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Abstract

Multifractal functions are widely used to model irregular signals such as turbulence, data
stream or road traffic. Here, we consider multifractal functions defined as lacunar wavelet
series observed in a white noise model. These random functions are statistically characterized
by two parameters. The first parameter governs the lacunarity of the wavelet coefficients
while the second one governs its intensity. In this paper, we establish the local and asymptotic
normality (LAN) of the model, with respect to this couple of parameters. This allows for
providing an estimator for the lacunarity parameter, that is asymptotically optimal in the
Le Cam sense, as well as optimal (still in the Le Cam sense) tests on the intensity parameter.

AMS 1980 subject classification : 60G17, 62G07.
Key words and phrases : Multifractal analysis, Wavelet Bases, LAN

1 Introduction

This work deals with statistical analysis of a probabilistic model for multifractal functions. We
observe in a white noise regression framework a multifractal function defined as a realization of a
random lacunar wavelet series. This series is defined by two parameters, η a lacunarity parameter
and α an intensity parameter. These two parameters govern the multifractal properties of such
functions. We prove that this model is LAN under some conditions on the range of α and discuss
optimality (in the Le Cam sense) of the estimators of the parameters of interest. We also derive
locally and asymptotically optimal tests.

In the last decade much emphasis has been placed on modelling of very irregular signals.
Indeed it is well known that standard Brownian motion fails in explaining certain time series
arising from finance, biology or turbulence theory. In [12] for example is emphazised that
LAN/WAN traffic traces for which the aggregation level is insufficient presents multifractal
properties. Such phenomenon is also pointed out for the stock market in [7]. So, roughly
speaking, a multifractal function is a function whose local Hölder regularity index is not constant.
That means that the function may be very regular in some areas while it is very irregular in
others. Such functions, with rapid changes of regularity, have been first introduced to model
physical phenomena by [4], or road traffic or data traffic on networks by [17].

∗Research supported by a P.A.I. contract of the Belgian Federal Government and an Action de Recherche

Concertée of the Communauté française de Belgique.
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To construct multifractal functions, [2], [3] or [18] and [19] have recently shown that some
lacunary random series built on wavelets have multifractal properties. As a matter of fact,
consider a wavelet basis ψjk, j ≥ 0, k = 0, . . . , 2j − 1 and a couple of parameters θθθ = (α, η)T ∈
Θ := (0, 1)2. Then, draw the random wavelet coefficient wjk, k = 0, . . . , 2j − 1 following the
rescaled Bernoulli distribution:

wjk ∼ 2(η−1)jδ2−αj + (1 − 2(η−1)j)δ0. (1.1)

Then, the corresponding random function fn =
∑log2 n

j=1

∑2j−1
k=0 wjkψjk converges to a random

function having multifractal properties. The multifractal properties of general sparse random
series have been studied in [3], [18], [11], [1] and depend on the choice of both the lacunarity
coefficient η and the intensity parameter α.

In this paper we consider n observations of a multifractal function together with a white
noise. Hence after discretization, the statistical model is the following

djk = wjk + ǫjk, j = 0, . . . , j1 = log2(n), k = 0, . . . , 2j − 1. (1.2)

wjk are the true wavelet coefficients while ǫjk are i.i.d centered Gaussian random variables
with variance σ2, taken independent from the wjk. So, we observe the triangular array dn =
(djk)1≤j≤j1,0≤k≤2j−1 of independent random variables. For any j, k the distribution of djk is the
Gaussian mixture:

djk ∼ 2(η−1)jN (2−αj ,
σ2

n
) + (1 − 2(η−1)j)N (0,

σ2

n
), (1.3)

where θθθ = (α, η)T ∈ (0, 1)2 is the unknown parameter vector, σ > 0 is known and, as usual,
N (m, ξ2) denotes the Gaussian distribution with mean m and standard deviation ξ.

In the statistical literature, very few is known about the estimation of multifractal functions.
In a previous work [9], nonparametric estimation of a realization of such a random process is
tackled in a Bayesian setting. Roughly speaking, the Bayesian nonparametric posterior estimate
is built on a ranked thresholding procedure, and its rate of convergence is different from the
usual rates in nonparametric estimation of smooth functions. In the parametric framework, a
first study to construct estimators of the unknown parameters of the mixture (1.1) is conducted
in [10]. The estimators of the parameter of interests are asymptotically normal but their rate
of convergence is not the parametric rate of convergence but rather depends on the values
of θθθ. Hence, in this work, we focus here on statistical inference for empirical estimation of the
hyperparameters and on the efficiency of this estimation procedure. More precisely, we aim
at proving Local Asymptotic Normality (LAN) for the observation model and comparing the
different rates of convergence for some estimators. In particular, we prove optimality in the Le
Cam sense of an estimator of the lacunarity paramter built only with the wavelet coefficients of
the last resolution level j1(n), which improves results in [10].

The paper falls into the following parts. After recalling the properties of the model we
consider in Section 2 and the corresponding statistical model in Section 3, we prove, for some
values of these parameters, local asymptotic normality for the associated family of distributions
in Section 4. This enable us to prove, in Section 5, optimality of an estimator of the lacunarity
parameter and to derive optimal tests on the intensity parameter in Section 6. Finally, Section 7
presents some simulation results.
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2 Multifractal wavelet models

In this paper, we will always work with functions on [0, 1]. To begin with, let us first introduce
some useful definitions around multifractal functions.
The Haussdorf dimension dH(A) of a set A is defined as follows. Let C(A, δ) be the set of all
δ−covering (Ci) of A with open sets Ci of diameter |Ci| ≤ δ. Let also

Hs,δ(A) = inf
(Ci)i∈C(A,δ)

∑

i

|Ci|s

Hs(A) = lim
δ→0

Hs,δ(A)

dH(A) = inf{s : Hs(A) = 0}

Definition 1 Let f be a function on [0, 1].

1) Let x0 ∈ [0, 1] and h ≥ 0, the set Ch(x0) is the set of all functions f on [0, 1] such that
there exist a polynomial P of degree less than h and a neighborhood V of x0 satisfying

|f(x) − P (x)| = O (x− x0)
h (x ∈ V ).

