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Abstract

Let (Z;)i>1 be an independent, identically distributed sequence of random variables
on R?. Under mild conditions on the density of Z;, we provide a nonstandard uniform
functional limit law for the following processes on [0, 1)¢:

< Zi—z
> L0.s1]%...x[0,54] (fi/d)
An(zv hnv ) =S L

,s€0,1)7,
clogn sel01)

along a sequence (hy,)p>1 fulfilling h,, | 0, nh, T, nhy,/logec — ¢ > 0. Here z ranges
through a compact set of R%. This result is an extension of a theorem of Deheuvels
and Mason [5] to the multivariate, non uniform case.

Key words: Empirical processes, Erdés-Rényi law of large numbers, Kernel density
estimation.

PACS: 62G30, 62G07, 60F10

1 Introduction and statement of the result

In this paper, we consider an independent, identically distributed sequence of
random vectors (Z;);>; having a density f on an open set O C R% We make
the following assumption on f:

(Hf) fis continuous and strictly positive on O.
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Throughout this article, s, s’ € R, we shall write s < s’ when s; < s} for each
1 =1,...,n. Intervals and semi intervals are implicitly understood as product
of intervals or semi intervals, namely

5,8 :={u € R% s <u <5}

=[s1, 8] X ... X [sa,85], s =(s1,..-,84), 8 = (s],...,8)). (L1

We shall also write a < s (resp. s < a) for s € R? and a € R when a < s
(resp. s; < a) for each i = 1,...,d. For fixed 0 < h < 1 and z € O, we define
the following process on [0, 1)%:

o Z d
Awﬂm.—n;WU<mm)J€mﬁ.

These processes, usually called functional increments of the empirical distri-
bution function, have been intensively investigated in the literature (see, e.g.,
Shorack and Wellner [12], Van der Vaart and Wellner [13], Deheuvels and
Mason [5,3], Einmahl and Mason [7], Mason [10]). A particular domain of in-
vestigation of these increments is when their almost sure behavior is studied
along a sequence of bandwidths (hy,),>1 satisfying the following conditions:

(HVE1) 0<h, <1, hy |0, nhy 1 oo,
(HVE2) nh,/logn — c.

Here, ¢ > 0 denotes a finite constant. Such conditions on the sequence (h;,),>1
are called Erdoés-Rényi conditions, since these two authors have given a pi-
oneering result in this domain (see [8]). Deheuvels and Mason [5] showed
that, whenever the (Z;);>1 are uniformly distributed on [0,1], and under
(HV E1) — (HV E2), the increments nA,,(z, h,.)/(clogn) have a nonstandard
almost sure behaviour. Before citing their result, we need to introduce the
following notations. Set B([0,1)?) as the cone of all bounded increasing func-
tions g on [0,1)¢ (implicitly with respect to the order <), satisfying g(0) = 0.
We shall endow this cone with the topology spawned by the usual sup-norm
|| g [|:= supsepp1)a | g(s) |. Define the usually called Chernoff function h as

xlogx — x + 1, for x>0;
h(CE) =91, for x=0; (12)
00, for x<0.
That function is known to play an important role in the large deviation of

Poisson processes on [0, 1] (see, e.g., [9]). Define the following (rate) function
on B([0,1)4). Whenever g € B([0,1)9) is absolutely continuous with respect



to the Lebesgue measure on [0, 1)?, we set

Ig) = [ h(g(s))ds, (13)

[0,1)¢

¢’ denoting (a version of) the derivative of g with respect to the Lebesgue
measure. Whenever g fails to be absolutely continuous, we set I(g) = co. Also
define, for any a > 0,

To:={g € B(0,1)%), I(g) < 1/a}. (1.4)

In a pioneering work, Deheuvels and Mason ([5]) established the following non
standard uniform functional limit law for the A, (z, h,,-), when the (Z;) are
uniform on [0, 1].

Theorem 1 (Deheuvels, Mason, 1992) Assume that d = 1 and that the
(Z;)i>1 are uniformly distributed on [0,1]. Let 0 < a < b < 1 be two real num-
bers, and let (h,)n>1 be a sequence of positive constants satisfying (HV E1) —
(HV E2) for some constant ¢ > 0. Then we have almost surely

lim sup inf n An(z7hn,-)—gH:O,
n=% L cio1in, 9€Te || clogn
n
Vg eT., li inf A, (2 by ) — H:
gele lim il lciogntn® fm) =9

As a corollary, the authors showed that, when the sequence of bandwidth
(hn)n>1 satisfies (HV E1) — (HV E2), the Parzen-Rosenblatt kernel density es-
timator is not uniformly strongly consistent. They proved this non-consistency
result by making use of some optimisation techniques on Orlicz balls (see De-
heuvels and Mason [4]). The aim of the present paper is to provide a gener-
alisation of the former result to the case where the (Z;);>; take values in R%.
This generalisation can be stated as follows.

Theorem 2 Assume that the (Z;)i>1 have a density f satisfying (Hf). Let
H C O be a compact set with nonempty interior. Let (h,),>1 be a sequence
of positive constants fulfilling (HV E1) and (HV E2). Then we have almost
surely

(i) Vz € H,Vg € T'cpz, lim inf {HAn(Z’,’ Bny) — g

e H} —0, (15)

(1) lim sup inf{

70 2eH

‘An<2, hna ) -9

, g€ Fcf(z)} =0. (16)

Denote by f,(K, z, h,) the usual kernel density estimator with bandwidth h,,
and kernel K. A consequence of Theorem 2 is that, under (HV E1)—(HV E2),



fn(K, 2z, hy) is not uniformly consistent (in a strong sense) over (say) an hy-
percube of RZ.

