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Introduction

Philosophers and statisticians have been debating on causalitpfgr ttame. However,
these discussions have been led quite independently from each Aothebjective of this
paper is to pursue a fruitful dialogue between philosophy and stat&sigs well known, at
the beginning of the fbcentury, some philosophers and statisticians dismissed the cohcept
causality altogether. It will suffice to mention Bertrand RlUsg©13) and Karl Pearson
(1911). Almost a hundred years later, causality still represantentral topic both in
philosophy and statistics.

In the social sciences, including research on public health, shafies are concerned
with the possible causes, determinants, facticsof a set of observations. In particular, for
planning or policy reasons, it is important to know what causeshwdffects. In order to
attain causal knowledge, many social scientists appeal tetisttimodelling to confirm or
disconfirm their hypotheses about possible causal relations amovaridigles they consider,
taking care of controlling for relevant covariates and espgciail possible confounding
factors.

To what extent can a statistical model say something atsugal relations among
variables? In this paper, we will attempt an answer by exammispecial class of statistical
models, i.e. structural models The discussion, however, will not be confined to a mere
examination of statistical methods, since a considerable effidrtboe made to consider
causality from ampistemologicaperspective. To put it otherwise, this paper does not address
the natureof causation itself, nor the analysis of various causaltstes; nor the elaboration
of complex causal structures; rather, we will be concern#gdtive question of how we come
to uncover causal relations by means of statistical madelli

The practice of statistical modelling raises substargmlas of ontological nature. The
latter is not the purpose of this paper. Nevertheless, testistd models are a common way of
gaining scientific knowledge, we begin in section | by statingnaderate realist position
concerning the relationship between reality and observation. This pbirtew is not
necessarily shared by all philosophers and scientists.

I. Modelsand Scientific knowledge

In order to gain cognitive access to reality, scientisggc@fly construct models; social
scientists are no exception to this rule (Blalock 1964, Franck 2@p8adly speaking, a
model may contain statements, schemes, figures and mattaneapressions. The notion of
model is central to present-day philosophy of science; so far,vieow®o proposed account
of what a model is has managed to attract universal consensuflidleng remarks are
thus aimed at singling out the characteristics of what wertadd@els to be in the context of
statistical modelling in social sciences.

A model is not a personal mental image of some reality. Modee not private
psychological entities but intersubjective constructions whiah typically be found in
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scientific textbooks and articles, and taught to students. Foria so@ntist in general, a
model is not a set-theoretical structure that satisfiesakemtrue a given set of statements;
this formal, mathematical, notion of model has influenced naamhilosopher of science
(Suppes 2002, van Fraassen 1980, Giere 1999). Social scientistsetakeet of a model to be
a set of assumptions.e. statements, which aim at providing a simplified account of a
complex reality. Of course, this view does not prevent the pessdiisfaction of these
assumptions by some set-theoretical structivegnodels in the mathematical sense.

Models however, as the term is used by social scientistsicaneurely mathematical.
Although the vast majority of scientific models contain matherakassumptions, they
usually contain non mathematical components such as explanatomesitde pictures,
schemateetc. Giere (1999) compares models with geographical maps. But maptoh
essentially as pictures of some territory, whereas the Isnaded by social scientists contain
both pictorial elements, such as drawings, figuets, and components which are not
figurative, such as statements. Provisionally, we will tak@odel to be an abstract object
which permits partial cognitive access to some redksys Systems are portions of reality
which can be purely observable or also contain non observalde part

Realists claim that at least some parts of a modekspond to some elements or
aspects of a real system. This claim is notoriously conts@leiYet, the empirical success of
a model,i.e. its ability to lead to sensible explanations and to corpeetise and even novel
observational predictions, provides good grounds for the realist’sf helisuch partial
correspondence. For many realists, a model is a — at leasiblpos representation of a real
system. “Representation” is a hard-to-define, elusive condept. social scientists a
representation is not necessarily an image or a picturagitg is a particular case of
representing in which there is some isomorphism or identity af fegtween the image and
what is pictured. In a picture of a system, the organizatiothefelements of the picture
mirrors the arrangement of the corresponding elements in thesysi@m. Since models
contain statements and since statements are not pictures diflg@pdasis,pace Wittgenstein
(1961), some parts of the model are not images. For our presposeyit will be sufficient
to say that parts of a model may correspond to some aspectepfeaented system. No
model pretends to capture all aspects of a real systenme Suanacteristics are consciously or
unconsciously disregarded. Modelling consists in abstracting anttsrés constructing a
simplified representation of a complex reality; thus, it slsvanvolves some degree of
idealization. More specifically, a moderate realist apgho@kes models as approximations
of a complex reality, in the sense that some of the statsnmaplied by the model are only
approximately true. In section I, statistical models amwad as partial representations of a
data generating process, possibly interpreted as the underlgaigy.r The random
component of the statistical model constitutes the unexplaingdopahe model. Some
idealizations and approximations are explicit and explain why a només not fit the data
perfectly; however, some discrepancies with the observatiotigta are left unexplained.

Fitting the data certainly is a widely agreed condition ofjadey. But what does fitting
the data mean? Making true predictions or statistically ateysredictions within certain
limits surely is part of the story. A model itself detémes what counts as a relevant
observational result since those results must have correspondingrpantst in the model;
typically, the observational results are denoted by the saftigariables. However, a model
by itself does not contain the criteria for deciding if a giebservational result counts as a
confirmation or a refutation. Such a decision is external to tbdemand hinges on the
amount of error deemed acceptable for practical purposes. Tthig isase in the natural
sciences too: in some circumstances a model of geometricak aptly be considered
adequate, while in other contexts we will have to use madeisve or quantum mechanical
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optics. Thus, good data fitting or empirical adequacy is alsceflidy function of the ends
and purposes pursued (Giere 1999).

