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Abstract

Recursive estimation methods for time series models usually make use
of recurrences for the vector of parameters, the model error and its deriv-
atives with respect to the parameters, plus a recurrence for the Hessian
of the model error. An alternative method is proposed in the case of an
ARMA model, where the Hessian is not updated but is replaced, at each
time, by the inverse of the Fisher information matrix evaluated at the cur-
rent parameter. The asymptotic properties, consistency and asymptotic
normality, of the new estimator are obtained. Monte Carlo experiments
indicate that the estimates may converge faster to the true values of the
parameters than when the Hessian is updated. The paper is illustrated
by an example on forecasting the speed of wind.

Keywords: time series, ARMA processes, recursive estimation, on-line
estimation, Fisher information matrix.

1 Introduction

The development of estimation methods of the parameters of statistical and
econometric models was influenced by the availability of more powerful com-
puters. Numerical calculations are lighter and faster with the increased speed
of computers, and bigger data bases can be used. For non-linear models, it is
generally not possible to find the estimator analytically so numerical optimisa-
tion procedures are applied to obtain the maximum likelihood or even the least
squares estimator. These procedures are iterative and make use of all the data
at each iteration. They are called off-line because they are applied when all the
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data are available. Each time we have a new observation the whole estimation
procedure has to be repeated. This is not a problem with quarterly or monthly
data but availability of large capacity memory also implies that much more data
are stored and more frequently. Instead of collecting data at a yearly, quarterly
or monthly level, data are more and more collected in real time, starting with
financial markets. Also, new fields of applications have appeared, like mobile
telecommunications or fluid flow management, where quick automated decisions
are required.

When the interval of time between two observations is very short, working
with past, off-line, methods become inefficient if all data need to be used at
high frequency rates and doing huge computations, because of the expensive
calculation power needed as well as the memory space. Instead of being used
by humans on their desks, the work should be done ”on the spot” by computer
systems and in an automated way. This raises new problems which are not
yet entirely solved like model identification, and detection and treatment of
outliers. The idea is to use on-line or recursive methods. They make use of
a very small subset of data at each time. These methods appeared first in
linear models (Plackett, 1950, who referred to Gauss) when computation was
a major annoyance. In statistics they reappeared later (Brown et al., 1975)
as a way to check the stability of model specification with respect to time.
In the discussion of that paper, the influence of Kalman (1960) became clear.
Recursive methods became particularly interesting in the context of time series
models, see Young (1985). These methods were indeed developed mainly in
engineering, under the name of Recursive Identification, for data available on-
line in telecommunications, transmissions, management of fluids, etc. For some
recent contributions to recursive estimation methods, see Guo (1994), Kushner
and Yin (1997), Moulines et al. (2004), Subba Rao and Dahlhaus (2004).

Among these recursive methods there is the RML (Recursive Maximum Like-
lihood) method which was introduced by Soderstrom (1973), see also Young
(1984). We know that, under general conditions, the (off-line) maximum likeli-
hood method gives an estimator which is asymptotically efficient, i.e. it is dis-
tributed asymptotically like a normal law whose asymptotic variance-covariance
matrix is equal to the Cramér-Rao upper bound. Under certain conditions,
Ljung and Séderstrom (1983) have shown that the RML estimator has the same
asymptotic properties as the maximum likelihood estimator. But they noticed
that for a finite series, {y1, ..., Yn }, the maximum likelihood estimator is always
better than the RML estimator. The RML estimator is based on a first order
approximation of the Taylor expansion of the sum of squares of the errors. Let
B be the vector of parameters of the model. As we will see in Section 2, the
estimate at time ¢, 3;, makes use of the value at the previous time, 3;_1, but
also of a matrix R; which is an approximation of the Hessian of the sum of
squares of errors. A recurrence for the residual is used but also a recurrence
for the derivative of the error with respect to the parameters and an updating
recurrence for the Hessian.

Mélard (1989) and Zahaf (1999) observed that the latter recurrence, with
highly variable successive values of Ry, is often the cause for wild variations



in the estimates and proposed a modified RML estimator for ARMA models.
While keeping the spirit of the algorithm, instead of the recurrence for the
Hessian Ry, Zahaf (1999) proposed to use the evaluation of the asymptotic
Fisher information at the current value of the estimator, 8 = Et,l.

Zahaf (1999) noticed that the asymptotic theory developed by Ljung (1977)
and Ljung and Soderstrom (1983) no longer applies. He outlined an asymptotic
theory based on the stochastic approximation of Robbins-Monro following Duflo
(1997) but it was not complete. Moreover convergence in law of the estimator
rested on a conjecture which was later proved to be wrong. For these reasons,
after vain attempts including with the alternative approach of Kushner and
Huang (1979), we preferred to adapt the approach of Ljung and Soderstrom.

In Section 2, we remind the necessary concepts of recursive maximum like-
lihood (RML) estimation in order to be able to introduce our version at the
beginning of Section 3. The remaining of Section 3 is devoted to the main
theorems in order to establish consistency and asymptotic normality of the new
estimator. In Section 4, we show small samples results obtained by Monte Carlo
simulations. They indicate that the new estimator is an improvement over the
classical RML estimator. Section 5 will present an example of wind forecasting.

2 Recursive maximum likelihood estimation

Let us first describe the RML estimator before introducing how we have modi-
fied it. The algorithm for that estimator is derived from the off-line maximum
likelihood estimator, see Ljung (1978) and Astrom (1980). We assume for sim-
plicity that the observations {y;;t = 1, ..., N} follow a univariate ARMA(p, q)
model defined by the equation:

Yt — P1Ys—1 — P2Ys—2 — .. — PpYt—p = €1 — Orei1 —bOrep_g— ... — 9q €t—q, (1)

where the roots of the autoregressive and moving average polynomials ¢(B) =
1—¢1B — ¢2B*>— ... — ¢,B? and 0(B) = 1 — 1B — 0:B> — ... — 0,B9 are
outside of the unit circle and e;’s are i.i.d. random variables with E(e;) = 0
and F(e?) = o2. Let 8 = (¢1, ..., bp, 01, ..., Hq)T be the vector of the parameters
of interest, where 7 denotes transposition, and let 3* be the true V&h;? of 5.
The estimator at time t will be denoted Bt = ((Zl’t, - (Zm, (9\17“ - (9\,17,5) . For a
given 3, the forecast fj;;—1 () for time ¢ can be computed at time ¢ —1, provided
we replace the true errors e,, s < t, by the residuals 5(3) = ys — Js)s—1(3),
computed by recurrence. This requires suitable initial values whose effect can be
neglected because of the assumption on the polynomials. In off-line estimation,
under the Gaussian assumption on e;’s, the maximum likelihood estimator is
obtained by minimizing the sum of squares of the residuals

N
Vv (0) = 5 0. )



Example 1
Specific parts will be illustrated with the ARMA(1,1) model defined by
Yo — Y1 = er — Oey 1, (3)
with 37 = (¢,0). Note that (3) implies
@t\t—l(ﬂ) = ¢yi—1 — Oes-1(B) (4)

and
Yt — @t\t—l(ﬂ) =Y — Qys—1+ e(yt—l - Qt—1|t—2(ﬁ)), (5)
where the starting value §;0(5) can be taken equal to 0. Indeed the effect of

a starting value decreases like |0|t_1, and the assumption made implies that
|8] < 1. This recurrence allows computing &.(3).

For ARMA models, Vi (8) is a non-linear function of 8, so Vy(8) cannot
be minimized analytically but well using numerical procedures, requiring many
iterations on basis of the data from ¢t = 1 to ¢t = N. An on-line or recur-
sive algorithm requires a vector of fixed size, preferably small with respect to
N. Therefore we want an approximation of the off-line maximum likelihood
estimator Sy that can be obtained by recurrences.

Given Bt,l, we want to obtain ﬁt which is close to the minimum of V;(3). By
a Taylor expansion of V() around B;_1 limited to the second order we obtain

V) =i+ (Tg5) 1A
v 5-hl (G ) 1A )

Minimizing the right hand side with respect to 3 leads to

a?w(g))l (c’ﬂ/t(ﬁ))T
8585T B=Bi—1 aﬁT [3:31,—1.

ﬁt = Btfl - ( (7)
Denoting 4(3) = — [a&(ﬁ)/a/BT]T

with respect to 3, we have

, the opposite of the derivative of €;(5)

[%VT@} . ,; u(B)en(8) = [WTT@} L@@, ®

and a further differentiation yields the Hessian:

PVi(B) _ 9*Via(B)
apopT 0B apT

T 82515(5)
+ e (B)Y; (B) + W&e(ﬁ)- (9)

In order to evaluate (7), the following approximations are made.



1. We assume that Bt is close to Bt,h a quite reasonable approximation for
large t, justifying (6) and

(82Vt(ﬁ)> - <82Vt(5)> (10)
9B0BT ) 55, \OBOBT ) 5,

2. We proceed as if Bt,l were optimal at time t — 1, i.e.

(%@)ﬁ_éﬂ ~ 0. (11)

3. Since, for § close to 3*, {e:(8)} will almost behave like a white noise
process, i.e. €;(8) will have a mean close to 0 and be nearly independent
from the observations and residuals before time ¢, allowing to neglect the
last term of (9).

Then, inserting (10) in (9) evaluated at 8 = B¢_1, we have an approximation of
the Hessian, R;, which can be computed recursively by

Ry=Ri_1+ 1/%(@71)1/)?(@71) (12)

Insertion of (11) in (8) evaluated at 3 = 3;_1, yields

(agg(f) ) :—BH =~ (Br-1)e(Be1)-

Using the approximation R; in (7), we have

~ ~ —1 ~ ~
B = Br—1+ Ry Pe(Be—1)et(Be—1)- (13)
Denoting tR, = R; we have the two equations

{ I?t = Bt—l + %{wt(ﬁtjl)wz(ﬁg—l) —Ri1} (14)
Bt = Bi-1+ %Rt_l'l/)t(ﬁt—l)st(ﬁt—l)-

There remains to derive equations for computing &; (Bt,1) and 1)y (ﬁAt,l). Let us
first look at the ARMA(1,1) example (3).

Example 2

We have lfftT(ﬂ) = 32915\:5—1 (ﬁ)/aﬁT and differentiation of @t|t—1(5)*agt—1\t—2(5) =
(¢ — 6)ys—1, which is also deduced from (3), gives the two equations:

Ot Ot —1jt—

ytta(bl(ﬂ) _ %% 1@;2(6) =y_1, (15)
OG- Ot
Z/‘Tl(ﬁ) — Gi—1pe—2(B) — 0918\—92(5) = —Yt-1. (16)



The latter can also be written

ei—1(8) gaﬁt—ut—z(ﬂ)

- 120 ). (1)
Grouping (15) and (17) gives
wld) =t = (V). 9

We can compute &(5;_1) and 1;(3;_1) by using equations like (4) and (18)
but this requires all the observations ys, s = 1,...,t — 1. Let us derive approx-
imations of Et(ﬁAt,l) and wt(ﬁt,l) that can be computed by recurrence using
additional approximations. A natural approximation consists in using only the
current estimator and max(p, q) previous values of €, y and v as initial values.

