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Abstract

Let (Zi)i≥1 be an independent, identically distributed sequence of random variables
on Rd. Under mild conditions on the density of Z1, we provide a nonstandard uniform
functional limit law for the following processes on [0, 1)d:

∆n(z, hn, ·) := s 7→

n∑
i=1

1[0,s1]×...×[0,sd]

(
Zi−z

h
1/d
n

)
c log n

, s ∈ [0, 1)d,

along a sequence (hn)n≥1 ful�lling hn ↓ 0, nhn ↑, nhn/ log c → c > 0. Here z ranges
through a compact set of Rd. This result is an extension of a theorem of Deheuvels
and Mason [5] to the multivariate, non uniform case.

Key words: Empirical processes, Erdös-Rényi law of large numbers, Kernel density
estimation.
PACS: 62G30, 62G07, 60F10

1 Introduction and statement of the result

In this paper, we consider an independent, identically distributed sequence of
random vectors (Zi)i≥1 having a density f on an open set O ⊂ Rd. We make
the following assumption on f :

(Hf) f is continuous and strictly positive on O.
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Throughout this article, s, s′ ∈ Rd, we shall write s ≺ s′ when si ≤ s′i for each
i = 1, . . . , n. Intervals and semi intervals are implicitly understood as product
of intervals or semi intervals, namely

[s, s′] :={u ∈ Rd, s ≺ u ≺ s′}
=[s1, s

′
1]× . . .× [sd, s

′
d], s = (s1, . . . , sd), s′ = (s′1, . . . , s

′
d). (1.1)

We shall also write a ≺ s (resp. s ≺ a) for s ∈ Rd and a ∈ R when a ≤ si

(resp. si ≤ a) for each i = 1, . . . , d. For �xed 0 < h < 1 and z ∈ O, we de�ne
the following process on [0, 1)d:

∆n(z, h, s) :=
1

n

n∑
i=1

1[0,s]

(
Zi − z

h1/d

)
, s ∈ [0, 1)d.

These processes, usually called functional increments of the empirical distri-
bution function, have been intensively investigated in the literature (see, e.g.,
Shorack and Wellner [12], Van der Vaart and Wellner [13], Deheuvels and
Mason [5,3], Einmahl and Mason [7], Mason [10]). A particular domain of in-
vestigation of these increments is when their almost sure behavior is studied
along a sequence of bandwidths (hn)n≥1 satisfying the following conditions:

(HV E1) 0 < hn < 1, hn ↓ 0, nhn ↑ ∞,
(HV E2) nhn/ log n → c.

Here, c > 0 denotes a �nite constant. Such conditions on the sequence (hn)n≥1

are called Erdös-Rényi conditions, since these two authors have given a pi-
oneering result in this domain (see [8]). Deheuvels and Mason [5] showed
that, whenever the (Zi)i≥1 are uniformly distributed on [0, 1], and under
(HV E1)− (HV E2), the increments n∆n(z, h, .)/(c log n) have a nonstandard
almost sure behaviour. Before citing their result, we need to introduce the
following notations. Set B([0, 1)d) as the cone of all bounded increasing func-
tions g on [0, 1)d (implicitly with respect to the order ≺), satisfying g(0) = 0.
We shall endow this cone with the topology spawned by the usual sup-norm
|| g ||:= sups∈[0,1)d | g(s) |. De�ne the usually called Cherno� function h as

h(x) :=


x log x− x + 1, for x>0;

1, for x=0;

∞, for x<0.

(1.2)

That function is known to play an important role in the large deviation of
Poisson processes on [0, 1] (see, e.g., [9]). De�ne the following (rate) function
on B([0, 1)d). Whenever g ∈ B([0, 1)d) is absolutely continuous with respect

2



to the Lebesgue measure on [0, 1)d, we set

I(g) :=
∫

[0,1)d

h(g′(s))ds, (1.3)

g′ denoting (a version of) the derivative of g with respect to the Lebesgue
measure. Whenever g fails to be absolutely continuous, we set I(g) = ∞. Also
de�ne, for any a > 0 ,

Γa :=
{
g ∈ B([0, 1)d), I(g) ≤ 1/a

}
. (1.4)

In a pioneering work, Deheuvels and Mason ([5]) established the following non
standard uniform functional limit law for the ∆n(z, hn, ·), when the (Zi) are
uniform on [0, 1].

Theorem 1 (Deheuvels, Mason, 1992) Assume that d = 1 and that the
(Zi)i≥1 are uniformly distributed on [0, 1]. Let 0 ≤ a < b < 1 be two real num-
bers, and let (hn)n≥1 be a sequence of positive constants satisfying (HV E1)−
(HV E2) for some constant c > 0. Then we have almost surely

lim
n→∞

sup
z∈[0,1−hn]

inf
g∈Γc

∣∣∣∣∣∣∣∣ n

c log n
∆n(z, hn, ·)− g

∣∣∣∣∣∣∣∣ = 0,

∀g ∈ Γc, lim
n→∞

inf
z∈[0,1−hn]

∣∣∣∣∣∣∣∣ n

c log n
∆n(z, hn, ·)− g

∣∣∣∣∣∣∣∣ = 0.

As a corollary, the authors showed that, when the sequence of bandwidth
(hn)n≥1 satis�es (HV E1)−(HV E2), the Parzen-Rosenblatt kernel density es-
timator is not uniformly strongly consistent. They proved this non-consistency
result by making use of some optimisation techniques on Orlicz balls (see De-
heuvels and Mason [4]). The aim of the present paper is to provide a gener-
alisation of the former result to the case where the (Zi)i≥1 take values in Rd.
This generalisation can be stated as follows.

Theorem 2 Assume that the (Zi)i≥1 have a density f satisfying (Hf). Let
H ⊂ O be a compact set with nonempty interior. Let (hn)n≥1 be a sequence
of positive constants ful�lling (HV E1) and (HV E2). Then we have almost
surely

(i) ∀z ∈ H, ∀g ∈ Γcf(z), lim
n→∞

inf
{∣∣∣∣∣∣∣∣∆n(z′, hn, ·)− g

∣∣∣∣∣∣∣∣, z′ ∈ H
}

= 0, (1.5)

(ii) lim
n→∞

sup
z∈H

inf
{∣∣∣∣∣∣∣∣∆n(z, hn, ·)− g

∣∣∣∣∣∣∣∣, g ∈ Γcf(z)

}
= 0. (1.6)

Denote by fn(K, z, hn) the usual kernel density estimator with bandwidth hn

and kernel K. A consequence of Theorem 2 is that, under (HV E1)−(HV E2),
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fn(K, z, hn) is not uniformly consistent (in a strong sense) over (say) an hy-
percube of Rd.
Corollary: Let K be a kernel with compact support and bounded varia-
tion. Assume (Hf) and (HV E1) − (HV E2). Let H ⊂ O be a compact with
nonempty interior. Then the following event holds with probability one:

∃ε > 0, ∃n0, ∀n ≥ n0, sup
z∈H

| fn(K, z, hn)− f(z) |> ε.

Proof : The proof follows exactly the lines of Deheuvels and Mason (see [5],
Theorem 4.2) and is based on some optimisation results on Orlicz Balls that
have been provided in Deheuvels and Mason [4]. �
From now on, we shall make use of the following notation

∆n(z, hn, s) :=

n∑
i=1

1[0,s]

(
Zi−z

h
1/d
n

)
cf(z) log n

, s ∈ [0, 1)d.

