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Abstract
Consider the following local empirical process indexed by K ∈ G, for �xed

h > 0 and z ∈ Rd:

Gn(K, h, z) :=
n∑

i=1

K
(Zi − z

h1/d

)
− E

(
K

(Zi − z

h1/d

))
,

where the Zi are i.i.d. on Rd. We provide an extension of a result of Mason
[9]. Namely, under mild conditions on G and on the law of Z1, we establish a
uniform functional limit law for the collections of processes

{
Gn(·, hn, z), z ∈

H, h ∈ [hn, hn]
}
, where H ⊂ Rd is a compact set with nonempty interior and

where hn and hn satisfy the Csörg®-Révész-Stute conditions.

1 Introduction and statement of main results

1.1 Introduction

Consider (Zi)i≥1 be a independent, identically distributed sample taking values in
Rd. Since the pioneering works of Stute [10], several researchers have investigated
the limit behaviour of the functional increments of the empirical process, which are
de�ned as follows, for �xed h > 0 and z ∈ Rd :

∆αn(·, h, z) : s 7→ n−1/2

( n∑
i=1

1
[z,z+h

1/d
n s]

(Zi)− P
(
Z1 ∈ [z, z + h1/d

n s]
))

, s ∈ [0, 1]d.

Here we write [a, b] := [a1, b1]× . . .× [ad, bd] for a, b ∈ Rd. Deheuvels and Mason [4]
have provided a uniform functional limit law (UFLL) for the following collections of
functional increments :

Θ̃n :=
{ 1

(2hn log(1/hn))1/2
∆αn(·, hn, z), z ∈ [0, 1− hn]

}
, (1.1)
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when d = 1, Z1 is uniform on [0, 1] and hn satis�es the Csörg®-Révész-Stute (CRS)

conditions (see (HV1)-(HV3) below). Implicit in their result is the UFLL for Θ̃n

when (Zi)i≥1 take values in R and have a density f that is continuous and strictly
positive on an open set O, and when z appearing in (1.1) ranges in a bounded in-
terval H ⊂ O. However, the extension of this result to the multivariate case (d>1)
remained an open problem for almost a decade. Recently, Mason [9] (see also Ein-
mahl and Mason [5]) solved this problem by combining the techniques of Deheuvels
and Mason [4] with recent tools in general empirical process theory. Namely, he
obtained asymptotic results in a more general framework, considering the following
type of stochastic processes indexed by K:

Gn(K, h, z) =
n∑

i=1

[
K

(Zi − z

h1/d

)
− E

(
K

(Zi − z

h1/d

))]
. (1.2)

Here, K ranges through a class of functions G satisfying some conditions that will
stated later (see (HK1)-(HK5) in the sequel). More precisely, Mason established a
UFLL for the following the sets of processes, as n →∞,

Θ̃′′
n :=

{ Gn(·, hn, z)√
2f(z)nhn log(1/hn)

, z ∈ H
}

,

where H is a compact set of Rd with nonempty interior. To cite his result, we have
to recall the basic assumptions he made in [9].
We say that a sequence of constants satis�es the Csörg®-Révész-Stute (CRS) condi-
tions whenever

(HV1) hn ↓ 0, 0 < hn < 1, nhn ↑ ∞,
(HV2) lim

n→∞
nhn/ log n = ∞,

(HV3) lim
n→∞

log(1/hn)/ log log n = ∞.

Let G be a class of real Borel functions on Rd. Set Id := [0, 1]d and

F :=
{

K(λ(· − z)), z ∈ Rd, λ > 0, K ∈ G
}

.

Let || · ||Rd be the euclidian norm on Rd. We make the following assumptions on G.

(HK1) lim
||u||Rd→0

sup
K∈G

∫
Rd

(K(x)−K(x + u))2dx = 0,

lim
λ→1

sup
K∈G

∫
Rd

(
K(λx)−K(x)

)2
dx = 0 ,

(HK2) ∀K ∈ G, sup
x∈Rd

| K(x) |≤ 1 ,

(HK3) ∀K ∈ G, ∀x /∈ Id, K(x) = 0,
(HK4) ∃C0 > 0, v0 > 0, ∀ε ∈ (0, 1), N (ε,F) ≤ C0ε

−v0 .
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Here, N (ε,F) denotes the uniform covering number of F for ε and the class of norms
{L2(P)} , with P varying in the set of all probability measures on Rd, and taking
the F ≡ 1 as an envelope function for the class F (for more details, see [12], p.
83-84, with r = 2). To overcome any measurability problem, we make the following
assumption.

(HK5) F is pointwise separable (see [12], p. 110-111).

Let L∗
2(G) be the Hilbert subspace of L2(Rd, λ) spanned by G, where λ denotes

the Lebesgue measure on Rd. The (rate) function J that rules the large deviation
properties of the isonormal Gaussian process generated by

(
L∗

2(G), λ
)
can be de�ned,

for a function Ψ : G 7→ R, by

J(Ψ) := inf

{ ∫
Rd

g2dλ, g ∈ L∗
2(G), ∀K ∈ G, Ψ(K) =

∫
Rd

gKdλ

}
, (1.3)

with the implicit convention inf∅ = ∞. Now set K = KG := {Ψ : J(Ψ) ≤ 1}. Let
B(G) be the set of all real bounded functions on G. Denote by | · |d the usual max
norm on Rd, namely

| z |d:= max
j=1,...,d

| zj | . (1.4)

We make a last assumption upon the law of the Zi (recall that H is a compact set
with nonempty interior).

(H f) There exists α such that Z1 has a density f that is continuous and
strictly positive on the set

Hα :=
{

z ∈ Rd : inf
y∈H

| z − y |d< α
}

. (1.5)

Under all the above assumptions, Mason established the following result.
Theorem, (Mason, 2004).
Let H be a compact subset of Rd with nonempty interior. Let (Zi)i≥1 be an i.i.d.
sequence of random variables satisfying (H f). Let (hn)n≥1 be a sequence of constants
ful�lling (HV1)-(HV3) and let G be a class of real Borel functions satisfying (HK1)-
(HK5). Then we have almost surely

(i) lim
n→∞

sup
z∈H

inf
Ψ∈K

∣∣∣∣∣∣ Gn(·, z, hn)(
2f(z)nhn log(1/hn)

)1/2
−Ψ

∣∣∣∣∣∣
G

= 0,

(ii)∀Ψ ∈ K, lim
n→∞

inf
z∈H

∣∣∣∣∣∣ Gn(·, z, hn)(
2f(z)nhn log(1/hn)

)1/2
−Ψ

∣∣∣∣∣∣
G

= 0.