Example 3
In the case of (3), & (Bt—l) is approached by &, computed by
et =Yt — Yejt—1 = Yt — atflytfl + é\tfl(ytfl — Je—1]t—2)-
Let us introduce ] | = (y;_1, —¢¢_1). Using (4), we can write
e =y — B 1. (19)
Similarly, (18) leads to a natural approximation 1 of v (3_1)
U = s 191 + Q1. (20)

At time ¢ we only need to know @1, 91 et fit_l. Adding these equations to
those of (14) and performing substitutions, we obtain the system

e = é_t—ﬂ/’t—l + i1,
Ry =Ry + Ve,
&t =Yt — @Tfﬂot—l,
ﬁt = Btfl +Et_1wt5t~

(21)

Let us now go back to the general case (1). To improve the behaviour of the
algorithm, we replace the factor 1/t by a sequence ~y; of positive scalars decreas-
ing to 0 such that Y v, is divergent. If we now denote ¢ = (ys, * , Yt—pi1, —Et, ** » —Et—qi1),
with a due generalisation of (20), the RML algorithm can now be written:

e=>1_4 ék,tfl'd]tfk + pi-1,
Ry = Rt71A+ Ye(f — Ri—1),
€t =Yt — ﬁtT—lﬁptfla

Br = Be—1 + Ry "ires.

(22)



3 Estimation by the RML,;;; method

Let us now consider a modification of the method of Section 2 called the RML;#
method. From a theoretical point of view, under some assumptions, the RML
algorithm (22) provides a consistent estimator with a rate of convergence v/f.
However, Mélard (1989) and Zahaf (1999) have observed huge variations of
R, with respect to time, which produce disturbances in the RML estimator.
While keeping the recursive nature of the algorithm, they have tried to im-
prove its accuracy by replacing the central recurrence (12) for the Hessian
0%V (B) /080 BT, by the computation of its expectation at the current value of
the estimator. Indeed, o2R; i an approximation of the asymptotic covariance
matrix I'(0*) of the maximum likelihood estimator. But, 5* being unknown,
they suggest to replace I'(8*) by the asymptotic covariance matrix evaluated
at the last value of the estimator, F(Bt,l). If Bt converges to 0%, which will be
shown later, then F(Bt_l) converges to I'(8*). Moreover, F(Bt_l) is the inverse
F~Y(B,_1) of the Fisher information matrix F(3) computed at 3 = B,_;. At
each time, we will compute 62F(3;_1) and then its inverse o, 2F~*(f;_1) which
will replace R; ' in (22). For a given o2, the algorithm is written:

Yy = Zzzlék,tflwtfk + pr-1,
EAt = y; - ﬁtT_ﬁOt—l; R (23)
B = Bi—1 + 1o 2 F 1 (Bi—1) s,

where ¢, is like before. Therefore the recurrence for R; in (22) will no longer
be needed. Note that

F(B) = o *E{ye(B)0{ ()}, (24)

where
e(B) = Y oh10k Vi k(B) + @15

and ©f = (Yt Yt—pt1, —€t -, —€t—qg+1) . Note also that F(3) doesn’t de-
pend on t. For simple models, an analytic expression does exist for F'~1(3), see
Box et al. (1994). Otherwise, there are simple algorithms for computing F(f3),
see e.g. Klein and Mélard (1989).

But 02 is generally unknown so the algorithm (23) is modified as follows

Yy = ZZ:ﬂék,tfﬂ/thk + Pr—1, (25)
o =01 +mleiiy —3i0), (26)
e =y — Bipia, (27)
Be = Be-1 + 7667 2 F (Bro1)thece. (28)

We will now study the statistical properties of the RML ;7 recursive estima-
tor before discussing small sample results obtained by Monte Carlo simulation,
including a comparison with the original RML algorithm, in Section 5.



3.1 Almost sure convergence

Zahaf (1999) has used results from Duflo (1997) about Robbins-Monro sto-
chastic approximation in order to obtain asymptotic properties for a Newton
approximation to the RMLMZ estimator, called the RML yg estimator. The
algorithm has the form Gi11 = B + 7 Yi41, where the conditional expectation
of Y;41 given the past information fulfils E[Y;y1/F;] is a measurable function
of Bt. But here E[Y;,1/F;] depends on both Bt and t, and it is even difficult to
deduce convergence of the RML,;, estimator from its Newton version.

The theory contained in Ljung and Soderstrom (1983) is based on writing
the algorithm under the following form

{ hy = A(Ty—1) hy—1 + B(Z4—1) 24,

PUIDN ~ 29
Ty = Tg—1 +’Yt Q(taxt—laht)a ( )

where A(.), B(.), and Q(.,.,.) are functions, ~; is like in Section 2 and z
makes use of the data. Like in Ljung (1977), the idea is to associate an or-
dinary differential equation (ODE) to the algorithm and obtain the attrac-
tion domain of an invariant set of that ODE. For the original RML estimator,
z; = (B8], vec(Ry)T)T and it appears that A(.) and B(.) depend only on f3;.
Here we have to consider the same but where Z; = (B\tT o7 )T

hy = A(Bt—l) hi—1 + B(Bt—l) Zt,

~

Be N Bir \ L1~ (30)
(o, )= (g ) +towsnn
where h; is {q(p+q+ 1} x 1, Q(t,z,h) is (p+q+1) x 1, x = (87,027, and

he = (5t;5t71; T agtqurl,w;FthTfla '~'7wglq+1>Ta 2t = (yta T aytfp)Tv (31)

Q(t,z,h) = [0*2 {F~YB)(hg11, hgpas oo hogip) ™} Ty, h2 —aQ}T, (32)

so that hy represents e, (hgi1,hgt2, ..., hagip)! represents v, and

. T r
Qe.dah) = [0 (FGoyi) st 52

Notice that R, obtained by the Fisher information matrix evaluated at 8 =
0B¢_1, appears in the second term of the right hand side of the second equation
of (30), making derivations very different from Ljung and Soderstrom (1983).
Their theory cannot be applied directly for the RMLj;z algorithm. However,
the first equation of (30) still holds with the same choice for the matrices A and
B as in (29). For an ARMA(p, ¢) model, it can be seen that
a(g—1)(p+2g—1)

= (=

det (A(B) — ) = (~1) A= ATl — A2, — L —6,))" T
(33)
To show convergence of the algorithm to the optimal value, we make two
assumptions; the first one is about the true value of the vector of parameters

G* and the second one is about the data.



Assumption 1: (on the model) The autoregressive and moving average poly-
nomials have no common root and their roots are all outside of the unit
circle (satisfying the causality or stationarity condition and the invertibil-
ity condition of the process).

Assumption 2: (on the data) The sequence of observations { y;} has a uniform
upper bound in absolute value: there exists a constant M, independent of
t, such that Vi,
lye| < M.

The latter assumption seems to be a convenient and ubiquitous assumption in
this context. Despite that assumption, the proof is very technical so most of
the details will be given in Appendix 1.
Let Dg = {(67,0%) € RPT4F! / the eigenvalues of A(3) are in the unit circle},
hence Dg = {(3%,0?) € R4 / the roots of the moving average polynomial
are outside of the unit circle}. Because of the Fisher information matrix, the
definition of the set Dpg is also different:
Dp = {B € RP*9 / the roots of the autoregressive and moving average polyno-
mials are outside of the unit circle, F(8) is invertible, ||[F~*(8)|| < k for some cons-
tant k > 0 large enough}
Dp = {(8",0%) e Rrtet / 31" € D and 02 > 6, for some constant § > 0
small enough}
We will make use of Theorem 1 and Theorem 4 of Ljung (1977). Here is the
third subset of his conditions, denoted by C, without C7 which is not needed:
C1: Q(t,z,h) is Lipschitz continuous in z et h :

[Q(t, x1, h1) — Q(t, w2, ha)|| < Ki(x, by p,v) {[|71 — 22| + |1 — A2}

for x; € B(x,p), an open ball of centre x and diameter p, for p = p(x) > 0,
where © € Dy, h; € B(h,v) for v > 0;

C2: Matrices A(.)and B(.) are Lipschitz continuous functions over Dg.

C3: f(z)= tli%lo%ZZ:lQ(kjvﬁk(T)) does exist for all T € Dp.

C4: ForallT € Dg, 0 < A <1 and ¢ < oo, the random variable k, (¢, T, A, ¢)
defined by

kv(tafa >‘a C) = kv(t - 1,7, )‘a C) + 7t [’Cl(fa h7 p(f), 'U(t7 )‘a C))(l + U(t, )‘7 C))
7kv(t - ]wfa /\7 C)]

with k,(0,7,\,¢) = 0 and v(t,\,¢) = ¢S h_, N'"%|2(k)|, converges to a finite
limit when ¢ — oc.

C5: thl’ﬂ = o0;

Ceé: thm v = 0.

According to Ljung (1977), these conditions are used in the deterministic
case, but the results are valid with probability 1 as far as z; is such that the
conditions C3 and C4 are satisfied with probability 1.



Theorem 1. Under Assumptions 1 and 2, conditions C1-C6 of Theorem 4 of
Ljung (1977) are satisfied.

The proof is given in Appendix 1.

According to Theorem 4 of Ljung (1977) and given (53) in the proof of
Theorem 1, we have to analyse the following ODE

da(t) _ 9 (57(1).0%()" _
ot ot

where

H (8,0%) = [0 {F ' (B) B (D)e(8)}T, E{e*(A)} — 0] .

Letting f(3) = E{¥(B)e(B)} et V(8) = E{e*(8)}, the ODE can be put under
the form

95(t)

L O A COWICIO (34)
do?(t) 2
0~ () - o*(0). (35)

We need to check some assumptions on that differential equation. We have

V(B(t)) = E{e*(6(1))} = 02 > 0,
and

OV (B(t) _ oV (B(t) O5(t)
ot opT(t) Ot

= —2f(B(1) o 2O F 1 (B(1))f(B() <O,
since F~1(B(t)) is a symmetric positive definite matrix in Dg and o~ 2(t) is
positive. Let V(8) = 0V (68)/0". We know by Lemma 1.3 (see Appendix
1) that an invariant set of the ODE is E = {(87,02) € Dr/V(B) = 0} =
{(8",0%) € Dr/ f(B) =0} = {8} x RY.

By Lemma 1.4 (see Appendix 1), there is a solution of the ODE (34 - 35)

over some interval [tg, t1] and, like in Ljung and Séderstrom (1983), we can find
a part Do of the attraction domain for E = {3*} x RT. Let

o(B%) = DSQII?Dxe%IiED)E(V(x))’

where K p is a set of connex parts of Dg containing 3*.