Remark 1

Deheuvels and Mason [6] have already given a nonstandard functional limit law
for a single increment ∆n(z0, hn, ·) when (HV E2) is replaced by nhn/ log log n →
c > 0. Their result is presented in a more general setting, considering the
∆n(z0, hn, ·) as random measures indexed by a class of sets.
The remainder of this paper is organised as follows. In �2 we provide some
tools in large deviation theory, which are consequences of results of Arcones [1]
and Lynch and Sethuraman [9]. In �3, a uniform large deviation principle for
"poissonized" versions of the ∆n(z, hn, ·) is established. In �4 and �5, we make
use of the just-mentioned uniform large deviation principle to prove Theorem
2.

2 Uniform large deviation principles

The main tool we shall make use of in �4 and �5 is a uniform large deviation
principle for a triangular array of compound Poisson processes. We must �rst
remind some usual notions in large deviation theory. Let (E, d) be a metric
space. A real function J : E → [0,∞] is said to be a rate function (implicitly
for (E, d)) when the sets {x ∈ E : J(x) ≤ a}, a ≥ 0, are compact sets of

(E, d). We shall �rst show that I is a rate function on
(
B([0, 1)d), || · ||

)
by

approximating it by suitably chosen simple rate functions.
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2.1 Approximations of I

Given g ∈ B([0, 1)d) and a Borel set A, we shall write

g(A) :=
∫

[0,1)d

1Adg, (2.1)

which is valid as soon as either g or 1A has bounded variation. For any integer
p ≥ 1 and for each 1 ≺ i ≺ 2p set

Ap
i := 2−p [i− 1, i) , (2.2)

with the notation i− 1 := (i1 − 1, . . . , id − 1). Recall that h is given in (1.2),
and that λ is the Lebesgue measure on [0, 1)d. The following functions will
play the role of approximations of I (given in (1.3)), as p →∞ :

Ip(g) :=
∑

1≺i≺2p

2−pdh
(
2pdg(Ap

i )
)

(2.3)

=
∑

1≺i≺2p

λ (Ap
i ) h

(
g(Ap

i )

λ(Ap
i )

)
, g ∈ B([0, 1)d).

We point out the following properties of the function I.

Proposition 2.1 For each g ∈ B([0, 1)d), we have

lim
p→∞

Ip(g) = I(g). (2.4)

Moreover, I is a rate function on
(
B([0, 1)d), || · ||

)
.

Proof : Choose g ∈ B([0, 1)d) arbitrarily and assume that I(g) > 0 (nontrivial
case). In a �rst time, we suppose that g has bounded variation, so that it
can be interpreted as a �nite measure. Denote by Tp the σ-algebra of [0, 1)d

spawned by the sets Ap
i , 1 ≺ i ≺ 2p. Clearly, for all p ≥ 1, the measure g is

absolutely continuous with respect to the (trace of the) Lebesgue measure λ
on Tp. Furthermore, the corresponding Radon-Nicodym derivative is given by
the following equality.

Lp :=
dg

dλ
|Tp=

∑
1≺i≺2p

1Ap
i

g(Ap
i )

λ(Ap
i )

. (2.5)

Clearly the σ-algebra spawned by the (increasing) sequence (Tp)p≥1 is equal to
the Borel σ-algebra of [0, 1)d. Assume �rst that g is absolutely continuous with
respect to λ. According to Dacunha-Castelle and Du�o [2], p. 63, the sequence
Lp converges λ + g almost everywhere to a positive function L satisfying L =
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g′ (λ+g almost everywhere). Now select 0 < l < I(g) arbitrarily. By de�nition
of I, there exists ε > 0 satisfying∫

ε<L<1/ε

h(L)dλ > l.

Since Lp → L (λ + g almost everywhere as p →∞) and since h is continuous,
we have

lim inf
p→∞

h(Lp)1{ε<Lp<1/ε} ≥ h(L)1{ε<L<1/ε} λ + g almost everywhere

Hence by an application of Fatou's lemma,

lim inf
p→∞

∫
ε<Lp<1/ε

h(Lp)dλ ≥
∫

ε<L<1/ε

h(L)dλ > l.

Since supp≥1 Ip(g) ≤ I(g) by a straightforward use of Jensen's inequality, and
since l < I(g) was chosen arbitrarily, we readily infer that Ip(g) → I(g) as p →
∞. Now assume that I(g) = ∞ and that g is not absolutely continuous with
respect to λ. According to Dacunha-Castelle and Du�o [2], p. 63, the sequence
Lp converges λ + g almost everywhere to a positive function L satisfying (λ +
g)({L = ∞}) =: τ > 0. De�ne

`(x) := x−1h(x) = log(x)− 1 + x−1, x > 0.

Clearly, `(x) → ∞ as | x |→ ∞. Now select l > 0 arbitrarily, and choose
A > 0 satisfying

inf
x>A

`(x) >
2l

τ
.

Since Lp → L (λ + g almost everywhere as p →∞) we have g(Lp > A) > τ/2
for all large p, whence

Ip(g) ≥
∫

Lp∈(A,∞)

`(Lp)Lp dλ

=
∫

Lp∈(A,∞)

`(Lp)dg

≥2l

τ
g(Lp > A)

>l. (2.6)

We have shown that (2.4) is true for each g with bounded variation. Whenever
g has in�nite variation, then it can be shown that Ip(g) → ∞ by a discrete
version of the argument that have just been invoked to obtain (2.6). We omit
details for sake of briefness.
Since all the functions Ip are || · ||-continuous and since Ip(g) ↑ I(g) for all
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g ∈ B([0, 1)d), we conclude that I is lower-semicontinuous for || · ||. Hence, I
is a rate function if and only if the set Γa is totally bounded for each a > 0
(recall (1.4)). Since x−1h(x) → ∞ as | x |→ ∞, we have, for some constant
M > 0,

| x |≤| x | 1|x|≤M + h(x), (2.7)

from where we readily infer that∫
[0,1)d

| g′ | dλ ≤ M + 1/a for each a > 0 and g ∈ Γa. (2.8)

Applying the Arzela-Ascoli criterion, we conclude that, for each a > 0, the
closed set Γa is totally bounded, which entails that I is a rate function on(
B([0, 1)d), || · ||

)
. This concludes the proof of Proposition 2.1.�

2.2 Uniform large deviations in
(
B([0, 1)d), || · ||

)

We shall now give a de�nition of a large uniform large deviation principle in the
metric space

(
B([0, 1)d), || · ||

)
. In the sequel, (εn,i)n≥1,i≤mn will always denote

a triangular array of positive numbers satisfying maxi≤mn εn,i → 0 as n →∞.
Let (Xn,i)n≥1, i≤mn be a triangular array of random elements on probability
space (ω, T ′, P), taking values in B([0, 1)d). In order to handle carefully the
notions of inner and outer probabilities, we shall that each Xn,i is a suitable
projection mapping from (Ω, T ′) to E, where

Ω :=
∞∏

n=1

p∏
i=1

B([0, 1)d), T ′ :=
∞⊗

n=1

p⊗
i=1

T ,

and T is the Borel σ-algebra of
(
B([0, 1)d), || · ||

)
. From now on, outer and

inner probabilities P∗ and P∗ are understood with (Ω, T ′) as the underlying
probability space. We say that (Xn,i)n≥1, i≤mn satis�es the Uniform Large De-
viation Principle (ULDP) for (εn,i)n≥1, i≤mn and for a rate function J whenever
the two following conditions hold.

