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Abstract

Recursive estimation methods for time series models usually make use
of recurrences for the vector of parameters, the model error and its deriv-
atives with respect to the parameters, plus a recurrence for the Hessian
of the model error. An alternative method is proposed in the case of an
ARMA model, where the Hessian is not updated but is replaced, at each
time, by the inverse of the Fisher information matrix evaluated at the cur-
rent parameter. The asymptotic properties, consistency and asymptotic
normality, of the new estimator are obtained. Monte Carlo experiments
indicate that the estimates may converge faster to the true values of the
parameters than when the Hessian is updated. The paper is illustrated
by an example on forecasting the speed of wind.
Keywords : time series, ARMA processes, recursive estimation, on-line
estimation, Fisher information matrix.

1 Introduction
The development of estimation methods of the parameters of statistical and
econometric models was influenced by the availability of more powerful com-
puters. Numerical calculations are lighter and faster with the increased speed
of computers, and bigger data bases can be used. For non-linear models, it is
generally not possible to find the estimator analytically so numerical optimisa-
tion procedures are applied to obtain the maximum likelihood or even the least
squares estimator. These procedures are iterative and make use of all the data
at each iteration. They are called off-line because they are applied when all the
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data are available. Each time we have a new observation the whole estimation
procedure has to be repeated. This is not a problem with quarterly or monthly
data but availability of large capacity memory also implies that much more data
are stored and more frequently. Instead of collecting data at a yearly, quarterly
or monthly level, data are more and more collected in real time, starting with
financial markets. Also, new fields of applications have appeared, like mobile
telecommunications or fluid flow management, where quick automated decisions
are required.
When the interval of time between two observations is very short, working

with past, off-line, methods become inefficient if all data need to be used at
high frequency rates and doing huge computations, because of the expensive
calculation power needed as well as the memory space. Instead of being used
by humans on their desks, the work should be done ”on the spot” by computer
systems and in an automated way. This raises new problems which are not
yet entirely solved like model identification, and detection and treatment of
outliers. The idea is to use on-line or recursive methods. They make use of
a very small subset of data at each time. These methods appeared first in
linear models (Plackett, 1950, who referred to Gauss) when computation was
a major annoyance. In statistics they reappeared later (Brown et al., 1975)
as a way to check the stability of model specification with respect to time.
In the discussion of that paper, the influence of Kalman (1960) became clear.
Recursive methods became particularly interesting in the context of time series
models, see Young (1985). These methods were indeed developed mainly in
engineering, under the name of Recursive Identification, for data available on-
line in telecommunications, transmissions, management of fluids, etc. For some
recent contributions to recursive estimation methods, see Guo (1994), Kushner
and Yin (1997), Moulines et al. (2004), Subba Rao and Dahlhaus (2004).
Among these recursive methods there is the RML (Recursive Maximum Like-

lihood) method which was introduced by Söderström (1973), see also Young
(1984). We know that, under general conditions, the (off-line) maximum likeli-
hood method gives an estimator which is asymptotically efficient, i.e. it is dis-
tributed asymptotically like a normal law whose asymptotic variance-covariance
matrix is equal to the Cramér-Rao upper bound. Under certain conditions,
Ljung and Söderström (1983) have shown that the RML estimator has the same
asymptotic properties as the maximum likelihood estimator. But they noticed
that for a finite series, {y1, ..., yn}, the maximum likelihood estimator is always
better than the RML estimator. The RML estimator is based on a first order
approximation of the Taylor expansion of the sum of squares of the errors. Let
β be the vector of parameters of the model. As we will see in Section 2, the
estimate at time t, bβt, makes use of the value at the previous time, bβt−1, but
also of a matrix Rt which is an approximation of the Hessian of the sum of
squares of errors. A recurrence for the residual is used but also a recurrence
for the derivative of the error with respect to the parameters and an updating
recurrence for the Hessian.
Mélard (1989) and Zahaf (1999) observed that the latter recurrence, with

highly variable successive values of Rt, is often the cause for wild variations
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in the estimates and proposed a modified RML estimator for ARMA models.
While keeping the spirit of the algorithm, instead of the recurrence for the
Hessian Rt, Zahaf (1999) proposed to use the evaluation of the asymptotic
Fisher information at the current value of the estimator, β = bβt−1.
Zahaf (1999) noticed that the asymptotic theory developed by Ljung (1977)

and Ljung and Söderström (1983) no longer applies. He outlined an asymptotic
theory based on the stochastic approximation of Robbins-Monro following Duflo
(1997) but it was not complete. Moreover convergence in law of the estimator
rested on a conjecture which was later proved to be wrong. For these reasons,
after vain attempts including with the alternative approach of Kushner and
Huang (1979), we preferred to adapt the approach of Ljung and Söderström.
In Section 2, we remind the necessary concepts of recursive maximum like-

lihood (RML) estimation in order to be able to introduce our version at the
beginning of Section 3. The remaining of Section 3 is devoted to the main
theorems in order to establish consistency and asymptotic normality of the new
estimator. In Section 4, we show small samples results obtained by Monte Carlo
simulations. They indicate that the new estimator is an improvement over the
classical RML estimator. Section 5 will present an example of wind forecasting.

2 Recursive maximum likelihood estimation
Let us first describe the RML estimator before introducing how we have modi-
fied it. The algorithm for that estimator is derived from the off-line maximum
likelihood estimator, see Ljung (1978) and Aström (1980). We assume for sim-
plicity that the observations {yt; t = 1, ..., N} follow a univariate ARMA(p, q)
model defined by the equation:

yt − φ1yt−1 − φ2yt−2 − ...− φpyt−p = et − θ1 et−1 − θ2 et−2 − ...− θq et−q, (1)

where the roots of the autoregressive and moving average polynomials φ(B) =
1 − φ1B − φ2B

2 − ... − φpB
p and θ(B) = 1 − θ1B − θ2B

2 − ... − θpB
q are

outside of the unit circle and et’s are i.i.d. random variables with E(et) = 0

and E(e2t ) = σ2e . Let β = (φ1, ...,φp, θ1, ..., θq)
T be the vector of the parameters

of interest, where T denotes transposition, and let β∗ be the true value of β .

The estimator at time t will be denoted β̂t =
³bφ1,t, ..., bφp,t, bθ1,t, ..., bθq,t´T . For a

given β, the forecast ŷt|t−1(β) for time t can be computed at time t−1, provided
we replace the true errors es, s < t, by the residuals εs(β) = ys − ŷs|s−1(β),
computed by recurrence. This requires suitable initial values whose effect can be
neglected because of the assumption on the polynomials. In off-line estimation,
under the Gaussian assumption on et’s, the maximum likelihood estimator is
obtained by minimizing the sum of squares of the residuals

VN (β) =
1

2

NX
t=1

ε2t (β). (2)
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Example 1

Specific parts will be illustrated with the ARMA(1,1) model defined by

yt − φyt−1 = et − θet−1, (3)

with βT = (φ, θ). Note that (3) implies

ŷt|t−1(β) = φyt−1 − θεt−1(β) (4)

and
yt − ŷt|t−1(β) = yt − φyt−1 + θ(yt−1 − ŷt−1|t−2(β)), (5)

where the starting value ŷ1|0(β) can be taken equal to 0. Indeed the effect of
a starting value decreases like |θ|t−1, and the assumption made implies that
|θ| < 1. This recurrence allows computing εt(β).

For ARMA models, VN (β) is a non-linear function of β, so VN (β) cannot
be minimized analytically but well using numerical procedures, requiring many
iterations on basis of the data from t = 1 to t = N . An on-line or recur-
sive algorithm requires a vector of fixed size, preferably small with respect to
N . Therefore we want an approximation of the off-line maximum likelihood
estimator β̂N that can be obtained by recurrences.
Given β̂t−1, we want to obtain β̂t which is close to the minimum of Vt(β). By

a Taylor expansion of Vt(β) around β̂t−1 limited to the second order we obtain

Vt(β) ' Vt(β̂t−1) +
µ
∂ Vt(β)

∂βT

¶
β=β̂t−1

[β − β̂t−1]

+
1

2
[β − β̂t−1]T

µ
∂2Vt(β)

∂β ∂βT

¶
β=bβt−1 [β − β̂t−1]. (6)

Minimizing the right hand side with respect to β leads to

β̂t = β̂t−1 −
µ
∂2Vt(β)

∂β ∂βT

¶−1
β=bβt−1

µ
∂ Vt(β)

∂βT

¶T
β=β̂t−1

. (7)

Denoting ψt(β) = −
£
∂ εt(β)/∂ β

T
¤T
, the opposite of the derivative of εt(β)

with respect to β, we have·
∂ Vt(β)

∂βT

¸T
= −

tX
k=1

ψk(β)εk(β) =

·
∂Vt−1(β)
∂βT

¸T
− ψt(β)εt(β), (8)

and a further differentiation yields the Hessian:

∂2Vt(β)

∂β ∂βT
=

∂2Vt−1(β)
∂β ∂βT

+ ψt(β)ψ
T
t (β) +

∂2εt(β)

∂β ∂βT
εt(β). (9)

In order to evaluate (7), the following approximations are made.
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1. We assume that β̂t is close to β̂t−1, a quite reasonable approximation for
large t, justifying (6) andµ

∂2Vt(β)

∂β ∂βT

¶
β=bβt '

µ
∂2Vt(β)

∂β ∂βT

¶
β=bβt−1 . (10)

2. We proceed as if β̂t−1 were optimal at time t− 1, i.e.µ
∂ Vt−1(β)

∂βT

¶
β=β̂t−1

' 0. (11)

3. Since, for β close to β∗, {εt(β)} will almost behave like a white noise
process, i.e. εt(β) will have a mean close to 0 and be nearly independent
from the observations and residuals before time t, allowing to neglect the
last term of (9).

Then, inserting (10) in (9) evaluated at β = β̂t−1, we have an approximation of
the Hessian, Rt, which can be computed recursively by

Rt = Rt−1 + ψt(β̂t−1)ψTt (β̂t−1). (12)

Insertion of (11) in (8) evaluated at β = β̂t−1, yieldsµ
∂ Vt(β)

∂βT

¶T
β=β̂t−1

= −ψt(β̂t−1)εt(β̂t−1).

Using the approximation Rt in (7), we have

β̂t = β̂t−1 +R
−1
t ψt(β̂t−1)εt(β̂t−1). (13)

Denoting tRt = Rt we have the two equations½
Rt = Rt−1 + 1

t {ψt(β̂t−1)ψTt (β̂t−1)−Rt−1}
β̂t = β̂t−1 + 1

tR
−1
t ψt(β̂t−1)εt(β̂t−1).

(14)

There remains to derive equations for computing εt(β̂t−1) and ψt(β̂t−1). Let us
first look at the ARMA(1,1) example (3).

Example 2

We have ψTt (β) = ∂ŷt|t−1(β)/∂βT and differentiation of ŷt|t−1(β)−θŷt−1|t−2(β) =
(φ− θ)yt−1, which is also deduced from (3), gives the two equations:

∂ŷt|t−1(β)
∂φ

− θ
∂ŷt−1|t−2(β)

∂φ
= yt−1, (15)

∂ŷt|t−1(β)
∂θ

− ŷt−1|t−2(β)− θ
∂ŷt−1|t−2(β)

∂θ
= −yt−1. (16)
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The latter can also be written

∂ŷt|t−1(β)
∂θ

− θ
∂ŷt−1|t−2(β)

∂θ
= −εt−1(β). (17)

Grouping (15) and (17) gives

ψt(β)− θψt−1(β) =
µ

yt−1
−εt−1(β)

¶
. (18)

We can compute εt(β̂t−1) and ψt(β̂t−1) by using equations like (4) and (18)
but this requires all the observations ys, s = 1, ..., t− 1. Let us derive approx-
imations of εt(β̂t−1) and ψt(β̂t−1) that can be computed by recurrence using
additional approximations. A natural approximation consists in using only the
current estimator and max(p, q) previous values of ε, y and ψ as initial values.