Let Dy = {(87,0%) € Dr,/V(B) < c(B*) — 0} with a very small positive
constant o, and ¢(5*) is the largest possible value such that the set Dy is the
broadest set of the form {V(3) < ¢(5*)} strictly included in Dg. The set Do
is included in the attraction domain of the invariant set {3*} x R* because it

10



fulfils the conditions of Lemma 1.6. Indeed, like in Lemma 1.5, let (8(tp) =
Bo,0%(to) = 02) € Dy since V(B(t)) is decreasing in ¢ then for all ¢ > to,
V(B(t)) < V(B(to)) < c(B*) — 0. Hence Vt € [to, 1], (B(t),0%(t)) € Dy and by
Lemma 1.4, Vt > tq, (8(t),0%(t)) € Dy. Then, we can apply Lemma 1.7 which
summarises Theorems 1 and 4 of Ljung (1977), by letting D1 = Dp. This can
be summarized by the following theorem.

Theorem 2. Under Assumptions 1 and 2, let the recursive RMLjy;z estimator
(25-28) be replaced by the following recurrences

~ . 1 o~
By = {@1 + =0 2 F Y (Bio1) ey , (36)
t Dp,D2
where
B | =z if z€ Dp
Ps.D2 = ¢ point in Dy if z ¢ Dp
and -
&t =Yt — ﬁt—l‘pt*h e D
S if By—1 € Dp,
{ Ve = > 010k 10—k + 011, / At ! B
(ee,0)" a point in K if Bi-1 ¢ Dp,

where K is a compact subset of RPTIT1 defined in advance. Then Bt converges
to B* almost surely when t — co.

Example 4

Let the ARMA(1,1) model defined by (3). Let 8* = (¢*,0*)" and assume that
¢* # 0*. We know that

- o[ 20000
1¢9[m—¢%u—¢w a—w>u—%>}

(p-0° [ (1=¢") (1-07) (1-6%)(1-¢0)
The RMLj;z algorithm can be written
bia 00 1~
]’Lt — 0 97571 0 ht_l + 0 ]. < zt 1 > 5
-1 0 6,1 0 0 =

Bt _( Bi—a 1 ) ~9
< a-\t2+1 - a\_tQ + tQ(tvﬂt—lvgtaht)a

~ ~ T
with Q(t, By1,57% ) = (67207 FH(Bir)ene? =572 ) and A = (0, 0.
Hence
o
AB)=1| 0

0 0
0 0 |, det(A(B)—N)=(0-))>".
0 0

[t

11



Let U ={8 = (¢,0) € ]-1,1] x ]—1,1[}. For that model, we have
Ds={("0%)eR®/0c]-11] },Dp={B=(60) cU/||F D) <k},
Dr={B¢€Dg, 0> € R/ 0% > 6§},
hence D C Dg and D = (U\{(¢,0) € U/ |¢p — 0| > k}) x {0? > &}, where &
is a very small positive real number.

Let us compute E(c?(3)). We have ¢, = 07 *(B)®,(B)y; = 07 (B)®1(B)
7 H(B)O3(B)e;s. Let ¢p(w) the spectral density of &, We have

8(w) = 5= 1) 7 [@a(e)] [21(e)] 7 [07(e™)]

EEE) = [ dw)do

= % @1_1(2)91_1(1/2)@1(Z)@l(1/Z)q>1<_1(z)(I)*l‘_l(l/z)@’{(z)ei(l/z)%
:L (1—¢z)(z—¢)(l—9*z)(z—9*)%
21 f (1 —02) (2 —0) (1 — ¢*2) (z — ¢*) 2

It is obvious that when 6 comes close to 1 or —1, E(g7(/3)) converges to infinity
except when ¢ = 0. For all 8 such that ¢ = 0,

(1-07) (¢ —07) o
- o

and the Fisher information matrix is not invertible. Let us consider the ODE

B=0"2()f(B)
o*(t) = V(B) — o*(1)

B(e((8)) =

where

f(B) = F7H(B)E [ee(B)¢(8)] and V(8) = E{{(8)}.

Let
c(¢*,0%) = su inf E(V(x)),
(@07 = s inf E(V()
where K p is a set of connex parts of Dg containing 3*.
Let Dy = {V(B) < ¢(8*) — o} with a very small positive o. If we know a
value in Do, we can use it for estimation by the algorithm of Theorem 4 of
Ljung (1977). In that case we have almost sure convergence.

In the cases shown in Figure 1, the part Dy where we can project the esti-
mator to achieve convergence is the crossed surface.
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phi

(a) (¢*,07) = (-0.2,0.7) (b) (¢*,6%) = (—0.2,0.7)

theta

(c) (¢7,0%) = (-0.1,-0.6) (d) (¢7,607) = (0.2,0.7)
02 02 v

theta
o

theta
o
R

0.6 06 ///
0.8 0.8 /
(e) (¢*,0%) = (0.5,0.7) () (¢*,0%) = (—0.9,0.9)

Figure 1. For several ARMA(1,1) processes characterized by (¢*,0*) values of p,
part Dy is shown where we can project §; in order to achieve convergence. For graph
(b), level curves for several values of V(3) are shown instead.
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As said before, the admissible region is the square U except the diagonal
joining the points (—1,—1) and (1,1) so it is composed of two half squares. For
each of the six cases V() has a unique minimum located in one of the half
squares. The part Dy, shown in Figure 1 except in case (b), is always in the half
square where the minimum is located. If the initial value of the ODE is in that
half square, and better in Dy, the solutions will turn towards that minimum
when t goes to infinity, hence also the estimator (¢, ;). Convergence is faster
in Ds. If the initial value is in the other half square, the solutions of the ODE
will turn towards the frontier formed by the diagonal joining the points (—-1,-1)
and (1,1) but will stop before reaching it. Similarly, the estimator (q[)t, Gt) will
turn towards the minimum but will have to jump over the diagonal since we
may not have ¢; = 0, because the Fisher information matrix is not invertible
there. Convergence will also be slower than in the other half square and much
slower than in Ds. This is well illustrated by (b) which shows the contour levels
of V(B) for the same parameter values as (a). The level corresponding to Ds
can be seen and even smaller areas where convergence will be still faster. The
other levels are higher in the upper half square and much higher in the lower
half square.

Figure 1 shows that Dy is sometimes lenticular, like in (c, d, e) but not
always. Its size depends on the true values of the parameters and is smaller
when they are close one from the other. Case (c) shows a situation where the
point corresponding to the true values of the parameters is in the lower half
square. The surface of Dy is small when the point is close to the boundary, like
in (e) and (f).

3.2 Convergence in law

Fabian (1968) has studied asymptotic normality of the algorithm
Bra1 = (I —t7T) By 4+t~ @028,V 4 ¢72=8/2T;,

where Bt = @g — 0" in our case, I';, ®; are matrices, V; and T; are vectors,
by letting conditions on the components of that algorithm. He has shown that
t9/23, converges in law to the normal distribution. In our case, welet « =6 =1,
Iry=01T,=0, &V, = (@5)%&, but one of the conditions of Fabian (1968)
is that T'; is definite pos1t1ve. Ljung et al. (1992) have studied a special case
of that algorithm by letting T} = T, o = 1 and ®,, = I. They have shown
convergence in law under other conditions. We have tried to verify the conditions
of Kushner and Huang (1979) which are more general but they are not satisfied
for the RML ;7 estimator. Zahaf (1999) has tried to show convergence in law of
the RML sz estimator by using a theorem from Duflo (1997, p. 52). In Zahaf
(1999) there is an unproved conjecture which is only valid in some special cases
and it is supposed that F~1(3)w(8)yf (B) is positive definite which is not true
in general despite it is a product of two positive definite matrices. Therefore,
we have preferred to adapt the approach of Ljung and Séderstrom (1983).

14



Theorem 3. Consider an ARMA model defined by (1) and the algorithm (25-
28), according to the conditions of Section 3.1. Then, \/E(Bt — B*) converges in
law to a normal distribution N (0, F~1(3*)) when t — cc.
Proof of Theorem 3. We know that the algorithm (25-28) can be written
under the form (30). We have already shown in Theorem 2 that, under some
assumptions and a mechanism of projection, the estimator converges almost
surely to the true value of the parameter.

Let g9 = £0(8*) = eg = 0, and consider ¢ > 1. Denote &; = to7. Using (26),
we have &, = Ty_1 +e7_;. Define 07(3%) = o7, (8*)+1 (¢7_1(8*) — 07_1 (B%)).
Hence

t t t

A~ 1 * 1 * 1

o} = 225%717 o; (%) = ;Zgiq(ﬁ ) = zzeiq (37)
k=1 k=1 k=1

because Vk > 0, e, (%) = eg. Define also

U8 = 32 0 w(8) + 0l (39)
k=1
t
Ru(8) = Rea(8°) + 3 (a8 () = Rea(89) = 15 _un(8)0E (),
- (39)
where ¢} = (Yt—1," " s Yt—p, —€1—1" " ,fet_q)T. Denote
Bu(8%) = tRu(3") = Bca (8°) + () (3, (40)

and let Bt = (3; — #*. From (28), we have
-~ 1o~
Bt = Bi—1 + 70t PF Y (Beo1) s (41)

According to Lemma 2.1, K; = 7 Bt can be decomposed in a sum of terms. Us-
ing that decomposition, we need Lemma 2.12 to show that V& > 0, ¢'/270 Hﬂt H —

0 a.s. when t — oco. The proof of that Lemma 2.12 makes use of Lemmas 2.2-
2.11. We will use that result in Lemmas 2.13 and 2.16.
From (40) and (41), we can write

Ru(B")5 = B8 Bir + ;R85 F7 B,
=Re1(B)Be—1 +%e(B)L (8*)Be1 + Re(6)5;72 F_l(th)%Et-
But ¥,¢; is equal to
by (€t - 5t(Bt—1))+(¢t - wt(ﬁt—1)> et(Be1)F e (Be—1)(et(Bi1)—er)+0e(Bi—1 e,

and, using a Taylor expansion,

ciBios) — o=~ - 380 (B8) B @
B=x¢
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where 34 is a point between 3;_; and 8*. Letting Uy = R,(8*)5; 2 F~*(Bi—1),
we have

Ri(B*)Br = Re—1(8°)Be—1 + e (B)0F (B7)Bier — Unthe (B (B)Be—1

. _ 1 - 9 _
- Ut (ﬂ’t(ﬁt—l) - wt(ﬁ*)) Ui (B°)Be-1 — §Utwt(ﬁt—l)ﬁ£1 ( g/g(f)>g_m Be—1

+ Uy (@bt - 1/%(615—1)) Et(Bt—l) + Uy (Et - 5t(ﬁt—1)> + Ut'L/)t(Bt—l)et-
We can write

Iprq — U) Ge(BWE(B)Bimr = (62 F(B*) — Re(8%)) 572 F (B 1)¥e (B*)0F (8%) Br—n
+ (F(Bir) = F(57)) 7 B (5707 (BB

Letting

Bii = (F(Bim1) = F(87)) F7Bro)ibe(B)6] (8)Brr

<0 () 00 s = 5T (T e
(43)
and
By = U, (% - ¢t(ﬁAt71)> et(Be—1) + Usthy (Et - Et(ﬁAtq)) ) (44)
we have

Ri(B")B; = Re-1(B)Bro1 + (63 F(B*) — Re(B87)) 52 F~ (Be—1)ve (807 (5) B
+Bit+ Bay + Ut (Be—1)es,

hence

t

tR(3)B =Y (67 F(B") — R(5")) 6> F (B 1)n(B )WL (B)Bk—1 + > _Bux

=1 =1
t t
+ ZBM + ZUkW(ﬁAkq)eb (45)
=1 k=1

Hence

t

iZ:Rk(ﬂ*)c?,;?F*l(ﬁ*)wk(ﬂ*)ek, (46)

ViBi = H; + Ly JrRt_l(ﬂ*)\/E
=1
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Hy = Rtl(ﬂ*)%; (02 F(8°) = Re(8%)) 5% F " (Br-1)tw(B")n(87) B
+ Rtl(ﬁ*)%; (67 — 02) F(8°)5,> F ' (Bi-1)vn(5") k(8B
+ R;l(ﬁ*)%lé Lk + R7NBY) fZBQ s (47)
and
L= \[ZR;C G P (Brr) = FH(B7) (B e

. Rt—l(ﬁ*)%z'm(ﬁ*)af P (o) — a8 ) en (49
k=1

In Lemma 2.16 we show convergence a. s. to 0 of H; and L;.