• For any || · ||-open set O ⊂ B([0, 1)d) we have

lim inf
n→∞

min
i≤mn

εn,i log (P∗ (Xn,i(·) ∈ O)) ≥ −J(O). (2.9)

• For any || · ||-closed set F ⊂ B([0, 1)d) we have

lim sup
n→∞

max
i≤mn

εn,i log (P∗ (Xn,i(·) ∈ F )) ≤ −J(F ). (2.10)

Remark 2
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The same de�nition holds for triangular arrays of random variables taking
values in Rp, p ≥ 1. The norm || · || can then be replaced by any norm.

Arcones [1] provided a powerful tool to establish Large Deviation Principles
for sequences of bounded stochastic processes. Some veri�cations lead to the
conclusion that the just-mentioned tool can be used in our context. Recall
that the sets Ap

i have been de�ne by (2.2). Consider the following �nite grid,
for p ≥ 1 :

si,p := 2−p(i− 1), 1 ≺ i ≺ 2p. (2.11)

Given, p ≥ 1 and g ∈ B([0, 1)d), we write

g(p) =
∑

1≺i≺2p

1Ap
i
g(si,p).

Proposition 2.2 Let (Xn,i)n≥1, i≤mn be a triangular array of random elements
taking values in (B([0, 1)d)) almost surely, and let (εn,i)n≥1, i≤mn be a triangu-
lar array of positive real numbers. Assume that the following conditions are
satis�ed.

(1) The triangular array of stochastic process (X
(p)
n,i )n≥1, i≤mn satis�es the

ULDP for (εn,i)n≥1, i≤mn and for the rate function Ip on
(
B([0, 1)d), || · ||

)
.

(2) For each τ > 0 and M > 0 there exists p ≥ 1 satisfying

lim sup
n→∞

max
i≤mn

εn,i log

P∗
 max

1≺i≺2p
sup
s∈Ap

i

| Xn,i(t)−Xn,i(s
p
i ) |≥ τ

 ≤ −M.

Then (Xn,i)n≥1, i≤mn satis�es the ULDP for (εn,i)n≥1, i≤mn and for the following
rate function.

J(g) := sup
p≥1

Ip (gp) , g ∈ B([0, 1)d).

Proof : The proof follows exactly the same lines as in the proof of Theorem 3.1
of Arcones [1]. Using theses arguments in our context remains possible since
the cone B([0, 1)d) is a closed subset of L∞([0, 1)d) for the usual sup norm
|| · ||. We avoid writing the proof for sake of briefness. �
Another tool we shall make an intensive use of is a ULDP for random vectors
with mutually independent coordinates.

Proposition 2.3 Let (Xn,i)n≥1, 1≤i≤mn and (Yn,i)n≥1, 1≤i≤mn be two triangular
arrays of random vectors taking values in Rd and Rd′ respectively, and satisfy-
ing Xn,i ⊥⊥ Yn,i for each n ≥ 1, 1 ≤ i ≤ mn. Assume that both (Xn,i)n≥1, 1≤i≤mn

and (Yn,i)n≥1, 1≤i≤mn satisfy the ULDP for a triangular array (εn,i)n≥1, i≤mn

and for two rate functions J1 and J2 respectively. Then the triangular array
(Xn,i, Yn,i)n≥1,i≤mn satis�es the ULDP for (εi,n)n≥1, i≤mn and for the following
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rate function.

J(z1, z2) := J1(z1) + J2(z2), z1 ∈ Rd, z2 ∈ Rd′ .

Proof : The proof follows the same lines as Lemma 2.6 and Corollary 2.9 in
Lynch and Sethuraman [9]. In the just-mentioned article, the authors make
use of the notions of Weak Large Deviation Principle and of LD-tightness for
sequences of random variables in a Polish space. These notions can be easily
extended to the frame of triangular arrays of random variables. �
The following proposition is nothing else than the contraction principle in the
framework of ULDP (see, e.g., [1], Theorem 2.1 for the most general version
of that principle).

Proposition 2.4 Let (Xn,i)n≥1, i≤mn be a triangular arrays of Rp valued ran-
dom vectors satisfying the ULDP for a triangular array (εn,i)n≥1, i≤mn and for a

rate function J . Let R be a continuous mapping from Rd to
(
B([0, 1)d), || · ||

)
.

Then (R(Xn,i))n≥1, i≤mn satis�es the ULDP for (εn,i)n≥1, i≤mn and for the fol-
lowing rate function.

JR(g) := inf{J(x), R(x) = g}, g ∈ B([0, 1)d),

with the convention inf ∅ = ∞.

Proof : Straightforward. �
The following proposition shall be useful in our the proof of our Lemma 4.

Proposition 2.5 Let (Xn,i)n≥1,i≤mn be a triangular array of real random vari-
ables and let (εn,i)n≥1,i≤mn be a triangular array of positive real numbers. As-
sume that there exists a strictly convex positive function J on R and a real
number µ such that J(µ) = 0 and

∀a > µ, lim
n→∞

max
i≤mn

∣∣∣∣εn,i log (P (Xn,i ≥ a))− J(a)
∣∣∣∣ = 0, (2.12)

∀a < µ, lim
n→∞

max
i≤mn

∣∣∣∣εn,i log (P (Xn,i ≤ a))− J(a)
∣∣∣∣ = 0. (2.13)

Then (Xn,i)n≥1, i≤mn
satis�es the ULDP for (εn,i)n≥1, i≤mn

and for J .

Proof : The proof is routine calculus.�
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3 A ULDP for poissonised versions of the ∆n(z, hn, ·)

De�ne the following process, for each integer n ≥ 1.

∆Πn(z, hn, s) :=

ηn∑
i=1

1[0,s]

(
Zi−z

h
1/d
n

)
cf(z) log n

, s ∈ [0, 1)d. (3.1)

Here ηn is a Poisson random variable independent of (Zi)i≥1, with expectation
n. These "poissonized" versions of the processes ∆n(z, hn, ·) can be identi�ed
to random (Poisson) measures by the following relation

∆Πn(z, hn, A) :=
∫

[0,1)d

1A(s)d∆Πn(z, hn, s), A Borel. (3.2)

The key of our proof of Theorem 2 is the following ULDP.

Proposition 3.1 Let (zi,n)n≥1, 1≤i≤mn be a triangular array of elements of
H. Under the assumptions of Theorem 2, the triangular array of processes
(∆Πn(zi,n, hn, ·))n≥1, 1≤i≤mn satis�es the ULDP in (B([0, 1)d), || · ||) for the
rate function I and for the following triangular array

εn,i :=
1

cf(zi,n) log n
, n ≥ 1, 1 ≤ i ≤ mn. (3.3)

Remark 3

Proposition 3.1 is true whatever the constant c > 0 appearing in assumption
(HVE1). This remark will show up to be useful in Lemma 6 in �5.
Proof : To prove proposition 3.1, we shall make use of Proposition 2.2. We
hence have to check conditions 1, 2 and 3 of the just-mentioned proposition.
This will be achieved through several lemmas.

3.1 A preliminary lemma

Recall notation (2.1). To check condition 2 of Proposition 2.2, we need �rst
to establish the following lemma.

