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Abstract 

 

Daraio and Simar (2005a, b) developed a conditional frontier model which incorporates 

the environmental factors into measuring the efficiency of a production process. They 

also provided the corresponding nonparametric efficiency measures: conditional FDH 

estimator, conditional DEA estimator and conditional order-m  estimator. The aim of 

this paper is to provide an asymptotic analysis of the first two estimators. 

 

Keywords Frontier model, environmental variable, conditional frontier, 

conditional DEA, conditional FDH, asymptotic distribution 
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Introduction 

 

Performance of any production unit is quantified by the efficiency measures, which is 

of the primary interest in productivity analysis. The efficiency of a producer is usually 

defined by its distance to the frontier built by the best production scenario. The 

production scenario is composed by two factors, that is, input factors and output factors. 

For example, labor and capital are most typical input factors, and profit is an output 

counterpart. Recently environmental factors are considered at the same time for 

assessing the performance of a production unit properly. Environmental variables are 

exogenous factors which are neither inputs nor outputs of a production process, but 

affect the performance of the production process. For this, several approaches have been 

developed: see Banker and Morey (1986), Adolphson, Cornia and Walters (1991), Fried, 

Lovell and Vanden Eeckaut (1993), McCarty and Yaisawarng (1993), Bhattacharyya, 

Lovell and Sahay (1997), Fried, Schmidt and Yaisawarng (1999),  Daraio and Simar 

(2005a, b). Among them, Daraio and Simar (2005a, b), the most recent one, suggested a 

fully nonparametric approach for frontier models with environmental variables, which 

overcomes drawbacks of other approaches. They defined a conditional frontier model 

and a conditional efficiency measure, and then proposed the corresponding 

nonparametric estimators such as conditional FDH, conditional DEA and conditional 

order-m  estimators. This paper aims at providing the asymptotic distributions of the 

first two estimators. The aymptotics of the order-m  estimator was analyzed in Cazals, 

Florens and Simar (2002) and Park, Jeong and Lee (2006).  

 

This paper is organized as follows. In section 1 we provide a quick review on the 

frontier model and the nonparametric estimators such as FDH and DEA which are used 

for analyzing efficiency in productivity analysis. In section 2 we summarize a 

probabilistic formulation developed in Daraio and Simar (2005a, b), which is useful for 

introducing a conditional argument when defining the data generating process of the 

production process. In section 3, the basic idea and definition of conditional frontier and 

the corresponding nonparametric estimators are presented. Section 4 is devoted to an 

asymptotic analysis of the conditional estimators. Finally, section 5 concludes. 

 

1  Frontier Analysis 

 

1.1 The model 
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Suppose that activities of production units are characterized by pairs of inputs 
pRx +∈  and outputs qRy +∈ . The production set Ψ  is defined by the set of all those 

technically feasible pairs of ),( yx : 

}|),{( yproducecanxRRyx qp

++ ×∈=Ψ . 

It is very common in economics to assume Ψ  be free disposable, which means that it 

is always technically feasible to produce less output using more input. Precisely, a set 

Ψ is said to be free disposable if Ψ∈),( yx  implies Ψ∈)','( yx  for any )','( yx  such 

that xx ≥'  and yy ≤' . Throughout this paper, inequalities between vectors are to be 

understood as component-wise. Also, convexity is often assumed for the shape of the 

production set Ψ , i.e., it is assumed that if Ψ∈),( yx  and Ψ∈)','( yx  then 

Ψ∈−+−+ )')1(,')1(( yyxx αααα  for any ]1,0[∈α .  

 

When the output is scalar, we may define a frontier function )(⋅g  which forms the 

roof of the production set Ψ : 

}),(|sup{)( Ψ∈= yxyxg , pRx +∈ . 

Then the production set Ψ  is characterized by the frontier function in such a way that 

)}(|),{( 1 xgyRRyx p ≤×∈=Ψ ++ . 

Free disposability of Ψ implies that the frontier function )(xg  is monotone increasing 

in x , and convexity of Ψ  entails that g  is a concave function of x . 

 

Since the boundary of Ψ  defines the locus of optimal production scenario, one may 

assess the efficiency of a given level of input and output by measuring its distance to the 

boundary of Ψ . Particularly when outputs are scalar, one may measure the efficiency 

by referring the frontier function g  since the function g  defines the boundary of Ψ . 