The author proved this result by combining the ideas of Einmahl and Mason [5]
with some recent results in large deviation theory (see Arcones [1, 2]), Gaussian ap-
proximation results for �nite dimensional laws (Zaitsev [13, 14]) and sharp bounds
for empirical processes (see Talagrand [11], or Bousquet [3] and Klein [8] for sharper
bounds). In the present paper, we show that the arguments of Mason can be ef-
�ciently used to enrich his theorem with an additional uniformity in h ∈ [hn, hn],
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under some mild conditions. The remainder of this article is organised as follows.
The main result is given by Theorem 1 in §1.2. The proof follows in §2 and is di-
vided into two parts. In §2.1 we sate a large deviation result and a concentration
inequality. These two results are somewhat straightforward in regard to the works
of Arcones [1] and Einmahl and Mason [5]. They will play a crucial role in our proof
of Theorem 1, which is written in §2.2.

1.2 Statement of the result

We provide in the present paper an extension of the just mentioned theorem of
Mason (2004) showing that his UFLL still holds uniformly in hn ≤ h ≤ hn, provided
that both (hn)n≥1 and (hn)n≥1 satisfy (HV1)-(HV3).

Theorem 1 Let H be a compact subset of Rd with nonempty interior. Let (Zi)i≥1

be an i.i.d. sequence of random variables satisfying (H f). Let (hn)n≥1 and (hn)n≥1

be two sequences of positive numbers satisfying (HV1)-(HV3) as well as hn > 2hn.
Then we have almost surely

(i) lim
n→∞

sup
hn≤h≤hn,z∈H

inf
Ψ∈K

∣∣∣∣∣∣ Gn(·, h, z)√
2f(z)nh log(1/h)

−Ψ
∣∣∣∣∣∣
G

= 0,

(ii) ∀Ψ ∈ K, lim
n→∞

sup
hn≤h≤hn

inf
z∈H

∣∣∣∣∣∣ Gn(·, h, z)√
2f(z)nh log(1/h)

−Ψ
∣∣∣∣∣∣
G

= 0.

Sketch our proof : Roughly speaking, our proof is divided into the following steps:

• The proof of Mason can be very crudely summed up as follows: given properly
chosen sequences of events (En(ε, hn))n≥1, he proves that, for �xed ε > 0 we
have, for all large n

P
(
En(ε, hn)

)
≤ hδ

n, (1.6)

for some δ > 0. Then he makes use of the fact that (hn)n≥1 satis�es conditions
(HV1)-(HV3) to achieve his goals, by making use of usual blocking techniques
along with the Borel-Cantelli lemma.

• Given ρ > 1, we discretise [hn, hn] into the following grid of size Rn ≈
log(hn/hn)/ log(ρ) :

{hn,0, hn,1, hn,2 . . . , hn,Rn} = {hn, ρhn, ρ
2hn, . . . , hn}. (1.7)

• For �xed ε, we show that P(En(ε, hn,l)) ≤ hδ
n,l uniformly in l, for some δ > 0.

To do this, we make use of argument that are very similar to those of Mason for
proving (1.6), but taking additional care to get inequalities uniformly in l (see
our key argument in �2.2, Step 1). Indeed, we had to write an concentration
inequality (see Proposition 2.1), which is somehow a �nite distance version of
the inequality used by Mason.
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• Then we write, ∆n denoting a term of oscillation of our proceses between two
consecutives hn,l,

P
( ⋃

h∈[hn,hn]

En(ε, h)

)
≤P

( Rn⋃
l=0

En(ε, hn,l)

)
+ ∆n

≤
Rn∑
l=0

hδ
n,l + ∆n ≤ hε

n

Rn∑
l=0

ρlδ + ∆n '
hδ

n

ρδ − 1
+ ∆n.

Thus, we can make use of the fact that (hn)n≥1 satis�es (HV1)-(HV3) and continue
our proof as in the proof of Mason. The oscillation term ∆n is controlled by the
concentration inequality of Proposition 2.1. We now focus on some corollaries of
Theorem 1. Denote by gn,h,z a non usual form of functional increments of the
empirical process, namely:

gn,h,z(s) :=
1

nh

n∑
i=1

1[s,1]

(Zi − z

h1/d

)
− E

()
1[s,1]

(Zi − z

h1/d

))
, s ∈ [0, 1]d, (1.8)

with the notation [s, 1] := [s1, 1] × . . . × [sd, 1], s = (s1, . . . , sd) ∈ [0, 1]d. Applying
Theorem 1 respectively to the particular class of indicator functions of the sets
[s, 1], s ∈ [0, 1]d, we obtain, almost surely:

lim
n→∞

sup
h∈[hn,hn]

sup
z∈H

inf
g∈S

√
nh

2f(z) log(1/h)
|| gn,h,z − g ||[0,1]d= 0, (1.9)

∀g ∈ S, lim
n→∞

sup
h∈[hn,hn]

inf
z∈H

√
nh

2f(z) log(1/h)
|| gn,h,z − g ||[0,1]d= 0, (1.10)

where || g ||[0,1]d := sup{| g(s) |, s ∈ [0, 1]d}, and where S stands for the following
Strassen type set of functions mapping [0, 1]d to R:

S :=
{

g : s 7→
∫

[s,1]

ġ(u)du, for some function ġ ful�lling

∫
[0,1]d

ġ(u)2du.
}

. (1.11)

Denote by fn(K, h, z) the Parzen-Rosenblatt density estimator, namely

fn(K, h, z) =
1

nh

n∑
i=1

K
(Zi − z

h1/d

)
.

The main interest of deriving (1.9) and (1.10) from Theorem 1 is that it enables
us to straightforwardly derive asymptotic con�dence bands for fn(K,h, z) that are
uniform in h ∈ [hn, hn], which is the subject of the following corollary.

Corollary 1.1 Let K be a kernel with compact support and bounded variation. If
both (hn)n≥1 and (hn)n≥1 do satisfy assumptions (HV1)-(HV3), then we have almost
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surely

lim
n→∞

sup
h∈[hn,hn]

sup
z∈H

√
nh

(
fn(K, h, z)− E

(
fn(K, h, z)

))
√

2 log(1/h)f(z)
=

√√√√∫
Rd

K2dλ,

lim
n→∞

inf
h∈[hn,hn]

inf
z∈H

√
nh

(
fn(K, h, z)− E

(
fn(K, z, h)

))
√

2 log(1/h)f(z)
= −

√√√√∫
Rd

K2dλ.