Corollary: Let K be a kernel with compact support and bounded varia-
tion. Assume (H f) and (HV E1) — (HV E2). Let H C O be a compact with
nonempty interior. Then the following event holds with probability one:

de > 0, Ing, Yn > ng, sup | fn(K, 2, h,) — f(2) |> €
z€H

Proof: The proof follows exactly the lines of Deheuvels and Mason (see [5],
Theorem 4.2) and is based on some optimisation results on Orlicz Balls that
have been provided in Deheuvels and Mason [4]. OJ

From now on, we shall make use of the following notation

10 (47)
A, s P, = = -
(2 °) cf(z)logn

, s €1[0,1)%.

Remark 1

Deheuvels and Mason [6] have already given a nonstandard functional limit law
for a single increment A,,(zg, h,,, -) when (HV E2) is replaced by nh,,/loglogn —
¢ > 0. Their result is presented in a more general setting, considering the
A, (20, by, +) as random measures indexed by a class of sets.

The remainder of this paper is organised as follows. In §2 we provide some
tools in large deviation theory, which are consequences of results of Arcones |[1]
and Lynch and Sethuraman [9]. In §3, a uniform large deviation principle for
"poissonized" versions of the A, (z, h,, -) is established. In §4 and §5, we make
use of the just-mentioned uniform large deviation principle to prove Theorem
2.

2 Uniform large deviation principles

The main tool we shall make use of in §4 and §5 is a uniform large deviation
principle for a triangular array of compound Poisson processes. We must first
remind some usual notions in large deviation theory. Let (F,d) be a metric
space. A real function J : E — [0, 00] is said to be a rate function (implicitly
for (E,d)) when the sets {z € E: J(z) < a}, a > 0, are compact sets of
(E,d). We shall first show that I is a rate function on (B([O, D9, || - H) by
approximating it by suitably chosen simple rate functions.



2.1 Approzimations of I

Given g € B([0,1)?) and a Borel set A, we shall write

/ 1adg. (2.1)
which is valid as soon as either g or 14 has bounded variation. For any integer
p > 1 and for each 1 < i < 2P set

AV =27P[i —1,i), (2.2)
with the notation i — 1 := (i1 — 1,...,4iq — 1). Recall that h is given in (1.2),

and that A is the Lebesgue measure on [0,1)% The following functions will
play the role of approximations of I (given in (1.3)), as p — o0 :

I(g) = D 27 (27g(AD) (2.3)
Z A(ADY A (Aﬁ%) g € B([0,1)%).

We point out the following properties of the function /.
Proposition 2.1 For each g € B([0,1)%), we have

lim I,(g9) = 1(g). (2.4)

p—00
Moreover, I is a rate function on (B([O, D9, || - H)

Proof: Choose g € B([0,1)%) arbitrarily and assume that I(g) > 0 (nontrivial
case). In a first time, we suppose that ¢g has bounded variation, so that it
can be interpreted as a finite measure. Denote by 7, the o-algebra of [0,1)?
spawned by the sets AV, 1 < i < 2P, Clearly, for all p > 1, the measure g is
absolutely continuous with respect to the (trace of the) Lebesgue measure A
on 7,. Furthermore, the corresponding Radon-Nicodym derivative is given by
the following equality.

= Y 184 (2.5)

1<i<2pP )

L, :=

y\%

Clearly the o-algebra spawned by the (increasing) sequence (7,),>1 is equal to
the Borel o-algebra of [0, 1)?. Assume first that g is absolutely continuous with
respect to A. According to Dacunha-Castelle and Duflo [2], p. 63, the sequence
L, converges A\ 4 g almost everywhere to a positive function L satisfying L =



g (Mg almost everywhere). Now select 0 < [ < I(g) arbitrarily. By definition
of I, there exists € > 0 satisfying

h(L)d\ > 1.

e<L<l/e

Since L, — L (A + g almost everywhere as p — 00) and since h is continuous,
we have

liminf A(Ly)ljecr, <1/} = P(L)1{ecr<1/qp A+ g almost everywhere

p—00

Hence by an application of Fatou’s lemma,

lim inf / h(L,)d\ > / h(L)dA > 1.

P—00
e<Lp<l/e e<L<1/e

Since sup,>; I,(g) < I(g) by a straightforward use of Jensen’s inequality, and
since [ < I(g) was chosen arbitrarily, we readily infer that 1,(g) — I(g) asp —
oo. Now assume that I(g) = oo and that g is not absolutely continuous with
respect to A. According to Dacunha-Castelle and Duflo [2], p. 63, the sequence
L, converges A+ g almost everywhere to a positive function L satisfying (A +
9)({L = o0}) =: 7 > 0. Define

((z) =2 h(z) =log(x) —1+a ' x>0.

Clearly, ¢(x) — oo as | © |— oo. Now select | > 0 arbitrarily, and choose
A > 0 satisfying

21
> R

-
Since L, — L (A + g almost everywhere as p — oco) we have g(L, > A) > 7/2
for all large p, whence

2,40)

Lz [ L)L,

Lye(A,00)

= [ ur)dg
LpE(‘A,OO)

21
Z?Q(LP>A)

>1. (2.6)

We have shown that (2.4) is true for each g with bounded variation. Whenever
¢ has infinite variation, then it can be shown that I,(¢g) — oo by a discrete
version of the argument that have just been invoked to obtain (2.6). We omit
details for sake of briefness.