For example, the efficiency of a production unit 1

00 ),( +
+⊂Ψ∈ pRyx  can be measured 

by 00 )( yxg −  or 00 /)( yxg . However, when outputs are multiple, we cannot think of 

such a way to measure the efficiency. In that case it is convenient to define the 

efficiency scores in a radial way: given a level of input and output Ψ∈),( 00 yx , 

(1) 0 0 0 0 0( , ) inf{ 0 | ( , ) }x y x yθ θ θ θ= = > ∈ Ψ  

(2) 0 0 0 0 0( , ) sup{ 1| ( , ) }x y x yλ λ λ λ= = > ∈ Ψ  

 

Since 0θ  is the proportionate reduction of inputs for a production unit ),( 00 yx  to be 

technically efficient, it is called the input efficiency score. It is always less than or equal 

to one, and 10 =θ  means that no proportionate reduction of inputs is available and 

),( 00 yx  is efficient in terms of input-orientation. In parallel 0λ  is the technically 
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feasible proportionate increase of outputs for ),( 00 yx  to be efficient, and it is referred 

to the output efficiency score. It is always greater than or equal to one, and 10 =λ  

indicates that ),( 00 yx  is efficient in terms of output-orientation. Note that 0θ  and 0λ  

are the reciprocals of Shephard's input and output distance functions, respectively, see 

Shephard (1970).  

 

By construction, both 00xθ  and 00yλ  are laid on the boundary of Ψ . Therefore 

00xθ  is the technically efficient input level for producing the output level 0y  among 

the input levels proportional to 0x . Similarly, 00yλ  is the efficient output level 

produced by using input level 0x  among the output levels proportional to 0y . 

 

1.2 Nonparametric estimation 

 

Unfortunately, the production set Ψ  is unknown in general. Hence we do not have 

any reference set for measuring efficiency in such a way as defined in the previous 

section. Instead, we observe a set of input and output levels performed by given 

production units: 

1 1 2 2{( , ),( , ), , ( , )}n n nS X Y X Y X Y= L  

which can be considered as a random sample drawn from a joint distribution (or 

density) of qpRYX +
+∈),(  supported on a set D . We assume D≡Ψ  for technical 

convenience. 

 

We are interested in estimating the frontier of the production set Ψ or efficiencies of 

a given production unit ),( 00 yx  based on nS . Let us assume for the data generating 

process a deterministic frontier model for the identifiability. It means that no noise is 

allowed while observing nS , which results in ( ) 1nP S ⊂ Ψ = . Under this assumption, 

one is allowed to consider an idea of enveloping nS  in order to estimate Ψ . Among 

the existing methods for doing this, the data envelopment analysis (DEA) and the free 

disposal hull (FDH) estimators are the most popular nonparametric estimators.  

 

Under the free disposability assumption on Ψ , Deprins, Simar and Tulkens (1984) 

proposed the FDH estimator defined as the minimal free disposable set which contains 

nS : 

 
1

ˆ {( , ) | , }
n

p q

FDH i i

i

x y R x X y Y
+

+
=

Ψ = ∈ ≥ ≤U . 

Assuming convexity on Ψ  as well as free disposability, the DEA estimator of Ψ  is 
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defined as the smallest set containing nS  that are convex and free disposable: 

1 1

1

ˆ {( , ) | , 0 , 1, 2, ,

1}.

n n
p q

DEA i i i i i

i i

n

i

i

x y R x X y Y for some i n

such that

ξ ξ ξ

ξ

+
+

= =

=

Ψ = ∈ ≥ ≤ ≥ =

=

∑ ∑

∑

L

 

Farrell (1957) is considered as the first empirical study of DEA approach, and Charnes, 

Cooper and Rhodes (1978) popularized it by adopting a linear programming technique. 

 

Using these estimates we can define corresponding efficiency scores of a production 

unit ),( 00 yx  as well, i.e. 

 0 0 0 0
ˆ ˆ( , ) min{ 0 | ( , ) }x y x yθ θ θ= > ∈ Ψ , 

 0 0 0 0
ˆ ˆ( , ) max{ 1| ( , ) }x y x yλ λ λ= > ∈ Ψ . 