From (46) and according to Lemmas 2.15 and 2.16, based on Lemmas 2.13

and 2.14, we have that \/ZBt converges in law to a normal distribution with
mean 0 and variance

V= E (8707 (87)) " ot F(5")E (va (8T (687))
— 0 2P N3 ()0 2PN (8Y) = FY(8Y),

when ¢ — oo since Ry(3*) converges a.s. to E (11(6%)¢] (8%)) which is equal
to 02 F(B3*) by (24) .

-1

4 Finite sample properties

4.1 Ljung’s Toolbox in Matlab

We will compare the results of our algorithm with Ljung (2000) System Iden-
tification Toolbox in Matlab version 5.0 (R12), and more specifically function
RPEM, using the adm="ff" parameter, i.e. the forgetting factor algorithm which
makes use of the algorithm (22). At each iteration, only the elements e, ¥;(1)
and ¢ (p1 + 1) of ¢ are computed

q
= k(14 k) + i1, (49)
k=1

q
Ye(p1 +1) = Zkt¢tpl+1+k)+5t 15
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with p; = max(p, q). After that, a sliding is performed by

Pir1(2) = Ve (1), o, Y1 (p1) = Ye(p1 — 1),
Yep1(pr +2) =Ye(pr + 1), ., 1 (pr +q) = Ye(pr +q — 1).

The method in RPEM makes use of a projection using the function 'FSTAB’
in Matlab but only for the parameters of the moving average polynomial 6(B) =
1—6,B—0,B%—...—0,B9 as follows. Let 0,(B) = 1—0, ,B+...+0,,B% be the
polynomial estimated at time t. The roots should be inside of the unit circle.
Therefore, those roots which are outside of the unit circle are inverted and the
others are unchanged. Then, the polynomial is computed again. We will not
use that procedure in our method.

4.2 Implementation of the RML,,;; method

Besides omitting the recurrence for the Hessian, our implementation of the
RML,; 7z estimator for ARMA models is different from that of Ljung in Matlab
System Identification toolbox. We will discuss below the effective recurrences
used in practice, projection of the parameters, the choice of initial values, the
use of forgetting factors, and some information about the program.

Like Ljung, we introduce a second estimate of the forecast error g;, so that
the algorithm (23) becomes

q

e =Y Okt + P, (50)
k=1

€ =Y — BL1Bs_1, (51)

Bt = Bt—l + ”YtFil(Bt—l)'l/)tsta (52)

_ ST—
&t =Yt — ﬂt Pt—_15

where this time 37 = (¢, ,Yt—p+1, —Et,**+ » —Ft—qg+1). Note that we don’t
have made use of the suggestion of Ljung for sliding a reduced subset of /;’s.

4.3 Admissibility of 3,

At each time t, we have to check that the estimator Bt satisfies conditions
analog to those assumed in Section 3. The most important is that the roots
of both the AR and MA polynomials be outside of the unit circle. This is
done by projecting G; in the unit disk, contrarily to RPEM where only the MA
polynomial is treated. As a matter of fact, our implementation offers also the
choice of the Ljung and Soderstrom (1983) projection procedure.

Let us illustrate the case of an AR polynomial. If (qgt,l, ...,at’p) is not

admissible, let p < 1, consider instead (quSt,h P2$t37 e ppqgt,p> and iterate until
the subset of parameters becomes admissible. That way the roots of 1+ (Et,lB +

18



.+ (Et,pB don’t come close to the unit circle like with the procedure of Ljung
and Soderstrom (1983).

4.4 Initial values

To obtain good estimates, starting with appropriate initial values Bo is essen-
tial. In our RMLj;z method, besides satisfying the causality and invertibility
conditions, 3y should be far enough from the region where the Fisher informa-
tion matrix is not invertible. For the RML method, an initial matrix Ry is also
needed and Ljung and Soderstrom (1983) recommend to use Ry = 10000 I,
expressing thereby a large amount of uncertainty. Here, we have only to choose
og. We have taken o2 = 10 or 53 = 10000.

4.5 Forgetting factor

We have used a factor v, in (22) or (25-28) although this was often taken as 1/t
in the theory. In practice it should be selected in order to improve convergence.
It is often based on the forgetting factor defined by

(1 —
A = Y—1( %)7
Vt
which corresponds to
Ny = Yt—1
t — ~ . -
At + Y1

According to Ljung (1985), using 74 = 1/t (which corresponds to \; = 1, Vt)
is justified when the coefficients do not vary with time, which is the case here.
More generally, it is recommended to use

e = 2001 4 (1= 29,

where typically \° = 0.95 or A\° ~ 0.99. Remark that \; converges to A\sc = 1 and
¢ converges to Yo, = 0. We have also experimented with a constant forgetting
factor.

We will compare our estimator (solid line) with the RML estimator of Ljung
as implemented in Matlab (dashed line with a forgetting factor A = 1, or dot-
dashed line with A = 0.99). For our RML,,z algorithm, we have used a different
forgetting factor for the variance, denoted with a subscript o, characterised by
Yoo = 1or >\t0' = 0.9 with )\0 =1.

4.6 Information about the program

A computer program in Fortran 90 was written in order to experiment with the
new method. The computer program is a part of a bigger project described
in Ouakasse and Mélard (2005). Indeed the program is able to handle general
single input single output (SISO) models. Moreover each polynomial can be
factored in a non seasonal polynomial and a seasonal polynomial, a feature
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which is necessary when dealing with economic or traffic data. These aspects,
as well as specific procedures in order to improve the computational efficiency
of the method, both in the non-seasonal and seasonal cases, are discussed by
Ouakasse et al. (2005).

Let us now describe the experiments that follow. Artificial time series were
produced in Matlab using simple recurrences and omitting the first 50 observa-

tions. They were immediately treated with the RPEM procedure. The series
were then exported and treated by the Fortran program

4.7 ARMA(1,1) model

Let us consider the ARMA(1,1) model with equation (3) with ¢* = 0.5 and
0* = —0.5, with 02 = 1. We have generated 10000 series of length 1000 for
which we have computed the estimates of ¢ and 0, for each time ¢ = 1, ..., 1000.
The following initial values were used: 72 = 10, q[)o =0.25, 00 = —0. 25 )\0 =1,

Y0 = 1, Moo = 1, Yoo = 1. The averages and standard deviations across the
experiments are shown in function of time. For each plot, the true value of the
parameter is given. It is even displayed in the plot of the averages as a dotted

horizontal line. The averages should be as close as possible of the true value
and the standard deviations should be close to O.
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Figure 2. ARMA(1,1) with ¢* = 0.5. Averages (left) and standard devi-
ations (right) over the simulations in function of time for three estimates

of ¢. Solid line: our estimator, dashed line: Ljung/Matlab with A\ = 1,
dot-dashed line: same with A = 0.99.
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Figure 3. ARMA(L,1) with 6* = —0.5. Averages (left) and standard
deviations (right) over the simulations in function of time for three estimates
of #. Solid line: our estimator, dashed line: Ljung/Matlab with A = 1, dot-
dashed line: same with A = 0.99.

The plots for averages indicate that the new estimator seems to converge

faster than the RML estimator. On the plot for standard deviations, we observe
that those of the RML estimator decrease more slowly than ours.

4.8 ARMA(2, 2) model

Let us consider the ARMA(2, 2) model with equation

(1+0.8B 4 0.25B%)y; = (1 + 1.378B + 0.5B%)e;,

with 02 = 1. We have generated 10000 series of length 1000 for which we have

computed the the estimates of ¢, ¢2 and 60y, 02 for each time ¢ = 1,...,1000.
The following initial values were used: Ga 10000, ¢1,0 = 0.5, 20 = 0.8,
31,0 = 0.69, 52,0 =0.14, Ao = 1,70 =1, Aoy = 0.9, 70 = 1. Here are the results
that were obtained, presented like for the previous example.
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Figure 4. ARMA(2,2) with ¢7 = 0.8. Averages (left) and standard devi-
ations (right) over the simulations in function of time for three estimates

of ¢1. Solid line: our estimator, dashed line: Ljung/Matlab with A = 1,
dot-dashed line: same with A = 0.99.
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Figure 5. ARMA(2,2) with ¢5 = 0.25. Averages (left) and standard
deviations (right) over the simulations in function of time for three estimates

of ¢3. Solid line: our estimator, dashed line: Ljung/Matlab with A = 1,
dot-dashed line: same with A\ = 0.99.
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re 6. ARMA(2,2) with 07 = 1.375. Averages (left) and standard
deviations (right) over the simulations in function of time for three estimates

of #;. Solid line: our estimator, dashed line: Ljung/Matlab with A = 1,
dot-dashed line: same with A = 0.99.
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e 7. ARMA(2,2) with 65 = 0.5. Averages (left) and standard devi-
ations (right) over the simulations in function of time for three estimates

of 6. Solid line: our estimator, dashed line: Ljung/Matlab with A = 1,
dot-dashed line: same with A = 0.99.

The graphs show that the averages for our method converge faster than for
the RML estimator except for the parameter ¢,, and also that the dispersion
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across simulations is smaller.

5 An example

We will illustrate the procedure on the following example. Windmills produce
electricity in a way which is cleaner for the environment than with thermal
or nuclear power stations. Electricity is however irregular because it depends
of wind irregularity. When the wind is strong, more electricity is produced.
Conversely, when the wind is weak, the quantity of electricity is very small. In
order to maintain the offer of electricity at the level of demand, it is required to
adapt production from traditional power stations in function of the amount of
electricity produced by a park of windmills. Response time of a power station
can go from a few minutes to several hours according to the technology being
used. It is therefore useful to forecast wind speed a few hours in advance. The
data come from speed of wind measurements at the top of a windmill. They
are available every ten minutes, hence 144 observations per day. We have used
about twelve days of measurements, more precisely 1728 observations. The data
are shown in Figure 8.