Since all the functions I, are || - ||-continuous and since I,(g) T I(g) for all



g € B(]0,1)%), we conclude that I is lower-semicontinuous for || - ||. Hence, I
is a rate function if and only if the set I', is totally bounded for each a > 0
(recall (1.4)). Since z7'h(x) — oo as | z |~ oo, we have, for some constant
M >0,

|z <@ [ Tpj<n + h(2), (2.7)

from where we readily infer that

/ | ¢ | AN < M +1/a for each a > 0 and g € T,. (2.8)
[0,1)¢

Applying the Arzela-Ascoli criterion, we conclude that, for each a > 0, the
closed set I', is totally bounded, which entails that [ is a rate function on
(B([O, D9, || - H) This concludes the proof of Proposition 2.1.00

2.2 Uniform large devialions in (B([O, BONIE ||>

We shall now give a definition of a large uniform large deviation principle in the
metric space EB([O, ONIE ||) In the sequel, (€,,i)n>1,i<m, Will always denote
a triangular array of positive numbers satisfying max;<,, €,; — 0 as n — oo.
Let (X,i)n>1,i<m, be a triangular array of random elements on probability
space (w,T’,P), taking values in B([0,1)?). In order to handle carefully the
notions of inner and outer probabilities, we shall that each X,,; is a suitable
projection mapping from (2, 7") to E, where

Q= ﬁlf[B([O, 1)d), T = éé’]',

and 7 is the Borel o-algebra of (B([O, DY, || - H) From now on, outer and

inner probabilities P* and P, are understood with (£2,7") as the underlying
probability space. We say that (X,,;)n>1, i<m, satisfies the Uniform Large De-
viation Principle (ULDP) for (€,)n>1, i<m, and for a rate function .J whenever
the two following conditions hold.

e For any || - ||-open set O C B([0,1)%) we have

lim inf min €, ; log (P, (X,:(-) € O)) > —=J(O). (2.9)

n—oo <mp

e For any || - ||-closed set F' C B([0,1)%) we have

lim sup max €, ; log (P* (X,,;(-) € F)) < —J(F). (2.10)

n—oo <My

Remark 2



The same definition holds for triangular arrays of random variables taking
values in R?, p > 1. The norm || - || can then be replaced by any norm.

Arcones [1] provided a powerful tool to establish Large Deviation Principles
for sequences of bounded stochastic processes. Some verifications lead to the
conclusion that the just-mentioned tool can be used in our context. Recall
that the sets AY have been define by (2.2). Consider the following finite grid,
forp>1:

Sip:=2P1—-1), 1 <i=<2% (2.11)

Given, p > 1 and g € B([0,1)%), we write

g® = > Lyrg(sip)-

1<i<2pr

Proposition 2.2 Let (X,;)n>1, i<m, be a triangular array of random elements
taking values in (B(]0,1)%)) almost surely, and let (€,)n>1,i<m, be a triangu-
lar array of positive real numbers. Assume that the following conditions are
satisfied.

(1) The triangular array of stochastic process (Xg;-))nzlvigmn satisfies the
ULDP for (€n,i)n>1, i<m,, and for the rate function I, on (B([O, ONIE H)
(2) For each 7 >0 and M > 0 there exists p > 1 satisfying

lim sup max €, ; log (IP* (max sup | X,i(t) — Xni(st) |> 7')) < —-M.

n—oo <My 1<i=<2p SGA?

Then (Xpi)n>1, i<m, satisfies the ULDP for (€,)n>1, i<m, and for the following
rate function.
J(g) :==sup 1, (g"), g € B([0,1)%).

p>1

Proof: The proof follows exactly the same lines as in the proof of Theorem 3.1
of Arcones [1|. Using theses arguments in our context remains possible since
the cone B([0,1)9) is a closed subset of L>([0,1)¢) for the usual sup norm
|| - ||. We avoid writing the proof for sake of briefness. O

Another tool we shall make an intensive use of is a ULDP for random vectors
with mutually independent coordinates.

PI'OpOSitiOIl 2.3 Let (Xmi)nzl, 1<i<mn, and (ani)nZL 1<i<mn be two triangular
arrays of random vectors taking values in R% and RY respectively, and satisfy-
ing Xn; LY, foreachn > 1, 1 <i <m,. Assume that both (X, ;)n>1, 1<i<m.,
and (Yi.i)n>1, 1<i<m, satisfy the ULDP for a triangular array (€,;)n>1,i<m,
and for two rate functions J; and Jy respectively. Then the triangular array
(Xonsis Yni)n>1,i<m, satisfies the ULDP for (€ n)n>1,i<m, and for the following



rate function.

J(21,29) = Ji(21) + Jo(2), 21 €RY, 2, € R?

Proof: The proof follows the same lines as Lemma 2.6 and Corollary 2.9 in
Lynch and Sethuraman [9]. In the just-mentioned article, the authors make
use of the notions of Weak Large Deviation Principle and of LD-tightness for
sequences of random variables in a Polish space. These notions can be easily
extended to the frame of triangular arrays of random variables. [J

The following proposition is nothing else than the contraction principle in the
framework of ULDP (see, e.g., |1], Theorem 2.1 for the most general version
of that principle).

Proposition 2.4 Let (X, ;)n>1, i<m, be a triangular arrays of RP valued ran-
dom vectors satisfying the ULDP for a triangular array (€,;)n>1, i<m, and for a
rate function J. Let R be a continuous mapping from R? to (B([O, DY, - ||>
Then (R(Xn:))n>1, i<m, satisfies the ULDP for (€,i)n>1, i<m, and for the fol-
lowing rate function.

Jr(g) = f{J(z), R(z) = g}, g € B([0,1)9),

with the convention inf () = oco.

Proof: Straightforward. [J
The following proposition shall be useful in our the proof of our Lemma 4.

Proposition 2.5 Let (X,,i)n>1.i<m, be a triangular array of real random vari-
ables and let (€,;)n>1.i<m, be a triangular array of positive real numbers. As-
sume that there exists a strictly convex positive function J on R and a real
number 1 such that J(u) =0 and

Va > p, lim max | €, log (P (X,,; >a))—J(a)] =0, (2.12)
Va < p, lim max e, ;log (P(X,:<a)—J(a)]=0 (2.13)
Then (X”:i)nZI,iSmn satisfies the ULDP for (em-)n21 i<m, and for J.