Proof : By a change of scale, we can assume that K has his support included in
[0, 1]d. De�ne the following application that maps the space of all bounded real
functions on [0, 1]d to R:

R : g 7→
∫

[0,1]d

g(s)dK(s).

Obviously R is continuous with respect to || · ||[0,1]d , since K has bounded variation.
Noticing that by an integration by parts, we have

fn(K, h, z)− E
(
fn(K, h, z)

)
=

∫
[0,1]d

gn(s)dK(s), (1.12)

we readily infer the claimed result, by optimising R on the limit set S. We omit
details. �

In order to state our next corollary, we need to introduce some more notations.
Given a positive random variable h∗n, we de�ne

Ẽ
(
fn(K, z, h∗n)

)
:=

∫
Rd

K
(y − z

h∗n
1/d

)
dPZ1(u). (1.13)

Corollary 1.2 Let h∗n be a sequence of positive random variables satisfying, with
probability one:

0 < lim inf
n→∞

log(1/hn)

log n
≤ lim sup

n→∞

log(1/hn)

log n
< 1. (1.14)

Then we have almost surely

lim
n→∞

sup
z∈H

√
nh∗n

(
fn(K, z, h∗n)− Ẽ

(
fn(K, z, h∗n)

))
√

2 log(1/h∗n)f(z)
=

√√√√∫
Rd

K2dλ,

lim
n→∞

inf
z∈H

√
nh∗n

(
fn(K, z, h∗n)− Ẽ

(
fn(K, z, h∗n)

))
√

2 log(1/h∗n)f(z)
= −

√√√√∫
Rd

K2dλ.

Proof : The proof is a direct consequence of corollary 1, by manipulating the
following countable collection of events

Fr,r′ := {n−1+r < h∗n < n−1+r′ , for all large n}, r, r′ ∈ Q ∩ [0, 1].

We omit details. �
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2 Proof of Theorem 1

2.1 The main tools

Our proof of Theorem 1 relies on two crucial tools. First we shall make use of a
criterion in large deviation theory for functional spaces. This criterion, which is
mostly due to Arcones [1], is stated in �2.1.1. We shall also make use of a concen-
tration inequality (se Proposition 2.1) which is proved by borrowing the arguments
of Einmahl and Mason [5].

2.1.1 Uniform Large Deviation principles

In the proof of Theorem 1, we shall require large deviation results that are uniform
in the rows for triangular arrays of processes. This required uniformity leads us
to �rst state a result that can be straightforwardly derived from Theorem 3.1 of
Arcones [1]. In the sequel, (εn,i)n≥1,i≤pn will always denote a triangular array of
positive numbers satisfying limn→∞ maxi≤pn εn,i = 0. Given a set T , B(T ) will
denote the space of bounded real functions on T . We shall endow this space with
the usual sup-norm || · ||T . Let (E, ϑ) be a topological space. A real function
J : E → R+ is said to be a rate function (implicitly for (E, ϑ)) when the sets
of the kind {x ∈ E : J(x) ≤ a}, a ≥ 0, are compacts sets of (E, ϑ). Finally, let(
Xn,i

)
n≥1,i≤pn

be a triangular array of random elements (not necessarily Borel) taking

value in E. We say that
(
Xn,i

)
n≥1,i≤pn

satis�es the uniform large deviation principle

(ULDP) for the triangular array
(
εn,i

)
n≥1,i≤pn

and the rate function J whenever

• For any open set O ∈ T we have

lim inf
n→∞

min
i≤pn

εn,i log
(
P∗

(
Xn,i ∈ O

))
≥ −J(O).

• For any closed set F ∈ T we have

lim sup
n→∞

max
i≤pn

εn,i log
(
P∗

(
Xn,i(·) ∈ F

))
≤ −J(F ).

Remark 2.1.1

When referring to outer and inner probabilities P∗ and P∗, one should take care
of the underlying probability space, which is taken to be the canonical probability
space in our context.

By assumption (HK5) we shall only manipulate true probabilities in our proof of
Theorem 1. The following result, which can be seen as a direct corollary of Theorem
2.1 of Arcones [1], will be used when establishing Proposition 2.2 in the sequel.

Theorem 2 Let (Xn,i)n≥1, i≤pn be a triangular array of random elements of B(T ),
and let

(
εn,i

)
n≥1, i≤pn

be a triangular array of positive numbers. Suppose that the

following conditions are satis�ed.
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1. There exists a semi distance ρ on T that makes T totally bounded.

2. For any p ≥ 1, and (t1, . . . , tp) ∈ Rp, the triangular array of random variables(
Xn,i(t1), . . . , Xn,i(tp)

)
n≥1, i≤pn

satis�es the ULDP for (εn,i)n≥1, i≤pn and a rate

function Jt1,...,tp on Rp .

3. For any α > 0 and M>0, there exists η > 0 such that

lim sup
n→∞

max
i≤pn

εn,i log
(
P∗

(
sup

t,s: ρ(t,s)≤η

|Xn,i(t)−Xn,i(s)| > α
))

≤ −M. (2.1)

Then (Xn,i(·))n≥1, i≤pn satis�es the ULDP in
(
B(T ), || · ||T

)
for (εn,i)n≥1, i≤pn and

the following rate function

J
(
Ψ

)
:= sup

p≥1, (t1,...,tp)∈Rp

{
Jt1,...,tp

(
Ψ(t1), . . . , Ψ(tp)

)}
, Ψ ∈ B(T ).

Proof : The proof is a direct copy of the proof of Theorem 2.1 of Arcones in [1],

replacing P∗
(
Un ∈ F

)
≤ . . . by maxi≤pn P∗

(
Xn,i ∈ F

)
≤ . . . and P∗

(
Un ∈ O

)
≥ . . .

by mini≤pn P∗
(
Xn,i ∈ O

)
≥ . . ., and so on. We avoid writing the proof for this

reason.�

2.1.2 A concentration inequality

For any real Borel function g we set

Tn(g) =
n∑

i=1

g(Zi)− E
(
g(Zi)

)
, g ∈ F . (2.2)

The following concentration inequality for local empirical processes will play a crucial
role in the sequel. It states a somewhat �nite distance version of the arguments of
Einmahl and Mason [6].

Proposition 2.1 Let F be a class of functions on Rd with measurable envelope
function F satisfying, for some constants τ > 0 and h ∈ (0, 1),

sup
g∈F

Var
(
g(Z1)

)
≤ τ 2h.