Contrary to realists, empiricists such as van Fraassen (1880)¢t the correspondence
of a model with reality to the data level. Unobservational commsria the model may have
counterparts in reality, but we have no means to assure \@ggbht they exist because we
do not have empirical access to them. As an empiricist, vaaséen holds that the only
cognitive access to reality is observation. Realists, lyscalled scientific realists, claim that
we have reasons to believe in the existence of some unobseevdities or processes as
well. Some theoretical statements of our models can beesdserbe true provided they play
a role in achieving empirical adequacy, especially in acaogiritir new observations. Some
parts of schemata or figures may have a counterpart inyrealdtt this can be attested by
empirical evidence and measurements. For example, the angleebethh@ atoms of a
molecule can be measured. Usually, the correspondence ofaenglef a drawingetc. with
reality can be expressed by a proposition. Here, we will esousaderate form of realism
according to which models permit to have cognitive accessrtie unobservable aspects of
real systems. Granted, models are falsifiable and sienaot the locus of definitive and
infallible truth.

This moderate realist position has a bearing on the status aflibaus social scientist
does not rest content with good data fitting but also attempts torwcmnstodels which
provide a causal explanation of those data. A causal structueatomship among variables
is first articulated within the model. In some instancesaiit be held as a working hypothesis.
If a model achieves a good statistical fit with the datspecially when it succeeds in
encompassing hitherto unknown data, then it is reasonable to bélk\tbe model hits upon
a real causal relationship. And we could capitalize on this inr dodeonstruct new models
for different, but related, situations.

Il1. Data

Science tries to make sense out of observations, but thefilstidrave to be...observed. The
selection of what one observes depends upon our underlying researcionguestd
theoretical constructs. According to what we are looking fowlat,can use our eyes, a
microscope, an electrocardiogragtc. In demography for example, most data are collected
by some sort of form: a census form, a birth certificagyraey questionnaire, an inscription
in a population register, and so on. The facts thus collected amvbowften far from perfect
for the scientific enterprise. First, the data may contaiantary or non-voluntary errors:
erroneous income declarations, age-heaping in some less developaties, sampling
biases,etc, including how the sample was drawn; for example, intervigvanly hospital
patients gives a biased image of the health of theentapulation.

Then, there is the issue of time. The time-ordering ehtvis a prerequisite for causal
analysis: causes should precede their effects in time, thowggtritieirion is disputed by some
(Horwich 1987). A cross-sectional observational scheme, as one kdoggsnot enable us to
disentangle age, period, and cohort (APC), or their durational agoty effects. For
example, it may show that hearing decreases with age andsanfly does smoking, but the
former is an age effect and the second is a cohort effeabgRettive studies give a time-
dimension to the data and enable us to distinguish APC effetdsime-order events relative
to their possible causes, but they are influenced by recafidapsd only those persons alive
and present can obviously be interviewed. If one can afford thenpegotoge longitudinal
studies avoid these pitfalls, but they can be affected by @dsllow-up and they thus
possibly lead progressively to a selected population.
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Recall bias and selection bias are particularly difficuintmdel and correct (Freedman,
1999). In retrospective or prospective studies, one also has to @madequate time-frame:
if the observation extends far into the future or the past, togsllow-up and recall lapses
respectively increase, as does the cost of the prospectiveys If the time-frame is too
short, we might miss an important lagged effect, suchhegéleterious impact of a drug
occurring only several years after use. Case-control studrebe of help here, though they
are rarely used in the social sciences.

Another serious observational problem in demography and in the sowaces in
general is the fact that many of our variables are abst@ains such as social status or
intelligence, which cannot be observed directly. In structurafleting, such as in the
LISREL approach, one would call thdatent variables For measurement and comparisons,
we must therefore agree on a common definition of these ebstwacepts and on a
procedure for deriving empirical measures satisfying thahiéty (repeatable measures) and
construct validity (accurate reflectionditeria (Babbie 2000). The problem is especially acute
when contexts differ: may we use the same definition and indicat@ducation in Europe
and in Africa, for example? Probably not. Taking into account the peirpiothe study, the
definition of a concept should determine a partition such that antadjeer is or is not
subsumed under the definition, notwithstanding the possible existesoeefcases of fuzzy
membership. The possible various facets or dimensions of theptosbould be clearly
pointed out. Such a procedure is furthermore helpful in selectinguhgple indicators of the
concept needed for empirical measurement. Even biological varisibh as sterility are not
always obvious or clearly defined; one needs in this case togligh between primary and
secondary sterility and to avoid taking sub-fertility for inféyti(Habbemaet al. 2004). The
indicators of these forms of (in)fertility will not be the sanfAccording to our moderate
realist stance, we can attain (provisional) causal knowledg¢fgeasystem under analysis, in
spite of these observational problems.

I11. Causality and Statistical modelling

The statistical model
Formally, a statistical modél is a set of probability distributions; more precisely:
M ={s, Pa0e}

where S, called theample spacer observation space, is the set of all possible values of
given observable variable (or vector of variables) and foh &0©, P? is a probability
distribution on the sample space, also called $henpling distribution thus, 8 is a
characteristic, also callgzhrametey of the corresponding distribution a@ddescribes the set
of all possible sampling distributions belonging to the model. Tk bdea is that the data
can be analyzeds if they were a realization of one of those distributidits example, in a
univariate normal model, the sample sp&cés the real line and the normal distributions are
characterized by a bivariate parameter, for instance thectexijpa («) and the variance

(o?); in this case19=(,u,az).