Proof: The proof is routine calculus.[]



3 A ULDP for poissonised versions of the A, (z, h,,")

Define the following process, for each integer n > 1.

Tin .,
1; Hos <i}/d>
cf(z)logn

AL, (2, by, 8) 1= , s €1[0,1)% (3.1)

Here 7, is a Poisson random variable independent of (Z;);>1, with expectation
n. These "poissonized" versions of the processes A, (z, h,,-) can be identified
to random (Poisson) measures by the following relation

ATl (2, by, A) == / 1a(s)dAIL, (2, by, s), A Borel, (3.2)

[0,1)¢

The key of our proof of Theorem 2 is the following ULDP.

Proposition 3.1 Let (z;,)n>1,1<i<m, be a triangular array of elements of
H. Under the assumptions of Theorem 2, the triangular array of processes

(AL, (Zimy By *))n>1, 1<i<m, Satisfies the ULDP in (B([0,1)%),]| - ||) for the
rate function I and for the following triangular array
L >1,1<:i< (3.3)
€ni =——— n>1,1<1i<m,. .
’ cf(zin)logn
Remark 3

Proposition 3.1 is true whatever the constant ¢ > 0 appearing in assumption
(HVEL). This remark will show up to be useful in Lemma 6 in §5.

Proof: To prove proposition 3.1, we shall make use of Proposition 2.2. We
hence have to check conditions 1, 2 and 3 of the just-mentioned proposition.
This will be achieved through several lemmas.

3.1 A preliminary lemma

Recall notation (2.1). To check condition 2 of Proposition 2.2, we need first
to establish the following lemma.

Lemma 4 Assume that the hypothesis of Theorem 2 are satisfied. Then, for
each p > 1 and for each 1 < ig < 2P, the triangular array of random variables
(AIL(Zim, havy AY)) )nz1, 1<i<m,, satisfies the ULDP in [0,00) for the triangular
array (€n.i)n>1,i<m, and for the following rate function:

L(z) =277} (2_“;(1) =\ (AL)h (A (zp)) x> 0. (3.4)

ip

10



Proof: Fix once for all p > 1 and 1 < iy < 2¢. We shall make use of Propo-
sition 2.5, with J := fp and pu := 2774 We give details only for the proof of
(2.12), as proving (2.13) is very similar. Fix a > 2779, For each integers n > 1
and 1 <7 <m,, we set (recall (3.2))

Vinio :=¢f (2in)(log n) AlL,(2im, hn, A,
DPinio =P (Zl € Zin + hi/dAf’O) )

Clearly V; ., ;, is a Poisson random variable with expectation np; , ;,. Since the
density f satisfies (H f) and since A(A} ) = 2779, we have

lim max
n—oo 1<i<mn

Pin,io
f(zi,n)Z_pdhn ’ 0 (3 5)

Hence according to (HVE2) we have, ultimately as n — oo,

min %6l Gin)logn (3.6)

1<i<mn NPi nio

We then make use of Chernoff’s inequality for Poisson random variables to
get, for all large n (satisfying (3.6)) and for all 1 <i < m,,

P (AL, (21, b, AL) > a) = P (Vi > acf (i) logn)
o) 1
< oxp <_npl.7n710 h (acf(z)ogn» 6

NPin.ig

But (3.7) in combination with (3.5) entails

M1 ,n 1 _
limsup max Pinio (acf(z7 ) ogn) < 277l (a>7 (3.8)

n—oo 1<i<mn f(zz,n)hn nP;.n.ig 2-pd

which, together with (3.7) leads to

limsup max €,;log (]P’ (AHn(z@n, b, A7) > a)) < —I,(a). (3.9)

n—oo 1<i<mny

Now select y > a arbitrarily. If we could show that

lim inf minn €n i log (IP’ (AHn<zi,n7 b, A7) > a)) > —I,(y),

n—oo 1<i<m

then, as y > a was chosen arbitrarily, and since I~p is increasing on [a, 00), we
should be able to conclude the proof of (2.12)with J = I,. Now set ¢(t) :=
exp (exp(t) — 1), t € R and notice that h(z) = max,ecg zu — log (¢(u)) for
each 2z > 0. Set ug := log(2P%y), so as

h(2Py) =2""yuo — log (¢ (uo)) - (3.10)

11



Denote by F' the distribution function of a Poisson random variable with
expectation 1, and define Fjy by

dFy(z) := ¢ (ug) " exp(uoz)dF(z). (3.11)

Let "*" be the convolution operator for infinitely divisible laws and notice
that, for each L > 0, we have

AFEE() = (up) ™" explug-)dEF*™ (), (3.12)
Epse(X) =2"Ly, (3.13)
Varper (X) =LVarg, (X) (3.14)

Here we have written Er(X) as the expectation of a random variable with
distribution F. Now fix § > 0 satisfying [y — 0, y+0| C [a, oo[ arbitrarily. Obvi-
ously, F*"Pinio is the distribution function of ¢f (2 )(logn) All,(2in, hn, A7),
whence

P (AL (i, b, AL) > a)
> P (AL (2o, T, AT € [y = 6,y +6])
- / dF*Pindo ()
T yTean SW—0w+9]
> exp (—ug(y + 0)cf(zin)logn) x / exp(tto) Lo (1)
FrTosn CW—0y+0]
> exp (—cf (zin)(log n)uo(y + ) + npin.i, log (#(uo)))
’ / 4R @) (3.15)
FCrayTorn CW—0y+0]
= Qinios X Dinig,s-