0 200 400 600 800 1000 1200 1400 1600

Figure 8. Speed of wind on the top of a windmill. One observation every
ten minutes during ten days.
We have specified an ARMA(1,2) model with a constant, described by the
equation:
(1= ¢1B) (g — p) = (1 = 1B — 0:B%)e.

Here the vector of parameters is composed of 3 = (¢1,01,02, ). A statistician
or an econometrician would probably select a model with a unit root. For that
reason, we have used both forgetting factors equal to 1 and an initial value of
the variance which is not too large, equal to 500. The estimates are shown in
Figure 9.
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Figure 9. Estimates by the RMLj;z method in function of time: ¢, (top left),
01 (top right), 62 (bottom left), u (bottom right).

The estimates at the end of the series are B = (0.925,0.112,0.066, 4.933)
and the final value of the innovation variance is 0.739. Note that the exact
maximum likelihood method (Mélard, 1984) of SPSS (2004) gives the following
model using the whole data set:

(1—0.976B)(y; — 4.894) = (1 — 0.216B — 0.196 3% )¢y,

with an estimate of the innovation variance equal to 0.400.

6 Conclusion

In Section 2, we have recalled the RML method proposed by Ljung (1977) and
Ljung and Séderstrom (1983). That method provides recursive estimates using
a system of equations. In one of the equations, the Hessian matrix of the error
is updated. An improved RML method called RML);z is the subject of the
present paper. It has been described in Section 3. It is based on using the
Fisher information matrix, evaluated at the current value of the estimator, in
order to update the estimator, instead of updating the Hessian. The asymptotic
statistical properties of the new method have been studied in Subsection 3.1
and 3.2. Under fairly general assumptions, it was proved that the RML,;»
estimator is consistent in the almost sure sense and also asymptotically normally
distributed. This is done by following Ljung (1977) but the details are very
different from those of the Ljung et Séderstrém (1983) approach. It is based on
a result that the mathematical expectation of the errors, E(e?), has an absolute
minimum obtained at the true value of the parameter. We have obtained a
part of the attraction domain around that minimum of the differential equation
associated to the algorithm. Convergence in law makes use of a result of Hannan
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(1976) which allows to adapt the Ljung and Soderstrém (1983) approach to the
RML ;7 estimator. In Section 4 we have shown Monte Carlo simulations (for
some ARMA models and using 10000 series of length 1000) for the comparison
between the RML,;z estimator and the original RML method. This suggests
that indeed the RML ;7 estimator often does converge more quickly in practice.
In Section 5 we show an example on real data which shows the usefulness of the
new method.

In Ouakasse and Mélard (2005), we will present an extension of these recur-
sive method based on the Fisher information matrix to a wider range of models:
single input, single output (SISO) models. In Ouakasse et al. (2005), we intend
to show how these methods can be adapted to seasonal data in order to cope
with the so-called seasonal models of Box et al. (1994).

Appendix 1

Here are a few lemmas needed for the proofs in Section 3.1. Invertibility of
the Fisher information matrix is satisfied by Assumption 1, given the following
lemma.

Lemma 1.1 (Klein and Spreij, 1993). The Fisher information matriz F(() is
invertible if and only if the autoregressive and moving average polynomials have
no common root.

Lemma 1.2 (Harville, 1997, p. 307). Let F be a matriz function of R™ —
R et = € R™ be a point where matriz F is invertible and continuously
differentiable, then

Proof of Theorem 1.

We have to prove the conditions C for the algorithm (30). Condition C2 on
matrices A and B which are the same as in the RML method is of course valid.
Condition C4 is essentially the same as for the RML method but Ouakasse
(2004, pp. 45-46) provides an alternative proof which is more direct than in
Ljung and Soderstrom (1983, p. 175-176). Of course conditions C5 and C6 are
satisfied since v = 1/t.

Let us first check condition C1.

Suppose (8f,02)T and (8, 02)T in a ball B ((BT, o)™ p(8, 02)) with p(3,02)
small enough such that (81,0%) and (B2,03) belong to Dg. Let h and I’ be two

vectors in a ball B (h?,v) of RPTa+1) with A0 = (Y, h9, s Wy giy) T =
(h, hay oo Py(pigrn) " and B = (Ry, Ry, o B )T Let kY = (R, B 4o, oo

,h2+2q), kl = (hq+1,hq+2,...,hp+2q) and kll = ( g+1,h;+2,...,h;}+2q). By (32)
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we have

Q(t, 515 U%a h) - Q(ta 52a U%a h/)

= [{(h = 1Y) (k{ = k") + (hn = 1) (K" = KIT) } o 2F =1 (51)

+{h) (K = K") + (ha = W) KT} o 2F 7 (B)

+ (B = hY) (k" — kOT) o2 (F71(B1) — F71(Ba))

+ 09 (k7 = K)o 2 (F71(B1) — F~1(B2))

+ (B = W) KT + hOKT) 072 (F71(B1) — F1(B2))

+ (hy = hY) (K" — KT (o3 fcrf) o720, F71(3)

+ h(lJ (k/T - kOT) (US - ‘7%) oy 02 , CF! (52)

+ ((h = ) K" + h9KT) (03 — 0F) 07 %05 2 F 1 (Ba),

, T

(h1 - hl) (h1 K A hO) + 210 (h1 - hl) too af]
Since oy <6t 2 <&t (h1 — h(l)) < v and (k:l — k?) < v, there exists a
constant C’ such that

[|Q(t, 61,01, h) — Q(t, B2, 05, h)|| < C (HhOH2 + ||R0]| + 2 +v) (I —n|
+ ||F71(/31) - F71(52)|\ + |‘72 - U1|}

According to Lemma 1.2, 0F~!(3) /93 is continuous on the ball B (87, 52)7, ,0?))

(
hence it is bounded, then there exists a constant C7 > 0 such that HF_1(51) — F~Y(Bs) || <
Cy ||B1 — B2]| , and the preceding expression can be written

1@ 1,03 h) = @t B2, 3, W) < € (10> + |0 42 + 0+ )
(63T, o3)™ = (33, + [ — ']

Let us now check C3. Condition C3 is basically the same as for the RML
method, see Ljung and Séderstrom (1983, p. 169-170). We have to show that:

A) For all t,s, t > s, there exists a random vector 2z2(¢) belonging to
the o-algebra spanned by the z;, i < t, and independent of z;, such that

EHzt—z || <CN~=% C<oo, A< 1.
B) The following limit does exist:

N

: 1 2 _ 2
lim NZE (Q (t,8.0%, h(B))) = H(B,0?).

N—oo
t=1

For the RML case, Ouakasse (2004, pp. 46-49) proves Part A and the proof is
still valid for the RML ),z method. Part B is satisfied since

B(Q (t.6,0% h()) = E (0P 0uu(@)=(9) " 55) %)
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doesn’t depend on @ and §* and doesn’t depend on ¢. Indeed @ (t7 8,02, ht(ﬁ)) =
(W (B)F " (B)e4(8),63(B) — 02) " with O4(B)¢4(8) = ¢4(8), O4(B)®;(B)ei(8) =

E)p(B)@Z(B)et and ©:(8) = (Y—1,"+ , Ye—p, —€t—1(B), -+, —€t—¢(P)), and we
. 1 a 2 —27p—-1 T 2 2 T
lm =3"E(Q (18.0% k() = [0 2F T B)E (B8 E (1(8)) — o
- (53)
|

Lemma 1.3 (Astrém and Séderstrom, 1974). For the ARMA(p,q) model de-
fined by (1), B* is the unique solution of E [e(8)(8)] = 0.
Lemma 1.4 (Cartan 1967, p. 122). Let g(z) be a class Cy function w — R™,
w being an open set of R™. Let A, be a compact of w. We suppose that any
solution of x(t) = g(x(t)), with the initial condition x(ty) = xo, defined over
[to, t1] is such that Vt € [to,t1], x(t) € Ay. Then the upper bound of the mazimal
interval of existence of the ODE is +o0.
Lemma 1.5 (Rouch and Mawhin 1980, p. 12). Consider the ODE in Lemma
1.4 where g is a continuous locally Lipschitz function: g : I x B, — R", B, =
B(0,p) CR™. Let T be a part in R"™ such that T C B,. Let V : I x B, — R
a function of class C*, and a, a positive constant. If

a) xo €, tgel,

b) V(to,.%'()) <a,

c) Y(t,x) e I x Fr(I'),V(t,x) > a,

d) Y(t,x) € I x T, V(t,x) <0,
then the solution of the ODE is such that ¥t > to, x(t) € T.
Counsider the following ODE: & = g(x), x(ty) = xo where g :  — R" is a
continuous locally Lipschitz function. Let y*(zg) = {z(z,20),2z = 0} be the
trajectory of x(z,xo).

Lemma 1.6 (Rouch and Mawhin 1980, p. 50). Let U a compact of 2, an
open set of R™, and V : Q — RY a function of class C' such that Vo € ¥,
V(z) < 0. Let By = {:1: eV, Viz)= 0} and M the largest invariant subset
of E. Then for any xo such that yv*(zg) C ¥, z(z,79) — M.

Lemma 1.7 (Theorems 1 and 4, Ljung, 1977). Under conditions C, let us
consider the algorithm (29) modified as follows:

b — A(Ti—1) he1 + B(Ti—1) 2¢  if Ty—1 € Dy (54)
t a point in D3 if Ti—1 ¢ Dy,
Tp = [Tp—1 + 7 Q(t, Ti—1, ht)]Dl,Dg (55)

where D1 C D C R™ 1is a bounded open part containing the compact Do, D3
is a compact of R™, and m is the dimension of T;, and

B I - if z€ Dy
Pu.D2 = point in Dy if 2 ¢ D;.
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Let D be a compact part of D such that the trajectories of the following ODE
Ox(t)/0t = f(x(t)) starting from a point in D, stay in a closed part Dg of
Dg. Suppose that the ODE possesses an invariant set D. with its domain of
attraction D4 such that D C D4. Let D = D, \Dy and suppose there exists a
twice differentiable function U(x) > 0 defined over a neighbourhood of D and
such that:

supU’(z) f(z) <0,

:0613
Ulx) 2 for x ¢ Dy,
U(x)<ca<cy forx € Ds.

Then Ty — D. almost surely when t — oo.