A statistical models based on atochastic representation of the worlts randomness
delineates the frontier or the internal limitation of theistiaal explanation, since the random
component represents whatnist explained by the model. For instance, in the simplest case
of repeated measurements)(of the weight of a given object, the statistical modeliveer
from the equatiorx = +¢&, explains the expected measurement as the “true” weightf
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the object to which is added an unexplained error of measuremgeniddelled as a random
variable with zero mean.

A statistical modelis made ofa set of assumptionsnder which the data are to be
analyzed. Typical assumptions of statistical models hesobserved random variables follow
or not identical distributions; the observations are, or are not,endept; the basic sampling
distributions are, or are not, continuous and may pertain, or nofamily characterized by a
finite number of parametere.@.the normal distributions). When we deal with multivariate
models, adequate assumptions might involve linearity (in thranpers and/or in the
variables), non measurement error, or non correlation of tenros.

In particular, we often assume the model to be linear or appatedynso. This is a
matter of convenience, since a linear model is easy to mat@piika parameters are easily
estimated and the resulting estimators have nice propéfies assumed, linearity may also
be tested. The same holds for normal distributions. We mayaatsane that variables are
measured without error and that the errors are not correléttethe independent variables.

If the statistical assumptions are satisfied, the sitztlsmodel correctly describes co-
variations between variables, but no causal interpretatiotoiseal yet. In other words, it is
not necessary that causal information be conveyed by the parsmate is it generally
legitimate to give the regression coefficients a caugatpretation. It is worth noting that in
specifying the assumptions typical of a statistical mode, globlem is not to evaluate
whether or not an assumption is true. A (frequentist) stagistimay however want to test in
due course whether a hypothesis is acceptable or not. In a demsmpdel-builder could
prove that an assumption were (exactly) true, this would nom lassumption anymore, but a
description of the real world. Rather, the main issue sv&duate whether an assumption is
useful, in the sense of making possible a proceksaafing-by-observingn some aspects of
interest of the real world.

Statistical inference and structural models.

Statistical inference is concerned with the problenteafning-by-observingnd isinductive
since it implies drawing conclusions about what has not been obdervedvhat has been
observed. Therefore, statistical inference is always taineaind the calculus of probability is
the natural, and in a sense logically necessary took(gege Finetti 1937, Savage 1954), for
expressing the conclusions of statistical inference. Therefibie stochastic aspect of
statistical models involves a stochastic representatiomefwiorld and a vehicle for the
learning-by-observing process.

Here, two aspects ought to be distinguished. On the one handndebyrobserving
conveys the idea of learning about some features of inter@sglynéhe characteristics of a
distribution or the values of a future realization. On the other,Haathing-by-observing is
also concerned with the problem of accumulating information as obsesatccumulate.
These two aspects actually refer to the usefulness of thel.niectural models are
precisely designed for making the process of statistié@ldnce meaningful and operational.

To better understand the idea behind this last claim, it is wbstinguishing two
families of models. In the first family we finplurely statisticalor empirical models, also
calledassociational or descriptive models, exploratory data asatysilata mining. In these
approaches, the assumptions are either not made explicitrictegisto a minimum allowing
us to interpret descriptive summaries of data. Interest awprdingly focus on the
distributional characteristics of one variable at a timehsas mean or variance, or on the
associational characteristics among several variable$y asccorrelation or regression
coefficients. It is worth noting that the absence or the redmmaber of assumptions
constituting the underlying model make these associational stindigl§icient to infer any
causal relations.
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The second family consists in the so-cal&dictural or causal models. “Structural”
conveys the idea of a representation of the real world thstaide under a large class of
interventions or of modifications of the environment. As a mattdact, structural models
incorporate not only observable, or manifest, variables but amsanany instances,
unobservable, or latent, variables. The possible introduction oft leéeiables is motivated
by the help they provide in making the observations understandablastance, the notion
of “intelligence quotient” or of “associative imagination”ght help to shape a model which
explains how an agent succeeds in answering the questions ofrartegthematics. Thus a
structural model may capture an underlying structure of the wididdelling this underlying
structure requires taking into account the contextual knowledge diettieof application in
order to uncover the structural stability.

Structural models are also called “causal models”. Herecdneept of causality is
internal to a model which is itself stable, in the sense sblucturally stable The
characteristics, or parameters, of a structural modelfanéenest because they correspond to
intrinsic properties of the observed reality and can be safay for accumulating statistical
information, precisely because of their structural stabilityhis context, a structural model is
opposed to a “purely statistical model”, understood as a modead¢batints for observable
regularities without linking those regularities to stable prioge of the real world.

The invariance condition of a structural model is actually a complex issues T&hia
condition of stability not of the causal variables, but of the alanetation itself. The idea is
that each variable is determined by a set of other varitiinesgh a relationship that remains
invariant when those other variables are subject to external influénisein this sense that
we call the model “structurally stable”. This conditionoals us to predict the effects of
changes and intervention§tability of distributions is also assumed to ensure that the
(conditional) independencies between variables will not beajeloged by variations in the
parameters (Pearl 2000 calls this condition “stability”, butaiso known as “DAG-
isomorphism” (Pearl 1988) or “faithfulness” (Spirttsal. 1993)).