Lemma 4 Assume that the hypothesis of Theorem 2 are satis�ed. Then, for
each p ≥ 1 and for each 1 ≺ i0 ≺ 2p, the triangular array of random variables
(∆Πn(zi,n, hn, A

p
i0
))n≥1, 1≤i≤mn satis�es the ULDP in [0,∞) for the triangular

array (εn,i)n≥1, i≤mn and for the following rate function:

Ĩp(x) := 2−pdh
(

x

2−pd

)
= λ

(
Ap

i0

)
h

 x

λ
(
Ap

i0

)
 , x ≥ 0. (3.4)
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Proof : Fix once for all p ≥ 1 and 1 ≺ i0 ≺ 2d. We shall make use of Propo-
sition 2.5, with J := Ĩp and µ := 2−pd. We give details only for the proof of
(2.12), as proving (2.13) is very similar. Fix a > 2−pd. For each integers n ≥ 1
and 1 ≤ i ≤ mn, we set (recall (3.2))

Vi,n,i0 :=cf(zi,n)(log n)∆Πn(zi,n, hn, A
p
i0
),

pi,n,i0 :=P
(
Z1 ∈ zi,n + h1/d

n Ap
i0

)
.

Clearly Vi,n,i0 is a Poisson random variable with expectation npi,n,i0 . Since the
density f satis�es (Hf) and since λ(Ap

i0
) = 2−pd, we have

lim
n→∞

max
1≤i≤mn

∣∣∣∣ pi,n,i0

f(zi,n)2−pdhn

− 1
∣∣∣∣ = 0. (3.5)

Hence according to (HVE2) we have, ultimately as n →∞,

min
1≤i≤mn

acf(zi,n) log n

npi,n,i0

> 1. (3.6)

We then make use of Cherno�'s inequality for Poisson random variables to
get, for all large n (satisfying (3.6)) and for all 1 ≤ i ≤ mn,

P
(
∆Πn(zi,n, hn, A

p
i0
) ≥ a

)
= P (Vi,n,i0 ≥ acf(zi,n) log n)

≤ exp

(
−npi,n,i0h

(
acf(zi,n) log n

npi,n,i0

))
. (3.7)

But (3.7) in combination with (3.5) entails

lim sup
n→∞

max
1≤i≤mn

pi,n,i0

f(zi,n)hn

h

(
acf(zi,n) log n

npi,n,i0

)
≤ 2−pdh

(
a

2−pd

)
, (3.8)

which, together with (3.7) leads to

lim sup
n→∞

max
1≤i≤mn

εn,i log
(
P
(
∆Πn(zi,n, hn, A

p
i0
) ≥ a

))
≤ −Ĩp(a). (3.9)

Now select y > a arbitrarily. If we could show that

lim inf
n→∞

min
1≤i≤mn

εn,i log
(
P
(
∆Πn(zi,n, hn, A

p
i0
) ≥ a

))
≥ −Ĩp(y),

then, as y > a was chosen arbitrarily, and since Ĩp is increasing on [a,∞), we
should be able to conclude the proof of (2.12)with J = Ĩp. Now set φ(t) :=
exp (exp(t)− 1) , t ∈ R and notice that h(z) = maxu∈R zu − log (φ(u)) for
each z > 0. Set u0 := log(2pdy), so as

h(2pdy) =2pdyu0 − log (φ(u0)) . (3.10)
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Denote by F the distribution function of a Poisson random variable with
expectation 1, and de�ne F0 by

dF0(x) := φ (u0)
−1 exp(u0x)dF (x). (3.11)

Let "*" be the convolution operator for in�nitely divisible laws and notice
that, for each L > 0, we have

dF ∗L
0 (·) =φ (u0)

−L exp(u0·)dF ∗L(·), (3.12)

EF ∗L
0

(X) =2pdLy, (3.13)

VarF ∗L
0

(X) =LVarF0(X) (3.14)

Here we have written EF (X) as the expectation of a random variable with
distribution F . Now �x δ > 0 satisfying [y−δ, y+δ] ⊂ [a,∞[ arbitrarily. Obvi-
ously, F ∗npi,n,i0 is the distribution function of cf(zi,n)(log n) ∆Πn(zi,n, hn, A

p
i0
),

whence

P
(
∆Πn(zi,n, hn, A

p
i0
) ≥ a

)
≥ P

(
∆Πn(zi,n, hn, A

p
i0
) ∈ [y − δ, y + δ]

)
=

∫
x

cf(zi,n) log n
∈[y−δ,y+δ]

dF ∗npi,n,i0 (x)

≥ exp (−u0(y + δ)cf(zi,n) log n)×
∫

x
cf(zi,n) log n

∈[y−δ,y+δ]

exp(u0x)dF ∗npi,n,i0 (x)

≥ exp (−cf(zi,n)(log n)u0(y + δ) + npi,n,i0 log (φ(u0)))

×
∫

x
cf(zi,n) log n

∈[y−δ,y+δ]

dF
∗npi,n,i0
0 (x) (3.15)

:= ai,n,i0,δ × bi,n,i0,δ.

Here (3.15) is a consequence of (3.12), with L := npi,n,i0 . Now let n ≥ 1 be an
integer large enough to ful�ll (recall (3.5))

max
1≤i≤mn

∣∣∣∣ npi,n,i0

2−pdcf(zi,n) log n
− 1

∣∣∣∣ ≤ u0 log (φ(u0))
−1 δ, (3.16)

which enables us to write the following chain of inequalities.

cf(zi,n)(log n)u0(y + δ)− npi,n,i0 log (φ(u0))

≤ 2−pd(y + δ)cf(zi,n) log n
(
u02

pd − log (φ(u0)) + u0δ
)

≤ 2−pdcf(zi,n) log n
(
h
(
2pdy

)
+ u0(2

pd + 1)δ
)

= cf(zi,n) log n
(
Ĩp(y) + 2−pd

(
2pd + 1

)
u0δ

)
≤ cf(zi,n) log n

(
Ĩp(y) + 2u0δ

)
. (3.17)

12



Therefore we have, for all large n and for all 1 ≤ i ≤ mn,

ai,n,i0,δ ≥ exp
(
−cf(zi,n) log n

(
Ĩp(y) + 2u0δ

))
, (3.18)

where u0 = log(2pdy) depends on y > a only. It remains to show that

lim
n→∞

min
1≤i≤mn

bi,n,i0,δ = 1. (3.19)

Consider n large enough to ful�ll (recall (3.5))

y − δ

y + 2−pdδ
< min

1≤i≤mn

npi,n,i0

2−pdcf(zi,n) log n
≤ max

1≤i≤mn

npi,n,i0

2−pdcf(zi,n) log n
<

y + δ

y − 2−pdδ
,

so as, for all 1 ≤ i ≤ mn,

npi,n,i0

2−pdcf(zi,n) log n
× [y − 2−pdδ, y + 2−pdδ] ⊂ ]y − δ, y + δ[, (3.20)

and hence

bi,ni0,δ ≥
∫

x
npi,n,i0

∈[2pdy−δ,2pdy+δ]

dF
∗npi,n,i0
0 (x).

Recalling (3.13) and (3.14) we get, by the Bienaymé-Tchebychev inequality,

1− bi,n,i0,δ ≤
VarF0(X)

δnpi,n,i0

. (3.21)

By assumption (Hf) we infer that the h−1
n pi,n,i0 are bounded away from zero,

from where (3.15) follows. Then (3.15), (3.18) and (3.19) entail

lim inf
n→∞

min
1≤i≤mn

εn,i log
(
P
(
∆Πn(zi,n, hn, A

p
i0
) ≥ a

))
≥ −Ĩp(y)− 2u0δ. (3.22)

Assertion (2.12) is then proved by combining (3.9) with (3.22), as δ > 0 is
arbitrary. �

3.2 Veri�cation of condition 2 of Proposition 2.2

For n ≥ 1 and 1 ≤ i ≤ mn, de�ne the following R2pd
valued random vector:

Xn,i := (Xi0,n,i)1≺i0≺2p

:=
(
∆Πn(zi,n, hn, A

p
i0
)
)

1≺i0≺2p
.