Example 3

In the case of (3), εt(β̂t−1) is approached by εt, computed by

εt = yt − ŷt|t−1 = yt − bφt−1yt−1 + bθt−1(yt−1 − ŷt−1|t−2).
Let us introduce ϕTt−1 = (yt−1,−εt−1). Using (4), we can write

εt = yt − bβTt−1ϕt−1. (19)

Similarly, (18) leads to a natural approximation ψt of ψt(β̂t−1)

ψt = bθt−1ψt−1 + ϕt−1. (20)

At time t we only need to know ϕt−1, ψt−1 et β̂t−1. Adding these equations to
those of (14) and performing substitutions, we obtain the system

ψt = θ̂t−1ψt−1 + ϕt−1,
Rt = Rt−1 + ψtψ

T
t ,

εt = yt − β̂Tt−1ϕt−1,
β̂t = β̂t−1 +R

−1
t ψtεt.

(21)

Let us now go back to the general case (1). To improve the behaviour of the
algorithm, we replace the factor 1/t by a sequence γt of positive scalars decreas-
ing to 0 such that

P
γt is divergent. If we now denote ϕTt = (yt, · · · , yt−p+1, − εt, · · · ,−εt−q+1),

with a due generalisation of (20), the RML algorithm can now be written:
ψt =

Pq
k=1 θ̂k,t−1ψt−k + ϕt−1,

Rt = Rt−1 + γt(ψtψ
T
t −Rt−1),

εt = yt − β̂Tt−1ϕt−1,
β̂t = β̂t−1 + γtR

−1
t ψtεt.

(22)
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3 Estimation by the RMLMZ method
Let us now consider a modification of the method of Section 2 called the RMLMZ

method. From a theoretical point of view, under some assumptions, the RML
algorithm (22) provides a consistent estimator with a rate of convergence

√
t.

However, Mélard (1989) and Zahaf (1999) have observed huge variations of
Rt with respect to time, which produce disturbances in the RML estimator.
While keeping the recursive nature of the algorithm, they have tried to im-
prove its accuracy by replacing the central recurrence (12) for the Hessian
∂2 V (β) /∂ β ∂ βT , by the computation of its expectation at the current value of
the estimator. Indeed, σ2eR

−1
t is an approximation of the asymptotic covariance

matrix Γ(β∗) of the maximum likelihood estimator. But, β∗ being unknown,
they suggest to replace Γ(β∗) by the asymptotic covariance matrix evaluated
at the last value of the estimator, Γ(β̂t−1). If β̂t converges to β∗, which will be
shown later, then Γ(β̂t−1) converges to Γ(β∗). Moreover, Γ(β̂t−1) is the inverse
F−1(β̂t−1) of the Fisher information matrix F (β) computed at β = β̂t−1. At
each time, we will compute σ2eF (β̂t−1) and then its inverse σ−2e F−1(β̂t−1) which
will replace R−1t in (22). For a given σ2e , the algorithm is written:

ψt =
Pq

k=1θ̂k, t−1ψt−k + ϕt−1,
εt = yt − β̂Tt−1ϕt−1,
β̂t = β̂t−1 + γtσ

−2
e F−1(bβt−1)ψtεt, (23)

where ϕt is like before. Therefore the recurrence for Rt in (22) will no longer
be needed. Note that

F (β) = σ−2e E{ψt(β)ψTt (β)}, (24)

where
ψt(β) =

Pq
k=1θk ψt−k(β) + ϕ1t ,

and ϕ1t = (yt, · · · , yt−p+1,−et · · · ,−et−q+1) . Note also that F (β) doesn’t de-
pend on t. For simple models, an analytic expression does exist for F−1(β), see
Box et al. (1994). Otherwise, there are simple algorithms for computing F (β),
see e.g. Klein and Mélard (1989).
But σ2e is generally unknown so the algorithm (23) is modified as follows

ψt =
Pq
k=1θ̂k, t−1ψt−k + ϕt−1, (25)bσ2t = bσ2t−1 + γt(ε

2
t−1 − bσ2t−1), (26)

εt = yt − β̂Tt−1ϕt−1, (27)

β̂t = β̂t−1 + γtbσ−2t F−1(bβt−1)ψtεt. (28)

We will now study the statistical properties of the RMLMZ recursive estima-
tor before discussing small sample results obtained by Monte Carlo simulation,
including a comparison with the original RML algorithm, in Section 5.
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3.1 Almost sure convergence

Zahaf (1999) has used results from Duflo (1997) about Robbins-Monro sto-
chastic approximation in order to obtain asymptotic properties for a Newton
approximation to the RMLMZ estimator, called the RMLNE estimator. The
algorithm has the form bβt+1 = bβt + γt Yt+1, where the conditional expectation
of Yt+1 given the past information fulfils E[Yt+1/Ft] is a measurable function
of bβt. But here E[Yt+1/Ft] depends on both bβt and t, and it is even difficult to
deduce convergence of the RMLMZ estimator from its Newton version.
The theory contained in Ljung and Söderström (1983) is based on writing

the algorithm under the following form½
ht = A(bxt−1)ht−1 +B(bxt−1) zt,bxt = bxt−1 + γtQ(t, bxt−1, ht), (29)

where A(.), B(.), and Q(., ., .) are functions, γt is like in Section 2 and zt
makes use of the data. Like in Ljung (1977), the idea is to associate an or-
dinary differential equation (ODE) to the algorithm and obtain the attrac-
tion domain of an invariant set of that ODE. For the original RML estimator,bxt = (bβTt , vec(Rt)T )T and it appears that A(.) and B(.) depend only on bβt.
Here we have to consider the same but where bxt = (bβTt , bσ2t+1)T ht = A(bβt−1)ht−1 +B(bβt−1) zt,µ bβtbσ2t+1

¶
=

µ bβt−1bσ2t
¶
+ 1

t Q(t, bxt−1, ht), (30)

where ht is {q(p+ q + 1} × 1, Q(t, x, h) is (p+ q + 1)× 1, x = (βT ,σ2)T , and
ht = (εt, εt−1, · · · , εt−q+1,ψTt ,ψTt−1, ...,ψTt−q+1)T , zt = (yt, · · · , yt−p)T , (31)

Q(t, x, h) =
h
σ−2

©
F−1(β)(hq+1, hq+2, ..., h2q+p)T

ªT
h1, h

2
1 − σ2

iT
, (32)

so that h1 represents εt, (hq+1, hq+2, ..., h2q+p)T represents ψt, and

Q(t, bxt−1, ht) = ·bσ−2t ³
F−1t (bβt−1)ψt´T εt, ε2t − bσ2t ¸T .

Notice that Rt, obtained by the Fisher information matrix evaluated at β =bβt−1, appears in the second term of the right hand side of the second equation
of (30), making derivations very different from Ljung and Söderström (1983).
Their theory cannot be applied directly for the RMLMZ algorithm. However,
the first equation of (30) still holds with the same choice for the matrices A and
B as in (29). For an ARMA(p, q) model, it can be seen that

det (A(β)− λI) = (−1) q(q−1)(p+2q−1)2

¡− ¡λq − λq−1θ1 − λq−2θ2 − ...− θq
¢¢p+q+1

.
(33)

To show convergence of the algorithm to the optimal value, we make two
assumptions; the first one is about the true value of the vector of parameters
β∗ and the second one is about the data.
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Assumption 1: (on the model) The autoregressive and moving average poly-
nomials have no common root and their roots are all outside of the unit
circle (satisfying the causality or stationarity condition and the invertibil-
ity condition of the process).

Assumption 2: (on the data) The sequence of observations { yt} has a uniform
upper bound in absolute value: there exists a constant M , independent of
t, such that ∀t,

| yt | < M.

The latter assumption seems to be a convenient and ubiquitous assumption in
this context. Despite that assumption, the proof is very technical so most of
the details will be given in Appendix 1.
LetDS =

©
(βT ,σ2) ∈ Rp+q+1Á the eigenvalues of A(β) are in the unit circle

ª
,

henceDS =
©
(βT ,σ2) ∈ Rp+q+1Á the roots of the moving average polynomial

are outside of the unit circle}. Because of the Fisher information matrix, the
definition of the set DR is also different:
DB = {β ∈ Rp+qÁ the roots of the autoregressive and moving average polyno-
mials are outside of the unit circle, F (β) is invertible,

°°F−1(β)°° < k for some cons-
tant k > 0 large enough}
DR =

©
(βT ,σ2) ∈ Rp+q+1Á βT ∈ DB and σ2 > δ, for some constant δ > 0

small enough}
We will make use of Theorem 1 and Theorem 4 of Ljung (1977). Here is the

third subset of his conditions, denoted by C, without C7 which is not needed:
C1: Q(t, x, h) is Lipschitz continuous in x et h :

kQ(t, x1, h1)−Q(t, x2, h2)k < K1(x, h, ρ, υ) {kx1 − x2k+ kh1 − h2k}

for xi ∈ B (x, ρ), an open ball of centre x and diameter ρ, for ρ = ρ(x) > 0,
where x ∈ DR, hi ∈ B (h,υ) for υ ≥ 0;
C2: Matrices A(.) and B(.) are Lipschitz continuous functions over DR.
C3: f(x) = lim

t→∞
1
t

Pt
k=1Q(k, x, hk(x)) does exist for all x ∈ DR.

C4: For all x ∈ DR, 0 < λ < 1 and c <∞, the random variable kv(t, x,λ, c)
defined by

kv(t, x,λ, c) = kv(t− 1, x,λ, c) + γt [K1(x, h, ρ(x), v(t,λ, c))(1 + v(t,λ, c))
−kv(t− 1, x,λ, c)]

with kv(0, x,λ, c) = 0 and v(t,λ, c) = c
Pt

k=1 λ
t−k |z(k)| , converges to a finite

limit when t→∞.
C5:

X∞
t=1

γt =∞;
C6: lim

t→∞ γt = 0.

According to Ljung (1977), these conditions are used in the deterministic
case, but the results are valid with probability 1 as far as zt is such that the
conditions C3 and C4 are satisfied with probability 1.
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Theorem 1. Under Assumptions 1 and 2, conditions C1-C6 of Theorem 4 of
Ljung (1977) are satisfied.

The proof is given in Appendix 1.

According to Theorem 4 of Ljung (1977) and given (53) in the proof of
Theorem 1, we have to analyse the following ODE

∂x(t)

∂t
=

∂
¡
βT (t),σ2(t)

¢T
∂t

= H
¡
β(t),σ2(t)

¢
,

where

H
¡
β,σ2

¢
=
£
σ−2{F−1(β)E(ψ(β)ε(β))}T , E{ε2(β)}− σ2

¤T
.

Letting f(β) = E{ψ(β)ε(β)} et V (β) = E{ε2(β)}, the ODE can be put under
the form

∂β(t)

∂t
= σ−2(t)F−1(β(t))f(β(t)), (34)

∂σ2(t)

∂t
= V (β(t))− σ2(t). (35)

We need to check some assumptions on that differential equation. We have

V (β(t)) = E{ε2(β(t))} > σ2e > 0,

and

∂V (β(t))

∂t
=

∂V (β(t))

∂βT (t)

∂β(t)

∂t

= −2f(β(t))Tσ−2(t)F−1(β(t))f(β(t)) 6 0,

since F−1(β(t)) is a symmetric positive definite matrix in DR and σ−2(t) is
positive. Let V̇ (β) = ∂V (β)/∂βT . We know by Lemma 1.3 (see Appendix
1) that an invariant set of the ODE is E = {(βT ,σ2) ∈ DRÁV̇ (β) = 0} =©
(βT ,σ2) ∈ DRÁ f(β) = 0

ª
= {β∗} ×R+.