2) Let hf (x0) = sup{h ≥ 0, f ∈ Ch(x0)} and

Eh = {x ∈ [0, 1], hf (x) = h} (h ≥ 0).

The spectrum of singularity df of f is the function on R
+ which associates to each h ≥ 0

the Haussdorf dimension of the set Eh.

Multifractal analysis of a function was first introduced in a physical framework in [8]. Given
a function f , one of the main goal of this analysis is the computation of the spectrum of
singularities df . When df does not vanish in at least two points we say that f is multifractal.
The spectrum of singularities of a function f is a relevant quantity to describe the smoothness
variation of f . Multifractal functions can be constructed using their decomposition into an
appropriate wavelet basis as described in [2] and [11]. Since we restrict attention to functions
on [0, 1], we will only consider periodized wavelets in the Schwartz class. This implies that all
moments of the wavelets vanish. In an equivalent way, we could have used compactly supported
wavelets as it is stated in [11] but the results are heavier to state.
Following the construction provided in [16] we define a wavelet ψ̃ in the Schwartz class, and
construct the periodized wavelet ψ(x) =

∑
l∈Z ψ̃(x− l). The functions ψjk = ψ(2jx− l), ∀j ∈

N, k ∈ [0, 2j − 1] are obtained from the first wavelet by dilatation and translation. Then
(2j/2ψjk)(j,k) provides an orthonormal basis of the Hilbert space L2([0, 1]) (observe the presence

of a normalizing factor 2j/2). Let f ∈ L2([0, 1]) on one hand, its wavelet coefficients may be
computed as

wjk = 2j
∫ 1

0
f(t)ψjk(t)dt (j ∈ N, k ∈ [0, 2j − 1]).

On the other hand, f may be reconstructed using its wavelet coefficients

f =
∞∑

j=0

2j−1∑

k=0

wjkψjk (2.1)
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Using this wavelet representation, we now turn on the construction of random functions ex-
hibiting multifractal properties. This will be done considering sparse random wavelet series.
Let ρj, j ∈ N

∗ be a repartition function on R. Further, let Zj = (Zjk)k=0,...,2j−1 be 2j indepen-
dent random vectors having common distribution ρj . Now, build a random function F using
the reconstruction formula (2.1) where for any j ∈ N

∗, k = 0, . . . , 2j − 1 |wjk| = 2−jZjk . To
study the multifractal properties of the random function F , [3], [11] introduced the following
functions:

ρ̃(α, ǫ) = lim sup
j→∞

log2(2
jρj [α− ǫ, α+ ǫ])

j

= 1 + lim sup
j→∞

log P(Zjk ∈ [α− ǫ, α+ ǫ])

j

ρ̃(α) = inf
ǫ>0

ρ̃(α, ǫ)

Under some assumptions on (ρj)j∈N∗ , which can be found in [11], or [3], Jaffard et al prove that
the spectrum of singularity of F can be calculated. Indeed, they show that, for all h > 0

dF (h) = h sup
α∈(0,h]

ρ(α)

α
(a.s.). (2.2)

In this paper, we focus on the simplest statistical model derived from the ones described in the
last paragraph. Let (Xjk)j∈N∗, k=0,...,2j−1 be a triangular array of independent Bernoulli random
variables: for η ∈ (0, 1)

P(Xjk = 1) = 1 − P(Xjk = 0) = 2(η−1)j .

Further, take for j ∈ N
∗ and k = 0, . . . , 2j − 1 random wavelet coefficients wjk = 2−αjXjk for

α ∈ (0, 1). So we get
wjk ∼ 2(η−1)jδ2−αj + (1 − 2(η−1)j)δ0 (2.3)

The corresponding function f is then defined by its wavelet decomposition into the basis ψjk by

f =
∑∞

j=0

∑2j−1
k=0 wjkψjk. So, this simple multifractal model is characterized by two parameters η

and α in (0, 1). On one hand η describes the lacunarity of the wavelet series (that is its sparsity).
On the other hand the coefficient α is inversely proportional to the intensity of the value of the
wavelet coefficients. These parameters completely characterizes the spectrum of singularity of
the random functions involved. Generating a function with this method may seem too restrictive.
However, such processes appear naturally when studying multifractal processes. As a matter of
fact, Jaffard and al. in their work ([3], [1], [11]) use such modelization and they show in [3] that
the spectrum of singularity of the function f is almost surely

df (h) =
1 − η

α
h, ∀h ∈ [α,

α

1 − η
]. (2.4)

In figure 1 we plot a realization of such a multifractal function. The lacunarity coefficient is
η = 0.4 while α = 0.3.

In this paper, we will build and study estimators of these two parameters when the obser-
vation is a wavelet series observed in a white noise model.
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Figure 1: Multifractal function

3 The model

We aim at estimating the parameters η and α of a multifractal function f observed with some
measurement errors. Throughout the paper, we make the assumption that the wavelet basis, in
which the function has the decomposition (2.3), is known.
In the white noise model, we observe the wavelet coefficients wjk of the function f together with

a Gaussian white noise ǫjk having variance σ2

n where n is the number of observations. We assume
that the observations are dyadic and n = 2j1 , (j1 > 0). Recall that the wavelet coefficients are
obtained from discrete regression model

Yi = f(i/2j1) +Wi, i = 1, . . . , n (3.1)

with Wi
i.i.d∼ N (0, σ2), by performing the Discrete Wavelet Transform (DWT). Such transform

is performed by Mallat’s fast algorithm [14] that requires only O(n) operations. Hence, the
observations are drawn from the following model:

djk = wjk + ǫjk, j = 1, . . . , j1, k = 0, . . . , 2j − 1

As a result, the law of the observed coefficients djk is determined by the prior given by the
model (2.3):

djk ∼ 2(η−1)jN (2−αj ,
σ2

n
) + (1 − 2(η−1)j)N (0,

σ2

n
) (3.2)

In this paper, we will only consider the last level in the wavelet decomposition. Indeed, using all
the levels, as done in [10] does not help in the estimation issue and is more a drawback, leading
to complicate expressions for the estimators.

