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Abstract: For fixed t ∈ [0, 1) and h > 0, consider the local uniform em-

pirical process

Dn,h,t(s) := n−1/2
[ n∑

i=1

1[t,t+hs](Ui)− hs

]
, s ∈ [0, 1],

where the Ui are independent and uniformly distributed on [0, 1]. We inves-

tigate the functional limit behaviour of Dn,h,t uniformly in hn ≤ h ≤ hn

when nhn/ log log n→∞ and hn → 0.
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1. Introduction

Let (Ui)i≥1 be an independent, identically distributed (i.i.d.) sequence of random

variables that are uniformly distributed on [0, 1]. Define the empirical distribu-

tion function based on (U1, . . . , Un) by Fn(t) := n−1]{1 ≤ i ≤ n, Ui ≤ t}, t ∈

[0, 1] and denote by F←n (t) the left-continuous inverse of Fn, namely F←n (t) :=

inf{s ≥ 0, Fn(s) ≥ t}. We also define the empirical (resp. quantile) process by

αn(t) :=
√

n(Fn(t)− t), t ∈ [0, 1] (resp. βn(t) :=
√

n(F←n (t)− t), t ∈ [0, 1]). The

framework of this paper is the almost sure behaviour of the local empirical and

quantile processes. Namely, given t ∈ [0, 1) we focus on studying the following
1
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D. Varron/Uniform in bandwidth results for tail empiricals 2

processes, as n →∞ and h → 0.

Dn,h,t(s) :=αn(t + hs)− αn(t), s ∈ [0, 1], (1.1)

D′n,h,t(s) :=βn(t + hs)− βn(t), s ∈ [0, 1]. (1.2)

Mason (1988) was the first to establish a functional law of the iterated log-

arithm for the local empirical process (see also Einmahl and Mason (1997)

for a generalization of this result to empirical processes indexed by functions).

To cite this result, we need to introduce some further notations first. Write

log2(u) := log(log(u ∨ 3)). We say that a sequence (hn)n≥1 of strictly positive

constants satisfies the local strong invariance conditions when, ultimately as

n →∞,

hn ↓ 0, nhn ↑ ∞, nhn/ log2 n →∞. (1.3)

Given a sequence (xn)n≥1 of elements of a metric space (E, d), we say that

xn  K when K is non void and coincides with the set of all cluster points

of (xn)n≥1. In our framework, (E, d) is the space B([0, 1]) of all real bounded

CADLAG trajectories on [0, 1], endowed with the usual sup norm, namely ||

g ||:= sup{| g(s) |, s ∈ [0, 1]}. Consider the space AC[0, 1] of all absolutely

continuous functions on [0, 1]. For any g ∈ AC[0, 1], we define the usually called

Hilbertian norm of g as

|| g ||2H :=

1∫
0

ġ2(x)dx, (1.4)

where ġ is any version of the derivative of g with respect to the Lebesgue mea-

sure. The usually called Strassen ball can be defined as follows:

S :=
{

g ∈ AC([0, 1]), g(0) = 0, || g ||H≤ 1
}

. (1.5)

As a corollary of a strong approximation result, Mason (1988) showed that,

given a sequence (hn)n≥1 fulfilling (1.3) and given t ∈ [0, 1), we have, almost

surely
Dn,hn,t

(2hn log2 n)1/2
 S (1.6)
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In the particular case where t = 0, Einmahl and Mason (1988) showed that

D′n,hn,t also satisfies (1.6). They showed that result by making use of a local

Bahadur Kiefer representation (see their Theorem 5). The almost sure limit

behavior of D′n,hn,t when t ∈ (0, 1) has been investigated by Deheuvels (1997),

who showed that the above mentioned process may obey functional limit laws

that are different from (1.6). The aim of the present paper is the following:

given two sequences hn < hn fulfilling (1.3), does (1.6) still hold uniformly in

hn ≤ h ≤ hn? Namely, do we have almost surely

lim
n→∞

sup
hn≤h≤hn

inf
g∈S

∣∣∣∣∣∣ Dn,h,t

(2h log2 n)1/2
− g
∣∣∣∣∣∣ =0, (1.7)

∀g ∈ S, lim inf
n→∞

sup
hn≤h≤hn

∣∣∣∣∣∣ Dn,h,t

(2h log2 n)1/2
− g
∣∣∣∣∣∣ = 0 ? (1.8)

The remainder of this paper is organised as follows. In §2, we state our main

results on Dn,h,t. We then show how this results lead to a local Bahadur-Kiefer

type representation that holds uniformly in h. The proofs of our main results

follow in §3, 4 and 5.

2. Mains results

Our first result is a weaker form of assertion (1.7).

Theorem 1. Let (hn)n≥1 and (hn)n≥1 be two sequences satisfying (1.3) as well

as hn < 1
2hn. Then, given t ∈ [0, 1), we have, almost surely:

lim
n→∞

sup
hn≤h≤hn

inf
g∈
√

2S

∣∣∣∣∣∣ Dn,h,t

(2h log2 n)1/2
− g
∣∣∣∣∣∣ = 0. (2.1)

The proof of Theorem 1 is written in §3.

Remark: Condition hn < hn/2 is just technical, as this result is really interest-

ing when (hn)n≥1 and (hn)n≥1 are sequences that tend to 0 at different rates

(typically n−α1 and n−α2 , 0 < α1 < α2 < 1). Clearly, Theorem 1 seems unsat-

isfactory, as one would expect the limit set to be S instead of
√

2S. As it will
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be pointed out in the proof of Theorem 1 (see §3.2), it is possible to prove (1.7)

when

∀β > 0, lim
n→∞

log(hn/hn)/(log n)β = 0. (2.2)

However, (2.2) is a very restrictive condition, imposing (hn)n≥1 and (hn)n≥1 to

have rates of convergence to zero that are very close one to each other. In §3,

we shall try to point out the main difficulty that imposes us to weaken (1.7)

to (2.1). Showing that (1.7) is true or false without imposing (2.2) remains an

open problem.