Assume that there exists C, v, β0 > 0 and p > 2 ful�lling, for all 0 < ε < 1,

N (ε,F) ≤Cε−v,

E
(
F (Y )2

)
≤β2

0 .

Then there exists a universal constant A2 > 0 and a parameter D1(v) > 0 depending
only on v such that, for �xed ρ0 > 0 and δ0, if h > 0 satis�es

C1 := max
{

1,
(
4δ0

√
v + 1/τ

) 1
1/2−1/p ,

(
ρ0δ0/τ

2
) 1

1/2−1/p

}
≤ nh

log(1/h)
, (2.3)

C2 := min
{
1/τ 2β0, τ

2
}
≥ h and (2.4)

sup
g∈F ,

z∈Rd

| g |≤ δ0(nh/ log(1/h))1/p, (2.5)

8



then we have

P
(

max
1≤m≤n

|| Tm ||F≥ (τ + ρ0)D1(nh log(1/h))1/2
)
≤ 4 exp

(
− A2(

ρ0

τ
)2 log(1/h)

)
.

Proof : By (2.3) and (2.5) we have

sup
g∈G, z∈Rd

| g(z) |≤δ0

( nh

log(1/h)

)1/p

≤ 1

2
√

v + 1

√
nτ 2h

2 log(1/h)

≤ 1

2
√

v + 1

√
nτ 2h

log(β0 ∨ 1/τ 2h)
. (2.6)

Here, (2.6) is a consequence of (2.4).
Denote by (εi)i≥1 an i.i.d. sequence of random variables independent of (Zi)i≥1 with
P(ε1 = ±1) = 1/2. Applying Proposition A.2 of Einmahl and Mason [5] with β := β2

0

and σ2 := τ 2h we get, for a universal constant A3 > 0,

µn(F) :=E
(

sup
g∈F

∣∣∣ n∑
i=1

εig(Zi)
∣∣∣)

≤A3

√
vnτ 2h log(1/τ 2h)

≤
√

2vA3τ
√

nh log(1/h). (2.7)

We shall now apply inequality A.1 in Einmahl and Mason [6]. According to the
notations of that inequality, we choose M := δ0(nh/ log(1/h))1/p. We then have,
writing D1 := max{A1, A1A3

√
2v},

P
(

max
1≤m≤n

|| Tm ||F≥ (τ + ρ0)D1(nh log(1/h))1/2
)

≤P
(

max
1≤m≤n

|| Tm ||F≥ A1

(
ρ0(nh log(1/h))1/2 + µn(F)

))
(2.8)

≤2

[
exp

(
− A2ρ

2
0nh log(1/h)

nτ 2h

)
+ exp

(
− A2ρ0(nh log(1/h))1/2

δ0(nh/ log(1/h))1/p

)]
(2.9)

≤4 exp
(
− A2ρ

2
0

τ 2
log(1/h)

)
. (2.10)

Here, (2.9) is a direct application of inequality A.1 in [6], while inequality (2.10) is
a consequence of (2.3). This concludes the proof of Proposition 2.1. �

2.2 Proof of part (i) of Theorem 1

We will make repeatedly use of the following obvious argument:

sup
z∈H

f(z)−1/2 =: β < ∞. (2.11)
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First select ε > 0 arbitrarily. We claim that, almost surely,

lim sup
n→∞

sup
hn≤h≤hn,

z∈H

inf
Ψ∈K

∣∣∣∣∣∣ Gn(·, h, z)√
2f(z)nh log(1/h)

−Ψ
∣∣∣∣∣∣
G
≤ ε. (2.12)

To prove this, we introduce some parameters that will be properly adjusted in the
sequel. Recall that α > 0 appears in (1.5). Let γ > 0, ρ > 1 and 0 < δ < α/4 be
real numbers. We shall invoke some usual blocking arguments along the subsequence
nk := [(1 + γ)k], k ≥ 1. For �xed k ≥ 1, consider the following discretisation of
[hnk

, hnk−1
].

hnk,Rk
:= hnk−1

, hnk,l := ρlhnk
, l = 0, . . . , Rk − 1, (2.13)

where Rk := [log(hnk−1
/hnk

)/ log(ρ)] + 1, and [u] denotes the only integer q ful�lling
q ≤ u < q +1. Since hn and hn satisfy (HV1)-(HV3), the triangular array hnk,l, 0 ≤
l ≤ Rk satis�es the two following properties that will play a crucial role in our
arguments (see our key argument 1 below).

lim
k→∞

max
0≤l≤Rk

hnk,l = 0 (2.14)

lim
k→∞

min
0≤l≤Rk

nkhnk,l

log(1/hnk,l)
= ∞. (2.15)

Recall that Id := [0, 1]d. For each 0 ≤ l ≤ Rk, we proceed as in [9], covering H by
pairwise disjoint hypercubes written as

Γk,l,j :=
{

zk,l,j +
[
0, (δhnk,l)

1/d
)d

}
1 ≤ j ≤ Jl, (2.16)

with zk,l,j ∈ H. Since 0 < δ < α/4, we have, for all k ≥ 1 and 0 ≤ l ≤ Rk,

H ⊂
Jl⋃

j=1

Γk,l,j ⊂ Hα/2. (2.17)

Notice that, by construction we have

Jl ≤
C

hnk,l

, k ≥ 1, 0 ≤ l ≤ Rk, (2.18)

where C := C(δ) depends on δ > 0 and on the volume of H only. Set Nk :=
{nk−1 + 1, . . . , nk} whenever nk−1 < nk, and Nk = ∅ elsewhere. For A ⊂ B(G) and
ε > 0 we write the ε neighbourhood of A as

Aε :=
{

Ψ ∈ B(G), inf
Ψ′∈A

|| Ψ−Ψ′ ||G< ε
}

. (2.19)
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For all large k, we split the following probabilities in two.