Besides the assumptions of stability, or of invariance, the cwtistn of structural
models typically involves other assumptions such as: covariateisuaffy, no-confounding,
independence of error terms, recursigtg. It is worth pointing out that the correctness and
usefulness of structural or causal models also rest on & setested, and often untestable,
assumptions, which nevertheless play a fundamental role. Inypartiat thebuilding stage
the direction of time is usually assumed to point from the pmghd¢ future. However,
reasoning may be reversed at théerencestage; for instance, in a medical application,
inference may concern a diagnosis conditional on observed symptoers,tfeough the
pathology has been active before the symptoms appear.

Conditional models and exogeneity

By means of causal modelling, the social scientist ofi@s to acknowledge that all the
variables of interest cannot be taken into account by a uniquetustil model, because of too
severe an environmental instability. The purpose of modelling becooreter such

circumstances, to uncover some structural, or stable, agffentsunstable reality. In order to

do that, a usual strategy consists in separating the datavmjmarts: X = (Y, Z), along with
amarginal-conditional decompositipnamely, in terms of density functions:

p(x16) = p( z|6)0H ¥l 29)

where themarginal modelconstituted bx{ p(z|9) ,GD@} , describes how the daf (alone)
have been generated. Tewnditional modelconstituted b){ p(ylz6) ,GDO} , describes the
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conditional distribution of (Y | Z), that is to be interpreted as describing the daterating

process of the random variabferelatively to a particular value @ and, therefore, does not
take into account the randomnessZof In social science contexts, the standard pradite
gather in the marginal model the more unstableaspsd the real world, as conjectured on
the basis of background and contextual knowledgés makes plausible the assumption that
only the conditional component of the model iscual. The burden of the assumptions then
bears on the conditional distribution of the valesby , leaving virtually free the marginal
distributions of the conditioning variables.

In such a case, only the parameters describing cthreditional distribution are
considered of interest and, reciprocally, a vagabl is said to beexogenousfor a given
parameter of interest, if this parameter of interigsa function of only the parameters
identified by the model conditional on the exogenowariables, and if the parameters
identified by the marginal model and by the comdisl model respectively are independent in
a Bayesian sense (or variation-free in a classiase):

p(y, 20) = p(¥z 6) [(p(Z8,) with 6=(6,,6,)110, %0,

The condition of exogeneity justifies analyzing separatbly marginal and the
conditional sub-models. Note that the existence of a la@mimon cause for both Y and Z
typically violates the condition of exogeneity.

Taking into account the previous definition of exogendhys leads us to the following
concept of causalitya causal variable is an exogenous variable in agigtructural model
Similarly to Suppes (1970), this concept of causaéties on conditional modelling, but this
paper insists on the necessary structural stability ofat@usdels. A simple example, given
in Appendix I, illustrates the notions just introduced.

What makes causality a complex issue?

Exogeneity does not exhaust the problem of causalidgad, structural stability is crucial for
interpreting exogeneity as causality. Furthermore, structiadbility makes sense only if
consistent with the background knowledge. Up to now,haxee considered a concept of
exogeneity as a prerequisite to the causal interpretatiotrustigal models. The latter are
however more complex than a single marginal-conditionabmosition would suggest
(Holland 1986).

We will now examine tweepistemologicalaspects of causality. On the one hand, a
single “marginal-conditional decomposition” may not properly agudfor the complexity of
the relationships within a large number of variables tdrest On the other hand, a proper
analysis of the concept of causality requires, at some stageknowledge the role of time.
The first facet will be labelled “atemporal”, in order togwint aspects for which the role of
time is not essential. A simplified example which ilfages the various issues in this section
is developed in Appendix Il.

We begin with those atemporal features. The issue ddrrdetism is definitely
controversial. Structural equations may be consideredtituns in which probabilities come
in through error terms representing some lack of knowld@getwright 1989, Hausman
1998, Woodward 2003). We may otherwise adopt the st#iss viewpoint: the world of
the statistician is stochastic, the error terms represewtirag isnot explained. In truth, the
epistemological perspective here endorsed allows us to setthsidetaphysicaproblem of
determinismj.e. whether or not the world is actually deterministic.

The complexity of the relationships among a large nundbevariables of interest
requires to take further features into consideratibm.some cases it is possible to order a
vector of variables of interest in such a way that a systenmarginal-conditional
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decomposition,i.e. p(x, %, %)= A %)UE x| YU B x| ¥ X,.., is structurally stable. In
such a case the model is said todmursive When some components cannot be disentangled,
for instance if p(x,%|X%) cannot be structurally = decomposed into

p(x% | x)Op(% | %, %)some authors speak of causal loops (for more details sed 194D

and 1954).

Though a causal factor may have a limited impact on an effecipahés case may
possibly be neglected, it is often assumed that a strongiaisso between a possible cause
and its effect is more likely to reflect a causal relatigns{itiwood, 1988). A strong
relationship might however be due to confounding. Bynguout other factors liable to
screen-off the impact of the covariates taken into acctlumtassumption afo confounding
has therefore a complementary role to covariate sufficienoyweMer it should be noticed
that, as pointed out by Stone (1993, 459) “good explargfwinthe notion of confounding)
are surprisingly rare” in spite of “appearing in mostdemiology texts and (being)
ubiquitous in the quantitative social sciences”. Takdraetvariable cas®, Z, W, for
example, where we wish to measure the impact of a varfabieanother variabl&. If Y is
associated withV andif the latter influenceg too, then part of the covariation betweéand
Z will be due to the hidden presence/if this latter variable is not controlled fore., is not
taken into account in the model. In this case of modespecification,W is called a
confounding factor when measuring the relation betvweamdZ.