The second step of our investigation is to determine the validity of (1.8). This

assertion turns out to be false as soon as hn/hn → 0, which is a consequence

of our next result. We first need to introduce some further notations. Given an

integer k ≥ 2, we endow the space (B[0, 1])k with the product sup-norm, namely

|| g1, . . . , gk ||k:= max{|| g1 ||, . . . , || gk ||}, and we define

Sk :=
{

(g1, . . . , gk) ∈ (AC[0, 1])k,
k∑

j=1

|| gj ||2H≤ 1
}

. (2.3)

Now consider sequences 0 < hn,1 < . . . < hn,k < 1 satisfying, ultimately as

n →∞,

hn,l/hn,l+1 ↓ 0, l = 1, . . . , k − 1, (2.4)

hn,k ↓ 0, nhn,1 ↑ ∞. (2.5)

Our second main result is the following functional limit law, which is proved in

§4.

Theorem 2. Under assumptions (2.4) and (2.5) we have almost surely( Dn,hn,1,t

(2hn,1 log2 n)1/2
, . . . ,

Dn,hn,k,t

(2hn,k log2 n)1/2

)
 Sk. (2.6)

Here  refers to the Banach space
(
B([0, 1])k, || · ||k

)
.

Note that Sk is the unit ball of the reproducing kernel Hilbert space of

(W1, . . . ,Wk), where W1, . . . ,Wk are independent Wiener processes on [0, 1].
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Theorem 2 describes an asymptotic independence phenomenon which has been

earlier investigated by Deheuvels (2000) and Deheuvels et al. (1999). The proof

of Theorem 2 is provided in §4. Now, to see that (1.8) is false, choose g as the

identity function so as (g, g) /∈ S2, which entails that inf{|| g − g1, g − g2 ||2

, (g1, g2) ∈ S2} > ε0 for some ε0 > 0. By Theorem 2 we have, almost surely,

lim inf
n→∞

sup
hn≤h≤hn

∣∣∣∣∣∣ Dn,h,t

(2h log2 n)1/2
− g
∣∣∣∣∣∣

≥ lim inf
n→∞

∣∣∣∣∣∣ Dn,hn,t

(2hn log2 n)1/2
− g,

Dn,hn,t

(2hn log2 n)1/2
− g
∣∣∣∣∣∣

2

≥ε0,

which invalidates (1.8).

A local Bahadur-Kiefer representation

A consequence of Theorem 1 is the following local Bahadur-Kiefer represen-

tation, which is very largely inspired from Einmahl and Mason (1988, Theo-

rem 5). For 0 < h < 1 and n ≥ 1 we set an(h) := (h log2 n/n)1/2, bn(h) :=

log(nh), dn(h) := 2 log2 n + bn(h), rn(h) := (an(h)dn(h))1/2 and

Rn(h) :=
∣∣∣∣∣∣Dn,h,0 +D′n,h,0

∣∣∣∣∣∣.
Theorem 3. Under the conditions of Theorem 1, with t = 0, we have, almost

surely

lim sup
n→∞

sup
hn≤h≤hn

rn(h)−1Rn(h) ≤ 21/2. (2.7)

The proof of Theorem 3 is provided in §5.

Remark: In view of Theorem 5 of Einmahl and Mason (1988), Theorem 3

seems to be non optimal since a factor 21/4 can be drop when hn = hn. This is

a consequence of the fact that we were only able to prove (2.1) instead of (1.7).

3. Proof of Theorem 1

Our proof is divided into two subsections. In §3.1, we establish a large devia-

tion result which holds uniformly in hn ≤ h ≤ hn. Then we make use of that
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(uniform) large deviation principle to prove Theorem 1 in §3.2.

3.1. A uniform large deviation principle

3.1.1. Definitions

Large deviation results are commonly used when proving functional laws of

the iterated logarithm such as (1.6). As a uniformity in hn ≤ h ≤ hn ap-

pears in Theorem 1, we shall make use of a large deviation principle that

holds uniformly in h. This tool was first used by Mason (2004). From now

on, (εn,i)n≥1, i≤pn
will denote a triangular array of strictly positive numbers

satisfying max1≤i≤pn εn,i → 0 as n → ∞. We call a rate function in a metric

space (E, d) any positive real function J on E such that, for each a ≥ 0, the set

{g ∈ E, J(g) ≤ a} is a compact set of (E, d).

Definition 3.1. Let (E, d) be a metric space and let T0 be a σ-algebra included

in the Borel σ-algebra of (E, d). Let (Xn,i)n≥1, i≤pn be a triangular array of

random variables that are measurable for (E, T0). We say that (Xn,i)n≥1, i≤pn

satisfies the uniform large deviation principle (ULDP) for (εn,i)n≥1, i≤pn
, a rate

function J and T0 whenever

1. For each closed set F ∈ T0 we have

lim sup
n→∞

max
i≤pn

εn,i log
(
P
(
Xn,i ∈ F

))
≤ −J(F ), (3.1)

2. For each open set O ∈ T0 we have

lim inf
n→∞

min
i≤pn

εn,i log
(
P
(
Xn,i ∈ O

))
≥ −J(O). (3.2)

Remark: In this definition, we introduce a sub σ-algebra T0 because we will

consider repeatedly (E, d) as the metric space (B([0, 1], || · ||). As the Dn,h,t

are not Borel measurable in that space, we shall consider T0 as the σ-algebra

spawned by the open balls of (B([0, 1], || · ||). We will sometimes take (E, d)
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as a finite dimensional vector space, in which case T0 will denote the Borel σ-

algebra. Another way to avoid measurability problems is to consider inner and

outer probabilities (see, e.g.,Van der Vaart and Wellner (1996), Chapter 1).