When ˆ ˆ
FDHΨ = Ψ , the resulting estimates of efficiency scores are the FDH efficiency 

scores. If ˆ ˆ
DEAΨ = Ψ , then we get the DEA efficiency scores. Especially, it is easily seen 

that the FDH efficiency scores are re-expressed in an explicit form: 

  
0

( )

0 0 ( ): 1
0

ˆ ( , ) min max
i

k

i
FDH ki Y y k p

X
x y

x
θ

≥ ≤ ≤
= , 

0

( )

0 0 ( )1:
0

ˆ ( , ) max min
i

k

i
FDH kk qi X x

Y
x y

y
λ

≤ ≤≤
=  

where ( )ka  denotes the k -th component of a vector a . The DEA efficiency scores are 

expressed as 

0 0 0 0

1 1

1

ˆ ( , ) min{ 0 | , 0

1};

n n

DEA i i i i i

i i

n

i

i

x y x X y Y for some

such that

θ θ θ ξ ξ ξ

ξ

= =

=

= > ≥ ≤ ≥

=

∑ ∑

∑
 

0 0 0 0

1 1

1

ˆ ( , ) max{ 1| , 0

1}.

n n

DEA i i i i i

i i

n

i

i

x y x X y Y for some

such that

λ λ ξ λ ξ ξ

ξ

= =

=

= ≥ ≥ ≤ ≥

=

∑ ∑

∑
 

 

1.3 Statistical inference 
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Statistical inference on these efficiency scores is fully available. Park, Simar and 

Weiner (2000) showed that the FDH efficiency scores have the Weibull limit 

distribution. Kneip, Park and Simar (1996) proved the consistency of DEA efficiency 

scores in a quite general setup and obtained its rate of convergence. Gijbels et al. (1999) 

derived the explicit form of the limit distribution of the DEA estimator when the input 

and output variables are all scalar. Methods for approximating the sampling distribution 

of the DEA estimator in a general multidimensional setup were investigated by Kneip, 

Simar and Wilson (2003), Jeong (2004), Jeong and Park (2006). Jeong and Simar 

(2006) proposed a hybrid version of FDH and DEA, say LFDH, which is defined by 

interpolating the vertices of FDH. For a general review of statistical inference on 

nonparametric frontier models, see Simar and Wilson (2000), Park, Jeong and Lee 

(2006). 

 

2  Probabilistic formulation of frontier models 

 

In section 1.2, we pointed out that the production set Ψ  can be identified by the 

support of the density of ( , )X Y . Precisely, 

{( , ) | ( , ) 0}p q

XYx y R f x y+
+Ψ = ∈ >  

where XYf  is the joint density of ( , )X Y . Define a probability function XYH  by 

( , ) ( , )XYH x y P X x Y y= ≤ ≥ . 

Then, we may also assume the identity 

{( , ) | ( , ) 0}p q

XYx y R H x y+
+Ψ = ∈ > , 

which implies free disposability of Ψ . If the conditional probability 

| ( | ) ( | )X YH x y P X x Y y= ≤ ≥  

exists, we may consider the following decomposition: 

|( , ) ( | ) ( )XY X YH x y H x y S y= , 

where YS  denotes the survival function of Y , i.e. ( ) ( )YS y P Y y= ≥ . Likewise, 

conditioning on X , we have 

|( , ) ( | ) ( )XY Y X XH x y H y x F x=  

if | ( | ) ( | )Y XH y x P Y y X x= ≥ ≤  exists, where XF  is the distribution function of X , 
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i.e., ( ) ( )XF x P X x= ≤ .  

 

Now suppose the following identities for Ψ  hold: 

| |{( , ) | ( | ) 0} {( , ) | ( | ) 0}p q p q

X Y Y Xx y R H x y x y R H y x+ +
+ +Ψ = ∈ > = ∈ > . 

Then, together with (1) and (2), given a production unit ),( 00 yx  we have 

(3) 0, 0 | 0 0( ) inf{ 0 | ( | ) 0}X Yx y H x yθ θ θ= > > ; 

(4) 0, 0 | 0 0( ) sup{ 0 | ( | ) 0}Y Xx y H y xλ λ λ= > > . 