Hence consider the rescaled observed wavelet coefficients,

Xnj =
√
nwlog2(n)j , j = 1, . . . , n.

We then observe Xn1, . . . ,Xnn, a triangular array of observations, where Xni, i = 1, . . . , n are
i.i.d. with common density

fθθθ := nη−1φα + (1 − nη−1)φ, θθθ = (η, α)′ ∈ (0, 1) × (0, 1), (3.3)
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where φα (resp., φ) stands for the density of a Gaussian random variable with mean n
1

2
−α (resp.,

0) and variance σ2. For fixed n, the observations are therefore generated by a Gaussian mixture

of the form nη−1N (n
1

2
−α, σ2) + (1− nη−1)N (0, σ2). We aim at studying the statistical problem

of estimating the parameters θθθ using the observations Xn1, . . . ,Xnn.

4 Local asymptotic normality (LAN)

Partition the parametric space into ΘΘΘ = ΘΘΘ− ∪ ΘΘΘ± ∪ ΘΘΘ+, with ΘΘΘ− = (0, 1) × (0, 1/2), ΘΘΘ± =
(0, 1)×{1/2}, and ΘΘΘ+ = (0, 1)×(1/2, 1). In this section, we prove that the family of distributions
P−

n :=
{
Pn

θθθ

∣∣θθθ ∈ ΘΘΘ−
}

is LAN.
For any bounded sequence τττn = (sn, tn)′, consider the corresponding local perturbation θθθn =

θθθ + νννn(θθθ)τττn = (ηn, αn)′ of the parameter value θθθ = (η, α)′, where νννn(θθθ) = diag(cn(θθθ), dn(θθθ)) =

diag(n−
η
2 (log n)−1, n−

η
2
+α− 1

2 (log n)−1) and denote by

Ln
θθθn/θθθ =

dPn
θθθn

dPn
θθθ

=
n∑

i=1

[log fθθθn
(Xni) − log fθθθ(Xni)]

the associated local log-likelihood ratio.
The following result states that the submodel P−

n is LAN. We point out that inference in P+
n

is totally different; see Section 5 for a discussion.

Theorem 4.1 The family of distributions P−
n is LAN, with central sequence ∆∆∆n

θθθ := (∆n
θθθ,I ,∆

n
θθθ,II)

′,
where

∆n
θθθ,I :=

n∑

i=1

Dni
θθθ,I := n

η
2
−1

n∑

i=1

φα − φ

nη−1[φα − φ] + φ
(Xni),

∆n
θθθ,II :=

n∑

i=1

Dni
θθθ,II := σ−2n

η
2
−1

n∑

i=1

(n
1

2
−α −Xni)

φα

nη−1[φα − φ] + φ
(Xni),

and information matrix ΓΓΓ := diag
(
1, σ−2

)
. More precisely, for any θθθ ∈ ΘΘΘ− and any bounded

sequence τττn = (sn, tn)′, we have

Ln
θθθ+νννn(θθθ)τττn/θθθ = τττ ′n∆∆∆

n
θθθ − 1

2
τττ ′n ΓΓΓτττn + oP(1) and ∆∆∆n

θθθ
L−→ N (0,ΓΓΓ) (4.1)

under Pn
θθθ , as n→ ∞.

We start the proof of Theorem 4.1 with the following lemma.

Lemma 4.1 Under Pn
θθθ , as n→ ∞, (i) E

[
Dn1

θθθ,I

]
= E

[
Dn1

θθθ,II

]
= 0, (ii) Var

[
Dn1

θθθ,I

]
= n−1(1 + o(1)),

(iii) Var
[
Dn1

θθθ,II

]
= σ−2n−1(1 + o(1)), (iv) Cov

[
Dn1

θθθ,I ,D
n1
θθθ,II

]
= o(n−1), and (v) for all δ > 0,

E
[
Z2

n1I(|Zn1| > δ)
]

= o(n−1), (4.2)

where Zni = Zni(θθθ) := 1
2(νννn(θθθ)τττn)′∇θθθ log fθθθ(Xni) = 1

2

{
snD

ni
θθθ,I + tnD

ni
θθθ,II

}
.
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Proof of Lemma 4.1. (i) The first claims are trivial since E
[
Dn1

θθθ,I

]
= n

η
2
−1 ∫ (φα−φ)(x) dx =

0 and E
[
Dn1

θθθ,II

]
= σ−2n

η
2
−1 ∫ (n

1

2
−α − x)φα(x) dx = 0.

(ii) Define rn := n
1

2
−α/2. First note that φα

φ (x) = exp
[
2rn(x− rn)/σ2

]
for all x. Therefore

nVar
[
Dn1

θθθ,I

]
= nη−1

∫
(φα − φ)2

nη−1[φα − φ] + φ
(x) dx

=

∫
(exp

[
2rn(x− rn)/σ2

]− 1
)2

exp
[
2rn(x− rn)/σ2

]− 1 + n1−η
φ(x) dx

= Tn1 + Tn2 + Tn3,

where

Tn1 :=

∫ rn

−∞

(
exp

[
2rn(x− rn)/σ2

]− 1
)2

exp
[
2rn(x− rn)/σ2

]− 1 + n1−η
φ(x) dx,

Tn2 :=

∫ ∞

rn

[
exp

[
2rn(x− rn)/σ2]−

(
exp

[
2rn(x− rn)/σ2

]− 1
)2

exp
[
2rn(x− rn)/σ2

]− 1 + n1−η

]
φ(x) dx,

and

Tn3 :=

∫ ∞

rn

exp
[
2rn(x− rn)/σ2]φ(x) dx.

Now, Lebesgue’s DCT yields Tn1 = nη−1
( ∫

φ(x) dx + o(1)
)

= o(1) as n → ∞. As for Tn2, one
easily shows that, for some constant C, |Tn2| ≤ C

∫∞
rn
φ(x) dx = o(1) as n → ∞. Eventually,

letting y = x− 2rn, we obtain Tn3 =
∫∞
rn
φα(x) dx =

∫∞
−rn

φ(y) dy = 1 + o(1), as n→ ∞.