Confounding is also related to the so-called Simpsonado, the resolution of which
is based on the fact that the two condition§l Z|W and Y O Z are not linked by any
logical implication, neither their negations. For exam@eking countries according to their
crude death rate (the ratio of yearly deaths to the me@d-population size) can lead to very
different and even inverse conclusions than if these samériesuvere ranked according to
their expectation of life at birth. The second mortalitgicator controls for population age
structure while the first does not. If countries elifsignificantly according to their age
structure, the latter confounds the actual mortality difféaés existing between these
countries as mortality is strongly related to age. Hiddenfounders may therefore lead to
inadequate measures of cause—effect relationships andlpassstructural instability of the
model. If our background knowledge suggests the presdnpessible confounders, the
latter should always be included - data permitting - antbegovariates.

By causal asymmetryve mean that the two propositions¢auses” and “Y cause&”
cannot hold at the same time: either the direction of daasat known and is unique or the
direction of causation is unknown and this leads to atsitw of simultaneity in the model.

The temporal aspect of a causal mechanism is generally @dcaptan important
component of the modelling effort. A first issueeigdently that of thelirection of time As
mentioned above, we assume that the causal mechanism followsetttgodiof time from
the past to the future and therefore that effects occurthéiercauses. Secondly, the problem
of feedback loops is solved taking into accouoatisal priority i.e. the fact that causes

precede their effects in timeZ, - Y. » Z., wheret<t <t'. That is, Y is an intervening

variable between two temporally distinct valueZand these two together guide the choice
of causal ordering i.e. the temporal order in which variables are observed. Ahave
pointed out in section Il, however, causes and effects nmagaapo be simultaneous because
the time-frame underlying our data is not always adequateritporally ordering causes and
effects. This is the reason why longitudinal dynamic e®dhould always be preferred to
cross-sectional ones if the purpose is to distingeesises from effects.

Statistical Modelling and Causality 8
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Hypothetico-deductive methodology

Causal modelling is not concerned with the question velndtie true causes of an effect are
disclosed but rather with the issue of a good represemt@ifahe world) which embodies a
causalmechanism. For a moderate scientific realist, the prodessdel building involves a
continuous interaction between a prior knowledge of takel fand a sequence of statistical
procedures for elaborating and testing the successive hypgthdtbethe understanding that
the true causes are attainable at least in principle.alctipe, causal attribution incorporates
accordingly educated guesses. Because, as explained abmadityasi a propertywithin a
structural model, rather than @mima facie empirical problem, it is impossible weduce
causes from correlations in a purely statistical model.tBistdoes not lead to a Humean
sceptical despair: causal modelling is indeed a promisingdogausal attribution. In other
words what vindicates causal models is the hypothetico-dedwsttategy employed in much
of contemporary science.

By hypothetico-deductive methodology we mean a procedurevthaccount for data
obtained through observations and/or experimentation atdaiti confirm or disconfirm a
given causal model by confrontation with empirical evidersee (below). Hypothetico-
deductive methodology was developed already in th® déhtury within experimental
methods. In recent times, the hypothetico-deductive melbgyg has been also theorized
within the covering law model of explanation (Hemped &ppenheim 1948).

Three remarks are in order. Firstly, a hypothetico-deductivladelogy is employed
in case we have at our disposal enough well confirimedries and background knowledge to
formulate a prior causal hypothesis. If this is not the cesploratory statistical methods
provide a useful tool to detect in the data a tentativetsiiei to be further analyzed by means
of the structural modelling methodology. Williamson (2Pénakes a similar point about the
combined used of inductive and hypothetico-deductive metfoodsiusal analysis by means
of Bayesian networks.

Secondly, from a logical point of view, a model is éaifsat least one of its assumptions
is false. However, as mentioned above, models are deemesl useful rather than true.
Consequently, also false models canusefuldepending on the problem at hand. In other
words, although the model is not the “true” model, it caore or less faithfully represent
reality and thus be useful in order to understand (at) lsase aspects of the world.

Thirdly, deduction ought not to be confused with the dilgptico-deductive
methodology and induction ought not to be confusil the inductive methodology. In fact,
there is a sharp difference between hypothetico-deductivedactive strategies on the one
hand, and deductive or inductive inferences, on the otivet. lThe former are procedures for
testing or for formulating hypotheses, whereas the lattetypes of inference. On the one
hand, H-D strategiesonfirm (or disconfirm) hypotheses, while inductive strategies are
employed tadiscoverhypotheses. On the other hand, deductionnsraampliative inference
from what is known to what is known, whereas inductiomnsampliative inference from
what is known to what isot known yet.

Structural models discussed above are hypothetico-deduéthd) models, for which
empirical testing is performed through two stages:

0] prior theorizing of out-of-sample information, ioding in particular the
selection of variables deemed to be of interest, theuiation of a causal hypothesis (also
called the conceptual hypothesisic,

(i) iteratively:
a. building the statistical model;
b. testing the adequacy between the model and the dataetot #ice empirical

validity or non validity of the causal hypothesis.
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Causal modelling requires accurate knowledge of the caustxtoprevious studies,
well confirmed scientific theories or background knowledge essential. The conceptual
hypothesis states a hypothesized causal strudtareg causal claim about the association
between variables to be put forward for empirical testithgwever, the evaluation of the
conceptual hypothesis cannot be done aalyriori but also requires empirical testing.
Indeed, this is what the whole statistical set-up istbail Differently put, causality is a
matter of confirmation, or borrowing the statistical vodaby a matter of accepting or
rejecting a given hypothetical model. Therefore, if (i)istatl assumptions are satisfied, (ii)
the model fits the data, and (iii) the model is struclysthble, then the proposed causal link
is provisionally accepted.