Interestingly, replacing |X YH and |Y XH  by their corresponding empirical versions 

(5) 1
|

1

( , )
ˆ ( | )

( )

n

i i

i
X Y n

i

i

I X x Y y

H x y

I Y y

=

=

≤ ≥
=

≥

∑

∑
; 

(6) 1
|

1

( , )
ˆ ( | )

( )

n

i i

i
Y X n

i

i

I X x Y y

H y x

I X x

=

=

≤ ≥
=

≤

∑

∑
 

in (3) and (4), we obtain the FDH efficiency scores 0 0
ˆ ( , )FDH x yθ  and 0 0

ˆ ( , )FDH x yλ . 

 

3  Conditional frontier model 

 

3.1 Introduction 

 

While comparing production units by assessing their efficiency measures, we are to 

have in mind environmental factors that might cause the difference in efficiency. Such 

environmental factors affect the production process indeed, but they are not under the 

control of production managers. Hence understanding how those environmental factors 

make the difference in efficiency is quite important for productivity analysis. For a 

detailed discussion on this topic, see the references cited in Introduction. In this section 

we introduce a conditional approach suggested by Daraio and Simar (2005a, b). 

 

3.2 The model 
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For brevity we confine attention to the input-orientation case from now on. The 

output-orientation case can be treated in a very similar way. Extending the probabilistic 

formulation in section 2, Daraio and Simar (2005a, b) considered a general model that 

involves an environmental variable. Let 
r

Z R∈  denote the environmental variable. The 

basic idea of Daraio and Simar (2005a, b) is that, when the environmental variable takes 

the value of 0Z z= , the conditional distribution of ( , )X Y  given 0Z z=  still defines 

the data generating process which takes into account the exogenous environment 

represented by Z . 

 

Given 0Z z= , let 
0z

Ψ  be the conditional production set, i.e. 

(7) { }
0 | 0( , ) | ( , | ) 0

p q

z XY Zx y R f x y z
+

+Ψ = ∈ >   

where | ( , | )XY Zf x y z  denotes the conditional density of ( , )X Y  given Z z= . Putting 

| ( | , ) ( | , )X YZH x y z P X x Y y Z z= ≤ ≥ = , 

we assume the following identity as in the previous section: 

(8) { }
0 | 0( , ) | ( | , ) 0

p q

z X YZx y R H x y z
+

+Ψ = ∈ > . 

Let 0 0 0( , , )x y z  be a triple of input, output and environmental factor levels of a 

production unit. As in (3) and (4), the conditional efficiency score of a production unit 

0 0 0( , , )x y z  is defined by 

(9) { } { }
00 0 0 0 0 | 0 0 0( , | ) inf 0 | ( , ) inf 0 | ( | , ) 0z X YZx y z x y H x y zθ θ θ θ θ= > ∈ Ψ = > > . 

 

3.3 Nonparametric estimation 

 

With slight abuse of notation, let nS  denote a set of i.i.d. copies of 

( , , ) p q rX Y Z R R R+ +∈ × × : 

1 1 1 2 2 2{( , , ), ( , , ), , ( , , )}n n n nS X Y Z X Y Z X Y Z= L . 

Given a production unit 0 0 0( , , )x y z , we are to estimate the conditional efficiency score 

0 0 0( , | )x y zθ  using nS .  
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Given 0h >  such that 0h →  and rnh → ∞  as n → ∞ , let 0( , )I z h  be the set of 

indices defined by { }0 0( , ) / 2iI z h i Z z h= − ≤ , where a  is the value of the norm 

for a vector a . Then we have an empirical version of | ( | , )X YZH ⋅ ⋅ ⋅  given by 

(10) 

( )

( )

( )

( )
0

0

( , )1
|

( , )
1

,, , / 2
ˆ ( | , )

, / 2

n

i ii i i
i I z hi

X YZ n

i
i i i I z h

i

I X x Y yI X x Y y Z z h

H x y z
I Y y

I Y y Z z h

∈=

∈
=

≤ ≥≤ ≥ − ≤
= =

≥≥ − ≤

∑∑

∑∑
. 

The conditional FDH estimator is then obtained by plugging this empirical version of 

| ( | , )X YZH ⋅ ⋅ ⋅  into (9): 

(11) 
( )

0 0 0 0 0( )1
0

ˆ ( , | ) min max , ( , )
k

i
FDH ikk p

X
x y z Y y i I z h

x
θ

≤ ≤

  = ≥ ∈ 
  

. 

This is a version of the FDH estimator obtained only by the points taking its Z  values 

in the neighborhood of 0z . Along this line, the conditional DEA estimator is given by 

(12) 
0 0

0

0 0 0 0 0

( , ) ( , )

( , )

ˆ ( , | ) min 0 | , 0

1 .