(iii) Letting y = x− 2rn, we have

nVar
[
Dn1

θθθ,II

]
= σ−4nη−1

∫
(2rn − x)2φ2

α(x)

nη−1[φα − φ] + φ
(x) dx

= σ−4
∫

(2rn − x)2φα(x)

1 + (n1−η − 1)φ(x)/φα(x)
dx

= σ−4
∫

y2φ(y)

1 + (n1−η − 1) exp
[− 2rn(y + rn)/σ2

] dy

= Sn1 + Sn2 + Sn3,

where

Sn1 := σ−4
∫ −rn

−∞

y2φ(y)

1 + (n1−η − 1) exp
[− 2rn(y + rn)/σ2

] dy,

Sn2 := σ−4
∫ ∞

−rn

[
1

1 + (n1−η − 1) exp
[− 2rn(y + rn)/σ2

] − 1

]
y2φ(y) dy,

and

Sn3 := σ−4
∫ ∞

−rn

y2φ(y) dy.

Again, Lebesgue’s DCT shows that both Sn1 and Sn2 are o(1) as n→ ∞. This yields the result
since, clearly, Sn3 = σ−2 + o(1) as n→ ∞.
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(iv) Letting y = x− 2rn again, we have

nCov
[
Dn1

θθθ,I ,D
n1
θθθ,II

]
= σ−2nη−1

∫
(2rn − x)φα(x)(φα(x) − φ(x))

nη−1[φα − φ] + φ
(x) dx

= σ−2
∫

(2rn − x)φα(x)(1 − φ(x)/φα(x))

1 + (n1−η − 1)φ(x)/φα(x)
dx

= −σ−2
∫

yφ(y)
(
1 − exp

[− 2rn(y + rn)/σ2
])

1 + (n1−η − 1) exp
[− 2rn(y + rn)/σ2

] dy

= Rn1 +Rn2 +Rn3,

where

Rn1 := −σ−2
∫ −rn

−∞

yφ(y)
(
1 − exp

[− 2rn(y + rn)/σ2
])

1 + (n1−η − 1) exp
[− 2rn(y + rn)/σ2

] dy,

Rn2 := σ−2
∫ ∞

−rn

n1−η exp
[− 2rn(y + rn)/σ2

]

1 + (n1−η − 1) exp
[− 2rn(y + rn)/σ2

] yφ(y) dy,

and

Rn3 := −σ−2
∫ ∞

−rn

yφ(y) dy.

Now, |Rn1| ≤ C
∫ −rn

−∞ |y|φ(y) dy for some constant C, so that Rn1 is o(1) as n → ∞. And, by
Lebesgue’s DCT, so is Rn2. This yields the result since Rn3 = −σ−2(

∫
yφ(y) dy + o(1)) = o(1)

as n→ ∞.

(v) Define

In(x) := I

[
n

η
2
−1

2

∣∣∣∣∣
sn(φα(x) − φ(x)) + tnσ

−2(2rn − x)φα(x)

nη−1[φα(x) − φ(x)] + φ(x)

∣∣∣∣∣ > δ

]
.

Then since

In(x+ 2rn) ≤ I



 |1 − φ
φα

(x+ 2rn)| + |x|
nη−1 + (1 − nη−1) φ

φα
(x+ 2rn)

> Cn1− η
2





≤ I

[∣∣∣1 − φ

φα
(x+ 2rn)

∣∣∣ + |x| > Cn
η
2

]
≤ I

[∣∣1 − exp
[− 2rn(x+ rn)/σ2]∣∣+ |x| > Cn

η
2

]
,

we obtain that, for all x, In(x + 2rn) = o(1) as n → ∞. Write then nE
[
Z2

n1I(|Zn1| > δ)
] ≤

Cn
(
E
[(
Dn1

θθθ,I

)2
I(|Zn1| > δ)

]
+ E

[(
Dn1

θθθ,II

)2
I(|Zn1| > δ)

])
=: C(Un1 + Un2). Decompose Un1 into

Un1 = T̃n1 + T̃n2 + T̃n3, where T̃ni, i = 1, 2, 3 are defined as in the proof of Lemma 4.1(ii),
except that the corresponding integrands are multiplied by In(x) in each case. Clearly, the
same argument as in Lemma 4.1(ii) show that both T̃n1 and T̃n2 are o(1) as n → ∞. As
for T̃n3, the absolute continuity of the Lebesgue integral implies that T̃n3 =

∫∞
rn
φα(x) In(x) dx =∫∞

−rn
φ(y) In(y + 2rn) dy = o(1), as n→ ∞.

Similarly, defining S̃ni, i = 1, 2, 3 as in the proof of Lemma 4.1(iii), except that the corre-
sponding integrands are multiplied by In(y + 2rn) in each case, we decompose Un2 into Un2 =
S̃n1+ S̃n2+ S̃n3. Again, working as in Lemma 4.1(iii), S̃n1 and S̃n2 are seen to be o(1) as n→ ∞.
Eventually, by absolute continuity again, we have S̃n3 = σ−4

∫∞
−rn

y2φ(y) In(y + 2rn) dy = o(1),
as n→ ∞. �
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It follows directly from Lemma 4.1 and the Lindeberg-Feller CLT that, under Pn
θθθ , the central

sequence ∆∆∆n
θθθ is asymptotically normal with mean 0 and covariance matrix ΓΓΓ. In order to prove

that the second-order stochastic expansion in (4.1) holds, we use Swensen (1985)’s Lemma.
Defining the quantities

ξni = ξni(θθθ) :=

(
fθθθn

(Xni)

fθθθ(Xni)

)1/2

− 1,

Swensen’s lemma, in this i.i.d. context, takes the following form.