Notice that the random variables Xi0,n,i, 1 ≺ i0 ≺ 2p are mutually independent
for �xed n ≥ 1 and 1 ≤ i ≤ mn by usual properties of Poisson random
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measures. Hence, by Lemma 4 together with Proposition 2.3 we deduce that
the triangular array (Xn,i)n≥1, i≤mn satis�es the ULDP with (εn,i)n≥1, i≤mn and
with the following rate function.

I ′p(x) :=
∑

1≺i≺2p

2−pdh
(

xi

2−pd

)
, x ∈ [0,∞)2pd

. (3.23)

Here we have written x := (xi)1≺i≺2p . We now de�ne the following mappings

from [0,∞)2pd

to
(
B([0, 1)d)

)

Rp(x) : [0, 1)d 7→ [0,∞)

s → ∑
Ap

i
⊂[0,s]

xi.

Denote by [x] the integer part of a real number x ([x] ≤ x < [x] + 1), and
write [s] := ([s1], . . . , [sd]) for any s = (s1, . . . , sd) ∈ Rd. We point out that
with probability one (recall the notations of Proposition 2.2)

Rp(Xn,i)(s) =∆Πn

(
zi,n, hn, 2

−p[2ps]
)

=∆Πn (zi,n, hn, s)
(p), s ∈ [0, 1)d.

For �xed p ≥ 1, we make use of the contraction principle (Proposition 2.4)
to conclude that (Rp(Xn,i))n≥1, i≤mn satis�es the ULDP for (εn,i)n≥1, i≤mn and
for the following rate function.

Ip(g) := inf
{
I ′p(x), x ∈ [0,∞)2pd

, Rp(x) = g
}

, g ∈ B([0, 1)d), (3.24)

with the convention inf ∅ = ∞. Obviously, the set appearing in (3.24) is non
void if and only if g is the cumulative distribution function of a purely atomic
measure with atoms belonging to the grid {si,p, 1 ≺ i ≺ 2p}. In that case we
have

Ip(g) =
∑

1≺i≺2p

2−pdh

(
g(Ap

i )

2−pd

)
= Ip(g).

Here, we have identi�ed g to a positive �nite measure on [0, 1)d (recall (2.1)).
Assumption 2 of Proposition 2.2 is then satis�ed.
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3.3 Veri�cation of condition 3 of Proposition 2.2

Fix τ > 0 and M > 0. We have to prove that, provided that p is large enough,

lim sup
n→∞

max
1≤i≤mn

εn,i

log

P

 max
1≺i≺2p

sup
s∈Ap

i

∣∣∣∣∆Πn (zi,n, hn, s)−∆Πn

(
zi,n, hn, 2

−p(i− 1)
) ∣∣∣∣ ≥ τ


≤−M. (3.25)

For �xed p ≥ 1, n ≥ 1, 1 ≤ i ≤ mn, a rough upper bound gives

P

 max
1≺i≺2p

sup
s∈Ap

i

∣∣∣∣∆Πn (zi,n, hn, s)−∆Πn

(
zi,n, hn, 2

−p(i− 1)
) ∣∣∣∣ ≥ τ



≤2pd max
1≺i≺2p

P

 sup
2−p(i−1)≺s

≺2−pi

∣∣∣∣∆Πn (zi,n, hn, s)−∆Πn

(
zi,n, hn, 2

−p(i− 1)
) ∣∣∣∣ ≥ τ


≤ P

(
∆Πn

(
zi,n, hn, 2

−pi
)
−∆Πn

(
zi,n, hn, 2

−p(i− 1)
)
≥ τ

)
=: Pi,n,i,p. (3.26)

We shall now write

Wi,n,i,p :=cf(zi,n) log n
(
∆Πn

(
zi,n, hn, 2

−pi
)
−∆Πn

(
zi,n, hn, 2

−p(i− 1)
))

,

µi,n,i,p :=P
(

Z1 − zi,n

h
1/d
n

∈ [0, 2−pi)− [0, 2−p(i−))

)
, and

νi,p :=λ
(
[0, 2−pi)− [0, 2−p(i−))

)
≤ d2−p. (3.27)

Clearly, Wi,n,i,p is a Poisson random variable with expectation nµi,ni,p. More-
over, by assumption (Hf) we have

lim
n→∞

min
1≤i≤mn,
1≺i≺2p

cf(zi,n)(log n)νi,p

nµi,n,i,p

= 1. (3.28)

Recall that x−1h(x) → ∞ as x → ∞. We can then choose AM,τ > 1 large
enough to satisfy

inf
x≥AM,τ

h(x)

x
>

8M

τ
. (3.29)

By (3.27) we can choose p large enough to ful�ll

min
1≺i≺2p

τ

2νi,p

> Aτ,M . (3.30)
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Assertion (3.28) together with (3.30) leads to the following inequality, for all
large n, for all 1 ≤ i ≤ mn and for all 1 ≺ i ≺ 2p.

cf(zi,n)τ log n

nµi,n,i,p

≥ τ

2νi,p

> Aτ,M > 1. (3.31)

Applying Cherno�'s inequality to the Poisson random variables Wi,n,i,p we get,
for all large n and for all 1 ≤ i ≤ mn,

Pi,n,i,p = P (Wi,n,i,p ≥ τcf(zi,n) log n)

≤ exp

(
−nµi,n,i,ph

(
cf(zi,n)τ log n

nµi,n,i,p

))
.

Therefore, recalling (3.28) and (3.31), the following inequality holds for all
large n, for all 1 ≤ i ≤ mn and for all 1 ≺ i ≺ 2p.

Pi,n,i,p ≤ exp

(
−1

2
cf(zi,n)νi,p(log n)h

(
τ

2νi,p

))
≤ exp (−cf(zi,n)2M log n) . (3.32)

Here, (3.32) is a consequence of (3.30). By combining (3.32) with and (3.26)
we get, for all large n and for each 1 ≤ i ≤ mn,

P

 max
1≺i≺2p

sup
s∈Ap

i

∣∣∣∣∆Πn (zi,n, hn, s)−∆Πn

(
zi,n, hn, 2

−p(i− 1)
) ∣∣∣∣ ≥ τ


≤ exp

(
−2Mcf(zi,n) log n + log(2pd)

)
,

which proves (3.25) and shows that condition 3 of Proposition 2.2 is satis�ed,
as f is bounded away from zero on H. We can now make use of the just-
mentioned proposition in combination with Proposition 2.1 to conclude the
proof of Proposition 3.1. �

4 Proof of part (i) of Theorem 2

Denote by Int(H) the interior of H, and �x z ∈ Int(H), g ∈ Γcf(z), and ε > 0.
We set

gε :=
{
g′ ∈ B([0, 1)d), || g′ − g ||< ε

}
. (4.1)

By lower semi continuity of I in
(
B([0, 1)d), || · ||

)
(recall Proposition 2.1),

there exists α1 > 0 satisfying

I (gε) =
1− 3α1

cf(z)
. (4.2)
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Now choose an hypercube with nonempty interior H ′ := [a1, b1]× . . .× [ap, bp]
ful�lling H ′ ⊂ H, P (Z1 ∈ H ′) ≤ 1/2 and

inf
z′∈H′

f(z′)

f(z)
>

1− 2α1

1− α1

. (4.3)

Such a choice is possible since H has a nonempty interior by assumption. We
now divide H ′ into disjoint hypercubes zi,n + h1/d

n [0, 1)d, 1 ≤ i ≤ mn, where
mn is the maximal number of disjoint hypercubes we can construct without
violating

mn⋃
i=1

{
zi,n + h1/d

n [0, 1)d
}
⊂ H ′. (4.4)

Notice that, as n →∞,

mn = h−1+o(1)
n = n(1+o(1)). (4.5)

Now recall (3.1). By making use of a well-known "poissonization" technique
(see, e.g., Mason [11], Fact 6), we get the following upper bound for all large
n.