Appendix 2

Lemma 2.1. Consider K; = 7 Bt defined in Section 3.2. Then

t—1

th Kt ZAZ Kt ZF (Br—1)vrer + TiBra — Y Tk (ﬁk — B 1)
k=1
t—1
— P8 SiBer + (3D (B = Bia ) (56)
k=1
where
Ay = (e 1Be) = e2a) Bt = PN Ben) (o) — wa(8°) 67 (8) B

F7M Bit) = FH3Y) ) e80T (8°)es

I (8) 3
1 (Be1) B ( ) Br-1, (57)
t—1)%tHt—1 8/3’11 b, t—1

/N

l\.’JlH

Agy = (E? | —Er 1(@ 1)) Bi1+ Fﬁl(ﬁt—l)wt (€t - 6t(§t—1))

(B (ve =0T Brn)) T (3B (58)
=" [v; L(3%) — o2 F(87)] with Sy = 0, (59)
j=1
k
= Z _y —o2) with Ty = 0. (60)

Proof of Lemma 2.1.
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By (41), the definition of 7; = t5? and (37),

K =10 Bt =0t-1 Etfl + 55_1Bt71 + Fﬁl(ﬁplﬁﬁﬂm

and we have
Ky =Ko+ (20— 20 (B)) B+ (520 (Ben) = e2) B + €18

FY Bt (20— 2Ben) + F By (=Ber) — e0) + F Bron e
Note that Ko = 0. We can use (42) so that
K=K+ (g2 =20 (i) Bioa + (20 (Bin) = ) Bior + 61 B

+ Bt (e = eBin) = B Bm) (01— v (i) 07 (8B
! (Bi) (m@,n — a(8") ¥ (8B
( H(Bie1) = FTHO) B (89 Fi1 — FHO )80 (8)on

0
_§F (@ 1 'l/Jt/Bt 1( (;ZET

5t 1+ F /Bt 1)V¢er.

Moving some terms leads to
Ki=Ki1+A1++ A + F‘l(@fl)wtet + (e — 0?) Bia
- F*(ﬂ*) [wtw*wf (5°) - 02F(6*)] Bi-1

—Ko+ZA1k+ZA2k+ZF (Bi— 1%%-&-2 &_y —02) B

t

— FH 8D [en(B)L (87) — 02F(87)] Br-1-

k=1

Introducing St, defined by (59), yields after some algebra

(Sk — Skq)ﬁkq

M~

37 [ (8L (8) — 0?F(57)] Br—r =

k=1

=
Il

1
t—1

= S,B_1 — ZSk (Ek - Bk—l) .

Similarly using T}, defined by (60),

t

t
(er_y — :Z Ti — Th—1) Br—1
h=t :~ t—1 _ —
=Tyt — ZTk (5k - ﬁk—1) :
k=1
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We will use a lemma due to Hannan (1976) for which the following nota-
tions are needed. Let X;, ¢ = 1,..., N, be a stationary multivariate random
process, with components X;(a), a = 1, ...,v. Consider the autocovariances of a
realization of length NV

N—Fk
Cula,) = 5 O {Xula) = K@)} {Xera0) - X (W)}
t=1

where X(a) = (1/N) 3/, X,(a). Suppose that X, = Y20 Aje,_;, E {e;el } =
615G, Yo" ||Aj||2 < oo and E{e;} =0, with Dirac 8;5, G an invertible v X v ma-
trix and random vectors e;. Let F; the o—algebra spanned by X;(a), s <t,a =
1,...,v. Suppose that for all a, b, ¢, d , E{e:(a)/ Fi_1}, E{ei(a)es(b)/ Fi-1},
E{ei(a)er(b)er(c) /Fi—1}, E{et(a)er(b)es(c)es(d),/ Fi—1} are constants. De-
note the latter by xgpeq. Let

h(w) =" Aje*, f(w) = (2m) " h(w)Gh (), (61)

where h" (w) = " (w) it the conjugated matrix of n (w). Let
(a,b) = E{X¢(a) Xe4x(b)} and Zy(a,b) = N'/?{Cy(a,b) — yk(a,b)}. (62)

We use the asymptotic covariance between Zi(a,b) and Zj(c, d) defined by:

u / ) Toal@)e ™ 4 o) e 0 | (63)

153 3) 3) -y U (W EE M m YR
p q 1 s -

where hqp(w) is the element (a,p) of matrix h(w).

Lemma 2.2. Under those conditions, a necessary and sufficient for asymptotic
normality of any vector composed of Zy(a,b) with variance-covariance matriz
whose components are given by (63), is that the square of faa(w), a =1,...,v,
defined in (61), be integrable.

We will use Lemma, 2.2 for k = 0, so with Zy(a,b) = N'/2{Cy(a,b) — yo(a,b)}.

Note that for an ARMA process defined by (1), given Assumption 1, the spec-

tral density f(w) = (1/2m)o? ]@(ei“’)}Q/}@(ei“’)]Q is square integrable. Note

also that if the vectors {e; } are independent, then F {e;(a),/Fi—1} = E{ei(a)},
E{ei(a)er(b)/Fr1} = E{er(a)er(b)}, E{er(a)er(b)er(c) /Fir} = E{er(a)er(b)es(c)}
and E {ei(a)e (b)ei(c)ei(d)/ Fim1} = E{ei(a)er(D)er(c)er(d)}.

Lemma 2.3. Let S; and T; defined by (59) and (60), respectively. Then
(1/3/1)S; and (1/+/t)T; converge in law to a normal distribution when t — oo.
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Consider Ry(3*) defined by (39), then /'t (Ry(B*) — o2 F(8*)) converges in
law to a normal distribution when t — oo as well as \/t t (o7 (B*) — 02), where
oZ(B*) is defined by (37).

Proof of Lemma 2.3. Let ¢;(5%) = (¢1.4(6%),- - 1, Upsq.t(6%))". From (38)
we have 6*(B)¢t(ﬂ*) = (ptl—lv where SDtl—l = (yt—la s Yt—py, —Et—1 0, 7€t—q)T7
hence

é*(B)wl,t(ﬂ*) = (I)*(B)G)*(B)ilyt—iv i = 17 Ry 2
O (B)Yp1ii(07) = —er—i, i =1,...,q,

but we know that ®*(B)©*(B) 'y;_1 = e;_1, hence

(I)*<B)wz,t(ﬁ*) = €t—i, 1= 17 Dy
@*(B)prri,t(/B*) = —€t—q, 1= 1, ey q.

Consequently the {1, +(6*), i = 1,2, ..., p} are autoregressive processes with ®*(B)
as autoregressive polynomial, and the {¢; .(8*), i =p+1,...,p+ q} are autore-
gressive processes with ©*(B) as autoregressive polynomial. Since the roots of
®*(B) are outside of the unit circle, there exist constants a;, ¢ > 1, such that
Yoo lai] < oo and ¥ 4(8*) = er—j + > soq@i€i—j—i, j = 1,...,p. Remark that
Y2,6(8) = 14-1(8%), -y Yp,t(B") = Y1,4—p1 (8 )

Similarly, since the roots of ©*(B) are outside of the unit circle, there ex-
ist constants b;, ¢ > 1, such that > .2 |b;| < oo and ¥p4;¢(8*) = erj +
Yoo bier—j—i, j =1,...,q. Hence ¢;(8*) can be written under the form

wl,t(ﬁ*) 1 a; ... A4p—1 Qp Qpt+1 - Apig—1 €t—1
wp,t(/g*) o 0 0 o1 ay; az -e Qg Ct—p
" =
wp+17t (ﬂ ) 1 b1 bp,1 bp bp+1 bp+q71 €t—p—1
*
'Q[)p_i'_q,t(ﬁ ) et,p,q)
Apt+q  Gp+qt+1l - G2p+q—1 A2ptq  O2ptg+l -+ O2pt2¢-1 Ct—p—q-1
+ Qg+1  Qg+2 <o Qgtp Agip+1 Qgip+2 -+ Qgipigq €t—2p—q
bptg Oprgr1 - baprg-1 baprg  baprgrr o bapragn €t—2p—q-1
€t—2p—2q)
+ ..
J — T
Let Zp+qt = (et_j(p+q)_1, €t—j(ptq)—2, -1 € —(j-l—l)(p-i—q)) , and note that the
{Zp tq it ] O} arei. i. d. random vectors with mean 0 and variance-covariance

matrix o2 [, p+q which is invertible. We may write ¢ (5*) under the form (%) =
27 VA Z] i, where the components Aj, j > 1, are the a;, 4 > 1 and by, i > 1.
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Let us use the following norm for a matrix M = (m;;);; € R"*™: ||[M|| =
max . |my;|. Since Yoo |a;] < oo and Y2 |bi] < oo, then > || Al <

1<j<n
oo and hence > 7, 14; ] < >y ||Al\|) < o0o. Note that 1, (5*) satisfies the

conditions of Lemma 2.2. Let 9,(6*) = (1/t)>r_,¥x(8*). Note that E(e;),
E(e?), E(e?), E(e}) do exist because the random variable e; is bounded, so

1 S
7O Uk(BE (8% = BB (87) — B {wn(8")f (ﬁ*ﬁ]
k=1
converges in law to a normal distribution, and since (24) and (39), we have that

VE(R(B) = 02 F(87) =V (8(67)8/ (8))

converges also in law to a normal distribution. For each i = 1,...,p+ ¢, ¥, .(6%)
is a stationary autoregressive process, so (1/t)ZZ:1¢i,k(ﬁ*) — 0 a.s. when
t — oo, and (1/v/1)Yh_ 9 1(B*) converges in law to the normal distribution
when t — o0, i.e. 1, (3*) — 0a.s. when ¢t — oo and /£ [¢ rt B*)] converges in law
to the normal distribution when ¢ — oo. Consequently \/_(@[)t(ﬁ*)th(ﬁ ))—0
a.s. when t — oo and (1/v1)S; = vt (Ri(B*) — 02 F(3*)) converges in law to
the normal distribution when ¢ — co. We have

t t
1 . 1
=7 Zfi—l(ﬁ )= 7 Zei_l, and E(e}) = o¢.
k=1

k=1

The e} are independent and E(e k) is finite, so by Lindeberg-Feller central
limit theorem, (1/vt)T; = Vt t (07(8*) — 02) converges in law to the normal
distribution. |

The following lemma is taken from Ljung and Sodertrom (1983, pp. 441-444)
but the proof is more detailed here.
Lemma 2.4. V(3 € Dg, ¥(B), 0yY+(8)/08 and the sequence hy in algorithm

(80) are bounded, and there exists a positive constant M such that Hht — he(By) H <

M/t where V3 € Dg, hi(3) = A(B)hi—1(8) + B(8)z¢. Moreover hy —h(8*) — 0
a.s, when n — 00.

Proof of Lemma 2.4. V3 € D we may write h(3) under the form

t—1
h(B8) = B(B)z + »_A(B)' B (8)z—i(8) + A(B)ho(8),
i=1
and as z is bounded and the eigenvalues of A(3) are in the unit circle, h(3) is

bounded, implying that ;(3) is bounded. We have also

O hi(B) dhi—1(B)
03T 0BT

OvecA(pB)

OvecB(p)
opT '

opT

= A(B) + (hi—1(B) ® 1) + (2 @ L)

32



where v = q(p+ ¢+ 1). Let

OvecA(p)

OvecB(0)
opT '

Gt(ﬁ) = (ht—l(ﬁ) & Iv) aﬂT

+ (2 @ 1)
We can write 9 h;(3)/06T under the form

0 hy(8)
apT

= Gy(B) + ZA(ﬂ)iGt—z—(ﬁ)-

A(B) and B(f) are bounded since they are continuous functions of 3. Since
hi—1(8) and z; are bounded then G(f3) is bounded and, because the eigenvalues
of A(B) are in the unit circle, then dh:(3)/987 is bounded, thus dvy(3)/08T
is bounded.