By Lemma 1.4 (see Appendix 1), there is a solution of the ODE (34 - 35)
over some interval [t0, t1] and, like in Ljung and Söderström (1983), we can find
a part D2 of the attraction domain for E = {β∗} ×R+. Let

c(β∗) = sup
D∈KD

inf
x∈Fr(D)

E(V (x)),

where KD is a set of connex parts of DB containing β∗.
Let D2 =

©
(βT ,σ2) ∈ DRÁV (β) 6 c(β∗)− %

ª
with a very small positive

constant %, and c(β∗) is the largest possible value such that the set D2 is the
broadest set of the form {V (β) < c(β∗)} strictly included in DR. The set D2
is included in the attraction domain of the invariant set {β∗} × R+ because it

10



fulfils the conditions of Lemma 1.6. Indeed, like in Lemma 1.5, let (β(t0) =
β0,σ

2(t0) = σ20) ∈ D2 since V (β(t)) is decreasing in t then for all t > t0,
V (β(t)) < V (β(t0)) 6 c(β∗) − %. Hence ∀t ∈ [t0, t1], (β(t),σ2(t)) ∈ D2 and by
Lemma 1.4, ∀t > t0, (β(t),σ2(t)) ∈ D2. Then, we can apply Lemma 1.7 which
summarises Theorems 1 and 4 of Ljung (1977), by letting D1 = DB. This can
be summarized by the following theorem.

Theorem 2. Under Assumptions 1 and 2, let the recursive RMLMZ estimator
(25-28) be replaced by the following recurrences

bβt = ·β̂t−1 + 1
t
σ−2t F−1(bβt−1)ψtεt¸

DB,D2

, (36)

where

[z]DB,D2
=

½
z if z ∈ DB
a point in D2 if z /∈ DB

and 
εt = yt − β̂Tt−1ϕt−1,
ψt =

Pq
k=1 θ̂k ,t−1ψt−k + ϕt−1,

if bβt−1 ∈ DB,
(εt,ψt)

T a point in K if bβt−1 /∈ DB ,
where K is a compact subset of Rp+q+1 defined in advance. Then bβt converges
to β∗ almost surely when t →∞.

Example 4

Let the ARMA(1,1) model defined by (3). Let β∗ = (φ∗, θ∗)T and assume that
φ∗ 6= θ∗. We know that

F−1 (β) =
½
E

·
∂εt (β)

∂β

∂εt (β)

∂βT

¸¾−1
=

1− φθ

(φ− θ)
2

· ¡
1− φ2

¢
(1− φθ)

¡
1− φ2

¢ ¡
1− θ2

¢¡
1− φ2

¢ ¡
1− θ2

¢ ¡
1− θ2

¢
(1− φθ)

¸
.

The RMLMZ algorithm can be written
ht =

 bθt−1 0 0

0 bθt−1 0

−1 0 bθt−1
 ht−1 +

 1 −bφt−1
0 1
0 0

µ yt
yt−1

¶
,

µ bβtbσ2t+1
¶
=

µ bβt−1bσ2t
¶
+ 1

tQ(t,
bβt−1, bσ2t , ht),

with Q(t, bβt−1, bσ−2t , ht) =
³bσ−2t ψTt F

−1(bβt−1)εt, ε2t − bσ−2t ´T
and hTt = (εt,ψ

T
t ).

Hence

A(β) =

 θ 0 0
0 θ 0
−1 0 θ

 , det (A(β)− λI) = (θ − λ)3 .

11



Let U = {β = (φ, θ) ∈ ]−1, 1[× ]−1, 1[}. For that model, we have
DS =

©
(βT ,σ2) ∈ R3Á θ ∈ ]−1, 1[ ª , DB = ©β = (φ, θ) ∈ UÁ°°F−1(β)°° < kª,

DR =
©
β ∈ DB , σ2 ∈ RÁ σ2 > δ

ª
,

hence DR ⊂ DS and DR = (U\ {(φ, θ) ∈ UÁ |φ− θ| > κ})×{σ2 > δ}, where κ
is a very small positive real number.
Let us compute E(ε2t (β)). We have εt = Θ

−1
1 (B)Φ1(B)yt = Θ

−1
1 (B)Φ1(B)

Φ∗−11 (B)Θ∗1(B)et. Let φ(ω) the spectral density of εt. We have

φ(ω) =
1

2π

¯̄
Θ1(e

iω)
¯̄−2 ¯̄

Φ1(e
iω)
¯̄ ¯̄
Φ∗1(e

iω)
¯̄−2 ¯̄

Θ∗1(e
iω)
¯̄

hence

E(ε2t (β)) =

Z π

−π
φ(ω)dω

=
1

2πi

I
Θ−11 (z)Θ

−1
1 (1/z)Φ1(z)Φ1(1/z)Φ

∗−1
1 (z)Φ∗−11 (1/z)Θ∗1(z)Θ

∗
1(1/z)

dz

z

=
1

2πi

I
(1− φz) (z − φ) (1− θ∗z) (z − θ∗)
(1− θz) (z − θ) (1− φ∗z) (z − φ∗)

dz

z
.

It is obvious that when θ comes close to 1 or −1, E(ε2t (β)) converges to infinity
except when φ = θ. For all β such that φ = θ,

E(ε2t (β)) =
(1− θ∗φ∗) (φ∗ − θ∗)

(1− φ∗2)
+

θ∗

φ∗
,

and the Fisher information matrix is not invertible. Let us consider the ODE

β̇ = σ−2(t)f(β)

σ̇2(t) = V (β)− σ2(t)

where
f(β) = F−1(β)E [εt(β)ψt(β)] and V (β) = E{ε2t (β)}.

Let
c(φ∗, θ∗) = sup

D∈KD

inf
x∈Fr(D)

E(V (x)),

where KD is a set of connex parts of DB containing β∗.
Let D2 = {V (β) 6 c(β∗)− %} with a very small positive %. If we know a

value in D2, we can use it for estimation by the algorithm of Theorem 4 of
Ljung (1977). In that case we have almost sure convergence.

In the cases shown in Figure 1, the part D2 where we can project the esti-
mator to achieve convergence is the crossed surface.
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(a) (φ∗, θ∗) = (−0.2, 0.7) (b) (φ∗, θ∗) = (−0.2, 0.7)

(c) (φ∗, θ∗) = (−0.1,−0.6) (d) (φ∗, θ∗) = (0.2, 0.7)

(e) (φ∗, θ∗) = (0.5, 0.7) (f) (φ∗, θ∗) = (−0.9, 0.9)

Figure 1. For several ARMA(1,1) processes characterized by (φ∗, θ∗) values of ρ,
part D2 is shown where we can project β̂t in order to achieve convergence. For graph
(b), level curves for several values of V (β) are shown instead.
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As said before, the admissible region is the square U except the diagonal
joining the points (−1,−1) and (1, 1) so it is composed of two half squares. For
each of the six cases V (β) has a unique minimum located in one of the half
squares. The part D2, shown in Figure 1 except in case (b), is always in the half
square where the minimum is located. If the initial value of the ODE is in that
half square, and better in D2, the solutions will turn towards that minimum
when t goes to infinity, hence also the estimator (bφt, bθt). Convergence is faster
in D2. If the initial value is in the other half square, the solutions of the ODE
will turn towards the frontier formed by the diagonal joining the points (−1,−1)
and (1, 1) but will stop before reaching it. Similarly, the estimator (bφt, bθt) will
turn towards the minimum but will have to jump over the diagonal since we
may not have bφt = bθt, because the Fisher information matrix is not invertible
there. Convergence will also be slower than in the other half square and much
slower than in D2. This is well illustrated by (b) which shows the contour levels
of V (β) for the same parameter values as (a). The level corresponding to D2
can be seen and even smaller areas where convergence will be still faster. The
other levels are higher in the upper half square and much higher in the lower
half square.
Figure 1 shows that D2 is sometimes lenticular, like in (c, d, e) but not

always. Its size depends on the true values of the parameters and is smaller
when they are close one from the other. Case (c) shows a situation where the
point corresponding to the true values of the parameters is in the lower half
square. The surface of D2 is small when the point is close to the boundary, like
in (e) and (f).

3.2 Convergence in law

Fabian (1968) has studied asymptotic normality of the algorithm

eβt+1 = (I − t−αΓt)eβt + t−(α+δ)/2ΦtVt + t−α−δ/2Tt,
where eβt = bβt − β∗ in our case, Γt, Φt are matrices, Vt and Tt are vectors,
by letting conditions on the components of that algorithm. He has shown that
tδ/2eβt converges in law to the normal distribution. In our case, we let α = δ = 1,
Γt = 0, Tt = 0, ΦtVt = F−1(bβt)ψtεt, but one of the conditions of Fabian (1968)
is that Γt is definite positive. Ljung et al. (1992) have studied a special case
of that algorithm by letting Tt = T, α = 1 and Φn = I. They have shown
convergence in law under other conditions. We have tried to verify the conditions
of Kushner and Huang (1979) which are more general but they are not satisfied
for the RMLMZ estimator. Zahaf (1999) has tried to show convergence in law of
the RMLMZ estimator by using a theorem from Duflo (1997, p. 52). In Zahaf
(1999) there is an unproved conjecture which is only valid in some special cases
and it is supposed that F−1(β)ψt(β)ψTt (β) is positive definite which is not true
in general despite it is a product of two positive definite matrices. Therefore,
we have preferred to adapt the approach of Ljung and Söderström (1983).
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Theorem 3. Consider an ARMA model defined by (1) and the algorithm (25-
28), according to the conditions of Section 3.1. Then,

√
t(β̂t − β∗) converges in

law to a normal distribution N(0, F−1(β∗)) when t→∞.
Proof of Theorem 3. We know that the algorithm (25-28) can be written
under the form (30). We have already shown in Theorem 2 that, under some
assumptions and a mechanism of projection, the estimator converges almost
surely to the true value of the parameter.
Let ε0 = ε0(β

∗) = e0 = 0, and consider t > 1. Denote σt = tbσ2t . Using (26),
we have σt = σt−1+ε2t−1. Define σ2t (β∗) = σ2t−1 (β∗)+

1
t

¡
ε2t−1(β∗)− σ2t−1 (β∗)

¢
.

Hence

bσ2t = 1

t

tX
k=1

ε2k−1, σ2t (β
∗) =

1

t

tX
k=1

ε2k−1(β
∗) =

1

t

tX
k=1

e2k−1 (37)

because ∀k > 0, εk(β∗) = ek. Define also

ψt(β
∗) =

qX
k=1

θ∗k ψt−k(β
∗) + ϕ1t−1, (38)

Rt(β
∗) = Rt−1(β∗) +

1

t

¡
ψt(β

∗)ψTt (β
∗)−Rt−1(β∗)

¢
=
1

t

tX
k=1

ψk(β
∗)ψTk (β

∗),

(39)

where ϕ1t−1 = (yt−1, · · · , yt−p,−et−1 · · · ,−et−q)T . Denote
Rt(β

∗) = tRt(β∗) = Rt−1(β∗) + ψt(β
∗)ψTt (β

∗), (40)

and let eβt = β̂t − β∗. From (28), we have

eβt = eβt−1 + 1
t
bσ−2t F−1(bβt−1)ψtεt. (41)

According to Lemma 2.1, Kt = σt eβt can be decomposed in a sum of terms. Us-
ing that decomposition, we need Lemma 2.12 to show that ∀δ > 0, t1/2−δ

°°°eβt°°°→
0 a.s. when t → ∞. The proof of that Lemma 2.12 makes use of Lemmas 2.2-
2.11. We will use that result in Lemmas 2.13 and 2.16.
From (40) and (41), we can write

Rt(β
∗)eβt = Rt(β∗)eβt−1 + 1

t
Rt(β

∗)bσ−2t F−1(bβt−1)ψtεt,
= Rt−1(β∗)eβt−1 + ψt(β

∗)ψTt (β
∗)eβt−1 +Rt(β∗)bσ−2t F−1(bβt−1)ψtεt.