Here (3.15) is a consequence of (3.12), with L := np; ,,;,- Now let n > 1 be an
integer large enough to fulfill (recall (3.5))

max DPinido
1<i<m, |27Pdcf(z; ) logn

- 1‘ < uplog (¢(ug)) "6, (3.16)
which enables us to write the following chain of inequalities.
cf(zin)(logn)uo(y + ) — npjni, log (¢(uo))
<27y + §)ef(zin) logn <u02pd — log (¢(ug)) + uod)
< 27Pcf(z,) logn (h (2”dy) + (2P + 1)6)
= cf(zin)logn (fp(y) + 27 (de + 1) u05)
< cf(zin)logn (fp(y) + 2u05) : (3.17)

12



Therefore we have, for all large n and for all 1 < i < m,,
in,ig,s = CXP (_Cf(zi,n) logn (jp(y) + 2U05)) ; (3.18)
where uy = log(2P%y) depends on y > a only. It remains to show that

lim min b, = 1. (3.19)

n—oo 1<i<mn
Consider n large enough to fulfill (recall (3.5))

y—2o < min NPi i < max NPi n i y+9o
Y+ 27Pd5 T 1<i<m, 27Plef(z; ) logn T 1<i<ma 27Pdef(z;,) logn oy — 27PdS]

so as, for all 1 <1i <m,,

NPi n.io —pd —pd
e X |y — 2779, 27P4 C ly — 6, ol, 3.20
2 Pcf () logn ly y + ] Cly—d,y+ 9] (3.20)
and hence
bi,nio,é > / dF(;knPi,n,iO (33)
Y €[2rdy—5,20dy-+]
7,1,

Recalling (3.13) and (3.14) we get, by the Bienaymé-Tchebychev inequality,

VarFO (X)

. 3.21
5npi,n,io ( )

11— bi,’n,io,é =

By assumption (H f) we infer that the A, 'p;,;, are bounded away from zero,
from where (3.15) follows. Then (3.15), (3.18) and (3.19) entail

liminf min e,;log (IP’ (AHn(zivn, b, A7) > a)) > —]Np(y) —2upd.  (3.22)

n—00 1<i<man

Assertion (2.12) is then proved by combining (3.9) with (3.22), as § > 0 is
arbitrary. [

3.2 Verification of condition 2 of Proposition 2.2

Forn > 1 and 1 <i < m,, define the following R2" valued random vector:

Xn,i = (Xio,n,i)1_<i0_<2p
= (AHn(Zl,na hn7 A

10)) 1<ig=2r

Notice that the random variables X, ,,;, 1 < iy < 2P are mutually independent
for fixed n > 1 and 1 < ¢ < m, by usual properties of Poisson random
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measures. Hence, by Lemma 4 together with Proposition 2.3 we deduce that
the triangular array (X, ;)n>1, i<m, satisfies the ULDP with (€,,i)n>1, i<m, and
with the following rate function.

I'(z) = 2:2w%<;L),x€Mafm. (3.23)

1<i<2pr

Here we have written x := (x;)1<i<00. We now define the following mappings
from [0, 00)”" to (B([0,1)%))

R,y(z) : [0,1)4 — [0, 00)

s— > ;.
AP C0,s]

Denote by [z] the integer part of a real number z ([z] < = < [z] + 1), and
write [s] :== ([s1],...,[sq]) for any s = (s1,...,5q4) € R We point out that
with probability one (recall the notations of Proposition 2.2)

Rp(X03)(5) =AIL, (210, hn, 277[275])
—AIL, (Zin, by 8)P), s € [0,1)%

For fixed p > 1, we make use of the contraction principle (Proposition 2.4)
to conclude that (R,(X,.i))n>1, i<m, satisfies the ULDP for (€,;)n>1, i<m, and
for the following rate function.

I(g) =inf {I(z), x € [0,00)"", Ry(x) =g}, g€ B(0,1)%),  (3.24)

with the convention inf () = co. Obviously, the set appearing in (3.24) is non
void if and only if g is the cumulative distribution function of a purely atomic
measure with atoms belonging to the grid {s;,, 1 <1 < 2P}. In that case we
have

N = 3 (550 = 10,

1<i<2p

Here, we have identified g to a positive finite measure on [0, 1)¢ (recall (2.1)).
Assumption 2 of Proposition 2.2 is then satisfied.
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3.8 Verification of condition 3 of Proposition 2.2

Fix 7 > 0 and M > 0. We have to prove that, provided that p is large enough,

limsup max €,;

n—oo 1<i<mp

. _ . (i _
log (IP’ (1123}2%} SsEuA[; AlL, (2ims by s) — AlL, (zl,n, hn, 27P(i 1)) ‘ > 7'))

<— M. (3.25)

For fixed p>1, n>1, 1 <i <m,, a rough upper bound gives

. _ . -p(; _ >
P (1%?2}2(? 5611157 AlL, (2im, by s) — AlL, <zm, hn,27P(1 1)) ‘ > 7')
<2 max P su AlL, (zin, hp,s) — AIL, (20, b, 27P(1 — 1 ’ > T
<P macP| sup AL (20, b, ) (= (i-1)
<2-7j

<P (AT, (2, b, 277) = ATL, (20, hn, 277(1— 1)) > 7)
=P, i (3.26)

We shall now write

Winip =cf(2in)logn (AL, (2in, hn, 277) = ATL, (210, b, 277 = 1))

Z1 — Zin _pe _pye
Minip =P <11/d7 S [0, 2 p1> - [0, 2 p(l—))) , and
vip = ([0,277) = [0,277(1-))) < d27". (3.27)