This strategy is hypothetico-deductive because the causal slaiat inferred from the
data, as in inductive methods, but confirmed or diiigoed in the given causal context and
relative to the structural model. This is, in particuddryariance from algorithms in TETRAD
(Spirtes et al. 1993), which are supposed to allow theluctive inferenceof causal
relationships from a data set regardless of any poaceptual framework. Note that H-D
strategy so described is general enough to provide a scheswgenfific practice, without
commitment to a strict covering law model or to the ubeamy particular measure of
confirmation; on this point see Williamson (2005).

IV. Someremarks on causation at the population and at the individual level

The problem of levels of causation arises because causal ¢onsldsawn from statistical
models concern populations as well as individuals, althpugibability distributions and their
parameters are typically defined relative to the populablmmetheless, populatioase made
up of individuals. Regardless of how individuals iefhece group behaviour amice versa
we wonder how to make sense of the following issue. dfpiological studies establish a
causal relationship between smoking and lung cancer. Thislusion is based on data
concerning individuals of a particular population. Yehe might be interested in Harry's
chance of getting lung cancer given that he smokes, tireirprobability that his smoking
caused him to contract lung cancer.

This remark leads us to the fruitful distinction beém population-level causation and
individual-level causation, although we are left with atstewo problems. On the one hand,
we face the methodological problem of handling the heterogeneity of individual
characteristics and, on the other, the practical problecawsal attribution and/or diagnosis
for a given individual. It is worth pointing out thet advocate two levels of causatiomist
tantamount to saying that causation operates in a differemtenat the two levels.

The methodological problem can be rephrased as follovesc@hcept of causality that
emerges from structural modelling involves two complemerdapects. Firstly, the validity
of a statement such as “smoking caused Harry's cancer” deperilds walidity of a model
deemed to be structural. Secondly, the concept of a structod®l s a statistical concept
that refers to some population of reference, and a statemamtas “smoking causes lung
cancer” virtually refers to each individual of a populationreference. Also, the H-D
methodology just discussed points to the issue thatpesgtar of fact, the structural model on
which causality is based is not justifiadpriori, but has to be uncovered by blending field
knowledge and statistical methods.

Heterogeneity of individual characteristic®. the problem raised by variables that are
causaland non observable, has the consequence that our models,galteuctural, are
nonetheless imperfect. The complexity of the problem of bgésreity has led to an
extremely vast body of literature. Solving the problevagyfar beyond the scope of this work,
and we shall be content to mention that it has been tacki@dcriicized from several
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perspectives. For instance, multilevel analysis (see Courg@éad) tries to get at an
understanding of individual and population behaviours urther assumption that the
grouping of individuals according to various levels idtrces an influence of the group on its
members andice versa In health science®.g.in biostatistics, frailty models are used to
model heterogeneity of populations (Vaupel and Yashinl120the counterfactual approach
tries to cope with the problem of heterogeneity by sgttiifferent hypothetical initial
conditions. However, in spite of the intuitive appealifigaunterfactual reasoning, the non
observability of such different settings has been theoblgf several criticisms (see Dawid
2001)

Let us now come back to the practical problem. Can a physibéecide whether to
prescribe a treatment or not on the basis of a causal Pnddelanswer is not straightforward.
On the one hand, the answer ought to be positive, wer@hyscian sure of covariate
sufficiency. However, this is not a realistic situation.gdod physician does not blindly
follow what a structural model prescribes. He would dkke into account the specific
characteristics of his patients.

Nonetheless, this practical problem hides an epistemological In fact, the
physician’s decision depends on the relationships betwaesality at the population level
and at the individual level. The physician’s incertitumlgout the population level causal
evidence is due to the methodological difficulties mentioakbove: we wonder (i) what the
causal variables are and whether it is possible at all todeavisufficient list, and (ii) what
mechanisms operate among the variables deemed to be causal.

In spite of this, what we discover about the average relaétwelen smoking and lung
cancer at the population level, can guide causal attributidheircase of Harry through a
simple tool of probabilistic reasoning, namely Bayegorem. In fact, Bayes’ theorem allows
us to calculate the posterior probability of the causeafgiven individual, provided that the
population risk is interpreted as a prior probability thus individual, taking into account his
specific characteristics.

Concluding remarks

Statistical models are stochastic representations of thevoglal. Typically, structural models
are conditional statistical models characterized by paramete¢hstiable over a large class
of interventions or of environmental changes. lwighin these structural models that we
formulate causal statements. From a statistical viewpmantality can be defined in terms of
exogeneity in a structural model. Nonetheless, exogeneityotisenough if we consider
causality from arepistemologicaperspective. A more complex and rich concept of causality
may be worked out once we consider the fundamentabf@ssumptions made in structural
models, of background and contextual knowledge and of thmotlgtico-deductive
methodology. These considerations, however, do not enableo attain a unique and
consensuatlefinition of causality. But at least this allows us to attain a qoinokcausality
that isinternal or relative to the structural model itself. This id te deny the existence of
causation. Rather, this is to emphasize that our knowletigausal relations — at least in the
social sciences — depends on structural models that medistengp access to causal
relations. In these concluding remarks we shall focusoaresepistemological and practical
consequences of our approach.

From an epistemological (and also methodological) pointview, it is worth
distinguishing (i) the seeking for a basic concept of altysfrom (ii) the analysis and
examination of complex causal structures. Causality is nettti observable but intrinsically
latent, as the fact that we cannot infer causation from etioel shows. This means that
causality is, above all, a matter of perspective. According tealist perspective, causality
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exists whether or not we can observe it, and the prohlems but to be how to detettie
causal relations. An empiricist approach is more interestechat we can say about causal
relations starting from observations. Our emphasis omemnaty and structural stability
accommodates both approaches. On the one hand, exogereiyelsdefined concept; on
the other hand, structural stability raises interpretatiproblems because what we decide to
test for structural stability depends on background kedge.