But ψtεt is equal to

ψt

³
εt − εt(β̂t−1)

´
+
³
ψt − ψt(β̂t−1)

´
εt(β̂t−1)+ψt(β̂t−1)(εt(β̂t−1)−et)+ψt(β̂t−1)et,

and, using a Taylor expansion,

εt(β̂t−1)− et = −ψTt (β∗)eβt−1 − 12 eβTt−1
µ
∂ ψt(β)

∂βT

¶
β=κt

eβt−1, (42)

15



where κt is a point between β̂t−1 and β∗. Letting Ut = Rt(β∗)bσ−2t F−1(bβt−1),
we have

Rt(β
∗)eβt = Rt−1(β∗)eβt−1 + ψt(β

∗)ψTt (β
∗)eβt−1 − Utψt(β∗)ψTt (β∗)eβt−1

− Ut
³
ψt(β̂t−1)− ψt(β

∗)
´
ψTt (β

∗)eβt−1 − 1
2
Utψt(β̂t−1)eβTt−1µ∂ ψt(β)∂βT

¶
β=κt

eβt−1
+ Ut

³
ψt − ψt(β̂t−1)

´
εt(β̂t−1) + Utψt

³
εt − εt(β̂t−1)

´
+ Utψt(β̂t−1)et.

We can write

(Ip+q − Ut)ψt(β∗)ψTt (β∗)eβt−1 = ¡bσ2t F (β∗)−Rt(β∗)¢ bσ−2t F−1(bβt−1)ψt(β∗)ψTt (β∗)eβt−1
+
³
F (bβt−1) − F (β∗)´F−1(bβt−1)ψt(β∗)ψTt (β∗)eβt−1.

Letting

B1,t =
³
F (bβt−1) − F (β∗)´ F−1(bβt−1)ψt(β∗)ψTt (β∗)eβt−1

− Ut
³
ψt(β̂t−1)− ψt(β

∗)
´
ψTt (β

∗)eβt−1 − 1
2
Utψt(β̂t−1)eβTt−1µ∂ ψt(β)∂βT

¶
β=ηt

eβt−1.
(43)

and
B2,t = Ut

³
ψt − ψt(β̂t−1)

´
εt(β̂t−1) + Utψt

³
εt − εt(β̂t−1)

´
, (44)

we have

Rt(β
∗)eβt = Rt−1(β∗)eβt−1 + ¡bσ2t F (β∗)−Rt(β∗)¢ bσ−2k F−1(bβt−1)ψt(β∗)ψTt (β∗)eβt−1

+B1,t +B2,t + Utψt(β̂t−1)et,

hence

tRt(β
∗)eβt = tX

k=1

¡bσ2t F (β∗)−Rk(β∗)¢ bσ−2k F−1(bβk−1)ψk(β∗)ψTk (β∗)eβk−1 + tX
k=1

B1,k

+
tX

k=1

B2,k +
tX

k=1

Ukψk(β̂k−1)ek. (45)

Hence

√
teβt = Ht + Lt +R−1t (β∗)

1√
t

tX
k=1

Rk(β
∗)bσ−2k F−1(β∗)ψk(β∗)ek, (46)
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where

Ht = R
−1
t (β∗)

1√
t

tX
k=1

¡
σ2e F (β

∗)−Rk(β∗)
¢ bσ−2k F−1(bβk−1)ψk(β∗)ψk(β∗)eβk−1

+R−1t (β∗)
1√
t

tX
k=1

¡bσ2k − σ2e
¢
F (β∗)bσ−2k F−1(bβk−1)ψk(β∗)ψk(β∗)eβk−1

+R−1t (β∗)
1√
t

tX
k=1

B1,k +R
−1
t (β∗)

1√
t

tX
k=1

B2,k, (47)

and

Lt = R
−1
t (β∗)

1√
t

tX
k=1

Rk(β
∗)bσ−2k {F−1(bβk−1)− F−1(β∗)}ψk(β̂k−1)ek

+R−1t (β∗)
1√
t

tX
k=1

Rk(β
∗)bσ−2k F−1(β∗)

³
ψk(β̂k−1)− ψk(β

∗)
´
ek. (48)

In Lemma 2.16 we show convergence a. s. to 0 of Ht and Lt.

From (46) and according to Lemmas 2.15 and 2.16, based on Lemmas 2.13
and 2.14, we have that

√
teβt converges in law to a normal distribution with

mean 0 and variance

V = E
¡
ψ1(β

∗)ψT1 (β
∗)
¢−1

σ4eF (β
∗)E

¡
ψ1(β

∗)ψT1 (β
∗)
¢−1

= σ−2e F−1(β∗)σ4eF (β
∗)σ−2e F−1(β∗) = F−1(β∗),

when t → ∞ since Rt(β∗) converges a.s. to E
¡
ψ1(β

∗)ψT1 (β
∗)
¢
which is equal

to σ2eF (β
∗) by (24) .

4 Finite sample properties

4.1 Ljung’s Toolbox in Matlab

We will compare the results of our algorithm with Ljung (2000) System Iden-
tification Toolbox in Matlab version 5.0 (R12), and more specifically function
RPEM, using the adm=’ff’ parameter, i.e. the forgetting factor algorithm which
makes use of the algorithm (22). At each iteration, only the elements εt, ψt(1)
and ψt(p1 + 1) of ψt are computed

ψt(1) =

qX
k=1

ck tψt(1 + k) + yt−1, (49)

ψt(p1 + 1) =

qX
k=1

ck tψt(p1 + 1 + k) + εt−1,
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with p1 = max(p, q). After that, a sliding is performed by

ψt+1(2) = ψt(1), ...,ψt+1(p1) = ψt(p1 − 1),
ψt+1(p1 + 2) = ψt(p1 + 1), ...,ψt+1(p1 + q) = ψt(p1 + q − 1).

The method in RPEM makes use of a projection using the function ’FSTAB’
in Matlab but only for the parameters of the moving average polynomial θ(B) =
1−θ1B−θ2B2− ...−θqBq as follows. Let bθt(B) = 1− bθ1,tB+ ...+ bθq,tBq be the
polynomial estimated at time t. The roots should be inside of the unit circle.
Therefore, those roots which are outside of the unit circle are inverted and the
others are unchanged. Then, the polynomial is computed again. We will not
use that procedure in our method.

4.2 Implementation of the RMLMZ method

Besides omitting the recurrence for the Hessian, our implementation of the
RMLMZ estimator for ARMA models is different from that of Ljung in Matlab
System Identification toolbox. We will discuss below the effective recurrences
used in practice, projection of the parameters, the choice of initial values, the
use of forgetting factors, and some information about the program.
Like Ljung, we introduce a second estimate of the forecast error εt, so that

the algorithm (23) becomes

ψt =

qX
k=1

θ̂k,t−1ψt−k + ϕt−1, (50)

εt = yt − β̂Tt−1ϕt−1, (51)

β̂t = β̂t−1 + γtF
−1(β̂t−1)ψtεt, (52)

εt = yt − β̂Tt ϕt−1,

where this time ϕTt = (yt, · · · , yt−p+1,−εt, · · · ,−εt−q+1). Note that we don’t
have made use of the suggestion of Ljung for sliding a reduced subset of ψt’s.

4.3 Admissibility of βt
At each time t, we have to check that the estimator bβt satisfies conditions
analog to those assumed in Section 3. The most important is that the roots
of both the AR and MA polynomials be outside of the unit circle. This is
done by projecting bβt in the unit disk, contrarily to RPEM where only the MA
polynomial is treated. As a matter of fact, our implementation offers also the
choice of the Ljung and Söderström (1983) projection procedure.

Let us illustrate the case of an AR polynomial. If
³bφt,1, ..., bφt,p´ is not

admissible, let ρ < 1, consider instead
³
ρbφt,1, ρ2bφt,2, ..., ρpbφt,p´ and iterate until

the subset of parameters becomes admissible. That way the roots of 1+ bφt,1B+
18



...+ bφt,pB don’t come close to the unit circle like with the procedure of Ljung
and Söderström (1983).

4.4 Initial values

To obtain good estimates, starting with appropriate initial values bβ0 is essen-
tial. In our RMLMZ method, besides satisfying the causality and invertibility
conditions, bβ0 should be far enough from the region where the Fisher informa-
tion matrix is not invertible. For the RML method, an initial matrix R0 is also
needed and Ljung and Söderström (1983) recommend to use R0 = 10000 I,
expressing thereby a large amount of uncertainty. Here, we have only to choose
σ20 . We have taken bσ20 = 10 or bσ20 = 10000.
4.5 Forgetting factor

We have used a factor γt in (22) or (25-28) although this was often taken as 1/t
in the theory. In practice it should be selected in order to improve convergence.
It is often based on the forgetting factor defined by

λt =
γt−1(1− γt)

γt
,

which corresponds to
γt =

γt−1
λt + γt−1

.

According to Ljung (1985), using γt = 1/t (which corresponds to λt = 1, ∀t)
is justified when the coefficients do not vary with time, which is the case here.
More generally, it is recommended to use

λt = λ0λt−1 + (1− λ0),

where typically λ0 ≈ 0.95 or λ0 ≈ 0.99. Remark that λt converges to λ∞ = 1 and
γt converges to γ∞ = 0. We have also experimented with a constant forgetting
factor.
We will compare our estimator (solid line) with the RML estimator of Ljung

as implemented in Matlab (dashed line with a forgetting factor λ = 1, or dot-
dashed line with λ = 0.99). For our RMLMZ algorithm, we have used a different
forgetting factor for the variance, denoted with a subscript σ, characterised by
γ0σ = 1 or λtσ = 0.9 with λ0 = 1.

4.6 Information about the program

A computer program in Fortran 90 was written in order to experiment with the
new method. The computer program is a part of a bigger project described
in Ouakasse and Mélard (2005). Indeed the program is able to handle general
single input single output (SISO) models. Moreover each polynomial can be
factored in a non seasonal polynomial and a seasonal polynomial, a feature
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which is necessary when dealing with economic or traffic data. These aspects,
as well as specific procedures in order to improve the computational efficiency
of the method, both in the non-seasonal and seasonal cases, are discussed by
Ouakasse et al. (2005).
Let us now describe the experiments that follow. Artificial time series were

produced in Matlab using simple recurrences and omitting the first 50 observa-
tions. They were immediately treated with the RPEM procedure. The series
were then exported and treated by the Fortran program.

4.7 ARMA(1,1) model

Let us consider the ARMA(1,1) model with equation (3) with φ∗ = 0.5 and
θ∗ = −0.5, with σ2 = 1. We have generated 10000 series of length 1000 for
which we have computed the estimates of φ and θ, for each time t = 1, ..., 1000.
The following initial values were used: bσ20 = 10, bφ0 = 0.25, bθ0 = −0.25, λ0 = 1,
γ0 = 1, λ0σ = 1, γ0σ = 1. The averages and standard deviations across the
experiments are shown in function of time. For each plot, the true value of the
parameter is given. It is even displayed in the plot of the averages as a dotted
horizontal line. The averages should be as close as possible of the true value
and the standard deviations should be close to 0.

100 200 300 400 500 600 700 800 900 1000
0.4
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0.52

0.54

0.56

0.58

0.6

Average
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0.05
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Figure 2. ARMA(1,1) with φ∗ = 0.5. Averages (left) and standard devi-
ations (right) over the simulations in function of time for three estimates
of φ. Solid line: our estimator, dashed line: Ljung/Matlab with λ = 1,
dot-dashed line: same with λ = 0.99.
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Figure 3. ARMA(1,1) with θ∗ = −0.5. Averages (left) and standard
deviations (right) over the simulations in function of time for three estimates
of θ. Solid line: our estimator, dashed line: Ljung/Matlab with λ = 1, dot-
dashed line: same with λ = 0.99.
The plots for averages indicate that the new estimator seems to converge

faster than the RML estimator. On the plot for standard deviations, we observe
that those of the RML estimator decrease more slowly than ours.