Clearly, W; i, is a Poisson random variable with expectation n; ;. More-
over, by assumption (H f) we have

in) (1 i
lim min cf (zin)(logm)tip _ | (3.28)
n—00 1<i<mn, T ni,p

1<i=<2P

Recall that 7 'h(x) — oo as  — oo. We can then choose Ay, > 1 large
enough to satisfy
h M
inf hiz) > 8— (3.29)

x>Apr X T

By (3.27) we can choose p large enough to fulfill

min
1<i=2p 2Vi,p

> A, (3.30)
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Assertion (3.28) together with (3.30) leads to the following inequality, for all
large n, for all 1 <7 <m,, and for all 1 <i < 2P.

cfGinlogn o Ty o) (3.31)

N nip 2vp

Applying Chernoff’s inequality to the Poisson random variables W ,, ; , we get,
for all large n and for all 1 <17 < m,,

]P)i,n,i,p =P (I/Vi,n,i,p > ch(zi,n) log n)
2,n 1
< exp <_nmmh (Cﬂz)mgn)) |

i ip

Therefore, recalling (3.28) and (3.31), the following inequality holds for all

large n, for all 1 <7 <m,, and for all 1 <i < 2P.
Pinip <exp (=5 cf Gin)igllog mh -
imip < €XP 20 Zin)Vip(logn G

<exp (—cf(zin)2Mlogn) . (3.32)

Here, (3.32) is a consequence of (3.30). By combining (3.32) with and (3.26)
we get, for all large n and for each 1 < i < m,,

P ( max sup |AlL, (2;n, hn,s) — All, (zi,n, hin,27P(1 — 1)) ' > 7')

1<i=<2P seAf

<exp (—2Mcf(zz~7n) logn + log(2pd)) :

which proves (3.25) and shows that condition 3 of Proposition 2.2 is satisfied,
as [ is bounded away from zero on H. We can now make use of the just-
mentioned proposition in combination with Proposition 2.1 to conclude the
proof of Proposition 3.1. [J

4 Proof of part (i) of Theorem 2

Denote by Int(H) the interior of H, and fix z € Int(H), g € I'¢4(»), and € > 0.
We set

g ={g € B(0,1)", [lg =g lI<e}. (4.1)

By lower semi continuity of I in (B([O, BONIE ||> (recall Proposition 2.1),
there exists a; > 0 satisfying

1— 3061
cf(2)

I(g°) = : (4.2)
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Now choose an hypercube with nonempty interior H' := [ay, b1] X ... X [ay, b,
fulfilling H' ¢ H, P(Z, € H') < 1/2 and

/ JE—
inf J(Z) > ! 2@1.
Jen’ f(z) l—m

(4.3)

Such a choice is possible since H has a nonempty interior by assumption. We
now divide H' into disjoint hypercubes 2, + hY/?[0, 1)d, 1 <1 < m,, where
m,, is the maximal number of disjoint hypercubes we can construct without
violating

U {zim+ 00, 1)} € H'. (4.4)
Notice that, as n — oo, B

140(1)

m, = h, = p(He), (4.5)

Now recall (3.1). By making use of a well-known "poissonization" technique
(see, e.g., Mason [11], Fact 6), we get the following upper bound for all large
n.

P ( N (A2 hn,-) & gﬁ}) <P (ﬂ {An(zim: hn, o) € 9 }>

z’eH i=1

< 2P (ﬂ {AIL,(Zin, hny*) € g }) (4.6)

=1
mn

=2 [[ (1 =P (AIL,(2inhn, ) € ¢°)) (4.7)
< 2exp (— My I?HT}L"IP’(AH (Zin, Pn, ) € gﬁ)>
(4.8)

The transition between (4.6) and (4.7) is a classical property of Poisson ran-
dom measures, while inequality (4.8) is a consequence of 1 —u < exp(—u), u >
0. We now make use of Proposition 3.1 (with the open ball ¢) to get, for all
large n (recall (4.2)),

f(2i,n)
P ( ﬂ {An(z/,hn, ) ¢ ge}) <2exp (_mn min nM(12a1))

<3<
z’eH lsisman
a1
< €xXp (-?7/ ) )

which is a consequence of (4.3) and (4.5). Hence we conclude by the Borel-
Cantelli lemma that, almost surely,

Jiminf {[| Ap (2 ey ) — g ||, 2" € H} <e.

As e > 0 was chosen arbitrarily, the proof of part (i) of Theorem 2 is concluded
for each z € Int(H). Now the case where z € H does not belong to Int(H) is
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treated by making use of the following argument: for each z; € H, g1 € I's5())
and e > 0, there exists 2, € Int(H) and gy € ey, satisfying || g1 — g2 ||< €.
Such an argument is valid by (H f) and by Lemma 5 (see below).[]

5 Proof of part (ii) of Theorem 2

We shall make use of somewhat usual blocking arguments along the following
subsequence ny := [exp(k/logk)], k > 3 and its associated blocks Ny :=
{np_1+1,...,n4}. Given A C B([0,1)?) and € > 0 we shall write

am={ge Bo,0Y, it llg—d |I<e}. (5.1)
geA

The following lemma shall come in handy.

Lemma 5 For any e > 0 and L > 0 there exists n > 0 satisfying, for each,
L'el[(l1+n)'L /L], T CTS.