In the social sciences, structural models analyze causetustersi that are much more
complex than simple causal relations suctkXasusesy. In section Ill we mentioned some
practical difficulties such as covariate sufficiency, no conéling, etc. However, we did not
develop a systematic analysis of those issues — thibevithe object of another paper.

Some practical implications can be drawn from this papestly data should ideally
enable the time-ordering of events, as causes precede teeitsah time. If this is not
possible, e.g. if we have no control over the data callegtrocess, background knowledge
can sometimes supply the necessary information on causalypriaitinstance, that tobacco
consumption causes lung cancer and not the other way arfoelodgs to our background
knowledge and should be used in the time-ordering oftev&econdly, a causal explanation
cannot be derived purely from the data themselves. Iniagdcausal explanations require
background knowledge, theoretical assumptions, and a sowtdodological approach.
Causality is thus bond to structural modelling, andfihal test of a causal model remains
structural stability accompanied by a sensible interpretatfaresults. Thirdly, each of the
various stages of the modelling endeavour (collecting pmiedence, obtaining data and
checking their quality, defining concepts and constructimgjcators, developing causal
hypotheses, choosing the methods of analysis) shoulddsztaken very thoroughly: today’s
causal modelling is indeed the building-block of tomarsobackground knowledge.
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Appendix I: A simple example of exogeneity and of causality

In this appendix we illustrate through a very simple exaraplae basic notions regarding
structural modelling and exogeneity. We also take thgodpnity to show the progressive
nature of model specification.

Let us consider the following economic situation. We stétht annual data on the price

p(t) and the quantity sold(t) of a well-defined holiday destination; imagine, fortare,

a full-board stay in a three star hotel during the firgi tweeks of August on a well-known
beach. Without further specification, a simple model wadnsist in assuming that the pair

of variables(p(t),q(t))is generated by a bivariate normal distribution with estations

(Hoys Myry) variances(aﬁ(t),aj(t)) and covarianceap(t)’q(t). The argument “t” in the

parameters indicates that the characteristicseoptbcess change over time: in the statistical
jargon the parameters are purely “incidental”. Altgh acceptable from an economic point of
view, this parametric instability leads to a norexgtional model: each new observation

(p(t),q(t)) introduces 5 new parameters and no observatiohtrpigssibly put the model

into question, let alone refute it. We should adorenstructure, based on contextual rather
than empirical knowledge.
Suppose now that the market operates as followslahluary, each year, the tour

operator prints a catalogue in which the pr'm@) is announced. From January to July the
buyers enter their orders, compounding the aggeelgqmantityq(t) at the announced price
p(t). This suggests to decompose the joint distribut@mnerating(p(t),q(t)), into a

marginal distribution generating p(t), with parameters(/,/p(t),aﬁ(t)) and a conditional

distributiongeneratind a(t)| p(t)): P[ p(t),a()]= A o()]0H d )1 K }].

The motivation for this decomposition is that tlmmomic context suggests that the
marginal processcaptures the behaviour of the tour operator (igply side) where the

expectationsup(t.) expresses, in particular, the (changing) expectatan the evolution of the
costs (cost of kerosene for air flight, local co§taccommodatioretc) and the variances
af)(t) reflects the indeterminateness of the behavioupairiicular due to changing levels of
uncertainty. Similarly, the economic context suggékat theconditional procesgenerating
(q(t)l p(t)) captures the consumer behaviour (demand sidejngtak particular into

account that in our societies once a catalogueinsepl the buyer does not try to bargain on
the price: §) he either accepts the price, and buys, or rejbetprice, and does not buy (and
possibly looks for a cheaper offer...) and therefoebavesas if’ the price were fixed,e.
not random.

Suppose now that we are only interested in thelgigigpe behaviour. As shown above

the parameteréyp(t),ai(t)) cannot be estimated because of their incidentalr@aThus we

should add more structure, typically in making thesxpectations and variances known
functions of past observations and of a finite namtf parameters (for instanceandf in:

My = a+pf p(t—l) ). By doing so, we aim at capturing a parametestancy: this is one of
the major objectives of statistical modelling.
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Suppose now that we are only interested in the ddme@le. Again for the same reason
as before we should endow the conditional expectafi| q(t)| p(t)] and the conditional

variancev[q(t)| p( t)] with some structure. For the sake of simplicigt, s assume that
E[a(t)I p(t)]=y+op(9) and V[q(t)| p(f)]=0, which is independent oft (an

homoscedasticity assumption). Apart from the smthiced structural stability, we should
now face the issue of exogeneity; this is the goestvhether it is “admissible’i.e. without

loss of information) to consider only the conditmodel,i.e. to treat the pricep(t) “as if”

the price was not random. The exogeneity of theepirivolves two different aspects. Firstly,
do we grant that the conditional distribution adlfuaaptures the behaviour we are interested
in? Thus, do we grant that the demand really behawveler “given” price, that only the
(current) price is relevant for the buying behavjaihat the conditional variance really is
constant etc?

Quite a different question is the following: do w&ecept that the randomness of the
price gives no information on the parameters ofcieditional model? In other words, do we
accept that the unknown value of the parametetheotonditional model is independent of
the values of the parameters of the marginal madel®, the statistical jargon would say that
the parameters of the marginal models and the pess of the conditional model are
“variation-free”, in a sampling theory approach,ase “a priori independent” in a Bayesian
approach. Thus the exogeneity problem involves agpects. The first one regards the
parameters of interest: are we reallye- contextually - interested in the parameters of the
conditional model? The second aspect regards #iistital efficiency: may we ignore the
random character of the conditioning variable?