P

 ⋂
z′∈H

{∆n(z′, hn, ·) /∈ gε}

 ≤ P
(

mn⋂
i=1

{∆n(zi,n, hn, ·) /∈ gε}
)

≤ 2P
(

mn⋂
i=1

{∆Πn(zi,n, hn, ·) /∈ gε}
)

(4.6)

= 2
mn∏
i=1

(1− P (∆Πn(zi,nhn, ·) ∈ gε)) (4.7)

≤ 2 exp
(
−mn min

1≤i≤mn

P (∆Πn(zi,n, hn, ·) ∈ gε)
)

(4.8)

The transition between (4.6) and (4.7) is a classical property of Poisson ran-
dom measures, while inequality (4.8) is a consequence of 1−u ≤ exp(−u), u ≥
0. We now make use of Proposition 3.1 (with the open ball gε) to get, for all
large n (recall (4.2)),

P

 ⋂
z′∈H

{∆n(z′, hn, ·) /∈ gε}

 ≤2 exp
(
−mn min

1≤i≤mn

n−
f(zi,n)

f(z)
(1−2α1)

)
≤ exp (−nα1) ,

which is a consequence of (4.3) and (4.5). Hence we conclude by the Borel-
Cantelli lemma that, almost surely,

lim
n→∞

inf {|| ∆n(z′, hn, ·)− g ||, z′ ∈ H} ≤ ε.

As ε > 0 was chosen arbitrarily, the proof of part (i) of Theorem 2 is concluded
for each z ∈ Int(H). Now the case where z ∈ H does not belong to Int(H) is
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treated by making use of the following argument: for each z1 ∈ H, g1 ∈ Γcf(z1)

and ε > 0, there exists z2 ∈ Int(H) and g2 ∈ Γcf(z2) satisfying || g1 − g2 ||< ε.
Such an argument is valid by (Hf) and by Lemma 5 (see below).�

5 Proof of part (ii) of Theorem 2

We shall make use of somewhat usual blocking arguments along the following
subsequence nk := [exp(k/ log k)] , k ≥ 3 and its associated blocks Nk :=
{nk−1 + 1, . . . , nk}. Given A ⊂ B([0, 1)d) and ε > 0 we shall write

Aε :=
{
g ∈ B([0, 1)d), inf

g′∈A
|| g − g′ ||< ε

}
. (5.1)

The following lemma shall come in handy.

Lemma 5 For any ε > 0 and L > 0 there exists η > 0 satisfying, for each,
L′ ∈ [(1 + η)−1L, L], ΓL′ ⊂ Γε

L.

Proof : The proof is routine analysis.�
Now �x ε > 0. Since I is lower-semi continuous on

(
B([0, 1)d), || · ||

)
(recall

Proposition 2.1) we deduce that, given z ∈ H, there exists αz > 0 satisfying

I
(
B([0, 1)d)− Γε

cf(z)

)
=

1 + 3αz

cf(z)
. (5.2)

By (Hf) and Lemma 5 we can construct an hypercube Hz with nonempty
interior satisfying the following conditions.

z ∈ Hz, Hz ⊂ O, (5.3)

inf
z1,z2∈Hz

f(z1)

f(z2)
≥ 1 + αz

1 + 2αz

, (5.4)⋃
z′∈Hz

Γcf(z′) ⊂ Γε
cf(z), (5.5)

P

Z1 ∈
⋃

z∈Hz

{
z + [0, hnk

1/d)
d
} ≤ 1/2. (5.6)

The compact set H is included in the union of the interiors of Hz, z ∈ H,
from where we can extract a �nite union, noted as

H ⊂
L⋃

l=1

IntHzl
⊂

L⋃
l=1

Hzl
⊂ O. (5.7)
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Our problem is now reduced to showing that, for �xed l = 1, . . . , L,

lim sup
n→∞

sup
z∈Hzl

inf
g∈Γcf(zl)

|| ∆n(z, hn, ·)− g ||≤ 10ε almost surely. (5.8)

We now �x 1 ≤ l ≤ L, and we write Hzl
=: [a1, b1] × . . . × [ad, bd]. We now

introduce a parameter δ > 0 that will be chosen in function of ε in the sequel.
For each k ≥ 1, we cover Hzl

by hypercubes

Hzl
⊂

⋃
1≤i≤mnk

Ci,nk
⊂ O, , (5.9)

with

Ci,nk
:=zi,nk

+ [0, (δhnk
)1/d)

d
, k ≥ 1, 1 ≤ i ≤ mnk

and

mnk
:=

d∏
p=1

([
bp − ap

(δhnk
)1/d

]
+ 1

)
. (5.10)

Now de�ne, for each k ≥ 1, n ∈ Nk, z ∈ H,

Hn(z, s) :=
1

c log nk

n∑
i=1

1[0,s)

(
Zi − z

hnk

1/d

)
, s ∈ [0, 1)d.

We shall �rst show that, for any choice δ > 0, we have almost surely

lim sup
n→∞

sup
1≤i≤mnk

inf
g∈Γcf(zl)

|| Hn(zi,nk
, ·)− g ||≤ 2ε. (5.11)

Consider the following probabilities for all large k.

Pk := P

 ⋃
1≤i≤mnk

⋃
n∈Nk

Hn(zi,nk
, ·) /∈ Γ2ε

cf(zl)

 .

We have, ultimately as k →∞,

Pk ≤ mk max
1≤i≤mnk

P

 ⋃
n∈Nk

Hn(zi,nk
, ·) /∈ Γε

cf(zl)

 . (5.12)

We now make use of a well-known maximal inequality (see, e.g., Deheuvels
and Mason [5], Lemma 3.4) to get, for all large k and for all 1 ≤ i ≤ mnk

,

P

 ⋃
n∈Nk

Hn(zi,nk
, ·) /∈ Γ2ε

cf(zl)

 ≤ 2P
(
Hnk

(zi,nk
, ·) /∈ Γε

cf(zl)

)
. (5.13)

We point out that the conditions of Lemma 3.4 in [5] are satis�ed since, by a
straightforward use of Markov's inequality we have, ultimately as k →∞,

sup
z∈H

max
n∈Nk

P (|| Hnk
(z, ·)−Hn(z, ·) ||≥ ε) ≤ 1

2
.
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Making use of (5.13) in (5.12), we obtain, for all large k,

Pk ≤ 2mk max
1≤i≤mnk

P
(
Hnk

(zi,nk
, ·) /∈ Γε

cf(zl)

)
= 2mnk

max
1≤i≤mnk

P
(
∆nk

(zi,nk
, hnk

, ·) /∈ Γε
cf(zl)

)
≤ 4mnk

max
1≤i≤mnk

P
(
∆Πnk

(zi,nk
, hnk

, ·) /∈ Γε
cf(zl)

)
. (5.14)

The last inequality is a consequence of usual poissonization techniques (see,
e.g., Mason [11], Fact 6). We now make use of Proposition 3.1, which, together
with (5.2) leads to the following inequality, ultimately as k →∞,

Pk ≤ 4mnk
max
1≤mk

exp

(
−f(zi,nk

)

f(zl)
(1 + 2αzl

) log nk

)
.