Pk := P
( ⋃

n∈Nk,z∈H,

h∈[hn,hn]

{
inf
Ψ∈K

∣∣∣∣∣∣ Gn(·, h, z)(
2f(z)nh log(1/h)

)1/2
−Ψ

∣∣∣∣∣∣
G

> 4ε
})

≤ P
( ⋃

n∈Nk,z∈H,

h∈[hnk
,hnk−1

]

{ Gn(·, h, z)(
2f(z)nh log(1/h)

)1/2
/∈ K4ε

})

≤ P
( ⋃

n∈Nk, 0≤l≤Rk,

1≤j≤Jl

{ Gn(·, hnk,l, zk,l,j)(
2f(zk,l,j)nkhnk,l log(1/hnk,l)

)1/2
/∈ K2ε

})

+P
(

max
n∈Nk,0≤l≤Rk−1,

1≤j≤Jl

sup
hnk,l≤h≤ρhnk,l,

z∈Γk,l,j

∣∣∣∣∣∣ Gn(·, h, z)(
2f(z)nh log(1/h)

)1/2

− Gn(·, hnk,l, zk,l,j)(
2f(zk,l,j)nkhnk,l log(1/hnk,l)

)1/2

∣∣∣∣∣∣
G

> 2ε

)
=: P1,k + P2,k. (2.20)

Our aim is to prove that P1,k and P2,k are both summable in k, which would prove
part (i) of Theorem 1 by an application of Borel-Cantelli's lemma to Pk.

2.2.1 Step 1 : blocking and poissonisation

By a blocking argument that is similar to Ottaviani's inequality (see for example
[4], Lemma 3.4), we have

P
( ⋃

n∈Nk

{ Gn(·, hnk,l, zk,l,j)

(2f(zk,l,j)nkhnk,l log(1/hnk,l)))1/2
/∈ K2ε

})

≤ 1

mk

P
( Gnk

(·, hnk,l, zk,l,j)

(2f(zk,l,j)nkhnk,l log(1/hnk,l))1/2
/∈ Kε

)
, (2.21)

where

mk := min
l≤Rk, j≤Jl,

0≤m≤nk−nk−1

P
(∣∣∣∣∣∣ Gm(·, hnk,l, zk,l,j)(

2f(zk,l,j)nkhnk,l log(1/hnk,l)
)1/2

∣∣∣∣∣∣
G
≤ ε

)
.

To control mk, we shall invoke an argument that will be repeatedly used in that
article. Roughly speaking, we make use of the arguments of Mason [9] replacing hnk

by hnk,l. This leads us to consider the following classes of function, for k ≥ 1, l ≤
Rk, j ≤ Jl :

Fk,l,j :=
{

f(zi,nk
)−1/2K

( · − zk,l,j

hnk,l
1/d

)
, K ∈ G

}
⊂ F .

To obtain an upper bound that holds uniformly in hnk,l, we shall show that all these
classes do satisfy the assumptions of Proposition 2.1 simultaneously in hnk,l an zk,l,j.
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To prove this, assertions (2.14) and (2.15) will play a crucial role.
Key argument 1 : By Lemma 1 in [9] (Bochner's lemma), and by (2.14) we have

sup
g∈Fk,l,j

Var
(
g(Z1)

)
≤ hnk,l(1 + vk),

where vk → 0 as k → ∞. Notice that each Fk,l,j is uniformly bounded by 1, in
virtue of (HK2) and (2.11). We now use the notations of Proposition 2.1 with
τ := 2, ρ0 = 2, δ0 = 1, p = 4, n := nk − nk−1 and the constants C, v appearing in
assumption (HK4). Since nk − nk−1 ∼ γ/(1 + γ)nk and by both (2.15) (2.14), we
have, for all large k, hnk,l ≤ C2 and

min
0≤l≤Rk

((nk − nk−1)hnk,l

log(1/hnk,l)

)1/2

≥ C1,

max
0≤l≤Rk,

1≤j≤Jl

sup
g∈Fk,l,j ,

z∈Rd

| g(z) |≤ min
0≤l≤Rk

2
(
(nk − nk−1)hnk,l/ log(1/hnk,l)

)1/p

. (2.22)

This implies that, for all large k, all the classes Fk,l,j do satisfy the assumptions of
Proposition 2.1. Moreover, for γ > 0 small enough and for k large enough we have

4D1(v)(nk − nk−1)
1/2 ≤ ε

β
n

1/2
k ,

and hence

P
(

max
m≤nk−nk−1

|| Gm(·, hnk,l, zk,l,j) ||G≥ ε
(
2f(zk,l,j)nk log(1/hnk,l)

)1/2
)

≤ P
(

max
m≤nk−nk−1

|| Tm ||F≥ (ρ + τ)D1(v)
(
2(nk − nk−1)hnk,l log(1/hnk,l)

)1/2
)

≤ 4 exp
(
− A2 log(1/hnk−1

)
)
.

Therefore, for γ > 0 small enough and for k large enough we have mk ≥ 1/2.
Now let

G̃n(K, h, z) :=

ηn∑
i=1

K
(Zi − z

h1/d

)
− E

(Zi − z

h1/d

)
(2.23)

be the Poissonized version of Gn. Here, (ηn)n≥1 is a Poisson random variable with
expectation n, and independent of (Zi)i≥1. Recalling that by construction, there
exists C = C(δ) < ∞ such that Jl ≤ C(δ)/hnk,l, l = 1, ..., Rk, it follows that,
ultimately as k →∞,

P1,k ≤ 2

Rk∑
l=0

C

hnk,l

max
j≤Jl

P
( Gnk

(·, hnk,l, zk,l,j)(
2f(zk,l,j)nkhnk,l log(1/hnk,l)

)1/2
/∈ Kε

)
≤ 4

Rk∑
l=0

C

hnk,l

max
j≤Jl

P
( G̃nk

(·, hnk,l, zk,l,j)(
2f(zk,l,j)nkhnk,l log(1/hnk,l)

)1/2
/∈ Kε

)
=: 4

Rk∑
l=0

C

hnk,l

max
j≤Jl

Pk,l,j. (2.24)

The last inequality is a consequence of usual poissonization inequalities (see, e.g.,
[7], Lemma 2.1).
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2.2.2 Step 2 : A uniform large deviation result

In order to control the Pk,l,juniformly in l and j, we shall establish a uniform large
deviation principle that is stated in the next proposition. Recall that J has been
de�ned in (1.3). Some routine analysis shows that J is a rate function on B(G).

Proposition 2.2 Let (nk)k≥1 be a strictly increasing integer-valued sequence and(
zk,l,j

)
k≥1,l≤Rk, j≤Jl

a triangular array of points belonging to H. Under (HV1)-(HV3)

and (HK1)-(HK5), the triangular array

( G̃nk
(·, hnk,l, zk,l,j)(

2f(zk,l,j)nkhnk,l log(1/hnk,l)
)1/2

)
k≥1,l≤Rk,j≤Jl

,

satis�es the ULDP for the rate function J and the triangular array

εk,l,j := (log(1/hnk,l))
−1, k ≥ 1, l ≤ Rk, j ≤ Jl.