Does the exogeneity of the price in the conditiomaidel generating(q(t)| p(t))
imply that “the price causes the quantity”? ThewaTsis “yes” in quite a specific senses.
under several provisos. Firstly, it is a conceptafisality internal to a specific model: the
price p(t) “causes” the quantity in a particular model whishassumed to represent a

demand behaviour but the price does not cause ubetity “in general’. Secondly, this
concept of causality is relative to a particulanilg of models, namely models that are both
conditional and structural: the price causes thantity because the conditional model,

generating(q(t)| p(t)) is assumedly structural. In other words, to thst loé the scientist's
knowledge, analyzing the data on the price alogeanbans of a marginal model generating
p(t) only, would give no information about the charastes of the conditional distribution
andthis conditional distribution is by assumptiontdéaunder a large class of interventions.
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Appendix I1: The epidemiology of lung cancer

The following example is taken from the field ofiggmmiology. It is well known that
two major determinants of lung cancer are smokimty @xposure to asbestos dust (American
Cancer Societyhttp://www.cancer.orgaccessed on November 23, 2005). A case-control
study, for example, can indeed show that thosenlgauing cancer have smoked more and/or
have been more exposed to asbestos dust on avkeagthose who do not have lung cancer.
There are furthermore two types of lung cancer twhéhould be distinguished in an
epidemiological perspectivemall cell lung canceandnon-small celllung cancey but this
distinction has not been taken into account herefirg¢ simple model would therefore
consider tabagism (T) and asbestos exposure (Av@sndependent causes of lung cancer
(©), leading to the following causal graph

One also knows however that both smoking and asbesfposure are dependent upon
one’s socio-economic status (SES): those with @&I0BES tend more to smoke and work in
unhealthy environments than those with a high SH&e causal graph can therefore be
redrawn as follows:

SES

This graph shows that tabagism and asbestos expaseiin fact not independent from
one another as they are both related to one’s B&E3$hey have a common cause. It is also
known that other risk factors - such as radon, patianal chemicals, and environmental
tobacco smoke — also play a role on the incideidang cancer. In the present simplified
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model, we have neglected these other possible satismigh a more complex model could
take them into account too. For example, therédcbe another path from SES to C through
exposure to occupational chemicals. We also docansider in this simplified model the
possible interaction effect of smoking and asbestodung cancer (this could possibly be
represented by adding a nod€[JA” linked with an arrow to the node “C”). Finallye
neglect the time lag between exposure to smokingaabestos, and the development of lung
cancer. In more realistic epidemiological modeipasure duration would moreover be taken
into account if the data are available.

From a structural modelling point of view, two fuardentally different mechanisms
should however be distinguished: one ibialogical mechanism leading from exposure (to
tabagism, to asbestos,...) to lung cancer, and anotie is asociological mechanism by
which different social categories differ in smokibghaviour and occupation. As the two
mechanisms are quite different from one anotheg, dtobal model should therefore be
decomposed into two sub-models, a structural moglating firstly SES to smoking and
asbestos exposure, and a second structural mdalhgethese latter variables to lung cancer
incidence, as is depicted in the next figure. la finst structural model, SES would be the
exogenous variable and tabagism and asbestos egpbsuendogenous variables, and in the
second structural model both tabagism and asbestpssure would be the exogenous
variables while lung cancer incidence would beahdogenous variable. A demographer, as a
social scientist, would focus mainly on the firsbamodel while an epidemiologist, with a
public health background, would deal more with seeond. These considerations point out
the fact that the concept of exogeneity is alwayative to one’s structural model; as is the
case here, the same variables can be endogenareimodel and exogenous in another
model.

Sociological mechanism Biological mechanism

The model can now be formalised as follows. Fordhke of simplicity, suppose that
our data base is made of 4 variables only, nang#8, T, A and C. The model just sketched
corresponds to decomposing the joint distributibthese variables as follows:
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P(SES T AG= f SBSl,0 . T|A SEB,(p|C 7
One should notice the following issues:

(i)

(i)
(iii)

(iv)

(v)

the three componentp, (SES, p,(T, A| SES and p,(C/T, Aare deemed
to represent three different structural mechanigtherefore assumedly
structurally stable);

from what has been said, the first mechanigp(SES is not investigated
and left unspecified;

the third mechanismp,(C| T, A) incorporates the assumption that T and A
are sufficient,i.e. that the distribution of C given T, A and SES does
depend on SESC O SEY T A

the second mechanism, (T, A/ SESreveals an issue of simultaneity: the
mechanism generating T and A given SES is not dposed into two
univariate mechanisms, such as for instange ,(T|SES and

p,,(A| SES T; the reason why that decomposition has not beeratgd is

outside the scope of this paper but one possiblsoremight be that interest
focuses on the third mechanism and that similaolytiie first one the
specification of the second one is only a partred;o

the structure of this model suggests that 8soeation between SES and C,
as possibly illustrated as :

SES———» C

may be statistically significant but contextuallyminterpretable, unless as a
composition of associations rooted in different hadsms; that is to say,
from a philosophical point of view, the above figudoes not make any
ontological sense, for, strictly speaking, SES does cause cancer.
Therefore, in an intervention analysis, an actiomps/ on SES is not likely
to decrease the prevalence of lung cancer: intéoreshould be targeted
either on the sociological, or on the biologicakahanism.
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