The next result is a consequence of the work of Arcones (2003).

Proposition 3.1. Let (Xn,i)n≥1, i≤pn
be a triangular array of random variables

taking values in B([0, 1]) and measurable for T0. Let (εn,i)n≥1, i≤pn be a triangu-

lar array of strictly positive real numbers. Assume that the following conditions

hold:

1. For each p ≥ 1 and (s1, . . . , sp) ∈ (0, 1)p satisfying si 6= sj for each i 6= j,

the triangular array
(
Xn,i(s1), . . . , Xn,i(sp)

)
n≥1, i≤pn

satisfies the ULDP

in Rp for (εn,i)n≥1, i≤pn
and a rate function Is1,...,sp

.

2. For any τ > 0 we have

lim
δ↓0

lim sup
n→∞

max
i≤pn

log
(
P
(

sup
|s−s′|<δ

| Xn,i(s′)−Xn,i(s) |> τ
))

= −∞.

Then (Xn,i)n≥1, i≤pn
satisfies the ULDP in (B([0, 1], || · ||) for (εn,i)n≥1, i≤pn

,

T0 and the following rate function:

I(g) := sup
p≥1, (s1,...,sp)∈(0,1)p

Is1,...,sp

(
g(s1), . . . , g(sp)

)
, g ∈ B([0, 1]).

Now consider the following rate function on B([0, 1]) that is known to rule

the large deviation properties of a Wiener process:

J(g) :=

 || g ||2H , when g ∈ AC[0, 1];

∞, when g /∈ AC[0, 1].
(3.3)

Notice that S = {g ∈ B([0, 1]), g(0) = 0, J(g) ≤ 1}. The main tool that will

be used to achieve our proof of Theorem 1 is the following ULDP.

Proposition 3.2. Let (hn)n≥1 and (hn)n≥1 be two sequences satisfying con-

ditions of Theorem 1 and let (hn,i)n≥1, i≤pn be a triangular array satisfying

hn ≤ hn,i ≤ hn for each n ≥ 1, i ≤ pn. Then the triangular array(
(2hn,i log2 n)−1/2Dn,hn,i,t

)
n≥1, i≤pn
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satisfies the ULDP in (B([0, 1]), || · ||) for T0, the rate function J given in (3.3)

and the (constant in i ≤ pn) triangular array (1/ log2 n)n≥1, i≤pn
.

Proof of Proposition 3.2: We shall make use of Proposition 3.1, and we

hence have to show that conditions 1 and 2 of this proposition are satisfied. This

verification will be a consequence of two separate lemmas. The next proposi-

tion, which shall be useful to prove our first lemma, follows directly from the

arguments of Ellis (1984). Here < ·, · > denotes the usual scalar product on Rp.

Proposition 3.3. Let (Xn,i)n≥1, i≤pn
be a triangular array of random vectors

taking values in Rp, and let (εn,i)n≥1, i≤pn be a triangular array of strictly posi-

tive real numbers. Assume that there exists a positive real function ` (which may

take infinite values) on Rp such that the following conditions are satisfied.

1. ` is convex and lower semi continuous on Rp.

2. The definition set D(`) := {λ ∈ Rp, `(λ) < ∞} has an interior that

contains the null vector.

3. ` is differentiable on the interior of D(`) and, for each sequence (λn)n≥1

converging to a boundary point of D(`) we have || ∇`(λn) ||Rp→∞. Here

|| · ||Rp denotes the usual Euclidian norm.

4. For each λ ∈ D(`), we have

lim
n→∞

max
i≤pn

∣∣∣εn,i log
(
E
(

exp
(
ε−1
n,i < λ,Xn,i >

)))
− `(λ)

∣∣∣ = 0.

5. For each λ /∈ D(`), we have

lim
n→∞

min
i≤pn

εn,i log
(
E
(

exp
(
ε−1
n,i < λ,Xn,i >

)))
= ∞.

Then (Xn,i)n≥1, i≤pn
satisfies the ULDP in Rp for (εn,i)n≥1, i≤pn

with the fol-

lowing rate function:

J̃(s) := sup
λ∈Rp

< λ, s > −`(λ), s ∈ Rp.

We now state our first lemma.
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Lemma 3.1. Let p ≥ 1 and (s1, . . . , sp) ∈ [0, 1]p be arbitrary, with s1 < s2 <

. . . < sp. Under the assumptions of Proposition 3.2, the triangular array of

Rp-valued random vectors(
(2hn,i log2 n)−1/2

(
Dn,hn,i,t(s1), . . . ,Dn,hn,i,t(sp)

))
n≥1, i≤pn

satisfies the ULDP for (εn,i)n≥1, i≤pn with the following rate function (with s0 :=

0).

Js1,...,sp
(x1, . . . , xp) :=

p∑
i=0

(si+1 − si)
(xi+1 − xi

si+1 − si

)2

, (x1, . . . , xp) ∈ Rp.

Proof of Lemma 3.1.

We shall make use of Proposition 3.3. Fix λ = (λ1, . . . , λp) ∈ Rp and and

write the Dn,hn,i,t as sums of i.i.d. random variables, namely

(2hn,i log2 n)−1/2

p∑
j=1

λjDn,hn,i,t(sj) = (2nhn,i log2 n)−1/2
n∑

k=1

Zk
n,hn,i,t, (3.4)

where

Zk
n,hn,i,t :=

p∑
j=1

λj

(
1[t,t+hn,isj ](Uk)− hn,isj

)
, k = 1, . . . , n.