Moreover (5.4) entails Pk ≤ 4mnk
exp (−(1 + αzl

) log nk) . Since mnk
= h−1+o(1)

nk
=

n
1+o(1)
k as k → ∞ (recall (5.10)), the sumability of Pk follows, which proves

(5.11) by the Borel-Cantelli lemma. We point out that (5.11) is true whatever
the choice of δ > 0 (recall (5.9)). We now focus on showing that, for a small
value of δ > 0 we have

lim sup
k→∞

sup
z∈Hzl

min
1≤i≤mnk

max
n∈Nk

|| Hn(zi,nk
, ·)−∆n(z, hn, ·) ||≤ 7ε a.s, (5.15)

which will be achieved through two separate lemmas.

Lemma 6 Assume that the conditions of Theorem 2 are ful�lled. There exists
δε > 0 such that, for any choice of 0 < δ < δε we have almost surely

lim sup
k→∞

max
n∈Nk

max
1≤i≤mnk

sup
z∈Ci,nk

∣∣∣∣∣∣∣∣Hn(zi,nk
, ·)− f(z)

f(zi,nk
)
Hn(z, ·)

∣∣∣∣∣∣∣∣ ≤ ε.

Proof : For all large k we have

P

max
n∈Nk

max
1≤i≤mnk

sup
z∈Ci,nk

∣∣∣∣∣∣∣∣Hn(zi,nk
, ·)− f(z)

f(zi,nk
)
Hn(z, ·)

∣∣∣∣∣∣∣∣ > ε


=P

 ⋃
1≤i≤mnk

⋃
n∈Nk

sup
z∈Ci,nk

∣∣∣∣∣∣∣∣Hn(zi,nk
, ·)− f(z)

f(zi,nk
)
Hn(z, ·)

∣∣∣∣∣∣∣∣ > ε


≤mnk

max
1≤i≤mnk

P

 ⋃
n∈Nk

sup
z∈Ci,nk

∣∣∣∣∣∣∣∣Hn(zi,nk
, ·)− f(z)

f(zi,nk
)
Hn(z, ·)

∣∣∣∣∣∣∣∣ > ε

 (5.16)

Fix k ≥ 1, 1 ≤ i ≤ mnk
and z ∈ zi,nk

+ (δhnk
)1/d[0, 1)d. We write zi,nk

:=
(z1

i,nk
, . . . , zd

i,nk
), z := (z1, . . . , zd) and Zj := (Z1

j , . . . , Z
d
j ), j ≥ 1. Notice that

for each p = 1, ..., d we have zp
i,nk

≤ zp ≤ zp
i,nk

+ (δhnk
)1/d. Hence, in virtue of
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the equality | 1A − 1B |= 1A−B + 1B−A we have, for each integer j we have
almost surely, for each (s1, . . . , sd) ∈ [0, 1)d,

∣∣∣∣1[0,s)

(
Zj − z

h
1/d
nk

)
− 1[0,s)

(
Zj − zi,nk

h
1/d
nk

) ∣∣∣∣
=1{[

z,z+h
1/d
nk

s

)
−
[
zi,nk

,zi,nk
+h

1/d
nk

s

)}(Zj) + 1{[
zi,nk

,zi,nk
+h

1/d
nk

s

)
−
[
z,z+h

1/d
nk

s

)}(Zj)

≤
d∑

l=1

1[
zl
i,nk

+slh
1/d
nk

,zl
i,nk

+h
1/d
nk

(sl+δ1/d)

](Z l
j)

∏
1≤p6=l≤d

1[
zp
i,nk

,zp
i,nk

+h
1/d
nk

(sp+δ1/d)

](Zp
j )

+
d∑

l=1

1[
zl
i,nk

,zl
i,nk

+(δhnk
)1/d

](Z l
j)

∏
1≤p6=l≤d

1[
zp
i,nk

,zp
i,nk

+h
1/d
nk

sp

](Zp
j ) (5.17)

= : Xj,k,i,δ(s). (5.18)

Here (5.17) follows from zl
i,nk

≤ zl ≤ zl
i,nk

+ δ1/dh1/d
nk

, l = 1, . . . , d. As the
Xj,k,i,δ(·) are positive processes almost surely, (5.18) entails, for all large k and
for all 1 ≤ i ≤ mnk

,

P

 ⋃
n∈Nk

sup
z∈Ci,nk

∣∣∣∣∣∣∣∣Hn(zi,nk
, ·)− f(z)

f(zi,nk
)
Hn(z, ·)

∣∣∣∣∣∣∣∣ > ε


≤P

 ⋃
n∈Nk

sup
z∈Ci,nk

sup
s∈[0,1)d

n∑
j=1

∣∣∣∣1[0,s)

(
Zj − z

h
1/d
nk

)
− 1[0,s)

(
Zj − zi,nk

h
1/d
nk

) ∣∣∣∣ ≥ εcf(zi,nk
) log nk


≤P

 nk⋃
n=1

sup
s∈[0,1)d

n∑
j=1

Xj,k,i,δ(s) ≥ εcf(zi,nk
) log nk


≤P

∣∣∣∣∣∣∣∣ nk∑
j=1

Xj,k,i,δ(·)
∣∣∣∣∣∣∣∣ ≥ εcf(zi,nk

) log nk

 . (5.19)

But a close look at (5.17) leads to the conclusion that, almost surely, for each
s ∈ [0, 1)d,

0 ≤
nk∑
j=1

Xj,k,i,δ(s)

≤ 2dcf(zi,nk
)(log nk) sup

s,s′∈[0,2)d, ||s′−s||d<δ1/d

∣∣∣∣∆nk
(zi,nk

, hnk
, s′)−∆nk

(zi,nk
, hnk

, s)
∣∣∣∣.

(5.20)
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Here we have written | s |d:= max{| sj |, j = 1, . . . , p}. Now (5.20) together
with (5.19) entails

P

 ⋃
n∈Nk

sup
z∈Ci,nk

∣∣∣∣∣∣∣∣Hn(zi,nk
, ·)− f(z)

f(zi,nk
)
Hn(z, ·)

∣∣∣∣∣∣∣∣ > ε



≤P

 sup
s,s′∈[0,2)d,

||s′−s||d<δ1/d

∣∣∣∣∆nk
(zi,nk

, hnk
, s′)−∆nk

(zi,nk
, hnk

, s)
∣∣∣∣ > ε(2d)−1



≤2P

 sup
s,s′∈[0,1)d,

||s′−s||d<δ1/d/2

∣∣∣∣∆Πnk
(zi,nk

, hnk
, 2s′)−∆Πnk

(zi,nk
, hnk

, 2s)
∣∣∣∣ > ε(2d)−1

 .

(5.21)

Here (5.21) follows from poissonization techniques. Now consider the following
sequence hn := 2dhn, n ≥ 1. Clearly, (hn)n≥1 satis�es (HVE1) and (HVE2),
replacing c by c := 2dc. Moreover, for each k ≥ 1, 1 ≤ i ≤ mnk

we have almost
surely, for all s ∈ [0, 1)d,

∆Πnk
(zi,nk

, hnk
, 2s) = ∆Πnk

(zi,nk
, hnk

, s). (5.22)

Applying Proposition 3.1 we deduce that the triangular array of processes

Uk,i(·) := ∆Πnk
(zi,nk

, hnk
, 2·), k ≥ 1, 1 ≤ i ≤ mnk

satis�es the ULDP in (B([0, 1)d), || · ||) (see �2) for the rate function I and
for the following triangular array:

εk,i := (c2df(zi,nk
) log nk)

−1k ≥ 1, 1 ≤ i ≤ mnk
.