Let us now show that h; is bounded. We know that 3* € Dg, so ||A(8*)]| <
CM\! for some A < 1. Furthermore, for 8, belonging to a neighbourhood of

’HZ:1A(61€)H < CM for some \; < 1 since

H};:lA(ﬂ) is a continuous function of 8. In Section 3.1, we have proved that

6* small enough, we have also

B¢ — [* a.s. when t — oo, then for a large enough ¢, 3T > 0, such as Vs > T,

HA(ES) < Ay, 80 VE > T,
t N T-1 N t N
114G | <|[TTAGH| | TTABY|| < CoOAT" = Corl,  (64)
k=1 k=1 k=T

where Cj can be taken as (Cy)” , for example, where Cy = supgepy 1AB)]-
According to (30) we have

hy = A(//B\tfl) hi—1+ B(//B\tfl) Zt.

Since h; contains ¢ and ¥y, ¥¢—1, ..., Y¢—q, We can suppose that ho = 0 hence

hy = A( t71)A(3t72) hi—a + A(ﬁtfl)B(@fz) Zt—1 + B(//B\tfl) Zt = ...

B(Br—1) 21, + [HA(BJ)} ho, (65)

with the convention H;;A(B\j) = I,4+4. Since V(3 € D, there exists a positive
real C such that ||B(8)|| < C, and z; is bounded so that (64) and (65) imply

t
lhell < CY_ATH (|2l < Cs. (66)
k=1

Let us now show that there exists a constant M such that Hht — he(By) H < M/t
Let hx(8) = hi — hi(8), A(By, B) = A(Br) — A(8), B(Bx,8) = B(Bx) — B(B).

33



For k < t, we have similarly to (65)

t t—1
he(B) = (HA(@)) (ABi-1,B)o1(8) + BB, ) |

since Eo(ﬁ) = (. Hence for 3 = @,1, we have

t [t-1

he(Bra) = (HA(@)) A1, Be-)hi1 (B1) + B(By-1, Bor)a] -
k=1 \j=k

(67)

According to (66), h; is bounded, and since &; and 1); are components of hy,

they are also bounded, and F~!(3;_1) is bounded because 3;_1 € Dg, and

we know that 57 is bounded. By the recurrence formula of (3, (28), we obtain

H@ — Bt_lH < Cp/t, which implies
HBk—1 - th” Cy log(k ) fort > k>0,

and for k=0, || By — Bt_lH < Cylog(t — 1). Since A(B) and B(0) are Lipschitz
continuous, there exists a constant C'4g such that

HA B, B H <Cas H@:q - th)

’E(ﬁkq,@q)H < Cas Hgkq - th”
hence,
Hg(@wh@fﬂH + HE(@H,@A)H < Clog(%) pour ¢t > k — 1.

Using (66) and the fact that hy (ﬁt) and z; are bounded by (67), we have

<MY Nkl + Mo
kZQ g(,C L g(t)

t
t—1
<MY AN Flog(—=) < M/t.
];1 g( k;) /

Now let hy(5*) = hi —hi(8%), A(Br, 8%) = A(Br) — A(8*), B(Br, ) = B(B) —
B(B*). We have

EAEDS (f[A(@)) (A1, 59(67) + BGrr, %)
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Because hy,(3*) and z are bounded and A(Bj_1,3"), B(Br_1, ") converge to
0, hence hy — 0 a.s, when n — oo. |

~ 2
Lemma 2.5. The exists a positive real C such that Vt > 1, ||A14|| < C ‘ ﬁt,lH ,
where Aj ¢ is defined by (57).

Proof of Lemma 2.5. A sketch of the proof is given by Ljung and Soderstrom
(1983, p. 444), Lemma 4.B.4. A more detailed proof is as follows. We know
that 3,5 — % a.s., and F~1(3) being continuous over Dg, F’l(at,l) — F~Y(3%)
a.s. By Lemma 2.4, ,(3)/087 and 1); are bounded, so there exists a positive
constant Cq such that

<l

71(315—1)1;[%5?—1 <8wt(/8)> Bt—l

06T

Similarly, since 1:(3), 91:(3)/03T and vy are bounded, there exist positive
constants Cy and C3 such that

HF_l(Bt—l)wt ('(/JtT(Bt—l) — ¢ (6%) ) H < Oy Hﬂt 1” .
H (5?—1(@—1) — e 1) t—lH = H (5t_1(ﬁt—1) - 63_1(5*)) Bt—l” < (3 HEt—1H2 :
Also, OF(3)/083 = OF (v+(B)v{ () /86 is bounded and F~1(f) is bounded

over Dp so that by Lemma 12 OF~1(B)/08 is bounded and there exists a
positive constant Cy such that

| (P B = 720 w71 (571 | < € s

2
We conclude that there exists a positive constant C' such that || A1 .|| < C Hﬁt H y |

From Chung (1968, p. 117) we have the following lemma.
Lemma 2.6 (Kronecker). Let xj be a sequence of real numbers, aj, a sequence
of positive numbers which converges to co. Then

n
x 1
S oo 23 a0,
n On an i3

Lemma 2.7. Consider As defined by (58). For all § > 0, t71/27622:1A27k
converges to 0 a.s. when t — oo.

Proof of Lemma 2.7. A sketch of the proof is given by Ljung and Soderstrom
(1983, p. 444), Lemma 4.B.4. A more detailed proof is as follows. Let us
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t
consider the series Z; = ) k_1/2_6A2’}€ obtained by
k=1

¢
Zy = Zk_1/2_5 (61@71 - 5k71(3k71)> (Ekfl + Ekfl(ﬁkfl)) B
k=1

t
4 Zk_l/Q_éF_l(Bk—l>wk (gk_l - 3]@—1(51@—1))

k=1

— > RN (B (wk — W(ﬁk—l)) Ui (87)Br-1,
k=1

By Lemma 2.4, since (¢y — ¢(fi—1)) and (e, — ¢(B;—1)) are components of
(hy—he(Bi—1)), there exists a constant M such that V3 € Dpg, ||[¢; — wt(ﬁt,l)H <
M/t and |, — st(ﬁt,l)‘ < M/t. We know that F~1(3), ¢ (8), e and &,(53) are

bounded over D, thus Z; is finite, hence by Lemma 2.6, t—1/2-9 ZZ:1A2J€ —0
a.s. when ¢t — oo. [ |

Lemma 2.8. For all 6 > 0, t71/276ZZ:1F71(B\k—1)¢k6k — 0 a.s. when
t — 00.

Proof of Lemma 2.8. A sketch of the proof is given by Ljung and Soderstrom
(1983, p. 442), Lemma 4.B.3. A more detailed proof is as follows. Consider the
series

t
Sp = Zk_l/Q_éF_l(ﬂk—l)wkek-
k=1

That random vector is a martingale with respect to the o-algebra F;_1, spanned
by the e;, i <t — 1. Indeed

B(si Fir) = si1+ B (1727 F 7 By )nen| Fioa )
= s+t PP B )k E (e Foor) = si1,

since F_l(ﬁAt,l) and 1; do not depend of e;, i <t — 1. Moreover
2 _ < = 2 2 .
Ells® <Yk 2B P Baon)un|| Elen? < CY kT < oc,
k=1 k=1

where C' denotes a constant. Hence s; is a martingale with a bounded variance,
and according to Chung, (1968, p. 310), s; converges a.s. to a finite limit sn.
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Hence by Lemma 2.6, t_1/2_6ZZ:1F_1(§k—1)¢k€k —0as. whent —o00. N

Lemma 2.9. Let S; defined by (59) and T}, defined by (60). For all 6 > 0,
Gy =112 {Ttﬁt—1 - ZTk (ﬂk - ﬁk—l)
k=1
—F~Y(B*)SB-1 + F_l(ﬁ*)zsk (ﬁk - ﬁkfl) }
k=1

converges to 0 a.s. when t — oo.

Proof of Lemma 2.9. By Lemma 2.3, (1/v/%)S; and (1/v/t)T; converge in
lavv to the normal distribution when ¢ — oo, hence for all § > 0, t~1/2795, and

~1/2-8T, converge to 0 a.s. when ¢ — oo, which implies that t~1/2=5T,3,_;
and t=1/2=0p- (ﬁ*)Stﬁt_l converge to 0 a.s. when ¢t — oco. Let us now prove
that

t—1
t’1/2’§F*1(5*)ZSk (Bk — @,1) — 0, a.s. when { — oo.
k=1

Consider the series

t—1

BCE) D (Bk - Bk—l) :

From (41), we know that (Bk - Ek,l) = Op(1/k) and Va > 0, k=1/27G; =
op(1). Let 0 < oo < 6, s0

k2708, (Ek - Bk—l) = k2 oSy k0 (ﬁk - Bk—l) = op(k~17 =),

since —1 — (6 — a) < —1, hence F~1(3*)3 % _ k~1/2785, (Bk - Bk,l) is finite,
and by Lemma 2.7, when ¢t — oo, t_1/2_5F_1(ﬁ*)ZZ:15k (Bk - Ek:—l) — 0
s. . Similarly, we show that t_1/2_522:1Tk (Bk — Bk—l) — 0, a.s. . |

Lemma 2.10. 67 converges to o2 almost surely when t — co.

Proof of Lemma 2.10. Indeed we have by (37)
t
k=1

and, according to Lemma 2.4, ¢;,_1 — e;—1 — 0 a.s. when ¢t — o0, and, since ¢y,
and ey, are bounded, the second term converges to 0 a.s.when t — c0. According

t

t
Z _Z €1 — €k—1) (k-1 + €x—1)
k=1

k=1

H~|H
H-IH
~+ | =
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t ~
to Lemma 2.3, (1/t)Y",_, €2 ; — 02 a.s. when t — oo, hence 57 — 02 a.s.

when ¢t — oo . [ ]

Lemma 2.11 (Ljung and Soderstrom, 1983, p. 445). Let by be a real sequence
such that by > 0, by — 0, when t — 0o and, for some C >0 and 0 < a < 1,

t—1
thy < C (Zbi + t‘l) .
k=1
Then
t—1
> <t
k=1
where o = max(0,2a — 1) for a #1/2, &' =¢ > 0 (arbitrary) for a =1/2.