4.8 ARMA(2, 2) model

Let us consider the ARMA(2, 2) model with equation

(1 + 0.8B + 0.25B2)yt = (1 + 1.378B + 0.5B
2)et,

with σ2 = 1. We have generated 10000 series of length 1000 for which we have
computed the the estimates of φ1, φ2 and θ1, θ2 for each time t = 1, ..., 1000.
The following initial values were used: bσ20 = 10000, bφ1,0 = 0.5, bφ2,0 = 0.8,bθ1,0 = 0.69, bθ2,0 = 0.14, λ0 = 1, γ0 = 1, λ0σ = 0.9, γ0σ = 1. Here are the results
that were obtained, presented like for the previous example.
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Figure 4. ARMA(2,2) with φ∗1 = 0.8. Averages (left) and standard devi-
ations (right) over the simulations in function of time for three estimates
of φ1. Solid line: our estimator, dashed line: Ljung/Matlab with λ = 1,
dot-dashed line: same with λ = 0.99.
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Figure 5. ARMA(2,2) with φ∗2 = 0.25. Averages (left) and standard
deviations (right) over the simulations in function of time for three estimates
of φ2. Solid line: our estimator, dashed line: Ljung/Matlab with λ = 1,
dot-dashed line: same with λ = 0.99.
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Figure 6. ARMA(2,2) with θ∗1 = 1.375. Averages (left) and standard
deviations (right) over the simulations in function of time for three estimates
of θ1. Solid line: our estimator, dashed line: Ljung/Matlab with λ = 1,
dot-dashed line: same with λ = 0.99.
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Figure 7. ARMA(2,2) with θ∗2 = 0.5. Averages (left) and standard devi-
ations (right) over the simulations in function of time for three estimates
of θ2. Solid line: our estimator, dashed line: Ljung/Matlab with λ = 1,
dot-dashed line: same with λ = 0.99.

The graphs show that the averages for our method converge faster than for
the RML estimator except for the parameter φ2, and also that the dispersion
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across simulations is smaller.

5 An example
We will illustrate the procedure on the following example. Windmills produce
electricity in a way which is cleaner for the environment than with thermal
or nuclear power stations. Electricity is however irregular because it depends
of wind irregularity. When the wind is strong, more electricity is produced.
Conversely, when the wind is weak, the quantity of electricity is very small. In
order to maintain the offer of electricity at the level of demand, it is required to
adapt production from traditional power stations in function of the amount of
electricity produced by a park of windmills. Response time of a power station
can go from a few minutes to several hours according to the technology being
used. It is therefore useful to forecast wind speed a few hours in advance. The
data come from speed of wind measurements at the top of a windmill. They
are available every ten minutes, hence 144 observations per day. We have used
about twelve days of measurements, more precisely 1728 observations. The data
are shown in Figure 8.
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Figure 8. Speed of wind on the top of a windmill. One observation every
ten minutes during ten days.

We have specified an ARMA(1,2) model with a constant, described by the
equation:

(1− φ1B)(yt − µ) = (1− θ1B − θ2B
2)et.

Here the vector of parameters is composed of β = (φ1, θ1, θ2, µ). A statistician
or an econometrician would probably select a model with a unit root. For that
reason, we have used both forgetting factors equal to 1 and an initial value of
the variance which is not too large, equal to 500. The estimates are shown in
Figure 9.
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Figure 9. Estimates by the RMLMZ method in function of time: φ1 (top left),
θ1 (top right), θ2 (bottom left), µ (bottom right).

The estimates at the end of the series are β̂ = (0.925, 0.112, 0.066, 4.933)
and the final value of the innovation variance is 0.739. Note that the exact
maximum likelihood method (Mélard, 1984) of SPSS (2004) gives the following
model using the whole data set:

(1− 0.976B)(yt − 4.894) = (1− 0.216B − 0.196B2)et,

with an estimate of the innovation variance equal to 0.400.

6 Conclusion
In Section 2, we have recalled the RML method proposed by Ljung (1977) and
Ljung and Söderström (1983). That method provides recursive estimates using
a system of equations. In one of the equations, the Hessian matrix of the error
is updated. An improved RML method called RMLMZ is the subject of the
present paper. It has been described in Section 3. It is based on using the
Fisher information matrix, evaluated at the current value of the estimator, in
order to update the estimator, instead of updating the Hessian. The asymptotic
statistical properties of the new method have been studied in Subsection 3.1
and 3.2. Under fairly general assumptions, it was proved that the RMLMZ

estimator is consistent in the almost sure sense and also asymptotically normally
distributed. This is done by following Ljung (1977) but the details are very
different from those of the Ljung et Söderström (1983) approach. It is based on
a result that the mathematical expectation of the errors, E(ε2), has an absolute
minimum obtained at the true value of the parameter. We have obtained a
part of the attraction domain around that minimum of the differential equation
associated to the algorithm. Convergence in law makes use of a result of Hannan
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(1976) which allows to adapt the Ljung and Söderström (1983) approach to the
RMLMZ estimator. In Section 4 we have shown Monte Carlo simulations (for
some ARMA models and using 10000 series of length 1000) for the comparison
between the RMLMZ estimator and the original RML method. This suggests
that indeed the RMLMZ estimator often does converge more quickly in practice.
In Section 5 we show an example on real data which shows the usefulness of the
new method.
In Ouakasse and Mélard (2005), we will present an extension of these recur-

sive method based on the Fisher information matrix to a wider range of models:
single input, single output (SISO) models. In Ouakasse et al. (2005), we intend
to show how these methods can be adapted to seasonal data in order to cope
with the so-called seasonal models of Box et al. (1994).

Appendix 1
Here are a few lemmas needed for the proofs in Section 3.1. Invertibility of
the Fisher information matrix is satisfied by Assumption 1, given the following
lemma.
Lemma 1.1 (Klein and Spreij, 1993). The Fisher information matrix F (β) is
invertible if and only if the autoregressive and moving average polynomials have
no common root.
Lemma 1.2 (Harville, 1997, p. 307). Let F be a matrix function of Rm →
R(n,n), let x ∈ Rm be a point where matrix F is invertible and continuously
differentiable, then

∂F−1(x)
∂xi

= −F−1(x)∂F (x)
∂xi

F−1(x)

Proof of Theorem 1.
We have to prove the conditions C for the algorithm (30). Condition C2 on
matrices A and B which are the same as in the RML method is of course valid.
Condition C4 is essentially the same as for the RML method but Ouakasse
(2004, pp. 45-46) provides an alternative proof which is more direct than in
Ljung and Söderström (1983, p. 175-176). Of course conditions C5 and C6 are
satisfied since γt = 1/t.
Let us first check condition C1.

Suppose (βT1 ,σ
2
1)
T and (βT2 ,σ

2
2)
T in a ball B ¡(βT ,σ2)T , ρ(β,σ2)¢ with ρ(β,σ2)

small enough such that (β1,σ21) and (β2,σ
2
2) belong to DR. Let h and h

0 be two
vectors in a ball B ¡h0, v¢ of Rq(p+q+1) with h0 = (h01, h

0
2, ..., h

0
q(p+q+1))

T , h =
(h1, h2, ..., hq(p+q+1))

T and h0 = (h01, h
0
2, ..., h

0
q(p+q+1))

T . Let k01 = (h
0
q+1, h

0
q+2, ...

, h0p+2q), k1 = (hq+1, hq+2, ..., hp+2q) and k01 = (h0q+1, h
0
q+2, ..., h

0
p+2q). By (32)
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we have

Q(t,β1,σ
2
1, h)−Q(t,β2,σ22, h0)

=
£©¡
h1 − h01

¢ ¡
kT1 − k0T1

¢
+ (h1 − h01)

¡
k0T1 − k0T1

¢ª
σ−21 F−1(β1)

+
©
h01
¡
kT1 − k0T1

¢
+ (h1 − h01) k0T1

ª
σ−21 F−1(β1)

+
¡
h01 − h01

¢ ¡
k0T1 − k0T1

¢
σ−21

¡
F−1(β1)− F−1(β2)

¢
+ h01

¡
k0T1 − k0T1

¢
σ−21

¡
F−1(β1)− F−1(β2)

¢
+
¡¡
h01 − h01

¢
k0T1 + h01k

0T
1

¢
σ−21

¡
F−1(β1)− F−1(β2)

¢
+
¡
h01 − h01

¢ ¡
k0T1 − k0T1

¢ ¡
σ22 − σ21

¢
σ−21 σ−22 F−1(β2)

+ h01
¡
k0T1 − k0T1

¢ ¡
σ22 − σ21

¢
σ−21 σ−22 F−1(β2)

+
¡¡
h01 − h01

¢
k0T1 + h01k

0T
1

¢ ¡
σ22 − σ21

¢
σ−21 σ−22 F−1(β2),³

h1 − h01
´³
h1 − h0 + h01 − h0

´
+ 2h0

³
h1 − h01

´
+ σ22 − σ21

iT
.

Since σ−21 6 δ−1, σ−22 6 δ−1,
¡
h1 − h01

¢
6 v and

¡
k1 − k01

¢
6 v, there exists a

constant C such that°°Q(t,β1,σ21, h)−Q(t,β2,σ22, h0)°° 6 C ³°°h0°°2 + °°h0°°+ v2 + v´ {kh− h0k
+
°°F−1(β1)− F−1(β2)°°+ ¯̄σ22 − σ21

¯̄ª
.

According to Lemma 1.2, ∂F−1(β)/∂β is continuous on the ball B ¡(βT ,σ2)T , ρ(β,σ2)¢
hence it is bounded, then there exists a constant C1 > 0 such that

°°F−1(β1) − F−1(β2)°° 6
C1 kβ1 − β2k , and the preceding expression can be written°°Q(t,β1,σ21 , h)−Q(t,β2,σ22 , h0)°° 6 C ³°°h0°°2 + °°h0°°+ v2 + v + C1´³°°(βT1 ,σ21)T − (βT2 ,σ22)T°°+ °°°h− h0°°°´ .
Let us now check C3. Condition C3 is basically the same as for the RML

method, see Ljung and Söderström (1983, p. 169-170). We have to show that:
A) For all t, s, t > s, there exists a random vector z0s(t) belonging to

the σ-algebra spanned by the zi, i 6 t, and independent of zs, such that
E
°°zt − z0s(t)°°4 < Cλt−s, C <∞, λ < 1.
B) The following limit does exist:

lim
N→∞

1

N

NX
t=1

E
¡
Q
¡
t,β,σ2, ht(β)

¢¢
= H(β,σ2).

For the RML case, Ouakasse (2004, pp. 46-49) proves Part A and the proof is
still valid for the RMLMZ method. Part B is satisfied since

E
¡
Q
¡
t,β,σ2, ht(β)

¢¢
= E

³¡
σ−2F−1(β)ψt(β)εt(β)

¢T
, ε2t (β)− σ2

´T
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doesn’t depend on β and β∗ and doesn’t depend on t. IndeedQ
¡
t,β,σ2, ht(β)

¢
=¡

ψTt (β)F
−1(β)εt(β), ε2t (β)− σ2

¢T
withΘq(B)ψt(β) = ϕt(β),Θq(B)Φ

∗
p(B)εt(β) =

Φp(B)Θ
∗
q(B)et and ϕt(β) = (yt−1, · · · , yt−p,−εt−1(β), · · · ,−εt−q(β)), and we

have

lim
N→∞

1

N

NX
t=1

E
¡
Q
¡
t,β,σ2, ht(β)

¢¢
=
h
σ−2F−1(β)E (ψt(β)εt(β))

T , E
¡
ε2t (β)

¢− σ2
iT
.