Lemma 4.2 (Swensen) Assume that (i)
∑n

i=1 E[(Zni − ξni)
2] = o(1), (ii) supn

∑n
i=1 E[Z2

ni] <
∞, (iii) max1≤i≤n |Zni| = oP(1), (iv)

∑n
i=1 Z

2
ni − 1

4τττ
′
n ΓΓΓτττn = oP(1), (v)

∑n
i=1 E[Z2

niI(|Zni| >
1/2)] = o(1), (vi) E[Zni] = 0, and (vii)

∑n
i=1 E[ξ2ni + 2ξni] = o(1) (where all expectations and

convergences in probability are taken under Pn
θθθ ). Then the second-order stochastic expansion

in (4.1) holds.

Proof of Lemma 4.2. Unless otherwise stated, all convergences in probability, expectations
and variances, in this proof, are with respect to Pn

θθθ .

(i) Since 1
2f

1/2
θθθ ∇θθθ log fθθθ = ∇θθθ log f

1/2
θθθ , we see that

∑n
i=1 E[(Zni − ξni)

2] = nE[(Zn1 − ξn1)
2]

is given by

n

∫ (
f

1/2
θθθn

(x) − f
1/2
θθθ (x) −

{
cnsn(∂ηf

1/2
θθθ )(x) + dntn(∂αf

1/2
θθθ )(x)

})2
dx.

Therefore
∑n

i=1 E[(Zni − ξni)
2] ≤ 3n(Vnη + Vnα + Vnηα), where

Vnη :=

∫ (
f

1/2
θθθn

(x) − f1/2
η,αn

(x) − cnsn(∂ηf
1/2
η,αn

)(x)
)2

dx,

Vnα :=

∫ (
f1/2

η,αn
(x) − f

1/2
θθθ (x) − dntn(∂αf

1/2
θθθ )(x)

)2
dx,

and

Vnηα := c2ns
2
n

∫ (
(∂ηf

1/2
η,αn

)(x) − (∂ηf
1/2
θθθ )(x)

)2
dx.

We proceed by proving that (a) Vnη, (b) Vnα, and (c) Vnηα all are o(n−1), as n→ ∞.
(a) By using successively the integral form for the remainder of the first order Taylor expan-

sion and Jensen’s inequality, we obtain

Vnη =

∫ (∫ ηn

η
(ηn − λ) (∂2

ηf
1/2
λ,αn

)(x) dλ

)2

dx

≤ 1

2
(cnsn)2

∫ ∫ ηn

η
(ηn − λ) (∂2

ηf
1/2
λ,αn

)2(x) dλ dx,

since
∫ ηn

η (ηn − λ) dλ = (cnsn)2/2. Therefore,

Vnη ≤ Cc2n

∫ ∫ ηn

η
(ηn − λ)

{
2fλ,αn

(∂2
ηfλ,αn

) − (∂ηfλ,αn
)2

f
3/2
λ,αn

(x)

}2

dλ dx

≤ Cc2n(log n)4
∫ ∫ ηn

η
(ηn − λ)

{[
nλ−1(φαn − φ)

]2
[
nλ−1(φαn − φ) + 2φ

]2
[
nλ−1(φαn − φ) + φ

]3

}
(x) dλ dx
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since ∂ηfλ,αn
= nλ−1(log n)(φαn −φ) and ∂2

ηfλ,αn
= nλ−1(log n)2(φαn −φ). Using again φα

φ (x) =

exp
[
2rn(x− rn)/σ2

]
, we obtain

Vnη ≤ Cn−η(log n)2
∫ ∫ ηn

η
(ηn − λ) g2

λ,αn
(x)

[
gλ,αn

(x) + 2
]2

[
gλ,αn

(x) + 1
]3 φ(x) dλ dx, (4.3)

with gη,α(x) := nλ−1
(
exp

[
2r̄n(x − r̄n)/σ2

] − 1
)
, r̄n = n

1

2
−αn/2. Decompose the upper bound

in (4.3) into C(Vnη,1 + Vnη,2 + Vnη,3), where

Vnη,1 := n−η(log n)2
∫ r̄n

−∞

∫ ηn

η
(ηn − λ) g2

λ,αn
(x)

[
gλ,αn

(x) + 2
]2

[
gλ,αn

(x) + 1
]3 φ(x) dλ dx,

Vnη,2 := n−η(log n)2
∫ ∞

r̄n

∫ ηn

η
(ηn − λ)

{
g2
λ,αn

(x)

[
gλ,αn

(x) + 2
]2

[
gλ,αn

(x) + 1
]3

−nλ−1 exp
[
2r̄n(x− r̄n)/σ2]

}
φ(x) dλ dx,

and

Vnη,3 := n−η(log n)2
∫ ∞

r̄n

∫ ηn

η
(ηn − λ)nλ−1 exp

[
2r̄n(x− r̄n)/σ2]φ(x) dλ dx.

Now, uniformly in λ and x, we have |gλ,αn
(x)|I(x < r̄n) < 1/2, so that

Vnη,1 ≤ Cn−η(log n)2
∫ ∫ ηn

η
(ηn − λ)n2(λ−1) φ(x) dλ dx

≤ Cn−1
{(

exp(2snn
−η/2) − 1

)
nη−1 − 2snn

η
2
−1
}
,

which shows that Vnη,1 is indeed o(n−1) as n→ ∞. As for Vnη,2, one can check that

∣∣∣∣∣g
2
λ,αn

(x)

[
gλ,αn

(x) + 2
]2

[
gλ,αn

(x) + 1
]3 − nλ−1 exp

[
2r̄n(x− r̄n)/σ2]

∣∣∣∣∣

is bounded in n (uniformly in λ, x), so that

Vnη,2 ≤ n−η(log n)2
(∫ ∞

r̄n

φ(x) dx

)(∫ ηn

η
(ηn − λ) dλ

)

≤ Cn−2η

(∫ ∞

r̄n/σ
exp(−y2/2) dy

)
≤ Cn−2η exp[−r̄n/(2σ)],

which shows that Vnη,2 also is o(n−1) as n → ∞. Eventually, Vnη,3 is also o(n−1) as n → ∞,
since

Vnη,3 = n−η(log n)2
(∫ ∞

r̄n

φαn(x) dx

)(∫ ηn

η
(ηn − λ)nλ−1 dλ

)

≤ n−1( exp(snn
−

η
2 ) − 1 − snn

−
η
2

)
.