Lemma 2.12. Using notations in the proof of Theorem 3, we have
V6 > 0,11/270 HBtH — 0 a.s. when t — 0. (68)

Proof of Lemma 2.12.
From (56) and Lemma 2.1, we have

t—1

t57 0 = ZAl K+ ZAz Kt ZF (Be—1)tnen + TuBry — ZTk (ﬁk — Bi- 1)

- F_l(ﬁ*)stgt71 + F_l(ﬂ*)ZSk (Bk - gkfl) (69)

hence

t

t t
0 =5;2) Avk+07°Y Asi 40677 F N (Br-1)tker + 6, *Tifia
k=1 k=1 k=2
t—1

t—1
~ 6723 T (B = Buor) = 67 2F 1 (B)SuBio1 + 67 2F (B Y Sk (B — Bua )

which implies

t
HtﬂtH 15,7 Z ALkl + 1573 ZAQk +15,7? Z Y(Br_1)vwer
k=1
-1
+ }3;2| TiBe—1 + ZTk (Ek: - 51@71) + F~Y(B3%)8:B1

k=1

t—1

“HB)D Sk (Bk - Ek—l) ‘ : (70)
k=1
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~ 2
By Lemma 2.5, there exists a constant C' such that Vk > 1, |41 x| < C HﬂkH ,

~ 2
hence 374, A1kl < O, Hﬁk) , and by Lemma 2.10, we know that 57 —
2 2

€

o a.s., so there exists a constant Cy > 0 such that Vk > 1,

t t 2
G2 Al < ey B
k=1 k=1

By Lemma 2.8, we know that for all § > 0, t_1/2_5ZZ:1F_1(3k,1)¢kek — 0,
a.s when t — o0, so there exists a constant C > 0 such that Vk > 1,

a.s.,and 0; > — o

t

ZFﬁl(Bk—l)wkek

k=1

}3]5—2‘ < Cytl/2+8,

By Lemma 2.9, we have that

t t
Gy =t71/278 {Ttat—l - ZTk (Bk - Bk—l) — F7Y(B)S:Br—1 + F_l(ﬂ*)zsk (Bk - Bk—l)}

k=1 k=1

converges to 0 a.s when t — oo and, by Lemma 2.7, t*I/Q*‘SZZ:lAQ,k — 0 a.s.
when ¢ — 00, so that there exists a constant C's > 0 such that Vk > 1,

t B t B B B
2D Aok TB1+ Y Tk (ﬁk—1 - ﬂk—z) + FH(3)8: 81
k=1

k=1

~— ~—9
|5; + 577

+F*1(ﬁ*)25k (Ek_l _ Ek—z) < Cyt!/2t8,
k=1

From (70), we can conclude that for each § > 0, there exists a constant C' > 0,
such that

<+ o m
k=1

Applying Lemma 2.11 on (71) with b,, = ’ Bl et & =1/2 4 6, we obtain

5~ [ <cen ™
k=1

hence (72) inserted in (71) gives, V6 > O,t”ﬁtH < Ct? 4 Ct'/?+8 | so that
Vo', 6 >0
1/2-8 HBtH < Ot 1/2-6+26 4 Ct&—&” (73)
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and thus V&' > 0, by taking § < &', t1/2-¢ ’ B:|| converges to 0 almost surely

when ¢t — oo.

Lemma 2.13. For all § > 0, t1/27% (67 — 02) — 0 a.s. when t — cc.
Proof of Lemma 2.13. From (37) we have

t

~ - 1 3
(A (5}~ o2) = #20 [zZ{ei-l ~salBeal}

k=1

t k=1

FI R Ben) — (B + 7 (57) - US}] ,
k=1

= tl/;ré Zt: (Ek—l - 5k—1(§k—2)) (5k—1 + 61@—1(@—2)) (74)

k=1
+ tl/;ré (6k—1(§k—2) - Ek—l(ﬂ*)) (sk_l(ﬁk_Q) + gk_l(ﬂ*))
. (75)
+ t1/i+5z (5ﬁ71(5*) - Ug) . (76)
k=1

By Lemma 2.5, we know that |e; — Et(ﬂAt,l)’ = 0p(1/t), hence

zt:k_lm_& (Ek—l - Ek—l(ak—Z)) (€k—1 + 51@—1(@@—2))
k=1

converges to a finite limit and, by Lemma 2.6, (74) — 0 a.s. There exists a
constant C' such that

zt:k‘l/z_‘s ‘(%-1(@3—2) - Ek—l(ﬁ*)> (Ek—l(ak—2) + 5k—1(5*)>‘
k=1

t
< C’Zkfl/%é ’Ekfl(ﬁkfﬂ + 5#1(5*)’ Hﬂkflu .

k=1
By (68) and Lemma 2.12, we have, Ve > 0, Htl/%eﬁt — 0 a.s., hence for

e=6-6 > 0, where § > 0, we have

k:l/Q_(‘S_‘S/) )81@_1(Bk—2) + Ek—l(ﬂ*)‘ Hﬁk_lH = op(1),
which implies

/28 ‘Ekfl(gkfz) + 614;71(5*)’ HEk—lH = Op(l/k1+6/)7

40



from which 22:1 k—1/2-8 (z—:k,l(ﬁk,g) — &g 1(ﬂ*)) (Ek 1(/Bk 2) +er—1( ) con-
verges to a finite limit, and, by Lemma 2.6, (75) — 0 a.s. By Lemma 2.3, (76)
— 0 a.s. when t — oo. |

Lemma 2.14. (Theorem 1, Brown, 1971)
Let {S¢, Fi,t =1,...} be a martingale. Let

X, =8 —-8_1,V?= ZE X}?| Fi-1).si = EV? = ES}.
k=1

Suppose that V2s,_2 converges in probability to 1 when t — oo, and that the
following Lindeberg condition is satisfied: Y6 > 0, s;> Z - EXQI (X; > 6sy)
converges in probability to 1 when t — oo. Then St/ st converges in law to the
normal distribution with mean 0 and variance 1.

Lemma 2.15.
WVHY S Re(5)5:7 F (57 (e (77)

converges in law to the normal distribution N (0,02 F(3%)).

Proof of Lemma 2.15. A sketch of the proof is given by Ljung and Soderstrom
(1983, p. 448), Lemma 4.B.7. A more detailed proof is as follows.
We use Lemma 2.14 with the Cramér-Wold device. Let

= kZ_lE [Re(8)5:2 F (808 e (Ru(8)5 2 F (B on(8")ew) | Fiea
and Mt; = EY?. We have
Y2 = ;{Rkw*) — 02 F(B*)}5,* F~ (8" un(87)¢7 (8%) F~H(8") Ri(5%)o?
+g§0§%4wuﬁﬂ¢?wﬂf’%ﬂﬂ{RdﬂU—0§Fwﬂ}

t t
+ D00 (02 =% ) (02 +57 ) 3" o "(B)UE (8°) + D _odun(B)er (8)
k=1 k=1
(78)

Let x; be the first component of Rk(ﬁ*)c?;z F=Y(3*)yr(B*). To prove that
Sy = 2221 xpex converges in law to the normal distribution, we check the two

conditions of Lemma 2.14, with V2 = >} _| E (|xkek|2‘ }"k,l) and s? = E(V?).
First, by Lemma 2.13, (O’ -0} ) op( t1/2-8) and by Lemma, 2.3,

(Re(8%) — 02 F(8)) = 0,(t'/279),
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so by applying Lemma 2.6 to (78), the first three terms of Y;?/t converge to 0
a.s. when t — oo, hence Y2/t — o2 F(5*). It is obvious that M2/t — o2 F(3*)
so V;2/s2 — 1 in probability when ¢ — oo, where s;/+/t is the square root of the
element (1,1) of M?/t.

Secondly, wxe, = Ri(8°)5, 2F~(8*)¢r(B*)er, is bounded, so there exists
to > 0 such that V¢ > ¢g, E |xkek|2 I (|Jzpex| > 6s:) = 0 and, since s; — oo, then
(1/s2) 34 _, E|ager” I (jzrer| > 6s;) — 0 when ¢ — co. Hence Lemma 2.14
implies convergence in law of (S;/v/t)/(s¢/+/t). In a similar way, we can show
that any linear combination of the components of (77) converges in law to a
normal distribution. |

Lemma 2.16. The series Hy and L; defined by (47) and (48) converge to 0
a.s. when t — oo.

Proof of Lemma 2.16. Let us show that L; converges to 0 a.s. when ¢t — oo.
Consider the series

L}= g%mw*)a,ﬁ (FBren) = F8) v Bir)en
+ gﬁm(ﬂ%ﬁlw*) (¥r(Be1) = 087 ) ex.
L! is a martingale and
B < kZ% [R5 (F7 Bas) — P8 vahuen|
+ Z% | 28982 18) (wBamn) — 89 e

We know that F~1(3) and OF(3)/9f are bounded, then by Lemma 1.2, we have
that 0F ~1(3)/03 is bounded, and Lemma 2.4 implies that 1y,(3) et 9v:(3)/08T
are bounded, then there exists a constant C such that

t 1 _ B
BI|LH* < OY 2B |Bia| Bleul.
k=1

~ 12 ~ 12
Using (68) and Lemma 2.12, for all € positive, t1/2*€/8tH = 12 5tH con-

verges to 0 a.s. hence E HL%H2 is bounded. Then L} is a martingale with a
bounded variance, and using Chung, (1968, p. 310) L} converges a.s. to a
finite limit when ¢t — oo, hence R;*(3*)L} converges, and by Lemma 2.6, L;
converges a.s. to 0 when ¢ — oco.
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Let us now show that H; — 0 a.s. when ¢ — oo. Let

H} = Rtfl(ﬁ*)zzL (02 F(5*) — Ri(6)) 67 2F Y (Bro—1) 1 (8" )% (8%) B

k=1 k

+Rt‘1(ﬁ*)2% (62 — 02) F(8)3:2 F(Boor) (800 () Bk
k=1

+ R;N(B) Biy+R;(8Y) Boy,
;\/_ Lk I;\/E ok

By Lemma 2.3, we know that v/t (R,(3*) — 02 F(B*)) converges in law, hence
V6 > 0,

11/2-5 (Ry(5*) — o? F(3)) = 0,(1),

and since for every positive €, t1/2_eﬁk — 0, then

#1707 {(02 F(8") = Ru(8) 6> F (Bu-1)un (8 (8B} = 0,(1)
so that for all positive € and §
% (02 F(8*) = Ri(8%)) 53 2 F~  (Bre )Wk (B ) (B7) By = 0, (71 71/2H0F9),
ie.
t

_1(6*)2% (02 F(B) — Ru(5%)) 35 2F~ (B )0 (57 (8) B

k=1

is convergent. In the same manner, we have

\}E (U]% - 0'2) F(ﬁ*)/g'\lz2 F_l(kal)wk(ﬁ*)d}k(ﬁ*)gkfl _ 0p<t_1_1/2+6+6).
hence

t

Z (6% = 02) F(8)8,> F " (Be-1) (B )0 (8)Br

k=1

is convergent.
In the same way as in Lemma 2.5, we can show from (43) that | B .|| <

2
c||a]
to 0, then R;*(6*) Y )_, Bix/Vk converges a.s. Let us now consider Ba,
defined by (44). We know by Lemma 2.4, that ‘ Y — V(B H = 0,(1/t) and
‘et —Et(ﬁt_l)‘ = O,(1/t), and since 1;(3) and &;(3) and &, > are bounded,

then R; '(3*)Y_k_, Bai/Vk converges a.s. Finally H} is finite. According to
Lemma 2.6, H; — 0 a.s. when t — oc. |

where C is a positive constant, and since Ve > 0, t'—2¢

Ot H converges
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