(53)
¥

Lemma 1.3 (Äström and Söderström, 1974). For the ARMA( p, q) model de-
fined by (1), β∗ is the unique solution of E [ε(β)ψ(β)] = 0.
Lemma 1.4 (Cartan 1967, p. 122). Let g(x) be a class C1 function ω −→ Rn,
ω being an open set of Rn. Let Aω be a compact of ω. We suppose that any
solution of ẋ(t) = g(x(t)), with the initial condition x(t0) = x0, defined over
[t0, t1] is such that ∀t ∈ [t0, t1] , x(t) ∈ Aω. Then the upper bound of the maximal
interval of existence of the ODE is +∞.
Lemma 1.5 (Rouch and Mawhin 1980, p. 12). Consider the ODE in Lemma
1.4 where g is a continuous locally Lipschitz function: g : I × Bρ → Rn, Bρ =
B(0, ρ) ⊂ Rn. Let Γ be a part in Rn such that Γ ⊂ Bρ. Let V : I ×Bρ −→ R+
a function of class C1, and a, a positive constant. If
a) x0 ∈ Γ, t0 ∈ I,
b) V (t0, x0) < a,
c) ∀(t, x) ∈ I × Fr(Γ), V (t, x) > a,
d) ∀(t, x) ∈ I × Γ, V̇ (t, x) 6 0,

then the solution of the ODE is such that ∀t > t0, x(t) ∈ Γ.
Consider the following ODE: ẋ = g(x), x(t0) = x0 where g : Ω → Rn is a
continuous locally Lipschitz function. Let γ+(x0) = {x(z, x0), z > 0} be the
trajectory of x(z, x0).

Lemma 1.6 (Rouch and Mawhin 1980, p. 50). Let Ψ a compact of Ω, an
open set of Rn, and V : Ω −→ R+ a function of class C1 such that ∀x ∈ Ψ,
.

V (x) 6 0. Let EΨ =
n
x ∈ ΨÁ V̇ (x) = 0

o
and M the largest invariant subset

of E. Then for any x0 such that γ+(x0) ⊂ Ψ, x(z, x0) −→
z−→∞M.

Lemma 1.7 (Theorems 1 and 4, Ljung, 1977). Under conditions C, let us
consider the algorithm (29) modified as follows:

ht =

½
A(bxt−1)ht−1 +B(bxt−1) zt if bxt−1 ∈ D1
a point in D3 if bxt−1 /∈ D1, (54)

bxt = [bxt−1 + γtQ(t, bxt−1, ht)]D1,D2
(55)

where D1 ⊂ DR ⊂ Rm is a bounded open part containing the compact D2, D3
is a compact of Rm, and m is the dimension of bxt, and

[z]D1,D2 =

½
z if z ∈ D1
a point in D2 if z /∈ D1.
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Let D be a compact part of DR such that the trajectories of the following ODE
∂x(t)/∂t = f(x(t)) starting from a point in D, stay in a closed part DR of
DR. Suppose that the ODE possesses an invariant set Dc with its domain of
attraction DA such that D ⊂ DA. Let eD = D1\D2 and suppose there exists a
twice differentiable function U(x) > 0 defined over a neighbourhood of eD and
such that:

sup
x∈ eDU

0(x)f(x) < 0,

U(x) > c1 for x /∈ D1,
U(x) 6 c2 < c1 for x ∈ D2.

Then bxt → Dc almost surely when t→∞.

Appendix 2

Lemma 2.1. Consider Kt = σt eβt defined in Section 3.2. Then
Kt =

tX
k=1

A1,k +
tX

k=1

A2,k +
tX

k=2

F−1(bβk−1)ψkek + Tteβt−1 − t−1X
k=1

Tk

³eβk − eβk−1´
− F−1(β∗)Steβt−1 + F−1(β∗)t−1X

k=1

Sk

³eβk − eβk−1´ , (56)

where

A1,t =
³
ε2t−1(bβt−1)− e2t−1´ eβt−1 − F−1(bβt−1)³ψt(bβt−1)− ψt(β

∗)
´
ψTt (β

∗)eβt−1
−
³
F−1(bβt−1)− F−1(β∗)´ψt(β∗)ψTt (β∗)eβt−1

− 1
2
F−1(bβt−1)ψteβTt−1µ∂ ψt(β)∂βT

¶
β=κt

eβt−1, (57)

A2,t =
³
ε2t−1 − ε2t−1(bβt−1)´ eβt−1 + F−1(bβt−1)ψt ³εt − εt(bβt−1)´

− F−1(bβt−1)³ψt − ψTt (
bβt−1)´ψTt (β∗)eβt−1, (58)

Sk =
kX
j=1

£
ψj(β

∗)ψTj (β
∗)− σ2eF (β

∗)
¤
with S0 = 0, (59)

Tk =
kX
j=1

¡
e2j−1 − σ2e

¢
with T0 = 0. (60)

Proof of Lemma 2.1.
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By (41), the definition of σt = tbσ2t and (37),
Kt = σt eβt = σt−1 eβt−1 + ε2t−1eβt−1 + F−1(bβt−1)ψtεt,

and we have

Kt = Kt−1 +
³
ε2t−1 − ε2t−1(bβt−1)´ eβt−1 + ³ε2t−1(bβt−1)− e2t−1´ eβt−1 + e2t−1eβt−1

+ F−1(bβt−1)ψt ³εt − εt(bβt−1)´+ F−1(bβt−1)ψt ³εt(bβt−1)− et´+ F−1(bβt−1)ψtet.
Note that K0 = 0. We can use (42) so that

Kt = Kt−1 +
³
ε2t−1 − ε2t−1(bβt−1)´ eβt−1 + ³ε2t−1(bβt−1)− e2t−1´ eβt−1 + e2t−1eβt−1

+ F−1(bβt−1)ψt ³εt − εt(bβt−1)´− F−1(bβt−1)³ψt − ψt(bβt−1)´ψTt (β∗)eβt−1
− F−1(bβt−1)³ψt(bβt−1)− ψt(β

∗)
´
ψTt (β

∗)eβt−1
−
³
F−1(bβt−1)− F−1(β∗)´ψt(β∗)ψTt (β∗)eβt−1 − F−1(β∗)ψt(β∗)ψTt (β∗)eβt−1

− 1
2
F−1(bβt−1)ψteβTt−1µ∂ ψt(β)∂βT

¶
β=κt

eβt−1 + F−1(bβt−1)ψtet.
Moving some terms leads to

Kt = Kt−1 +A1,t +A2,t + F−1(bβt−1)ψtet + ¡e2t−1 − σ2e
¢ eβt−1

− F−1(β∗) £ψt(β∗)ψTt (β∗)− σ2eF (β
∗)
¤ eβt−1

= K0 +
tX

k=1

A1,k +
tX

k=1

A2,k +
tX

k=2

F−1(bβk−1)ψkek + tX
k=1

¡
e2k−1 − σ2e

¢ eβk−1
− F−1(β∗)

tX
k=1

£
ψk(β

∗)ψTk (β
∗)− σ2eF (β

∗)
¤ eβk−1.

Introducing St, defined by (59), yields after some algebra

tX
k=1

£
ψk(β

∗)ψTk (β
∗)− σ2F (β∗)

¤ eβk−1 = tX
k=1

(Sk − Sk−1) eβk−1
= Steβt−1 − t−1X

k=1

Sk

³eβk − eβk−1´ .
Similarly using Tk defined by (60),

tX
k=1

¡
e2k−1 − σ2

¢ eβk−1 = tX
k=1

(Tk − Tk−1) eβk−1
= Tteβt−1 − t−1X

k=1

Tk

³eβk − eβk−1´ .
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¥
We will use a lemma due to Hannan (1976) for which the following nota-

tions are needed. Let Xt, t = 1, ..., N, be a stationary multivariate random
process, with components Xt(a), a = 1, ..., v. Consider the autocovariances of a
realization of length N

Ck(a, b) =
1

N

N−kX
t=1

©
Xt(a)−X(a)

ª©
Xt+k(b)−X(b)

ª
,

where X(a) = (1/N)
PN
t=1Xt(a). Suppose that Xt =

P∞
j=0Ajet−j , E

©
ete

T
s

ª
=

δtsG,
P∞

0 kAjk2 <∞ and E {et} = 0, with Dirac δts, G an invertible v×v ma-
trix and random vectors et. Let Ft the σ−algebra spanned by Xs(a), s ≤ t, a =
1, ..., v. Suppose that for all a, b, c, d , E {et(a)ÁFt−1} , E {et(a)et(b)ÁFt−1} ,
E {et(a)et(b)et(c)ÁFt−1} , E {et(a)et(b)et(c)et(d)ÁFt−1} are constants. De-
note the latter by κabcd. Let

h(ω) =
∞X
0

Aje
ijω, f(ω) = (2π)−1h(ω)Gh

∗
(ω), (61)

where h
∗
(ω) = hT (ω) it the conjugated matrix of h

T

(ω). Let

γk(a, b) = E {Xt(a)Xt+k(b)} and Zk(a, b) = N1/2 {Ck(a, b)− γk(a, b)} . (62)
We use the asymptotic covariance between Zk(a, b) and Zk(c, d) defined by:

2π

Z π

−π

n
fac(ω)fbd(ω)e

−i(k−t)ω + fad(ω)fbc(ω)ei(k+t)ω
o
dω (63)

+
vX
p

vX
q

vX
r

vX
s

κpqrs
1

2π

Z π

−π

n
hap(ω)hbq(ω)e

itω + hcr(ω)hds(ω)e
−ikω

o
dω,

where hap(ω) is the element (a, p) of matrix h(ω).

Lemma 2.2. Under those conditions, a necessary and sufficient for asymptotic
normality of any vector composed of Zk(a, b) with variance-covariance matrix
whose components are given by (63), is that the square of faa(ω), a = 1, ..., v,
defined in (61), be integrable.

We will use Lemma 2.2 for k = 0, so with Z0(a, b) = N1/2 {C0(a, b)− γ0(a, b)}.
Note that for an ARMA process defined by (1), given Assumption 1, the spec-
tral density f(ω) = (1/2π)σ2

¯̄
Θ(eiω)

¯̄2
/
¯̄
Φ(eiω)

¯̄2
is square integrable. Note

also that if the vectors {et} are independent, then E {et(a)ÁFt−1} = E {et(a)} ,
E {et(a)et(b)ÁFt−1} = E {et(a)et(b)} , E {et(a)et(b)et(c)ÁFt−1}= E {et(a)et(b)et(c)}
and E {et(a)et(b)et(c)et(d)ÁFt−1} = E {et(a)et(b)et(c)et(d)}.
Lemma 2.3. Let St and Tt defined by (59) and (60), respectively. Then
(1/
√
t)St and (1/

√
t)Tt converge in law to a normal distribution when t→∞.
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Consider Rt(β∗) defined by (39), then
√
t
¡
Rt(β

∗)− σ2e F (β
∗)
¢
converges in

law to a normal distribution when t → ∞ as well as
√
t
¡
σ2t (β

∗)− σ2e
¢
, where

σ2t (β
∗) is defined by (37).

Proof of Lemma 2.3. Let ψt(β∗) = (ψ1,t(β∗), · · · , ,ψp+q,t(β∗))T . From (38)
we haveΘ∗(B)ψt(β∗) = ϕ1t−1, where ϕ1t−1 = (yt−1, · · · , yt−p,−et−1 · · · ,−et−q)T ,
hence

Φ∗(B)ψi,t(β∗) = Φ∗(B)Θ∗(B)−1yt−i, i = 1, ..., p,
Θ∗(B)ψp+i,t(β∗) = −et−i, i = 1, ..., q,

but we know that Φ∗(B)Θ∗(B)−1yt−1 = et−1, hence

Φ∗(B)ψi,t(β∗) = et−i, i = 1, ..., p,
Θ∗(B)ψp+i,t(β∗) = −et−i, i = 1, ..., q.

Consequently the {ψi,t(β∗), i = 1, 2, ..., p} are autoregressive processes withΦ∗(B)
as autoregressive polynomial, and the {ψi,t(β∗), i = p+ 1, ..., p+ q} are autore-
gressive processes with Θ∗(B) as autoregressive polynomial. Since the roots of
Φ∗(B) are outside of the unit circle, there exist constants ai, i > 1, such thatP∞

i=1 |ai| < ∞ and ψj,t(β
∗) = et−j +

P∞
i=1aiet−j−i, j = 1, ..., p. Remark that

ψ2,t(β
∗) = ψ1,t−1(β∗), ..., ψp,t(β∗) = ψ1,t−p+1(β∗).