10



(b) Working as for Vnη, we obtain (since
∫ αn

α (αn − λ)2 dλ = (dntn)3/3)

Vnα =

∫ (∫ αn

α
(αn − λ) (∂2

αf
1/2
η,λ )(x) dλ

)2

dx

≤ 1

3
(dntn)3

∫ ∫ αn

α
(∂2

αf
1/2
η,λ )2(x) dλ dx

≤ Cd3
n

∫ ∫ αn

α

{
2fη,λ(∂2

αfη,λ) − (∂αfη,λ)2

f
3/2
η,λ

(x)

}2

dλ dx

Now, ∂αfη,λ(x) = σ−2nη−λ− 1

2 (log n)(n
1

2
−λ−x)φλ(x) and ∂2

αfη,λ(x) = σ−4nη−2λ(log n)2φλ(x)
{
(n

1

2
−λ−

x)2 + σ2nλ− 1

2x− 2σ2
}
, so that

Vnα ≤ Cd3
nn

η+1(log n)4
∫ ∫ αn

α
n−4λφλ(x)

[
2
[
1 + (n1−η − 1) φ

φλ
(x)]2

{
(n

1

2
−λ − x)2 + σ2nλ− 1

2x− 2σ2
}− (n

1

2
−λ − x)2

]2
[
1 + (n1−η − 1) φ

φλ
(x)]3

dλ dx.

Letting y = x− 2r̃n (with r̃n := n
1

2
−λ/2) and using φ

φλ
(y + 2r̃n) = exp

[ − 2r̃n(y + r̃n)/σ2
]
, we

obtain that

Vnα ≤ Cn−
η
2
− 1

2
+3α(log n)

∫ ∫ αn

α
n−4λφ(y)

[
2
[
1 + (n1−η − 1) exp

[− 2r̃n(y + r̃n)/σ2
]
]2
{
y2 + σ2y/(2r̃n) − σ2

}− y2
]2

[
1 + (n1−η − 1) exp

[− 2r̃n(y + r̃n)/σ2
]
]3

dλ dy

≤ Cn−
η
2
− 1

2
+3α(log n)

∫ ∫ αn

α
n−4λφ(y)max(1, y4) dλ dy

≤ Cn−
η
2
− 1

2
−α(1 − exp(−4n−

η
2
− 1

2
+αtn)) ≤ Cn−η−1,

so that Vnα = o(n−1) as n→ ∞.
(c) Eventually, we complete the proof of (i) by proving that Vnηα is also o(n−1) as n → ∞.

Defining hnηα(x) and hnηαn(x) as

exp
[
2rn(x− rn)/σ2

]− 1
[
exp

[
2rn(x− rn)/σ2

]− 1 + n1−η
]1/2

and
exp

[
2r̄n(x− r̄n)/σ2

]− 1
[
exp

[
2r̄n(x− r̄n)/σ2

]− 1 + n1−η
]1/2

,

repspectively, we have

Vnηα ≤ c2nn
2η−2(log n)2

∫ {
(φαn − φ)

nη−1(φαn − φ) + φ
− (φα − φ)

nη−1(φα − φ) + φ

}2

(x) dx

≤ Cnη−2
∫ { φαn

φ − 1
[
nη−1(φαn

φ − 1) + 1
]1/2

−
φα

φ − 1
[
nη−1(φα

φ − 1) + 1
]1/2

}2

(x)φ(x) dx

≤ Cn−1
∫ {

hnηαn(x) − hnηα(x)
}2
φ(x) dx,
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which we decompose into Cn−1(Vnηα,1 + Vnηα,2 + Vnηα,3), where

Vnηα,1 :=

∫ min(rn,r̄n)

−∞

{
hnηαn(x) − hnηα(x)

}2
φ(x) dx,

Vnηα,2 :=

∫

(rn;r̄n)

{
hnηαn(x) − hnηα(x)

}2
φ(x) dx,

and

Vnηα,3 :=

∫ ∞

max(rn,r̄n)

{
hnηαn(x) − hnηα(x)

}2
φ(x) dx;

here, (a; b) denotes the interval (min(a, b),max(a, b)). Now, Lebesgue’s DCT shows that Vnηα,1 =
o(1) as n → ∞ (as for Tn1 in the proof of Lemma 4.1(ii)). As for Vnηα,2, proceeding as in the
proof of Lemma 4.1(ii) yields

Vnηα,2 ≤ C

{∫

(rn;r̄n)
h2

nηαn
(x)φ(x) dx +

∫

(rn;r̄n)
h2

nηα(x)φ(x) dx

}

≤ C

{∫

(rn;r̄n)
φ1/2

αn
(x) dx +

∫

(rn;r̄n)
φ1/2

α (x) dx

}

= C

{∫

(−rn;r̄n−2rn)
φ1/2(x) dx+

∫

(rn−2r̄n;−r̄n)
φ1/2(x) dx

}
,

which, since one can easily check that r̄n = rn + o(1) as n→ ∞, is o(1) as n→ ∞. Eventually,
working exactly as for Tn2 and Tn3 in the proof of Lemma 4.1(ii), we obtain that Vnηα,3 is—up
to o(1) terms (as n→ ∞)—successively equal to

∫ ∞

max(rn,r̄n)

{(
exp

[
2r̄n(x− r̄n)/σ2])1/2 − ( exp

[
2rn(x− rn)/σ2])1/2

}2
φ(x) dx

=

∫ ∞

max(rn,r̄n)

{
φ1/2

αn
(x) − φ1/2

α (x)
}2
dx

=

∫ ∞

max(−rn,r̄n−2rn)

{
φ1/2(y + 2(rn − r̄n)) − φ1/2(y)

}2
dy,

which is seen to be o(1) as n → ∞, by using again Lebesgue’s DCT and the fact that r̄n =
rn + o(1) as n → ∞. Therefore, we have shown that Vnηα,i, i = 1, 2, 3 all are o(1) as n → ∞,
which yields that Vnηα is o(n−1) as n→ ∞.