Proof: The proof is routine analysis.[]
Now fix € > 0. Since I is lower-semi continuous on (B([O, D), ] - H) (recall
Proposition 2.1) we deduce that, given z € H, there exists o, > 0 satisfying

1(B(0,1)") ~T%.) = ?(3;;‘ (5.2)

By (Hf) and Lemma 5 we can construct an hypercube H, with nonempty
interior satisfying the following conditions.

z€H., H.CO, (5-3)
I+ a,

e L) 1Ha. (5.4)
z1,22€H f(Zg) 14 2a,

U Lepny C FZf(z)v (5.5)

Z/eHz

P (Z1 e U {z—l— [o,hnkl/d)d}> <1/2. (5.6)

The compact set H is included in the union of the interiors of H,, 2z € H,
from where we can extract a finite union, noted as

L L
Hc|JIntH, c |JH., CO. (5.7)

=1 =1
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Our problem is now reduced to showing that, for fixed [ =1,..., L,

limsup sup inf || An(z, by, ) — g ||< 10e almost surely. (5.8)

n—00  zeH. 9€lcs(z)

We now fix 1 <[ < L, and we write H,, =: [a1,b1] X ... X [ag, bs). We now
introduce a parameter 6 > 0 that will be chosen in function of € in the sequel.
For each k£ > 1, we cover H,, by hypercubes

HZL - U C’ivnk - 077 (59)

1<i<mp,,
with

Cing =%in, + [0, ((5hnk)1/d)d, k>1,1<i<m,, and

M, ::p]i[1 le + 1) . (5.10)

Now define, for each &k > 1, n € Ny, z € H,

1 L Z; —
Hn(z,s) = 1[073) <Z> , S € [0, 1)d.

c IOg Ng 1 hnk 1/

We shall first show that, for any choice § > 0, we have almost surely

limsup sup  inf || Hu(zin,, ) — g ||< 26 (5.11)

n—00  1<i<mn, g€l cp(z)
Consider the following probabilities for all large k.
]P)k =P ( U U Hn(zi,nk7 : ¢ Fcf (=1) ) :
1<i<mp, neNj

We have, ultimately as k£ — oo,

7’<m"k neEN,

Pk < mk max P < U Hn(zi’nk, ) ¢ Fcf (1) ) . (512)

We now make use of a well-known maximal inequality (see, e.g., Deheuvels
and Mason [5], Lemma 3.4) to get, for all large k and for all 1 <i <m,,,

P ( U Hulzine: ) € F?}%) < 2P (Hay (2o ) & Dige)) - (5.13)
neNg

We point out that the conditions of Lemma 3.4 in [5] are satisfied since, by a
straightforward use of Markov’s inequality we have, ultimately as k£ — oo,

sup max P (|| Hu,(2,7) — Ha(z-) [|2 ) <

zeH n€Ng

l\.’)\»—l
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Making use of (5.13) in (5.12), we obtain, for all large F,

Py < 2my max P (Mo, (2i0,.) & Ty

Slgmnk
= ank 1<rln<a;fl< P (A”k (Zi,nkﬂ hnk? ) ¢ FZf(zl))
—v= nk
< 4my, max P (AL, (Zimy s ) & Tipiay)) (5.14)
—=t= nk

The last inequality is a consequence of usual poissonization techniques (see,
e.g., Mason [11], Fact 6). We now make use of Proposition 3.1, which, together
with (5.2) leads to the following inequality, ultimately as k — oo,

f(zi,n )
P, < 4m,, {Igl%z},i exp (— f(Zz; (14 2a,)logny | .
Moreover (5.4) entails P, < 4m,,, exp (—(1 + «a,) logny,) . Since m,,, = h;}j*o(l) =
ny " as k — oo (recall (5.10)), the sumability of P, follows, which proves

(5.11) by the Borel-Cantelli lemma. We point out that (5.11) is true whatever
the choice of § > 0 (recall (5.9)). We now focus on showing that, for a small
value of § > 0 we have

limsup sup min max || Hn(zin,, ) — An(2 b, ) [|< Te a.s,  (5.15)

k—oo  zEH., 1SiSmny, nEN
which will be achieved through two separate lemmas.

Lemma 6 Assume that the conditions of Theorem 2 are fulfilled. There exists
dc > 0 such that, for any choice of 0 < § < d. we have almost surely

f(2)

li Hn LwnEy ) T Hn >'H<'
RSP EY, LS [Pl ) = g YT ] S €
Proof: For all large k we have
P max max  sup |[Hn(Zin, ') — /() Hn(z,~)H>e

nEN 1<i<mn,  2eCy f(zin,)

=P U U sup Hn(zi,nk7 ) - f{(z> >Hn<27 )H > 6)
1<i<my, neN, 2€Ciny Zing

f(2)

<m,, max P sup || Hn(Zin,, ) — H,(z, - H > € 5.16

- (gv 20 | = 7, () (5.16)

Fix k > 1,1 < i < m,, and 2 € z,, + (0hn, )40, 1)%. We write z;,, =
(Zippr s 2 )y 2= (2., 2% and Z; .= (Z],...,Z{), j > 1. Notice that

i:”k’ ’ i7nk

for each p = 1,...,d we have 2}, <2/ <2, + (6hn, )Y, Hence, in virtue of
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the equality | 14 — 1p |= 1a_p + 1p_4 we have, for each integer j we have
almost surely, for each (si,...,sq) € [0,1),

0\ 174 ) tos)\ T 1/a
I hal)?

21{ th85) = [y g )}(Zj) + 1{ et i 040 - et )}(Zj)

d
<> 1[ L bl +h1/d(sl+61/d)} (Zjl) 11 1[ ) R p+51/d)} (Z)

ng 1% Mg ].Sp;ﬁlgd inp’ % nk

+ Z 1 [zl +((5hnk)1/ } (Zl) H 1 {zp

i,np’ znk 1§p7él§d

= Xj’k’m;(s). (518)

) E 61D

,ng’ ’L’I’Lk ne Sp

Here (5.17) follows from 2z}, < 2! <zl +6Y4hl/? 1 =1,...,d As the
X kis(+) are positive processes almost surely, (5.18) entails, for all large k and
forall 1 <¢<m,,,

IP’(U sup

nENk ZGCiynk

et~ et

sup  sup
TLENk 2€C; Mg SE[O 1)
= Zj — Zin
Z Lio,s) ( 1/d > — 1o (Jhl/dk> ’ > ecf(zi,nk)lognk)
Nk

sup Z ikio(s) > ecf(zin,)log nk)

( =1 s€[0,1)¢

<P

Xjikio H > ecf(zmk)lognk) ) (5.19)

But a close look at (5.17) leads to the conclusion that, almost surely, for each
s €10,1)%

ng
0< ZXj,k,i,é(S)

j=1

< ZdCf(ZZ’mJ(lOg nk) sup Ank (Zz',nk; hnky S,) - Ank (Zi,nka hnkv S) .