Now consider the following set

Γ :=

{
g ∈M([0, 1)d), I(g) ≤ 4

2dcβ

}
.

By proposition 2.1, there exists δε > 0 such that

sup
g∈2dΓ

sup
s,s′∈[0,2)d,||s′−s||d≤δd

ε /2

| g(s′)− g(s) |< (4d)−1ε. (5.23)

Now choose 0 < δ < δε arbitrarily for the construction of the zi,nk
, k ≥ 1, 1 ≤

i ≤ mnk
(recall (5.9)). By lower-semicontinuity of I, the closed set

F :=

{
g ∈M([0, 2)d), inf

g′∈Γ
|| g − g′ ||[0,2)d≥ 2−dε

8d

}
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satis�es I(F ) > 4/(2dcβ). Hence, (5.21) together with (5.23) leads to the
following inequalities for all large k and for each 1 ≤ i ≤ mnk

.

P

 ⋃
n∈Nk

sup
z∈Ci,nk

∣∣∣∣∣∣∣∣Hn(zi,nk
, ·)− f(z)

f(zi,nk
)
Hn(z, ·)

∣∣∣∣∣∣∣∣ > ε


≤2P

(
sup

s,s′∈[0,1)d, ||s′−s||d<δ1/d/2

∣∣∣∣Uk,i(s
′)− Uk,i(s)

∣∣∣∣ > ε(2d)−1
)

≤2P (∆Πnk
(zi,nk

, hnk
, ·) ∈ F )

≤2 exp
(
−3

4
I (F ) cf(zi,nk

) log nk

)
≤2 exp

(
−3× c2df(zi,nk

)

βc2d
log nk

)
≤2 exp (−3 log nk) . (5.24)

Now (5.24) in combination with (5.16) entails, for all large k,

P

max
n∈Nk

max
1≤i≤mnk

sup
z∈Ci,nk

∣∣∣∣∣∣∣∣Hn(zi,nk
, ·)− f(z)

f(zi,nk
)
Hn(z, ·)

∣∣∣∣∣∣∣∣ > ε

 ≤ 2
mnk

nk
3
.

(5.25)
But for �xed δ > 0 we have mnk

= h−1+o(1)
nk

= nk
1+o(1) as k → ∞. The proof

of Lemma 6 is concluded by applying the Borel-Cantelli lemma to (5.25). �

Lemma 7 Under the assumptions of Theorem 2, for any choice of δ > 0, we
have almost surely

lim sup
k→∞

max
1≤i≤mnk

sup
z∈Ci,nk

max
n∈Nk

∣∣∣∣∣∣∣∣∆n(z, hn, ·)−
f(z)

f(zi,nk
)
Hn(z, ·)

∣∣∣∣∣∣∣∣ ≤ 6ε.

Proof : For all large k and for all 1 ≤ i ≤ mnk
, z ∈ Ci,nk

, n ∈ Nk we have
almost surely, for each s ∈ [0, 1)d,

∆n(z, hn, s)−
f(z)

f(zi,nk
)
Hn (z, s) = Tn,i,k

f(z)

f(zi,nk
)
Hn (z, ρn,ks)−

f(z)

f(zi,nk
)
Hn(z, s),

(5.26)
with Ti,n,k : f(zi,nk

) log nk/f(e) log n and ρd
n,k := hnk

/hn. First notice that

lim
k→∞

max
1≤i≤mnk

sup
z∈Ci,nk

| Tn,i,k − 1 |= 0, lim
k→∞

max
n∈Nk

| ρn,k − 1 |= 0.

Moreover, by Proposition 2.1 we have

lim
T→1,ρ→1

sup
g∈Γcf(zl)

|| Tg(ρ1/d·)− g(·) ||= 0. (5.27)
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Finally, by (5.11) and by Lemma 6 we have, for all large k and for all 1 ≤ i ≤
mnk

, z ∈ Ci,nk
, n ∈ Nk,

inf
g∈Γcf(zl)

∣∣∣∣∣∣∣∣ f(z)

f(zi,nk
)
Hn(z, ·)− g

∣∣∣∣∣∣∣∣ < 3ε almost surely. (5.28)

Hence, combining (5.26), (5.27), (5.27), (5.28) and the triangle inequality, we
obtain almost surely, for all large k and for all n ∈ Nk :∣∣∣∣∣∣∣∣∆n(z, hn, ·)−

f(z)

f(zi,nk
)
Hn(z, ·)

∣∣∣∣∣∣∣∣
≤6ε,

which proves Lemma 7. �

End of the proof of part(ii) of Theorem 2: By combining Lemma 7 with
Lemma 6 we conclude that (5.15) is true for δ > 0 small enough. Now (5.15)
together with (5.11) leads to

lim sup
n→∞

sup
z∈Hzl

inf
g∈Γcf(zl)

|| ∆n(z, hn, ·)− g ||≤ 9ε almost surely.

Whence, recalling (5.5),

lim sup
n→∞

sup
z∈Hzl

inf
g∈Γcf(z)

|| ∆n(z, hn, ·)− g ||≤ 10ε almost surely. (5.29)

Repeating (5.29) for each l = 1, . . . , L (recall (5.7)) we get

lim sup
n→∞

sup
z∈H

inf
g∈Γcf(z)

|| ∆n(z, hn, ·)− g ||≤ 10ε almost surely.

As ε > 0 was chosen arbitrarily, the proof of part(ii) of Theorem 2 is concluded.�

References

[1] M.A. Arcones. The large deviation principle of stochastic processes, Part 1 .
Theory Probab. Appl., 47(4):567�583, 2003.

[2] D. Dacunha-Castelle and M. Du�o. Probabilités et statistiques II: problèmes à
temps mobile. Masson, 1993.

[3] P. Deheuvels and D.M. Mason. Nonstandard functional laws of the iterated
logarithm for tail empirical and quantile processes. Ann. Probab., 18:1693�1722,
1990.

24



[4] P. Deheuvels and D.M. Mason. A tail empirical process approach to some
nostandard laws of the iterated logarithm. J. Theoret. Probab., 4:53�85, 1991.

[5] P. Deheuvels and D.M. Mason. Functional laws of the iterated logarithm for
the increments of empirical and quantile processes. Ann. Probab., 20:1248�1287,
1992.

[6] P. Deheuvels and D.M. Mason. Nonstandard local empirical processes indexed
by sets. J. Statist. Plann. Inference, 45:91�112, 1995.

[7] J. Einmahl and D.M. Mason. Strong limit theorems for weighted quantile
processes. Ann. Probab., 16(4):1626, 1988.

[8] P. Erdös and A. Rényi. On a new law of large numbers. J. Analyse Math.,
23:103�111, 1970.

[9] J. Lynch and J. Sethuraman. Large deviations for processes with independent
increments. Ann. Probab., 15(2):610�627, 1987.

[10] D.M. Mason. A strong invariance principle for the tail empirical process. Ann.
Inst. H. Poincaré Probab. Statist., 24:491�506, 1988.

[11] D.M. Mason. A uniform functional law of the iterated logarithm for the local
empirical process. Ann. Probab., 32(2):1391�1418, 2004.

[12] G.R. Shorack and J.A. Wellner. Empirical Processes and applications to
statistics. Springer, 1986.

[13] A.W. Van der Vaart and J.A. Wellner. Weak convergence and empirical
processes. Springer, 1996.

25