(ii) The boundedness of (τττn) implies that Z2
ni ≤ C

{
(Dni

θθθ,I)
2 + (Dni

θθθ,II)
2
}
. Consequently,

Lemma 4.1(i)-(iii) yield
∑n

i=1 E[Z2
ni] ≤ C

{
Var

[
Dni

θθθ,I

]
+ Var

[
Dni

θθθ,II

]}
= O(1), as n→ ∞.

(iii) Note that by using Markov’s inequality,

P
[

max
1≤i≤n

|Zni| > δ
]

= P
[ n∑

i=1

Z2
niI(|Zni| > δ) > δ2

]
≤ δ−2

n∑

i=1

E
[
Z2

niI(|Zni| > δ)
]
,

so that the result follows from Lemma 4.1(v).

(iv) Letting Dni
θθθ := (Dni

θθθ,I ,D
ni
θθθ,II)

′, note that

n∑

i=1

Z2
ni −

1

4
τττ ′n ΓΓΓτττn =

1

4
τττ ′n

{(
n∑

i=1

Dni
θθθ Dni′

θθθ

)
−ΓΓΓ

}
τττn,
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which, by using the boundedness of (τττn) and Lemma 4.1(i)-(iv), is seen to be oP(1) as n→ ∞.

(v) This is a particular case of the convergence result in Lemma 4.1(v).

(vi) This is a direct consequence of Lemma 4.1.

(vii) This is trivial since E[ξ2ni + 2ξni] = E[ξni(ξni + 2)] = E[
fθθθn(Xni)
fθθθ(Xni)

− 1] = 0. �

5 Local and asymptotic efficiency of a thresholded estimation

procedure

If we consider the model described in (3.3), we observe that the parameter η balances the mixture
of the two Gaussian random variables. Under the range θθθ ∈ ΘΘΘ−, the two components of the
mixture are asymptotically separated since, in this case, the mean of the first Gaussian variable
goes to infinity (n

1

2
−α → +∞). Hence, we propose the following thresholding procedure to build

an estimator of the lacunarity of a multifractal function. We aim at counting the number of
coefficients above a given level, growing to infinity, but at a smaller rate of convergence than the
mean of the second group. We point out that, unlike the estimate defined in [10], which relies
on the whole wavelet coefficients, here we only use the coefficients on well chosen resolution level
j1(n) = log2(n). Hence the estimate is more easily computable and still has the same asymptotic
behaviour.

Set Sn = 1
n

∑n
k=1 I(Xnk ≥ log n) and define the following estimator

η̂n = 1 +
1

log n
log(Sn). (5.1)

The asymptotics of this estimator is given in the following theorem.

Theorem 5.1 Under the assumption θθθ ∈ ΘΘΘ−, the estimator (5.1) is asymptotically normal.
More precisely,

n
η
2 log(n) (η̂n − η)

L→ N (0, 1). (5.2)

Hence, η̂n is asymptotically optimal in the Le Cam sense, that is, locally and asymptotically
efficient.

Hence, we have constructed a consistent estimator of the lacunarity parameter. Its rate of
convergence is nonparametric since it depends on the true values of the unknown parameter
n

η
2 log(n). As for local asymptotic optimality, recall that an estimator of θ̂θθn is said to be locally

and asymptotically efficient (over P−
n ) iff it satisfies (νννn(θθθ))−1(θ̂θθn − θθθ) = ΓΓΓ−1∆n

θθθ + oP(1) at any
Pn

θθθ ∈ P−
n . The asymptotic distribution, under Pn

θθθ , of such an estimator is therefore given by

(νννn(θθθ))−1(θ̂θθn − θθθ)
L→ N (0,ΓΓΓ−1).

Local asymptotic optimality of our estimator η̂n thus follows directly from (5.2) and the value
of ΓΓΓ (see Proposition 4.1).

Assume that we have at our disposal an estimator θ̃θθn that converges at the optimal rate,
that is, which satisfies

(νννn(θθθ))−1(θ̃θθn − θθθ) = OP(1), (5.3)

at any Pn
θθθ ∈ P−

n . Le Cam’s one-step methodology then consists in relying on the estimator

θ̂θθn = θ̃θθn + νννn(θ̃θθn)ΓΓΓ−1∆n
θ̃θθn
,
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which can easily be shown to be locally asymptotically optimal (in the above sense). This method
thus allows for transforming an arbitrary preliminary consistent estimator θ̃θθn (only optimal in
terms of consistency rate) into a locally asymptotically optimal one θ̂θθn (optimal both in terms
of consistency rate and limiting variance). It is quite remarkable that our estimator θ̂θθn does not
need this one-step improvement, since it does directly reach the efficiency bound.

The proof of Theorem 5.1 follows the guidelines of Theorem 3.2 in [10]. For sake of complet-
ness, we recall here the frame of the proof.

We start the proof with the following lemma.

Lemma 5.1 Set F (n) = P(N (0, 1) ≥ log n). Under the assumption that θθθ ∈ ΘΘΘ−, we get that

n
η

2n1−η (Sn − F (n))
L→ N (0, 1). (5.4)

Proof of Lemma 5.1. First note that nSn ∼ B(n,P (Xn1 ≥ log n)), where B(N, p) denotes the
Binomial distribution with parameters N and p. We claim that the following expansions holds
for large n.

E
[
n1−η(Sn − F (n))

]
= 1 + o(1)

Var
[
n

η
2n1−η(Sn − F (n))

]
= 1 + o(1).

Now write

E
(
exp

[
itn

η
2 (n1−η(Sn − F (n)) − 1)

])
= exp

[
−itn η

2 (1 + n1−ηF (n))
]
Tn,

where the following asymptotic expansion holds

Tn = exp

[
itn

η
2 (1 + n1−ηF (n)) − t2

2

]
+ o(1).