These n random variables are i.i.d with mean 0 and variance-covariance matrix

given by hn,iλ
′Σn,iλ, with Σn,i(l, l′) := min(sl, sl′) − hn,islsl′ . Now define the

matrix Σ(l, l′) := min(sl, sl′). Clearly, as hn,i ≤ hn → 0 we have Σn,i → Σ

uniformly in i as n → ∞. By standard computations we have, for each n ≥ 1

and i ≤ pn:

(log2 n)−1 log

(
E
(

exp
(

log2 n(2hn,i log2 n)−1/2

p∑
j=1

λjDn,hn,i,t(sj)
)))

=
n

log2 n
log
(
E exp

(
rn,iZ

1
n,hn,i,t

))
, (3.5)

where rn,i := (log2 n/2nhn,i)1/2. Recall that maxi≤pn
rn,i → 0 as n →∞, since

hn satisfies (1.3), and notice that the Zk
n,hn,i,t

are centered and almost surely

bounded by p maxj=1,...,p | λj |. This ensures that the following Taylor expansion
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is valid, for each n ≥ 1, i ≤ pn (here ε denotes a real function satisfying ε(u) → 0

as u → 0):

E
(

exp
(
rn,iW

1
n,hn,i,t

))
= 1 +

r2
n,ihn,i

2
λ′Σn,iλ(1 + ε(rn,i)). (3.6)

Combining (3.5) and (3.6), we get

lim
n→∞

max
i≤pn

∣∣∣∣∣
log
(

E
(

exp
(

log2 n

(2hn,i log2 n)1/2

p∑
j=1

λjDn,hn,i,t(sj)
)))

log2 n
− 1

4
λ′Σλ

∣∣∣∣∣ = 0.

As the function `(λ) := λ′(Σ/4)λ obviously satisfies conditions of Proposition

3.3, the proof of Lemma 3.1 is concluded by noticing that

sup
t∈Rp

< t, x > −`(t) = x′Σ−1x =
p∑

i=0

(si+1 − si)
(xi+1 − xi

si+1 − si

)2

.�

Our next lemma shows that condition 2 of Proposition 3.1 is fulfilled.

Lemma 3.2. Under the assumptions of Proposition 3.2, we have, for each τ > 0

lim
δ↓0

lim sup
n→∞

max
i≤pn

log
(
P
(

sup
|s−s′|<δ

∣∣∣Dn,hn,i,t(s)−Dn,hn,i,t(s
′)

(2hn,i log2 n)1/2

∣∣∣ ≥ τ
))

= −∞.

Proof of Lemma 3.2.

Fix τ > 0 and introduce a parameter δ > 0 that will be chosen small enough

in the sequel. The proof of this lemma relies on an exponential inequality for the

oscillations of the local empirical process, which is due to Einmahl and Mason

(1988) (see their Inequality 1). For positive numbers a, b with a + b ≤ 1, write

ωn(a, b) := sup
0≤s≤b,

0≤s′≤a

| αn(s + s′)− αn(s) | . (3.7)

Fact 1 (Einmahl, Mason, 1988). Fix 0 < ε ≤ 1/2. There exists K(ε) < ∞

such that, for any n ≥ 1, λ > 0, a > 0, b > 0 fulfilling a+b ≤ 1 and 0 < a < 1/4,

P
(
ωn(a, b) ≥ λ

)
≤ K(ε)ba−1 exp

(
− (1− ε)λ2

2a
Ψ
( λ√

na

))
. (3.8)
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Here we write Ψ(u) := 2u−2((1 + u) log(1 + u)− u).

Applying (3.8) to b = hn,i, a = δhn,i, ε = 1/2 and λ = τ(2hn,i log2 n)1/2 we

get, for all large n and i ≤ pn (so that hn,i ≤ hn ≤ 1/4)

P
(

sup
|s−s′|<δ

∣∣∣Dn,hn,i,t(s)−Dn,hn,i,t(s
′)

(2hn,i log2 n)1/2

∣∣∣ ≥ τ
)
≤

K( 1
2 )

δ
exp

(
− τ2 log2 n

2δ
Ψ
(τ
√

2 log2 n

δ
√

nhn,i

))
≤

K( 1
2 )

δ
exp

(
− τ2 log2 n

4δ

)
. (3.9)

The last inequality holds for all large n and i ≤ pn since Ψ(u) → 1 as u → 0,

and since

lim
n→∞

max
i≤pn

log2 n

nhn,i
= 0. (3.10)

Now taking the logarithm in (3.9) concludes the proof of Lemma 3.2, then

lemmas 3.1 and 3.2 in combination with Proposition 3.3 conclude the proof of

Proposition 3.2. �

3.2. Proof of Theorem 1

We shall invoke usual blocking arguments along the following subsequence:

nk :=
[
exp

(
k exp

(
− (log k)1/2

))]
, k ≥ 5. (3.11)

Clearly, nk satisfies, as k →∞,

nk

nk+1
→ 1, log2(nk) = log k(1 + o(1)). (3.12)

Now define the blocks Nk := {nk−1, . . . , nk − 1} for k ≥ 6. Fix ε > 0 and

consider a parameter ρ > 1 that will be chosen small enough in the sequel. For

any k ≥ 5, consider the following discretisation of [hnk
, hnk−1 ]

hnk,Rk
:= hnk−1 , hnk,l :=ρlhnk

, l = 0, . . . , Rk − 1, (3.13)

where Rk := [(log(hnk−1/hnk
))/ log(ρ)] + 1, and [u] denotes the only integer q

fulfilling q ≤ u < q + 1. Clearly, as k →∞, we have

Rk = O(log nk). (3.14)
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Our aim is to show that the following probabilities are summable in k so as the

Borel-Cantelli lemma would complete the proof of Theorem 1.