Similarly, since the roots of Θ∗(B) are outside of the unit circle, there ex-
ist constants bi, i > 1, such that

P∞
i=1 |bi| < ∞ and ψp+j,t(β

∗) = et−j +P∞
i=1biet−j−i, j = 1, ..., q. Hence ψt(β

∗) can be written under the form
ψ1,t(β

∗)
...

ψp,t(β
∗)

ψp+1,t(β
∗)

...
ψp+q,t(β

∗)

 =


1 a1 ... ap−1 ap ap+1 ... ap+q−1
... ... ... ... ... ... ... ...
0 0 ... 1 a1 a2 ... aq
1 b1 ... bp−1 bp bp+1 ... bp+q−1
... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ...




et−1
...
et−p
et−p−1
...

et−p−q)



+


ap+q ap+q+1 ... a2p+q−1 a2p+q a2p+q+1 ... a2p+2q−1
... ... ... ... ... ... ... ...
aq+1 aq+2 ... aq+p aq+p+1 aq+p+2 ... aq+p+q
bp+q bp+q+1 ... b2p+q−1 b2p+q b2p+q+1 ... b2p+2q−1
... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ...




et−p−q−1

...
et−2p−q
et−2p−q−1

...
et−2p−2q)


+ ...

Let Zjp+q,t = (et−j(p+q)−1, et−j(p+q)−2,..., et−(j+1)(p+q))T , and note that then
Zjp+q,t, j > 0

o
are i. i. d. random vectors with mean 0 and variance-covariance

matrix σ2e Ip+q which is invertible. We may write ψt(β
∗) under the form ψt(β

∗) =P∞
j=1AjZ

j
p+q,t, where the components Aj , j > 1, are the ai, i > 1 and bi, i > 1.
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Let us use the following norm for a matrix M = (mij)i,j ∈ Rn×n: kMk =
max
16j6n

Pn
i=1 |mij | . Since

P∞
i=1 |ai| < ∞ and

P∞
i=1 |bi| < ∞, then

P∞
i=1 kAik <

∞ and hence
P∞
i=1 kAik2 6 (

P∞
i=1 kAik)2 < ∞. Note that ψt(β∗) satisfies the

conditions of Lemma 2.2. Let ψt(β
∗) = (1/t)

Pt
k=1ψk(β

∗). Note that E(et),
E(e2t ), E(e

3
t ), E(e

4
t ) do exist because the random variable et is bounded, so

√
t

"
1

t

tX
k=1

ψk(β
∗)ψTk (β

∗)− ψt(β
∗)ψ

T

t (β
∗)−E ©ψk(β∗)ψTk (β∗)ª

#

converges in law to a normal distribution, and since (24) and (39), we have that

√
t
¡
Rt(β

∗)− σ2e F (β
∗)
¢−√t³ψt(β∗)ψTt (β∗)´

converges also in law to a normal distribution. For each i = 1, ..., p+ q, ψi,t(β∗)
is a stationary autoregressive process, so (1/t)

Pt
k=1ψi,k(β

∗) → 0 a.s. when
t → ∞, and (1/√t)Pt

k=1ψi,k(β
∗) converges in law to the normal distribution

when t→∞, i.e. ψt(β∗)→ 0 a.s. when t→∞ and
√
t
£
ψt(β

∗)
¤
converges in law

to the normal distribution when t→∞. Consequently √t(ψt(β∗)ψ
T

t (β
∗))→ 0

a.s. when t → ∞ and (1/
√
t)St =

√
t
¡
Rt(β

∗)− σ2e F (β
∗)
¢
converges in law to

the normal distribution when t→∞. We have

bσ2t (β∗) = 1

t

tX
k=1

ε2k−1(β
∗) =

1

t

tX
k=1

e2k−1, and E(e
2
k) = σ2e .

The e2k are independent and E(e
4
k) is finite, so by Lindeberg-Feller central

limit theorem, (1/
√
t)Tt =

√
t
¡
σ2t (β

∗)− σ2e
¢
converges in law to the normal

distribution. ¥

The following lemma is taken from Ljung and Södertröm (1983, pp. 441-444)
but the proof is more detailed here.
Lemma 2.4. ∀β ∈ DR, ψt(β), ∂ψt(β)/∂β and the sequence ht in algorithm
(30) are bounded, and there exists a positive constant M such that

°°°ht − ht(bβt)°°° 6
M/t where ∀β ∈ DR, ht(β) = A(β)ht−1(β)+B(β)zt. Moreover ht−ht(β∗)→ 0
a.s, when n→∞.
Proof of Lemma 2.4. ∀β ∈ DR we may write ht(β) under the form

ht(β) = B (β)zt +
t−1X
i=1

A(β)iB (β)zt−i(β) +A(β)th0(β),

and as zt is bounded and the eigenvalues of A(β) are in the unit circle, ht(β) is
bounded, implying that ψt(β) is bounded. We have also

∂ ht(β)

∂βT
= A(β)

∂ ht−1(β)
∂βT

+ (ht−1(β)⊗ Iv) ∂vecA(β)
∂βT

+ (zt ⊗ Iv) ∂vecB(β)
∂βT

.
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where v = q(p+ q + 1). Let

Gt(β) = (ht−1(β)⊗ Iv) ∂vecA(β)
∂βT

+ (zt ⊗ Iv) ∂vecB(β)
∂βT

.

We can write ∂ ht(β)/∂βT under the form

∂ ht(β)

∂βT
= Gt(β) +

∞X
i=1

A(β)iGt−i(β).

A(β) and B(β) are bounded since they are continuous functions of β. Since
ht−1(β) and zt are bounded then Gt(β) is bounded and, because the eigenvalues
of A(β) are in the unit circle, then ∂ht(β)/∂β

T is bounded, thus ∂ψt(β)/∂βT

is bounded.
Let us now show that ht is bounded. We know that β∗ ∈ DR, so kA(β∗)tk 6

Cλt for some λ < 1. Furthermore, for βk belonging to a neighbourhood of

β∗ small enough, we have also
°°°Qt

k=1A(βk)
°°° 6 Cλt1 for some λ1 < 1 sinceQt

k=1A(β) is a continuous function of β. In Section 3.1, we have proved thatbβt → β∗ a.s. when t →∞, then for a large enough t, ∃T > 0, such as ∀s > T,°°°A(bβs)°°° < λ1, so ∀t > T,°°°°°
tY

k=1

A(bβk)
°°°°° 6

°°°°°
T−1Y
k=1

A(bβk)
°°°°°
°°°°°

tY
k=T

A(bβk)
°°°°° 6 C0Cλt−T1 = C2λ

t
1, (64)

where C0 can be taken as (C1)
T
, for example, where C1 = supβ∈DR

kA(β)k .
According to (30) we have

ht = A(bβt−1)ht−1 +B(bβt−1) zt.
Since ht contains εt and ψt,ψt−1, ...,ψt−q, we can suppose that h0 = 0 hence

ht = A(bβt−1)A(bβt−2)ht−2 +A(bβt−1)B(bβt−2) zt−1 +B(bβt−1) zt = ...
=

tX
k=1

t−1Y
j=k

A(bβj)
B(bβk−1) zk +

 tY
j=k

A(bβj)
h0, (65)

with the convention
Qt−1
j=tA(

bβj) = Ip+q. Since ∀β ∈ DR, there exists a positive
real C such that kB(β)k < C, and zt is bounded so that (64) and (65) imply

khtk 6 C
tX

k=1

λt−k1 kzkk 6 C3. (66)

Let us now show that there exists a constantM such that
°°°ht − ht(bβt)°°° 6M/t.

Let ehk(β) = hk − hk(β), eA(bβk,β) = A(bβk) − A(β), eB(bβk,β) = B(bβk) − B(β).
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For k 6 t, we have similarly to (65)

eht(β) = tX
k=1

t−1Y
j=k

A(bβj)
 h eA(bβk−1,β)hk−1(β) + eB(bβk−1,β)zki

since eh0(β) = 0. Hence for β = bβt−1, we have
eht(bβt−1) = tX

k=1

t−1Y
j=k

A(bβj)
 h eA(bβk−1, bβt−1)hk−1(bβt−1) + eB(bβk−1, bβt−1)zki .

(67)
According to (66), ht is bounded, and since εt and ψt are components of ht,
they are also bounded, and F−1(bβt−1) is bounded because bβt−1 ∈ DR, and
we know that bσ2t is bounded. By the recurrence formula of bβt (28), we obtain°°°bβt − bβt−1°°° < C0/t, which implies°°°bβk−1 − bβt−1°°° 6 C4 log( t− 1

k − 1) for t > k > 0,

and for k = 0,
°°°bβ0 − bβt−1°°° 6 C4 log(t− 1). Since A(β) and B(β) are Lipschitz

continuous, there exists a constant CAB such that°°° eA(bβk−1, bβt−1)°°° 6 CAB °°°bβk−1 − bβt−1°°° , °°° eB(bβk−1, bβt−1)°°° 6 CAB °°°bβk−1 − bβt−1°°°
hence,°°° eA(bβk−1, bβt−1)°°°+ °°° eB(bβk−1, bβt−1)°°° 6 C log( t− 1

k − 1) pour t > k − 1.

Using (66) and the fact that ht(bβt) and zt are bounded by (67), we have
eht 6M tX

k=2

λt−k1 log(
t− 1
k − 1) +Mλt−11 log(t)

6M
tX

k=1

λt−k1 log(
t− 1
k
) 6M/t.

Now let ehk(β∗) = hk−hk(β∗), eA(bβk,β∗) = A(bβk)−A(β∗), eB(bβk,β∗) = B(bβk)−
B(β∗). We have

eht(β∗) = tX
k=1

t−1Y
j=k

A(bβj)
 h eA(bβk−1,β∗)hk(β∗) + eB(bβk−1,β∗)zki .
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Because hk(β∗) and zt are bounded and eA(bβk−1,β∗), eB(bβk−1,β∗) converge to
0, hence ehk −→ 0 a.s, when n −→∞. ¥

Lemma 2.5. The exists a positive real C such that ∀t > 1, kA1,tk < C
°°°eβt−1°°°2 ,

where A1,t is defined by (57).
Proof of Lemma 2.5. A sketch of the proof is given by Ljung and Söderström
(1983, p. 444), Lemma 4.B.4. A more detailed proof is as follows. We know
that bβt → β∗ a.s., and F−1(β) being continuous overDR, F−1(bβt−1)→ F−1(β∗)
a.s. By Lemma 2.4, ∂ ψt(β)/∂βT and ψt are bounded, so there exists a positive
constant C1 such that°°°°°12F−1(bβt−1)ψteβTt−1

µ
∂ ψt(β)

∂βT

¶
β=κt

eβt−1
°°°°° < C1 °°°eβt−1°°°2 .

Similarly, since ψt(β), ∂ ψt(β)/∂β
T and ψt are bounded, there exist positive

constants C2 and C3 such that°°°F−1(bβt−1)ψt ³ψTt (bβt−1)− ψTt (β
∗)
´ eβt−1°°° < C2 °°°eβt−1°°°2 ,°°°³ε2t−1(bβt−1)− e2t−1´ eβt−1°°° = °°°³ε2t−1(bβt−1)− ε2t−1(β

∗)
´ eβt−1°°° < C3 °°°eβt−1°°°2 .

Also, ∂F (β)/∂β = ∂E
¡
ψt(β)ψ

T
t (β)

¢
/∂β is bounded and F−1(β) is bounded

over DR so that by Lemma 1.2, ∂F−1(β)/∂β is bounded and there exists a
positive constant C4 such that°°°³F−1(bβt−1)− F−1(β∗)´ψt(β∗)ψTt (β∗)eβt−1°°° < C4 °°°eβt−1°°°2 .
We conclude that there exists a positive constant C such that kA1,tk < C

°°°eβt°°°2 .¥
From Chung (1968, p. 117) we have the following lemma.