Hence we get as n grows to infinity that

E
(
exp

[
itn

η

2 (n1−η(Sn − F (n)) − 1)
])

→ exp

(
− t

2

2

)
,

proving the result. �

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. First note that log(n)(η̂n − η) = log(n1−ηSn). Since Lemma 5.1
provides the asymptotic distribution for n

η
2n1−η (Sn − F (n)), the ∆ method, cf [22], yields the

result. As for local asymptotic optimality, it directly follows from (5.2) as we showed above. �

For θθθ ∈ ΘΘΘ+, the situation is different. Indeed, the rescaled coefficients are drawn from a
mixture distribution composed of a centered Gaussian variable and a Gaussian variable with
mean decreasing to 0, as defined in (3.3). Hence, in this case it is not possible to estimate
the number of non zero coefficients, neither to distinguish asymptotically non zero and zero
coefficients. Hence the model is not asymptotically identifiable anymore.
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6 Locally and asymptotically optimal tests for intensity

In the previous section, we have provided a locally and asymptotically optimal estimator for the
lacunarity parameter η. Although η is the parameter of interest in the analysis of multifractal
models, as cited in [1] for instance, a natural question still is: is it possible to use LAN to build
a locally and asymptotically optimal estimator of α?

The answer is unfortunately negative, due to the lack of a suitable preliminary estimator
for α. As we have explained in the previous section, the Le Cam one-step methodology indeed
requires some (νννn(θθθ))−1-consistent estimator for θθθ. For the intensity parameter, this means—in
view of the LAN property given in Theorem 4.1—that we need a preliminary estimator α̃n such
that

log(n)n
η
2
+ 1

2
−α(α̃n − α) = OP(1), (6.1)

at any Pn
θθθ ∈ P−

n .
Now, to the authors knowledge, none of the existing estimators for α is consistent at this

very rate. For instance, the estimator

α̃n =
1

log n

∑n
k=1Xnk∑n

k=1X
2
nk − σ2

(6.2)

that was proposed in [10], satisfies (under the additional assumption that η > 2α)

log(n)n
η
2 (α̃n − α)

L−→ N (0, σ2),

which shows that α̃n admits the same rate of convergence as η̂n. But since α < 1/2, this rate is
unfortunately larger than the rate in (6.1), which means that α̃n cannot be used as a preliminary
estimator in the Le Cam one-step methodology.

Actually, an optimal estimation procedure should focus only on the mean without relying
first on the composition of the mixture, ruled by the parameter η. But, due to the construction
of model (1.3), it seems difficult to estimate independently the mean of a mixture without
knowing the proportion of the mixture, so that it seems difficult to build a suitable preliminary
estimator for α. optimal through our LAN property). To the authors knowledge, few is done in
the statistical litterature in this direction. We point out that standard loglikelihood estimators
are too difficult to handle in this case.

However, while the lack of preliminary estimators for α prevents the LAN theory from
providing locally and optimal estimators, LAN still allows for defining locally and asymptotically
optimal (maximin, actually) tests about the intensity parameter. More specifically, consider the
testing problem (at asymptotic level β ∈ (0, 1))

{ H(n)
0 : α ≤ α0

H(n)
1 : α > α0

,

for some fixed α0 < 1/2. Then the LAN result in Theorem 4.1 and the consistency (at the
appropriate rate) of our estimator η̂ in (5.1) straightforwardly yield the following.

Theorem 6.1 Let φ(n) be the test that rejects H(n)
0 in favour of H(n)

1 iff

σ∆n
η̂n,α0,II = σ−1n

η̂n
2
−1

n∑

i=1

(n
1

2
−α0 −Xni)

φα0

nη̂n−1[φα0
− φ] + φ

(Xni)Φ
−1(1 − β),

where Φ denotes the cdf of the standard normal distribution. Then the sequence of tests φ(n) is
locally and asymptotically maximin (at asymptotic level β).
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Figure 2: Lacunarity Estimation with threshold estimator.

One defines optimal two-sided tests in the same way. Of course, one could think of defining
(possibly optimal) estimators of α by inverting such two-sided tests. This, however, would give
again standard likelihood estimators of α, which, as mentioned above, are extremely diffcult to
handle in this setup.

7 Numerical study of lacunarity estimation of a multifractal
function

In this section, we compute the estimator of the lacunarity parameter of a multifractal function
observed with a Gaussian noise with variance σ2 = 1. In all the simulations, the intensity
parameter is fixed α = .3. We will consider three estimators. The first one is the threshold
estimator defined in (5.1). In Figure 2, we plot the estimator of η = .6 when n = 2k increases
for k = 2, . . . , 10. The estimator is convergent with a quite slow rate.

To compare the estimation procedure, then we compute a moment estimator defined in [10]
as

η̃n = α̃n +
1

log n
log




log

2
n∑

j=1

djk



 .

Finally, we compute the maximum likelihood estimator

η̂MLE = arg max
η

n∑

i=1

[log fθθθn
(Xni)] .

Figure 3 allows for comparing estimations (based on 30 replications) of the normalized mean
square errors associated with the 3 estimators, for different values of η = .01, . . . , .99, when the
number of observations is large enough (here n = 1024). The threshold estimator is represented

16



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
threshold vs moment maximum

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
threshold vs loglikelihood estimator

Figure 3: Normalized MSE with different estimators with n = 1024.

in straight lines while the two others are drawn with cross lines in the two different plots.
First, we point out that, when η increases, the estimation is more accurate as expected.

Indeed, the difficulty in the estimation is given by the mixture property of the distribution,
which vanishes when η is close to 1. For small η, the signal is very close to white noise, which
prevents an efficient estimation.

When comparing the different estimates, the optimality of the threshold estimator appears
clearly with a smaller variance than the two others. It seems also that numerically, the moment
estimator is outperformed by the maximum likelihood estimator. Nevertheless, we can conclude
that thresholding is here a very efficient procedure to estimate the lacunarity parameter in
noisy data. This is the starting point of any modelling by multifractal processes. Testing
multifractality is done in [10].

Here, the LAN property shows the optimality of the estimator of the lacunarity parameter,
which is highlighted by the simulation results. But it did not help providing optimal estimators
of the intensity parameter α (since we do not know any suitable preliminary estimator for α,

that is an estimator being consistent at the rate log(n)n
η
2
+ 1

2
−α). Nevertheless, LAN allowed for

defining optimal (in the Le Cam sense) tests on α.
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