Pk := P
(

max
n∈Nk

sup
hn≤h≤hn

inf
g∈
√

2S

∣∣∣∣∣∣ Dn,h,t

(2h log2 n)1/2
− g
∣∣∣∣∣∣ ≥ 3ε

)
. (3.15)

Clearly we have

Pk ≤ P
(

max
0≤l≤Rk

inf
g∈
√

2S

∣∣∣∣∣∣ Dnk,hnk,l,t

(2hnk,l log2 nk)1/2
− g
∣∣∣∣∣∣ ≥ ε

)
+ P

(
max
n∈Nk

max
0≤l≤Rk−1

sup
hnk,l≤h≤ρhnk,l

∣∣∣∣∣∣ Dn,h,t

(2h log2 n)1/2
−

Dnk,hnk,l,t

(2hnk,l log2 nk)1/2

∣∣∣∣∣∣ > 2ε

)
=: P1,k + P2,k.

To show that P1,k is summable, we shall make use of Proposition 3.2. Consider

the following subset of B([0, 1]):

F :=
{

f ∈ B([0, 1]), inf
g∈
√

2S
|| f − g ||≥ ε

}
.

Since the rate function J given in (3.3) is lower semi continuous on (B([0, 1], ||

· ||), there exists α1 > 0 satisfying J(F ) = 2 + 2α1. Hence, for all large k we

have

P1,k ≤ (Rk + 1) exp
(
− (2 + α1) log2 nk

)
. (3.16)

Recalling (3.12) and (3.14), we conclude that P1,k is summable in k. It remains

to show the summability of (P2,k)k≥1. First notice that

P2,k ≤ P
(

max
l≤Rk−1

max
n∈Nk

sup
hnk,l≤h≤ρhnk,l

∣∣∣∣∣∣√nDn,h,t −
√

nDn,hnk,l,t

(2nkhnk,l log2 nk)1/2

∣∣∣∣∣∣ > ε

)
+ P

(
max

l≤Rk−1
max
n∈Nk

sup
hnk,l≤h≤ρhnk,l

B(n, h)
∣∣∣∣∣∣ √

nDn,h,t

(2nkρhnk,l log2 nk)1/2

∣∣∣∣∣∣ > ε

)
=: P3,k + P4,k, (3.17)

where

B(n, h) :=
∣∣∣√nkρhnk,l log2 nk

nh log2 n
− 1
∣∣∣, n ∈ Nk, l ≤ Rk − 1, hnk,l ≤ h ≤ ρhnk,l.

(3.18)
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We shall require a maximal inequality due to Montgomery-Smith (1993) (see

also Latala (1993)).

Fact 2 (Montgomery-Smith, Latala, 1993). There exists a constant c > 0

such that, given a Banach space (E, || · ||) and a finite sequence (Xi)1≤i≤n of

i.i.d. random variables taking values in (E, d) we have, for each λ > 0:

P
(

max
1≤i≤n

∣∣∣∣∣∣ i∑
j=1

Xj

∣∣∣∣∣∣ ≥ λ

)
≤ cP

(∣∣∣∣∣∣ n∑
i=1

Xi

∣∣∣∣∣∣ ≥ λ

c

)
. (3.19)

Applying inequality (3.19), we get

P3,k ≤
Rk−1∑
l=0

P
(

max
n∈Nk

sup
hnk,l≤h≤ρhnk,l

∣∣∣∣∣∣√nDn,h,t −
√

nDn,hnk,l,t

(2nkhnk,l log2 nk)1/2

∣∣∣∣∣∣ > ε

)

≤c

Rk−1∑
l=0

P
(

sup
hnk,l≤h≤ρhnk,l

∣∣∣∣∣∣√nkDnk,h,t −
√

nkDnk,hnk,l,t

(2nkhnk,l log2 nk)1/2

∣∣∣∣∣∣ > ε/c

)
. (3.20)

As hnk,l ≤ hnk−1 → 0, each term of (3.20) can be bounded by inequality

(3.8), provided that hnk−1 < 1/4. In inequality (3.8), we repeatedly choose

b = hnk,l, a = hnk,l(ρ − 1), ε = 1/2, λ = (2hnk,l log2 nk)1/2ε/c. Hence, for all

large k we have

P3,k ≤c

Rk−1∑
l=0

K( 1
2 )

ρ− 1
exp

(
− ε2 log2 nk

2c2(ρ− 1)2
Ψ
( ε

√
log2 nk

c(ρ− 1)
√

nkhnk,l

))

≤c

Rk−1∑
l=0

K( 1
2 )

ρ− 1
exp

(
− ε2 log2 nk

4c2(ρ− 1)2

)
(3.21)

≤
cK( 1

2 )
ρ− 1

Rkk−ε/2c(ρ−1)2 . (3.22)

Inequality (3.21) is true for all large k since Ψ(u) → 1 as u → 0, and since

lim
k→∞

max
l≤Rk−1

log2 nk

nkhnk,l
= 0. (3.23)

Inequality (3.22) takes in account the fact that log2 nk = log k(1 + o(1)) as

k → ∞. Hence for any choice of 1 < ρ < 1 +
√

ε/2c the general term (3.22) is

summable in k and so are the P3,k (recall (3.14)). Showing that
∑

P4,k < ∞ will
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be done in a similar way. First notice that, as nk/nk−1 → 1 and 1 ≤ ρhnk,l/h ≤ ρ

we have

lim
k→∞

max
0≤l≤Rk−1

max
n∈Nk

B(h, n) = ρ1/2 − 1 ≤ 2(ρ− 1). (3.24)

Hence, for all large k we have

P4,k ≤ P
(

max
0≤l≤Rk−1

max
n∈Nk

∣∣∣∣∣∣ √
nDn,ρhnk,l,t

(2nkρhnk,l log2 nk)1/2

∣∣∣∣∣∣ > ε

2(ρ− 1)

)
≤ c

Rk−1∑
l=0

P
(∣∣∣∣∣∣ Dnk,ρhnk,l,t

(2ρhnk,l log2 nk)1/2

∣∣∣∣∣∣ > ε

2c(ρ− 1)

)

≤ 2c

Rk−1∑
l=0

exp
(
− ε2(1− ρhnk,l) log2 nk

8c2(ρ− 1)2
Ψ
(ε(1− ρhnk,l)

√
2 log2 nk

2c
√

nkρhnk,l

))
(3.25)

≤ 2cRk exp
(
− ε2(1− ρhnk,l) log2 nk

16c2(ρ− 1)2

)
. (3.26)

Here, (3.25) is a consequence of Inequality 2 in Shorack and Wellner (1986, p.