DEA i i i i i

i I z h i I z h

i

i I z h

x y z x X y Y for some

such that

θ θ θ ξ ξ ξ

ξ

∈ ∈

∈

= > ≥ ≤ ≥


= 


∑ ∑

∑

 

 

4  Statistical analysis of conditional FDH and DEA estimators 

 

Rigorously speaking, the conditional FDH and DEA estimators in (11) and (12) do 

not target 0 0 0( , | )x y zθ  in (9), but 

{ }
00 0 0 0 0( , | ) inf 0 | ( , )

h h

zx y z x yθ θ θ= > ∈ Ψ  

where 

{ } { }
0 | 0 | 0( , ) | ( , | ) 0 ( , ) | ( | , ) 0
h p q h p q h

z XY Z X YZx y R f x y z x y R H x y z
+ +

+ +Ψ = ∈ > = ∈ > , 

| ( , | )
h

XY Zf z⋅ ⋅  is the conditional density of ( , )X Y  given that / 2Z z h− ≤ , and 
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( )| ( | , ) | , / 2 .
h

X YZH x y z P X x Y y Z z h= ≤ ≥ − ≤  

Hence, we need the following conditions for a proper statistical analysis of the 

conditional FDH and DEA estimators. 

 

Assumption 1F  Both 
0z

Ψ  and 
0

h

zΨ  are free disposable. 

 

Assumption 1D  Both 
0z

Ψ  and 
0

h

zΨ  are free disposable and convex in p qR +
+ . 

 

Assumption 2  As n → ∞  it holds that 

( )
( )

1/( )

0 0 0 0 0 0
2 /( 1)

( ) ;
( , | ) ( , | )

( ) .

r p q

h

r p q

o nh for conditional FDH
x y z x y z

o nh for conditional DEA
θ θ

− +

− + +


− = 


 

 

Note that free disposability of 
0z

Ψ  and 
0

h

zΨ  in Assumption 1F and 1D is a direct 

consequence of the monotonicity of |X YZH  and |

h

X YZH , respectively. Since the 

cardinality of 0( , )I z h  is proportional to rnh , we may expect that the convergence rate 

of the conditional FDH and DEA estimator are 1/( )( )r p qnh − +  and 2 /( 1)( )r p qnh − + + , 

respectively. By virtue of Assumption 2, when we investigate the sampling distribution 

of the conditional FDH and DEA estimator, we only need to consider the limit behavior 

of the deviations  

{ }1/( )

0 0 0 0 0 0
ˆ( ) ( , | ) ( , | )

r p q h

FDHnh x y z x y zθ θ+ −  

and  

{ }2 /( 1)

0 0 0 0 0 0
ˆ( ) ( , | ) ( , | )

r p q h

DEAnh x y z x y zθ θ+ + −  

instead of   

{ }1/( )

0 0 0 0 0 0
ˆ( ) ( , | ) ( , | )

r p q

FDHnh x y z x y zθ θ+ −   

and  
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{ }2 /( 1)

0 0 0 0 0 0
ˆ( ) ( , | ) ( , | )

r p q

DEAnh x y z x y zθ θ+ + − , 

respectively. 

 

In order to make the conditional FDH and DEA well-defined, it should be guaranteed 

that 0{( , , ) | ( , )}i i iX Y Z i I z h∈  is, of course, not empty. Moreover, for proper asymptotic 

analysis, we need sufficiently many iZ  around 0z , which is endorsed by the following 

condition: 

 

Assumption 3  Z  has a continuous marginal density Zf  such that 0( )Zf z  is 

bounded away from zero. 

 

Proposition 1  Given any finite integer 0C ≥ , let ,n CE  be the event that the 

cardinality of 0( , )I z h  is less than or equal to C . Then, under Assumption 3, ,( )n CP E  

tends to zero as n → ∞ . 

 

Proof.  

,( )n CP E ( )0

0

( , )
C

k

P The cardinality of I z h k
=

= =∑  

( ) ( ) ( ){ }0 0

0

!
/ 2 1 / 2

! !