5,8'€[0,2)4, ||s’—s||g<51/d

(5.20)
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Here we have written | s ;= max{| s; |, j = 1,...,p}. Now (5.20) together
with (5.19) entails

f(2)
f(zi,nk)

P Usup

nENk ZGCz’,nk

Halzime o) = Ho(z, >H - 6)

<P sup ’Ank (Zimgs gy 87) = Dy (Zins B> 8)| > €(2d) ™
5,8'€[0,2)9,
IIs"—s|lqg<8t/4
<2P sup ‘Aﬂnk(zi,nk, Py, 28) — ALy, (Ziy s Py, 28)| > €(2d) 71
s,8'€[0,1)4,

||s—slla<dt/4/2

(5.21)
Here (5.21) follows from poissonization techniques. Now consider the following
sequence b, := 2¢h,, n > 1. Clearly, (b, ),> satisfies (HVE1) and (HVE2),
replacing ¢ by ¢ := 24c. Moreover, for each k > 1,1 < i < My, we have almost
surely, for all s € [0,1)<,
AlLy, (Zing, bny» 28) = AlLy, (Zings Ong» S)- (5.22)
Applying Proposition 3.1 we deduce that the triangular array of processes
Uki(+) == ALy, (Zings bnp, 27), K> 1, 1 <i < my,

satisfies the ULDP in (B([0,1)%),]| - ||) (see §2) for the rate function I and
for the following triangular array:

€hi 1= (CQdf<zi,nk) logng) 7tk >1,1<i<m,,.

Now consider the following set

r:= {g e M([0,1)%), I(g) < 2‘1405}'

By proposition 2.1, there exists J. > 0 such that

sup sup | g(s") — g(s) |< (4d) . (5.23)

g€2T s,5'€[0,2)4,||s' —s]|4<dd /2

Now choose 0 < ¢ < 0, arbitrarily for the construction of the z;,,, k> 1,1 <
i < my, (recall (5.9)). By lower-semicontinuity of I, the closed set

2 dE
F d : /
ERYAS 11 g—4g > /
{ M([O; 2) )7 gl’EfI“ || ||[072)d_ 3 }
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satisfies I(F) > 4/(2%c3). Hence, (5.21) together with (5.23) leads to the
following inequalities for all large k and for each 1 <17 < m,,.

Pl U suwp
TLEN]C Zeci,nk
S2IP> <Sups,sl€[071)d7s/_sd<61/d/2
S2P (AH’I’Lk (Zi,nk, hnk7 .) e F)

<2exp (—i] (£) ¢f (zin) log nk)

20f (2
<2exp (—3 X Cg(;’n’“) log nk>
c

<2exp (—3logny). (5.24)

f(z)
f(zunk)

Uk’i(S/) — Uk’i(S)

Hn(zi,nka ) -

Mo, )H > e)

> e(2d)_1>

Now (5.24) in combination with (5.16) entails, for all large k,

P HoZin, ") — H,(z, )| > < 9 Mk
(mNmm B R T Ll R e
(5.25)

But for fixed 6 > 0 we have m,, = h;}j*"(l) = ni' W as k — oo. The proof
of Lemma 6 is concluded by applying the Borel-Cantelli lemma to (5.25). O

Lemma 7 Under the assumptions of Theorem 2, for any choice of 6 > 0, we
have almost surely

An(2, b, ) — f‘(f::k)Hn(z, )H < 6e.

limsup max sup max
k—oo 1SiSmay ec; nENg

inp

Proof: For all large k£ and for all 1 < ¢ < m,,, 2 € C;,,, n € N we have
almost surely, for each s € [0, 1),

(G G I [ B
B (e L A e L f<zi,nk>H"((5’26))’

with T g 1 f(%im,) logne/ f(e)logn and pff ;. := hy, [hy. First notice that

lim max sup |T,,x—1|=0, lim max|p,r—1]|=0.

k—oo 1<i<mn, ZGCi,nk k—oo neNy
Moreover, by Proposition 2.1 we have
lim  sup || Tg(pM™) — g(-) ||= 0. (5.27)

T—1,p—1 96Fcf<zl)
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Finally, by (5.11) and by Lemma 6 we have, for all large k and for all 1 <i <
My, 2 € C@nk? n c Nk,

f(z)
f(zi,nk)

Hence, combining (5.26), (5.27), (5.27), (5.28) and the triangle inequality, we
obtain almost surely, for all large k£ and for all n € N, :

inf
gEFcf(zl)

Hn(z, ) — gH < 3e almost surely. (5.28)

ot £

<0e,

which proves Lemma 7. []

End of the proof of part(ii) of Theorem 2: By combining Lemma 7 with
Lemma 6 we conclude that (5.15) is true for 6 > 0 small enough. Now (5.15)
together with (5.11) leads to

limsup sup inf || An(z, hn, ) — g ||< 9¢ almost surely.
n—oo  zeHy, geFCf(Zz)

Whence, recalling (5.5),

limsup sup inf || Au(2,hn, ) — g ||< 10e almost surely. (5.29)
)

n—oo  zEH 9€l’crz
Repeating (5.29) for each [ = 1,..., L (recall (5.7)) we get

limsupsup inf || An(z, by, ) — g ||< 10e almost surely.
n—oo  zeH 9€lcs(2)

As e > 0 was chosen arbitrarily, the proof of part(ii) of Theorem 2 is concluded.lJ
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