444), with p = ρhnk,l, λ = ε(1− ρhnk,l)(2ρhnk,l log2 nk)1/2/4c(ρ− 1). Recalling

(3.23), we see that (3.26) holds for all large k, as Ψ(u) → 1 when u → 0.

Now choosing ρ > 1 small enough leads to he summability of (P4,k)k≥1, which

concludes the proof of Theorem 1.�

Remark: If we had replaced the limit set
√

2S by S in Theorem 1, then (3.16)

would become

P1,k ≤ (Rk + 1) exp
(
− (1 + α1) log2 nk

)
.

Hence, we would be able to conclude that P1,k is summable if the cardinality

Rk + 1 of the grids were smaller than (log nk)β for any β > 0. When construct-

ing the hnk,l as in (3.13), the just mentioned condition is violated as soon as

hn and hn have ”really” different rates of convergence to zero (typically when

hn = h−β1 < n−β2 with 0 < β2 < β1 < 1). It seems however impossible to

reduce the cardinality Rk + 1 of our grids, since the oscillations between two

consecutive hnk,l become hardly controllable and hence the corresponding prob-

abilities P2,k might not be summable. One could expect some improvements of
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this proof, since the RHS of (3.16) is crudely obtained, but this turns out to

be non trivial, as Proposition 3.2 would have to be improved to more accurate

large deviation rates for the Dnk,hnk,l,t, 0 ≤ l ≤ Rk. Another possibility would

be to ”poissonize” the Dn,h,t and then make use of strong approximation of a

centred Poisson process by a Wiener process W (see Komlòs et al., 1977), which

would reduce the problem to studying the summability of

PW
1,k := P

(
∃ρ ∈ (

hnk

hnk−1

, 1), ρ−1/2W (ρ·) /∈ (2 log2 nk)1/2(S + εB0)
)
, (3.27)

and then try to make use of the isoperimetric properties of a Gaussian measures

(here B0 denotes the unit ball of B([0, 1])). This however fails to work by making

brute use of the isoperimetric inequality, as long as hnk
/hnk−1 is not negligible

with respect to log2 nk as k →∞. We hope however, that (3.27) may be better

controlled and we thus leave an open question to specialists in Gaussian mea-

sures.

4. Proof of Theorem 2

To avoid lengthy notations, we shall prove Theorem 2 only with k = 2 with no

loss of generality. The key of our proof of Theorem 2 is the following lemma.

Lemma 4.1. Under the assumptions of Theorem 2, for any p ≥ 1, 0 < s
(1)
1 <

. . . < s
(1)
p < 1 and 0 < s

(2)
1 < . . . < s

(2)
p < 1, the sequence of R2p-valued random

vectors

Xn :=
( Dn,hn,1,t(s

(1)
1 )

(2hn,1 log2 n)1/2
, . . . ,

Dn,hn,1,t(s
(1)
p )

(2hn,1 log2 n)1/2
,
Dn,hn,2,t(s

(2)
1 )

(2hn,2 log2 n)1/2
, . . . ,

Dn,hn,2,t(s
(2)
p )

(2hn,2 log2 n)1/2

)
satisfies the large deviation principle for the sequence (log2 n)−1 and the follow-

ing rate function (writing s
(1)
0 = s

(2)
0 = 0).

J
s
(1)
1 ,...,s

(1)
p ,s

(2)
1 ,...,s

(2)
p

(x) :=
p∑

i=1

(s(1)
i+1 − s

(1)
i )
(x

(1)
i+1 − x

(1)
i

s
(1)
i+1 − s

(1)
i

)2

+ (s(2)
i+1 − s

(2)
i )
(x

(2)
i+1 − x

(2)
i

s
(2)
i+1 − s

(2)
i

)2

,

x = x
(1)
1 , . . . , x(1)

p , x
(2)
1 , . . . , x(2)

p ∈ (0, 1)2p. (4.1)
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Proof of Lemma 4.1.

The proof follows the same lines as the proof of Lemma 3.1. Choose λ :=

(λ(1)
1 , . . . , λ

(1)
p , λ

(2)
1 , . . . , λ

(2)
p ) ∈ R2p arbitrarily and set (recall that U1 is uniform

on [0, 1]).

Xn,1 :=
p∑

j=1

λ
(1)
j

(
1
[t,t+hn,1s

(1)
j

]
(U1)− hn,1s

(1)
j

)
,

Xn,2 :=
p∑

j=1

λ
(2)
j

(
1
[t,t+hn,2s

(2)
j

]
(U1)− hn,2s

(2)
j

)
.

By independence we have

(log2 n)−1 log
(
E
(

exp
(
log2 n < λ,Xn >

)))
=

n

log2 n
log
(
E
(

exp
(
rn,1Xn,1 + rn,2Xn,2

)))
,

with rn,1 :=
√

log2 n/2nhn,1 and rn,2 :=
√

log2 n/2nhn,2. As Xn,1 (resp Xn,2)

is centered and almost surely bounded by 2p maxj=1,...,2p | λj |, the follow-

ing Taylor expansion is valid by the dominated convergence theorem (here

lim
|a|,|b|→0

ε(a, b) = 0):

log
(
E
(

exp
(
rn,1Xn,1 + rn,2Xn,2

)))
=

1
2

(
r2
n,1Var(Xn,1) + r2

n,2Var(Xn,2) + 2rn,1rn,2Cov(Xn,1, Xn,2)
)
(1 + ε(rn,1, rn,2)).