C n kk

k

n
P Z z h P Z z h

k n k

−

=

= − ≤ − − ≤
−∑  

( ){ }01 / 2
n

C
M n P Z z h≤ ⋅ − − ≤  for a constant 0M >  

{ } { }0exp ( ) 1 (1) (1).
C r

ZM n nh f z o o= ⋅ − ⋅ + =  ■ 

 

This proposition ensures that we are provided sufficiently many data points in 
0

h

zΨ  

as the sample size grows. Therefore an asymptotic analysis of the conditional FDH and 

DEA estimators can be justified. Next we investigate the sampling distribution of the 

conditional FDH and DEA estimators. For this we assume additionally: 

 

Assumption 4  ( , , )X Y Z  has a joint density ( , , )XYZf ⋅ ⋅ ⋅ , and it is continuous on its 
support. 
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Assumption 5  For z  in a neighborhood of 0z , the conditional density | ( , | )XY Zf z⋅ ⋅  

of ( , ) |X Y Z z= exists and it satisfies | ( ( , | ) , | ) 0XY Zf x y z x y zθ >  for all ( , , )x y z  in a 

neighborhood of 0 0 0( , , )x y z . Moreover, | ( , | )
h

XY Zf z⋅ ⋅  converges to | ( , | )XY Zf z⋅ ⋅  as 

n → ∞ . 
 

Assumption 6F  0( , | )zθ ⋅ ⋅ and 0( , | )h zθ ⋅ ⋅ are continuously differentiable in a 

neighborhood of 0 0( , )x y , and the elements of the vector of their first partial derivatives 

at 0 0( , )x y  are all nonzero. 

 

Assumption 6D  0( , | )zθ ⋅ ⋅  and 0( , | )h zθ ⋅ ⋅  are twice continuously differentiable in a 

neighborhood of 0 0( , )x y , and their Hessian matrices evaluated at 0 0( , )x y are 

positively definite. 

 

The next theorem is the conditional version of the sampling distribution of the FDH 

estimator provided by Park, Simar and Weiner (2000): 

 

Theorem 1  Under Assumption 1F, 2-5 and 6F, the conditional FDH efficiency score 

0 0 0
ˆ ( , | )FDH x y zθ  in (11) has the Weibull limit distribution. 

 

Proof.  Let NWc  be a positive constant and 

{ }
0 0
( , ) ( , ) | ,

h h p q

z zNW x y u v R u x v y
+= Ψ ∩ ∈ ≤ ≥ .  

For 1/( )' ( ) 0r p qt nh t− += > , 
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( )
( )

( ) ( ){ }
{ } { }

{ } { }

0

0

0 0 0 0 0 0

0 0 0

0 0 0 0

| 0 0 0 0

0 0 0

ˆ( , | ) ( , | ) '

( , ) ( ' , ), / 2

1 ( , ) ( ' , ) / 2 / 2

1 ( ') ( , | ) ( ) 1 (1)

exp ( , , ) 1 (1)

h

h

i i z i

n
h

z

n
p q r

NW XY Z Z

p q

NW XYZ

P x y z x y z t

P No pair of X Y NW t x y Z z h

P X Y NW t x y Z z h P Z z h

t c f x y z h f z o

t c f x y z o

θ θ

+

+

− ≥

= ∈ − ≤

= − ∈ − ≤ − ≤

= − ⋅ × +

= − × +

 

■ 

 

Next, we present a large sample approximation procedure for the sampling 

distribution of the conditional DEA estimator. We point out that the following procedure 

is merely an extension of the procedure in Jeong (2004) based on a conditional 

argument. Let 0( )P x  be a ( 1)p p× −  matrix whose columns form an orthonormal 

basis for { }0 0 0| 0
p T T

x x R x x x x
⊥ = ∈ = = . Consider the transformation which maps 

px R∈  to 1( , )T T pu w R R−∈ × :  

0
0

0

( ) ;
T

T x x
u P x x w

x
= = ,   

where a  denotes the Euclidean norm of a vector a . This transform is one-to-one and 

its inverse is given by 

0
0

0

( )
x

x P x u w
x

= + . 

 

Lemma 1  Let 0g  and 0

hg  be the functions defined by 

 
0

0
0 0 0

0

( , ) inf 0 ( ) , z

x
g u v w P x u w v y

x

   = > + + ∈ Ψ   
   

, 

0

0
0 0 0

0

( , ) inf 0 ( ) ,h h

z

x
g u v w P x u w v y

x

   = > + + ∈ Ψ   
   

. 

