 ≤ 2blocD1/2

m eτ+|f̄m |∞ |δ̂ − δ̄|2 ≤ τ/2.
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7.1.5 Integration lemma

Lemma 7.6. Let X and Y be positive random variables defined on the probability space (Ω,P).
Assume that there exist positive constants κ1 and κ2 such that P (X ≥ Y + κ1ζ) ≤ κ2e

−ζ , then

E(X) ≤ E(Y ) + κ1κ2.

Proof. By definition, using Fubini,

E(X) =

∫ +∞

0
P (X ≥ x) dx =

∫

Ω

∫ +∞

0

1l{X≥x} dxdP .

The latter event can be decomposed as

1l{X≥x} = 1l{X≥x,Y≥x} +1l{X≥x,Y <x} ≤ 1l{Y≥x} +1l{Y <x≤X},

so that

E(X) ≤ E(Y ) +

∫

Ω

∫ +∞

0

1l{Y <x≤X} dxdP .

Now, changing variable x for ζ in the previous integral with x = Y + κ1ζ we obtain

∫

Ω

∫ +∞

0

1l{Y+κ1ζ≤X} κ1dζdP =

∫ +∞

0
P (Y + κ1ζ ≤ X) κ1dζ ≤

∫ +∞

0

κ1κ2e
−ζdζ = κ1κ2.
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