Now, writing λ1 := (λ(1)
1 , . . . , λ

(1)
p ) and λ2 := (λ(2)

1 , . . . , λ
(2)
p ) we can write

Var(Xn,1) = λ′1Σ
(1)
n λ1 and Var(Xn,2) = λ′2Σ

(2)
n λ2, where

Σ(1)
n (i, j) :=hn,1 min(s(1)

i , s
(1)
j )− h2

n,1s
(1)
i s

(1)
j , and

Σ(2)
n (i, j) :=hn,2 min(s(2)

i , s
(2)
j )− h2

n,2s
(2)
i s

(2)
j .

Hence, setting

Σ(1)(i, j) := min(s(1)
i , s

(1)
j ) and Σ(2)(i, j) := min(s(2)

i , s
(2)
j ),

we obtain(
r2
n,1Var(Xn,1)+r2

n,2Var(Xn,2)
)

=
log2 n

2n

(
λ′1Σ

(1)λ1+λ′2Σ
(2)λ2

)
(1+o(1)). (4.2)
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In a similar way, we can write Cov(Xn,1, Xn,2) = λ′1Σnλ2, where Σn(i, j) :=

min(hn,1s
(1)
i , hn,2s

(2)
j ) − hn,1hn,2s

(1)
i s

(2)
j . Now recalling that hn,1/hn,2 → 0 we

have Σn(i, j) = hn,1s
(1)
i (1− s

(2)
j hn,2) for all large n, whence

∣∣∣rn,1rn,2Cov(Xn,1, Xn,2)
∣∣∣ = log2 n

n

√
hn,1

hn,2
(1 + o(1)) = o

( log2 n

n

)
. (4.3)

Combining (4.2) and (4.3) we get

lim
n→∞

(log2 n)−1 log
(
E
(

exp
(
log2 n < λ,Xn >

)))
=

1
4
(λ′1Σ

(1)λ1 + λ′2Σ
(2)λ2).

Then applying Proposition 3.3 leads to the claimed result.�

We shall now show that Lemma 4.1 is sufficient to infer a large deviation princi-

ple for the couples of processes (2hn,1 log2 n)−1/2Dn,hn,1,t and (2hn,2 log2 n)−1/2Dn,hn,2,t.

Consider the following processes on [0, 2] that are obtained by concatenation of

(2hn,1 log2 n)−1/2Dn,hn,1,t with (2hn,2 log2 n)−1/2Dn,hn,2,t:

D̃n(s) :=


Dn,hn,1,t(s)

(2hn,1 log2 n)1/2 , when 0 ≤ s ≤ 1;
Dn,hn,2,t(s−1)

(2hn,2 log2 n)1/2 , when 1 < s ≤ 2.

Combining Lemma 4.1 with Lemma 3.2 we conclude that conditions of Propo-

sition 3.1 are fulfilled, and thus D̃n satisfies the large deviation principle for

εn := (log2 n)−1 and for the following rate function:

J(g)

:= sup
{ p∑

j=0

(s(1)
j+1 − s

(1)
j )
(g(s(1)

j+1)− g(s(1)
j )

s
(1)
j+1 − s

(1)
j

)2

+ (s(2)
j+1 − s

(2)
j )
(g(1 + s

(2)
j+1)− g(1 + s

(2)
j )

s
(2)
j+1 − s

(2)
j

)2

,

p ≥ 1, 0 < s
(1)
1 < . . . < s(1)

p < 1 < 1 + s
(2)
1 < . . . < 1 + s(2)

p < 2
}

= || g(1) ||2H + || g(2) ||(2)H ,

where g(1)(s) := g(s), g(2)(s) := g(1 + s), s ∈ [0, 1]. The remainder of the proof

of Theorem 2 is a routine use of usual techniques in local empirical processes

theory (refer, e.g., to Deheuvels and Mason (1990)). We omit details for sake of

briefness. �
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5. Proof of Theorem 3

We shall proceed in three steps. Recall that an(h) := (h log2 n/n)1/2, bn(h) :=

log(nh), dn(h) := 2 log2 n + bn(h), rn(h) := (an(h)dn(h))1/2 and Rn(h) :=∣∣∣∣∣∣Dn,h,0 +D′n,h,0

∣∣∣∣∣∣.
Lemma 5.1. Under the assumptions of Theorem 1, we have almost surely

lim sup
n→∞

sup
hn≤h≤hn

|| F←n (h·) ||
h

= 1. (5.1)

Proof of Lemma 5.1.

First notice that, almost surely, for each ρ > 1, h > 0, n ≥ 1,

F←n (h) ≤ ρh
Dn,ρh,0

(2h log2 n)1/2
+ (ρ− 1)

( nh

2 log2 n

)1/2

≥ 0.

Now, for fixed ρ > 1 we have (ρ − 1) inf{nh/ log2 n, hn ≤ h ≤ hn} → ∞.

Moreover, by a straightforward use of Theorem 1 and (1.6),

lim inf
n→∞

inf
hn≤h≤hn

Dn,ρh,0

(2h log2 n)1/2
≥ −(2ρ)1/2 almost surely. (5.2)

This shows that (5.1) holds with ≤ instead of =, while the converse inequality

trivially holds by Kiefer (1972), Theorem 6.�

Lemma 5.2. Under the assumptions of Theorem 1 we have almost surely

lim sup
n→∞

sup
hn≤h≤hn

|| D′n,h,0 ||
(2h log2 n)1/2

≤ 21/2.

Proof of Lemma 5.2.