Then we have 
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1

0 0 0 0 0 1( , | ) (0 ,0 )p qx y z x gθ −
−= , 

1

0 0 0 0 0 1( , | ) (0 ,0 )
h h

p qx y z x gθ −
−= , 

where 0n  denotes the n -vector with all elements being zero. Moreover, under 

Assumption 1D, 2 and 6D, both 0g  and 0

hg  are convex in ( , )u v  and it follows that  

( )( )2/( 1)

0 1 0 1(0 ,0 ) (0 ,0 )
p q

h r

p q p qg g o nh
− + +

− −− = . 

 

By this lemma, estimation of 0 0 0( , | )h x y zθ  reduces to that of the convex function 

0

hg  at 10p q− + . Now consider the transformed data 

0 0
0

00

( )
' ( , , , ) , , ( , , ) , ( , )

T T
i i i

n i i i i i i i i n

i i

U P x X x X
S U V W Z W X Y Z S i I z h

V xY y

    = = = ∈ ∈    −     
. 

By the definition of 0

hg , ( , , )i i iU V W  satisfies 0 ( , )h

i i iW g U V≥  for 0( , )i I z h∈ . Hence, 

0

hg  can be estimated from the transformed data 'nS .  

 

Lemma 2  Define 

0 0 0

0

0

( , ) ( , ) ( , )

( , )

ˆ ( , ) min , 0

1 .

h

i i i i i i i

i I z h i I z h i I z h

i

i I z h

g u v W u U v V for some

such that

ξ ξ ξ ξ

ξ

∈ ∈ ∈

∈

= = = ≥


= 


∑ ∑ ∑

∑

 

Then, with probability tending to one, it follows that 

1

0 0 0 0 0 1
ˆ ˆ( , | ) (0 ,0 )

h

DEA p qx y z x gθ −
−= . 

 

Thus, by Lemmas 1 and 2, for the sampling distribution of 0 0 0
ˆ ( , | )DEA x y zθ , we may 

investigate that of 0 1
ˆ (0 ,0 )h

p qg −  instead.  
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Let ∇  denote the partial differential operator. Along the lines of Jeong (2004), 

consider the canonical transform on { }0( , , ) | ( , )i i iU V W i I z h∈  given by: for 0( , )i I z h∈  

( )
1/2*

1/( 1)

2,0*

1

2

p q ir hi

ii

UU
nh G

VV

+ +    =    
    

 

( )2/( 1)
*

0,0 1,0

p q ir h h T

i i

i

U
W nh W g g

V

+ +    = − −  
   

 

where 0,0 0 1(0 ,0 )h h

p qg g −= , 1,0 0 1(0 ,0 )h h

p qg g −= ∇ , and 2

2,0 0 1(0 ,0 )h h

p qG g −= ∇ .  

 

Lemma 3  Let 0( , | , )Conv z h⋅ ⋅  be the lower boundary of the convex hull built by 

{ }* * *

0( , , ) | ( , )i i iU V W i I z h∈ : 

0 0 0

0

* * * * * * *

0

( , ) ( , ) ( , )

( , )

( , | , ) min ,

.0 1

i i i i i i

i I z h i I z h i I z h

i i

i I z h

Conv u v z h W u U v V

for some such that

ξ ξ ξ

ξ ξ

∈ ∈ ∈

∈

= = =




≥ =


∑ ∑ ∑

∑

 

Then, with probability tending to one it follows that 

( ) { }2 /( 1)

1 0 0 1 0 1
ˆ(0 ,0 | , ) (0 ,0 ) (0 ,0 )

p q
r h h

p q p q p qConv z h nh g g
+ +

− − −= − . 

 

By combining Lemmas 1, 2 and 3, we may show that 

( ) { }2/( 1)

0, 0 0 0, 0 0
ˆ ( | ) ( | )

p q
r

DEAnh x y z x y zθ θ
+ +

−  and 
1

0 1 0(0 ,0 | , )p qx Conv z h
−

−  have the 

same limit distribution as n → ∞ . Note that, however, the sampling distribution of 

1 0(0 ,0 | , )p qConv z h−  is not yet at hand. Next we present a procedure for the large 

sample approximation of the distribution of 1 0(0 ,0 | , )p qConv z h− . 