Proof : To prove Proposition 2.2, we shall make use of Theorem 2, and we hence
have to check conditions 1, 2 and 3 of that theorem. Compared to Proposition 1 of
Mason [9], the present proposition adds a uniformity in hnk,l. Checking condition 2 of
Theorem 2 readily follows the lines of the proof of Mason according to the following
remarks: We can apply his Fact 2 with an additional uniformity in hnk,l, as hn → 0
and hence Bochner's lemma still holds uniformly in hnk,l. We can also apply his Fact
3, replacing hn by hnk,l. Hence, his assertion (4.16) still holds replacing hn by hnk,l,
with an additional uniformity in hnk,l. Now de�ne the following distance on G.

d2(K,K ′) :=

∫
Rd

(
K −K ′

)2

(z)dz.

It remains to show that for any M > 0, α > 0, there exists δ > 0 ful�lling

lim sup
k→∞

max
0≤l≤Rk,

1≤j≤Jl

εk,l,j

× log
(
P
(

sup
K,K′∈G, d(K,K′)≤δ

∣∣∣G̃nk
(K, hnk,l, zk,l,j)− G̃nk

(K ′, hnk,l, zk,l,j)√
2f(zk,l,j)hnk,l log(1/hnk,l)

∣∣∣ ≥ α
))

≤ −M, (2.25)

So as conditions 1 and 3 of Theorem 2 would be checked. Choose M > 0 and α > 0
arbitrarily. For each k ≥ 1, 0 ≤ l ≤ Rk, 1 ≤ j ≤ Jl and δ > 0, consider the following
class of functions

Fk,j,l,δ :=
{

f(zk,l,j)
−1/2(K −K ′)

( · − zk,l,j

hnk,l
1/d

)
, d2(K, K ′) ≤ δ

}
.
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Let D1(2v) be the as in Proposition 2.1 (recall that v > 0 appears in assumption
(HK4)). We have, for any k ≥ 1, 0 ≤ l ≤ Rk, 1 ≤ j ≤ Jl,

P̃k,l,j := P
(

sup
K,K′∈G, d(K,K′)≤δ

∣∣∣G̃nk
(K, hnk,l, zk,l,j)− G̃nk

(K ′, hnk,l, zk,l,j)√
2f(zk,l,j)hnk,l log(1/hnk,l)

∣∣∣ ≥ 2D1(2v)α

)
= P

(∣∣∣∣∣∣ G̃nk
(·, hnk,l, zk,l,j)(

2nkhnk,l log(1/hnk,l)
)1/2

∣∣∣∣∣∣
Fk,l,j,δ

≥ 2D1(2v)α
)

=
∞∑

m=1

P
(

ηnk
= m

)
P
(∣∣∣∣∣∣ Gm(·, hnk,l, zk,l,j)(

2nkhnk,l log(1/hnk,l)
)1/2

∣∣∣∣∣∣
Fk,l,j,δ

≥ 2D1(2v)α

)
≤ P

(
max

m=1,...,2nk

∣∣∣∣∣∣ Gm(·, hnk,l, zk,l,j)(
2nkhnk,l log(1/hnk,l))

)1/2

∣∣∣∣∣∣
Fk,l,j,δ

≥ 2D1(2v)α
)

+ P
(
ηnk

> 2nk

)
=:P̃k,l,j,1 + P̃k,l,j,2. (2.26)

By Cherno�'s inequality we have

P̃k,l,j,2 ≤ exp
(
− (2 log 2− 1)nk

)
, 0 ≤ l ≤ Rk, 1 ≤ j ≤ Jl. (2.27)

By (HK4) we have, by simple arguments,

N (ε,Fk,j,l,δ) ≤
(
N (ε/2β,F)

)2 ≤
(
2β

)2v
C2ε−2v =: C ′ε−v′ , 0 < ε < 1. (2.28)

An application of Lemma 1 in[9] in combination with (2.14) leads to the following
inequality, for all large k :

max
0≤l≤Rk,

1≤j≤Jl

sup
g∈Fk,j,l,δ

h−1
nk,lVar

(
g
(Z1 − zk,l,j

h
1/d
nk,l

))
≤ 2δ (2.29)

Reasoning as in the key argument 1, we conclude that, for all large k, each class
Fk,l,j,δ, 0 ≤ l ≤ Rk, 1 ≤ j ≤ Jl do ful�ll conditions (2.5), (2.3) and (2.4) of

Proposition 2.1 with ρ0 := α, τ :=
√

2δ, δ0 := 2, p := 4, n := 2nk and C ′, v′

appearing in (2.28). Applying Proposition 2.1, we get, for all large k and for each
0 ≤ l ≤ Rk, 1 ≤ j ≤ Jl,

P̃k,l,j,1 ≤ P
(

max
m=1,...,2nk

|| Tm ||Fk,l,j,δ
≥ D1(v

′)
(
α +

√
2δ

)√
2nkf(zk,l,j)hnk,l log(1/hnk,l)

)
≤ 4 exp

(
− A2

α2

2δ
log(1/hnk,l)

)
. (2.30)

Notice that (2.30) is true for all δ > 0 satisfying 2δ ≤ α. By (2.27) in conjunction
with (2.30), we have for δ > 0 small enough, ultimately as k →∞,

P̃k,l,j ≤4 exp
(
−M log(1/hnk,l)

)
+ exp

(
− (2 log 2− 1)nk

)
≤5 exp

(
−M log(1/hnk,l)

)
.

This shows that (2.25) is true. We now refer to Arcones ([2], Theorem 4.2) for the
proof of the fact that

sup
p≥1, (K1,...,Kp)∈Gp

JK1,...,Kp(Ψ(K1), . . . Ψ(Kp)) = J(Ψ),

which completes the proof of Proposition 2.2 by an application of Theorem 2.�
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2.2.3 Step 3 : summability of P1,k

For �xed ε > 0, δ > 0, ρ > 1 and for γ > 0 small enough, we apply Proposition 2.2

to the following closed subset of
(
B(G), || · ||G

)
.

Fε :=
{

Ψ ∈ B(G), inf
Ψ′∈K

|| Ψ−Ψ′ ||G≥ ε
}

.

Key argument 2 : By lower semicontinuity of J on
(
B(G), || · ||G

)
, there exists

α1 > 0 such that J
(
Fε) = 1 + 2α1. Hence, inequality (2.24) becomes

P1,k ≤4

Rk∑
l=0

C

hnk,l

exp

(
−

(
J
(
Fε

)
− α1

)
log(1/hnk,l)

)

≤ 4C

Rk∑
l=0

hnk,l
α1 ≤ 4Chα1

nk

Rk∑
l=0

ρα1l ≤ 4C

ρα1 − 1
hα1

nk
ρα1(Rk+1).