From Inequality (2.23) in Einmahl and Mason (1988) we have, for each n ≥ 1

and h > 0,

|| D′n,h,0 ||
(2h log2 n)1/2

≤
|| Dn,F←n (h),0 ||
(2h log2 n)1/2

+
1

(2nh log2 n)1/2
.
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The second term can be drop since nhn → ∞. Fix ρ > 0. By Lemma 5.1 we

have almost surely, for all large n and for all hn ≤ h ≤ hn,

|| Dn,F←n (h),0 ||
(2h log2 n)1/2

≤ ρ1/2 || Dn,ρh,0 ||
(2ρh log2 n)1/2

,

from where we readily obtain, by Theorem 1,

lim sup
n→∞

sup
hn≤h≤hn

n−1/2 || D′n,h,0 ||
(2h log2 n)1/2

≤ (2ρ)1/2 almost surely.

As ρ > 1 was arbitrary, Lemma 5.2 is proved. �

The expression ωn appearing in the next lemma has been defined in (3.7).

Lemma 5.3. Under the assumptions of Theorem 1, and given η > 0, we have

almost surely

lim sup
n→∞

sup
hn≤h≤hn

ωn(ηan(h), h)
rn(h)

≤ η1/2. (5.3)

Proof of Lemma 5.3.

This proof is largely inspired from the proof of Lemma 6 in Einmahl and

Mason (1988). Fix ε > 0 and consider the sequence (nk) the sets Nk and the

grids hnk,l, 0 ≤ l ≤ Rk as in §3.2. Also define, for each k ≥ 5 and l ≤ Rk,

ak,l :=η(ρhnk,l log2 nk/nk−1)1/2 and

rk,l :=(ak,l(2 log2 nk + log(nkhnk,l)))1/2.

As ak,l ≥ an(h) for each n ∈ Nk and h ∈ [hnk,l, ρhnk,l], we have

P
( ⋃

n∈Nk

⋃
hn≤h≤hn

ωn(ηan(h), h)
rn(h)

≥ η1/2(1 + 3ε)
)

≤ P
(Rk−1⋃

l=0

⋃
n∈Nk

⋃
hnk,l≤h≤ρhnk,l

ωn(ak,l, ρhnk,l)
rn(h)

> η1/2(1 + 3ε)
)

≤P
(Rk−1⋃

l=0

⋃
n∈Nk

ωn(ak,l, ρhnk,l)
rk,l

> η1/2(1 + 2ε)
)

(5.4)

=:Pk, (5.5)
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where (5.4) holds for any choice of ρ > 1 small enough, ultimately as k → ∞,

which is a consequence of the easily checked fact that

lim
ρ→1

lim
k→∞

max
n∈Nk

max
l≤Rk−1

sup
h∈[hnk,l,ρhnk,l]

∣∣∣rn(h)
rk,l

− 1
∣∣∣ = 0. (5.6)

By Bonferroni’s inequality we can write

Pk ≤
Rk−1∑
l=0

P
( ⋃

n∈Nk

ωn(ak,l, ρhnk,l)
rk,l

> η1/2(1 + 2ε)
)

=:
Rk−1∑
l=0

Pk,l. (5.7)

Some straightforward verifications show that the blocking arguments of Inequal-

ity 2 in Einmahl and Mason (1988) can be used simultaneously to each Pk,l, for

all large k and hence, by Fact 1,

Pk,l ≤2P
(
ωnk

(ak,l, ρhnk,l) ≥ η1/2rk,l(1 + ε)
)

≤2K
( ε

2
)ρhnk,l

ak,l
exp

(
−

(1− ε
2 )(1 + ε)2

2ak,l
ηr2

k,lΨ
(
∆k,l

))
,

where ∆k,l := (1 + ε)η1/2rk,ln
−1/2
k a−1

k,l converge to 0 uniformly in l ≤ Rk − 1

when k →∞. Since Ψ (given in Fact 1) satisfies Ψ(u) → 1 as u → 0 we obtain,

for all large k and for each l ≤ Rk − 1,

Pk,l ≤2K
( ε

2
)√nk−1ρhnk,l

η2 log2 nk
exp

(
−

(1− ε
2 )2(1 + ε)2

2
(
2 log2 nk + log(nkρhnk,l)

))

≤2K
( ε

2
)(η2

ρ

)ε/8

(nk−1hnk,l)−ε/8(log2 nk)−1/2(log nk−1)−1−ε/4,

for all large k and for each 0 ≤ l ≤ Rk − 1, which entails by (5.7)

P1,k ≤2K
( ε

2
)(η2

ρ

)ε/8

(log2 nk)−1/2(log nk−1)−1−ε/4n
−ε/8
k−1 h−ε/8

nk

Rk−1∑
l=0

ρ−lε/8

≤2K
( ε

2
)(η2

ρ

)ε/8 1
1− ρ−ε/8

(log2 nk)−1/2(log nk−1)−1−ε/8(nk−1hnk
)−ε/8,

from where Pk is summable in k. �

The proof of Theorem 3 is concluded as follows. First, it is well known that,
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almost surely,

|| αn + βn + (αn(F←n )− αn) ||= n−1/2, (5.8)

whence, almost surely, for all n ≥ 1 and h > 0,

Rn(h) ≤ sup
0<s<h

|| αn(s + n−1/2βn(s))− αn(s) || +n−1/2, (5.9)

from where

rn(h)−1Rn(h) ≤ rn(h)−1ωn(n−1/2 || Dn,h,0 ||, h)+(nh log2 n)−1/4(2 log2 n+log(nh))−1/2,

which concludes the proof by combining lemmas 5.2 and 5.3 (with the choice

of η = 2), as the second term of the RHS of 5.10 converges to 0 uniformly in

hn ≤ h ≤ hn as n →∞.�
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