 

Note that { }* * *

0( , , ) | ( , )i i iU V W i I z h∈  has the new lower boundary * * * *

0 ( , )hw g u v=  
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in the coordinate system * * *( , , )u v w  such that 

* * * * * * *

0 ( , ) (1)h T Tg u v u u v v o= + +  

uniformly for * *( , )u v  in any compact set contained in 
1p q

R R
− × , as n → ∞ .  

 

Write *

0

hf  for the conditional density of * * *( , , )i i iU V W , in the coordinate system 

* * *( , , )u v w , given 0 / 2Z z h− ≤ . Then, via the change of variable technique, we have 

by Assumptions 4 and 5  

( )1/ 2 * * * *

2,0 0 0sup' det / 2 ( , , ) 0r h h hnh G f u v w f− →  

for any 0nε ↓ , where sup'  denotes the supremum over * * *( , , )u v w  such that 

( )1/( 1)
* *

( , )
p q

r

nu v nh ε
+ +

≤  and ( )2 /( 1)
* * * * *

p q
T T r

nu u v v w nh ε
+ +

+ ≤ ≤ , 0

hf  is the 

conditional density of ( , , )U V W  at the boundary point 1 0,0(0 ,0 , )h

p q g−  given 

0 / 2Z z h− ≤  which equals ( )| 0 0 0,
h

XY Zf x y z , and det( )A  denotes the determinant of 

a matrix A .  

 

Now we are ready to describe the procedure to simulate the limit distribution of 

1 0(0 ,0 | , )p qConv z h− . Define ( ) ( ){ }1/( 1)
2

0 2,0det / 2
p q

h hf Gκ
+ +

=  and 

( )( ) ( )( )

( ) }

1
1/( 1) 1/( 1)

* * * * *

1/( 1)
* * * * * * * * *

( , , ) ( , ) / 2 , / 2

.

p q
p q p q

r r

p q
T T T T r

B u v w u v nh nh

and u u v v w u u v v nh

κ κ κ

κ

− ++ + + +

+ +

  = ∈ −   

+ ≤ ≤ + +

 

Let a    be the nearest integer to a R∈ . Consider a new random sample 

{ }( , , ) 1, 2, ,u u u r

i i iU V W i nh =  L  which is generated from the uniform distribution on 

Bκ . The uniform density is equal to ( ) ( ) ( )1 1 1/ 2
( 1) / 2

2,0 0det / 2
r p q r h h

nh nh G fκ
− − −− + + = . Let 

0( , | , )uConv z h⋅ ⋅  be the version of 0( , | , )Conv z h⋅ ⋅  built by the new sample 
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{ }( , , ) 1, 2, ,u u u r

i i iU V W i nh =  L .  

 

Lemma 4 Under Assumption 1D, 2, 5 and 6D, 1 0(0 ,0 | , )p qConv z h−  and 

1 0(0 ,0 | , )u

p qConv z h−  have the same limit distribution. 

 

Theorem 2  Suppose Assumption 1D, 2, 5 and 6D hold. For 0z >  

( ) { }( )2/( 1)

0 0 0 0 0 0
ˆ ( , | ) ( , | ) ( )

p q
r

DEAP nh x y z x y z z F zθ θ
+ +

− ≤ →  

as n → ∞ , where  

( )1

0 1 0( ) lim (0 ,0 | , )u

p q
n

F z P x Conv z h z
−

−→∞
= ≤ . 

 

5  Concluding remarks 

 

In this paper, we analyzed the asymptotics of the conditional FDH and DEA estimators. 

We established consistency of those estimators and obtained their proper limit 

distributions. By means of these results, we are able to correct their biases and construct 

confidence intervals for use in practice. However, as is typically observed in 

nonparametric function estimation problems, these procedures require additional 

information that depends on unknown quantities. In particular, a further statistical 

inference with the conditional FDH estimator based on its asymptotic properties may 

suffer from a severe departure of its finite sample properties from the asymptotic results, 

which was already pointed out in Park, Simar and Weiner (2000), Jeong and Simar 

(2006), and others. To avoid this problem, it is natural to consider a bootstrapping idea. 

For example, for the choice of the bandwidth h , one may use the minimizer of a 

consistent bootstrap approximation of ( )20 0 0 0 0 0
ˆ( , | ) / ( , | ) 1E x y z x y zθ θ − . Any detailed 

study on this is left for future research. 
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