Recall that C > 0 depends only on δ > 0 and H. Since we have by construction
Rk ≤ log(hnk−1

/hnk
)/ log(ρ) + 1, we deduce that

P1,k ≤
4Cρ2α1

ρα1 − 1
hα1

nk−1
.

But (HV3) ensures that hα1
nk−1

is summable, which in turn implies that(Pk,1)k≥1 is
widely summable in k, whatever the choice of δ > 0, ρ > 1 and γ > 0.

2.2.4 Step 4: an upper bound for P2,k

Now for an arbitrary ε > 0 we shall adjust δ > 0 and ρ > 1 such that, for γ > 0
small enough, the sequence P2,k has a �nite sum in k. We start by the following
decomposition.

P2,k

:= P
(

max
n∈Nk,0≤l≤Rk−1,

1≤j≤Jl

sup
hnk,l≤h≤ρhnk,l,

z∈Γk,l,j

∣∣∣∣∣∣ Gn(·, h, z)

(2f(z)nh log(1/h))1/2

− Gn(·, hnk,l, zk,l,j)

(2f(zk,l,j)nkhnk,l log(1/hnk,l))1/2

∣∣∣∣∣∣
G

> 2ε
)

≤ P
(

max
n∈Nk,0≤l≤Rk−1,

1≤j≤Jl

sup
hnk,l≤h≤ρhnk,l,

z∈Γk,l,j

∣∣∣∣∣∣ Gn(·, h, z)−Gn(·, hnk,l, zk,l,j)

(2f(zk,l,j)nkhnk,l log(1/hnk,l))1/2

∣∣∣∣∣∣
G

> ε
)

+ P
(

max
n∈Nk,0≤l≤Rk−1,

1≤j≤Jl

sup
hnk,l≤h≤ρhnk,l,

z∈Γk,l,j

Bk,n,h,z

∣∣∣∣∣∣ Gn(·, h, z)

(2f(z)nkhnk,l log(1/hnk
))1/2

∣∣∣∣∣∣
G

> ε
)

=: P2,1,k + P2,2,k,
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Here we have set, for z ∈ Γk,j,l,

Bk,n,h,z :=
∣∣∣√2f(zk,l,j)nkhnk,l log(1/hnk,l)

2f(z)nh log(1/h)
− 1

∣∣∣. (2.31)

In order to control P2,2,k, we carry out the following decomposition for all large k

P2,2,k ≤
∑

0≤l≤Rk−1,

1≤j≤Jl

P2,2,k,l,j,

where

P2,2,k,l,j := P
(

max
n∈Nk

sup
hnk,l≤h≤ρhnk,l,

z∈Γk,l,j

Bk,n,h,z

∣∣∣∣∣∣ Gn(·, h, z)(
2f(z)nkh log(1/hnk,l)

)1/2

∣∣∣∣∣∣
G
≥ ε

)
.

Some usual analysis based on (H f), (2.14), (2.15), and nk − nk−1 ∼ nk−1γ/(1 + γ)
show that, for any choice of δ > 0, ρ > 1 small enough we have, for all large k

max
n∈Nk, l≤Rk,

j≤Jl

sup
hnk,l≤h≤ρhnk,l,

z∈Γk,l,j

Bk,n,h,z ≤ γ(1 + 2γ) + 2γ. (2.32)

Hence, for any choice of γ > 0 small enough, we have (recall Proposition 2.1 and
assumption (HV4))

lim inf
k→∞

inf
n∈Nk, z∈H,

hnk
≤h≤hnk−1

εB−1
k,n,h,z ≥ 4D1(v). (2.33)

Now consider the following classes of functions

Fk,l,j :=
{

f(z)−1/2K
( · − z

h1/d

)
, z ∈ Γk,l,j, hnk,l ≤ h ≤ ρhnk,l

}
.

By (2.14) and Lemma 1 in Mason [9] we have, for all large k

max
l≤Rk, j≤Jl

sup
g∈Fk,l,j

h−1
nk,lVar

(
f(Z1)

)
≤ 4. (2.34)

Recall (2.11). According to (HK4) we have

N
(
ε,Fk,l,j

)
≤ N

(
ε/β,F

)
≤ Cβvε−v =: C ′ε−v.

Proceeding similarly a in the key argument 1, we infer that all the classes Fk,l,j, 0 ≤
l ≤ Rk, 1 ≤ j ≤ Jl do satisfy conditions (2.5) (2.3) and (2.4) in Proposition 2.1,
with τ :=

√
A2 ∧ 1, ρ := 2, δ0 = 2, p = 4 , n := nk, h := hnk,l, C ′ and v. Making use

once again of Proposition 2.1, and assuming that γ is small enough to ful�ll (2.33)
we get that, for all large k and 0 ≤ l ≤ Rk, 1 ≤ j ≤ Jl,

P2,2,k,l,j ≤P
(

max
n∈Nk

|| Tn ||Fk,l,j
≥ 4D1(v)

(
2nk log(1/hnk,l)

)1/2
)

≤P
(

max
n∈Nk

|| Tn ||Fk,l,j
≥ D1(v)(τ + ρ)

(
2nk log(1/hnk,l)

)1/2
)

≤4 exp
(
− A2

ρ2

τ 2
log(1/hnk,l)

)
=4hnk,l

2.
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Hence, proceeding as in key argument 2 we get, ultimately as k →∞,

P2,2,k ≤4
∑

0≤l≤Rk−1, 1≤j≤Jl

hnk,l
2 ≤ 4C

ρ− 1
hnk−1

,

whence (P2,2,k) is summable by (HV3).

By making use of similar arguments, it can be proved that, for a suitable choice
of ρ > 1 and δ > 0 small enough, we have∑

k≥1

P2,1,k < ∞. (2.35)

This result is proved by considering the classes

F ′
k,j,l :=

{
f(zk,l,j)

−1/2
(
K

( · − zk,l,j

hnk,l
1/d

)
−K

( · − z

h1/d

))
, z ∈ Γk,l,j, hnk,l ≤ h ≤ ρhnk,l, K ∈ G

}
,

and showing by (HV 1) that, given ε > 0, one can choose ρ > 1 and δ > 0 small
enough to ful�ll sup{Var

(
g(Z)

)
, g ∈ F ′

k,j,l} ≤ εhnk,l uniformly in j and l. We omit
details for sake of brievness. �
Remark:
A close look at the proof of part (i) of Theorem 1 shows that assumption (HK3) can
be relaxed to the following assumption :

(HK3′) ∃M > 0, ∀K ∈ G, ∀x /∈ [0, M ]d, K(x) = 0.

2.3 Proof of part (ii) of Theorem 1

Since K is a compact subset of
(
B(G), || · ||G

)
, it is su�cient to show that for any

Ψ ∈ K and ε > 0 we have almost surely

lim
n→∞

sup
h∈[hn,hn]

inf
z∈H

∣∣∣∣∣∣ Gn(·, h, z)√
2f(z)nh log(1/h)

−Ψ
∣∣∣∣∣∣
G
≤ 4ε.

Choose an open hypercube H ′ ⊂ H such that P(Z1 ∈ H ′) ≤ 1/2. Such a choice
is possible because H has a nonempty interior by assumption. Let 1 < ρ be a
parameter that will be �xed later. Consider the net

hn,l :=ρlhn, l = 0 . . . Rn − 1, hn,Rn
:= hn, (2.36)

Rn :=[log(hn/hn)/ log(ρ)] + 1. (2.37)

For �xed l ≤ Rn we divide H' into disjoint hypercubes

Γn,j,l = zn,l,j + [0, hn,l
1/d)d.

Note than we can construct Jl := C/hn,l disjoint hypercubes, where C depends only
on the volume of H ′.
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2.3.1 Step 1

We shall �rst show that for any choice of ρ > 1 we have almost surely

lim sup
n→∞

sup
0≤l≤Rn

inf
z∈H

∣∣∣∣∣∣ Gn(·, hn,l, z)(
2f(z)nhn,l log(1/hn,l)

)1/2
−Ψ

∣∣∣∣∣∣
G
≤ ε. (2.38)

Recall that G̃n(·, h, z) denotes the "Poissonized" version of Gn(·, h, z) (see (2.23)).
By making use of poissonization techniques (see, e.g., [9], Fact 6), we have, ultimately
as n →∞,

Pn := P
(

max
0≤l≤Rn

inf
z∈H

∣∣∣∣∣∣ Gn(·, hn,l, z)(
2f(z)nhn,l log(1/hn,l)

)1/2
−Ψ

∣∣∣∣∣∣
G

> ε

)

≤ 2
Rn∑
l=0

P
( Jl⋂

j=1

∣∣∣∣∣∣ G̃n(·, hn,l, zn,l,j)(
2f(zn,l,j)nhn,l log(1/hn,l)

)1/2
−Ψ

∣∣∣∣∣∣
G

> ε

)

=: 2
Rn∑
l=0

P
( Jl⋂

j=1

En,l,j

)
.

But (HK3) entails that, for �xed l ≤ Rn, j ≤ Jl, the events En,l,j are mutually
independent (by classical properties of Poisson random measures), whence

P
( Jl⋂

j=1

En,l,j

)
=

Jl∏
j=1

(
1− P

(
EC

n,l,j

))
≤ exp

(
− Jl min

j≤Jl

P
(
EC

n,l,j

))
.

From Proposition 2.2 and by lower semi continuity of J we deduce that, for some
α > 0 and for all large n we have

min
0≤l≤Rn, 1≤j≤Jl

P
(
EC

n,l,j

)
≥ hn,l

1−α.

Hence, ultimately as →∞,

Pn ≤
Rn∑
l=0

exp
(
− Jlhn,l

1−α
)

≤
Rn∑
l=0

exp
(
−

( C

hn,l

− 1
)
hn,l

1−α
)

≤ (Rn + 1) exp
(
− C

2
hn

−α)
≤

(
1 +

log(hn/hn)

log(ρ)

)
exp

(
− C

2
hn

−α
)
.

Assumptions (HV2) and (HV3) readily imply that Pn has a �nite sum in n, which
proves (2.38) by the Borel-Cantelli lemma.
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2.3.2 Step 2

It remains to show that, for any ε > 0, one can choose ρ > 1 small enough to have
almost surely

limn→∞ max
l≤Rn

sup
z∈H,

hn,l≤h≤ρhn,l

∣∣∣∣∣∣ Gn(·, h, z)(
2f(z)nh log(1/h)

)1/2
− Gn(·, hn,l, z)(

2f(z)nhn,l log(1/hn,l)
)1/2

∣∣∣∣∣∣
G

≤3ε. (2.39)

We set, for ρ′ ≥ 1 and x ∈ Rd, Kρ′(x) := K
(
ρ′−1/dx

)
. Hence, setting ρ′ = ρ′(h, n) :=

h/hn,l ∈ [1, ρ] and u′ = u′(h, n) :=
(
log(1/h)

)−1
, we have almost surely, for each

0 ≤ l ≤ Rn and h ∈ [hn,l, ρhn,l] and K ∈ G,

Gn(K, h, z)(
2f(z)nh log(1/h)

)1/2
=

(hn,l log(1/hn,l)

h log(1/h)

)1/2 Gn(Kρ′ , hn,l, z)(
2f(z)nhn,l log(1/hn,l)

)1/2

=
(
ρ′−1(1 + u′ log(ρ′))

)1/2 Gn(Kρ′ , hn,l, z)(
2f(z)nhn,l log(1/hn,l)

)1/2

=: α(ρ′, u′)
Gn(Kρ′ , hn,l, z)(

2f(z)nhn,l log(1/hn,l)
)1/2

. (2.40)

Consider the class
G ′ :=

{
Kρ, K ∈ G, 1 ≤ ρ ≤ 2

}
.

Clearly, G ′ satis�es (HK1), (HK2), (HK3') and (HK4)-(HK5). By applying part (i)
of Theorem 1, we have almost surely

lim sup
n→∞

sup
hn≤h≤hn,

z∈H

inf
Ψ∈KG′

∣∣∣∣∣∣Ψn(·, h, z)−Ψ
∣∣∣∣∣∣
G′

= 0, (2.41)

where KG′ is as compact subset of
(
B(G ′), || · ||G′

)
and hence satis�es

lim
u→0, ρ↓1

sup
Ψ∈KG′

sup
1≤ρ′≤ρ,

0≤u′≤u

sup
K∈G

| α(ρ′, u′)Ψ(Kρ′)−Ψ(K) |≤ ε. (2.42)

Now combining (2.40), (2.41) and (2.42) leads to (2.39), provided that ρ > 1 has
been chosen small enough. The proof of part (ii) of Theorem 1 is concluded by
combining (2.39) and (2.38).�
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