Lemma 2.6 (Kronecker). Let xk be a sequence of real numbers, ak a sequence
of positive numbers which converges to ∞. Then

X
n

xn
an
<∞⇒ 1

an

nX
i=1

xi → 0.

Lemma 2.7. Consider A2,t defined by (58). For all δ > 0, t−1/2−δ
Pt
k=1A2,k

converges to 0 a.s. when t→∞.
Proof of Lemma 2.7. A sketch of the proof is given by Ljung and Söderström
(1983, p. 444), Lemma 4.B.4. A more detailed proof is as follows. Let us
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consider the series Zt =
tP

k=1

k−1/2−δA2,k obtained by

Zt =
tX

k=1

k−1/2−δ
³
εk−1 − εk−1(bβk−1)´³εk−1 + εk−1(bβk−1)´ eβk−1

+
tX

k=1

k−1/2−δF−1(bβk−1)ψk ³εk−1 − εk−1(bβk−1)´
−

tX
k=1

k−1/2−δF−1(bβk−1)³ψk − ψk(bβk−1)´ψTk (β∗)eβk−1,
By Lemma 2.4, since (ψt − ψt(β̂t−1)) and (εt − εt(β̂t−1)) are components of
(ht−ht(β̂t−1)), there exists a constantM such that ∀β ∈ DR,

°°°ψt − ψt(β̂t−1)
°°° <

M/t and
¯̄̄
εt − εt(β̂t−1)

¯̄̄
< M/t. We know that F−1(β), ψTt (β), εt and εt(β) are

bounded over DR, thus Zt is finite, hence by Lemma 2.6, t−1/2−δ
Pt
k=1A2,k → 0

a.s. when t→∞. ¥

Lemma 2.8. For all δ > 0, t−1/2−δ
Pt
k=1F

−1(bβk−1)ψkek → 0 a.s. when
t→∞.
Proof of Lemma 2.8. A sketch of the proof is given by Ljung and Söderström
(1983, p. 442), Lemma 4.B.3. A more detailed proof is as follows. Consider the
series

st =
tX

k=1

k−1/2−δF−1(bβk−1)ψkek.
That random vector is a martingale with respect to the σ-algebra Ft−1, spanned
by the ei, i 6 t− 1. Indeed

E(st| Ft−1) = st−1 +E
³
t−1/2−δF−1(bβk−1)ψkek ¯̄̄Ft−1´

= st−1 + t−1/2−δF−1(bβk−1)ψkE (et| Ft−1) = st−1,
since F−1(β̂t−1) and ψt do not depend of ei, i 6 t− 1. Moreover

E kstk2 6
tX

k=1

k−1−2δE
°°°F−1(bβk−1)ψk°°°2E |ek|2 6 C tX

k=1

k−1−2δ <∞,

where C denotes a constant. Hence st is a martingale with a bounded variance,
and according to Chung, (1968, p. 310), st converges a.s. to a finite limit s∞.
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Hence by Lemma 2.6, t−1/2−δ
Pt

k=1F
−1(bβk−1)ψkek → 0 a.s. when t→∞. ¥

Lemma 2.9. Let St defined by (59) and Tk defined by (60). For all δ > 0,

Gt = t
−1/2−δ

(
Tteβt−1 − t−1X

k=1

Tk

³eβk − eβk−1´
−F−1(β∗)Steβt−1 + F−1(β∗)t−1X

k=1

Sk

³eβk − eβk−1´)

converges to 0 a.s. when t→∞.
Proof of Lemma 2.9. By Lemma 2.3, (1/

√
t)St and (1/

√
t)Tt converge in

law to the normal distribution when t→∞, hence for all δ > 0, t−1/2−δSt and
t−1/2−δTt converge to 0 a.s. when t → ∞, which implies that t−1/2−δTteβt−1
and t−1/2−δF−1(β∗)Steβt−1 converge to 0 a.s. when t → ∞. Let us now prove
that

t−1/2−δF−1(β∗)
t−1X
k=1

Sk

³eβk − eβk−1´→ 0, a.s. when t→∞.

Consider the series

F−1(β∗)
t−1X
k=1

k−1/2−δSk
³eβk − eβk−1´ .

From (41), we know that
³eβk − eβk−1´ = OP (1/k) and ∀α > 0, k−1/2−αSk =

op(1). Let 0 < α < δ, so

k1/2−δSk
³eβk − eβk−1´ = k1/2−αSkkα−δ ³eβk − eβk−1´ = op(k−1−(δ−α)).

since −1− (δ − α) < −1, hence F−1(β∗)Pt
k=1k

−1/2−δSk
³eβk − eβk−1´ is finite,

and by Lemma 2.7, when t → ∞, t−1/2−δF−1(β∗)Pt
k=1Sk

³eβk − eβk−1´ → 0

a.s. . Similarly, we show that t−1/2−δ
Pt

k=1Tk

³eβk − eβk−1´→ 0, a.s. . ¥

Lemma 2.10. bσ2t converges to σ2e almost surely when t→∞.
Proof of Lemma 2.10. Indeed we have by (37)

bσ2t = 1

t

tX
k=1

ε2k−1 =
1

t

tX
k=1

e2k−1 +
1

t

tX
k=1

(εk−1 − ek−1) (εk−1 + ek−1)

and, according to Lemma 2.4, εt−1 − et−1 → 0 a.s. when t→∞, and, since εk
and ek are bounded, the second term converges to 0 a.s.when t −→∞.According
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to Lemma 2.3, (1/t)
Pt

k=1 e
2
k−1 → σ2e a.s. when t → ∞, hence bσ2t → σ2e a.s.

when t −→∞ . ¥

Lemma 2.11 (Ljung and Söderström, 1983, p. 445). Let bt be a real sequence
such that bt > 0, bt → 0, when t →∞ and, for some C > 0 and 0 < α < 1,

tbt < C

Ã
t−1X
k=1

b2k + t
α

!
.

Then
t−1X
k=1

b2k < t
α0 ,

where α0 = max(0, 2α− 1) for α 6= 1/2, α0 = ε > 0 (arbitrary) for α = 1/2.

Lemma 2.12. Using notations in the proof of Theorem 3, we have

∀δ > 0, t1/2−δ
°°°eβt°°°→ 0 a.s. when t→∞. (68)

Proof of Lemma 2.12.
From (56) and Lemma 2.1, we have

tbσ2t eβt = tX
k=1

A1,k +
tX

k=1

A2,k +
tX

k=2

F−1(bβk−1)ψkek + Tteβt−1 − t−1X
k=1

Tk

³eβk − eβk−1´
− F−1(β∗)Steβt−1 + F−1(β∗)t−1X

k=1

Sk

³eβk − eβk−1´ (69)

hence

teβt = bσ−2t tX
k=1

A1,k + bσ−2t tX
k=1

A2,k + bσ−2t tX
k=2

F−1(bβk−1)ψkek + bσ−2t Tteβt−1
− bσ−2t t−1X

k=1

Tk

³eβk − eβk−1´− bσ−2t F−1(β∗)Steβt−1 + bσ−2t F−1(β∗)
t−1X
k=1

Sk

³eβk − eβk−1´ ,
which implies

°°°teβt°°° 6 ¯̄bσ−2t ¯̄ tX
k=1

kA1,kk+
¯̄bσ−2t ¯̄ °°°°°

tX
k=1

A2,k

°°°°°+ ¯̄bσ−2t ¯̄ °°°°°
tX

k=1

F−1(bβk−1)ψkek
°°°°°

+
¯̄bσ−2t ¯̄ °°°°°Tteβt−1 +

t−1X
k=1

Tk

³eβk − eβk−1´+ F−1(β∗)Steβt−1
+F−1(β∗)

t−1X
k=1

Sk

³eβk − eβk−1´
°°°°° . (70)
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By Lemma 2.5, there exists a constant C such that ∀k > 1, kA1,kk < C
°°°eβk°°°2 ,

hence
Pt
k=1 kA1,kk < C

Pt
k=1

°°°eβk°°°2 , and by Lemma 2.10, we know that bσ2t →
σ2e a.s., and bσ−2t → σ−2e a.s., so there exists a constant C1 > 0 such that ∀k > 1,

¯̄bσ−2t ¯̄ tX
k=1

kA1,kk < C1
tX

k=1

°°°eβk°°°2 .
By Lemma 2.8, we know that for all δ > 0, t−1/2−δ

Pt
k=1F

−1(bβk−1)ψkek → 0,
a.s when t→∞, so there exists a constant C2 > 0 such that ∀k > 1,

¯̄bσ−2t ¯̄ °°°°°
tX

k=1

F−1(bβk−1)ψkek
°°°°° < C2t1/2+δ.

By Lemma 2.9, we have that

Gt = t
−1/2−δ

(
Tteβt−1 − tX

k=1

Tk

³eβk − eβk−1´− F−1(β∗)Steβt−1 + F−1(β∗) tX
k=1

Sk

³eβk − eβk−1´)

converges to 0 a.s when t→∞ and, by Lemma 2.7, t−1/2−δ
Pt
k=1A2,k → 0 a.s.

when t→∞, so that there exists a constant C3 > 0 such that ∀k > 1,

¯̄bσ−2t ¯̄ °°°°°
tX

k=1

A2,k

°°°°°+ ¯̄bσ−2t ¯̄ °°°°°Tteβt−1 +
tX

k=1

Tk

³eβk−1 − eβk−2´+ F−1(β∗)Steβt−1
+F−1(β∗)

tX
k=1

Sk

³eβk−1 − eβk−2´
°°°°° < C3t1/2+δ.

From (70), we can conclude that for each δ > 0, there exists a constant C > 0,
such that

t
°°°eβt°°° 6 C tX

k=1

°°°eβk−1°°°2 + Ct1/2+δ. (71)

Applying Lemma 2.11 on (71) with bn =
°°°eβn°°° et α = 1/2 + δ, we obtain

tX
k=1

°°°eβk−1°°°2 < Ct2δ, (72)

hence (72) inserted in (71) gives, ∀δ > 0, t
°°°eβt°°° 6 Ct2δ + Ct1/2+δ, so that

∀δ0, δ > 0
t1/2−δ

0
°°°eβt°°° 6 Ct−1/2−δ0+2δ + Ctδ−δ0 , (73)
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and thus ∀δ0 > 0, by taking δ < δ0, t1/2−δ
0 °°°eβt°°° converges to 0 almost surely

when t→∞.
Lemma 2.13. For all δ > 0, t1/2−δ

¡bσ2t − σ2e
¢→ 0 a.s. when t→∞.

Proof of Lemma 2.13. From (37) we have

t1/2−δ
¡bσ2t − σ2e

¢
= t1/2−δ

"
1

t

tX
k=1

{ε2k−1 − ε2k−1(bβk−2)}
+
1

t

tX
k=1

{ε2k−1(bβk−2)− ε2k−1(β
∗)}+ 1

t

tX
k=1

{ε2k−1(β∗)− σ2e}
#
,

=
1

t1/2+δ

tX
k=1

³
εk−1 − εk−1(bβk−2)´³εk−1 + εk−1(bβk−2)´ (74)

+
1

t1/2+δ

tX
k=1

³
εk−1(bβk−2)− εk−1(β∗)

´³
εk−1(bβk−2) + εk−1(β∗)

´
(75)

+
1

t1/2+δ

tX
k=1

¡
ε2k−1(β

∗)− σ2e
¢
. (76)

By Lemma 2.5, we know that
¯̄̄
εt − εt(β̂t−1)

¯̄̄
= Op(1/t), hence

tX
k=1

k−1/2−δ
³
εk−1 − εk−1(bβk−2)´³εk−1 + εk−1(bβk−2)´

converges to a finite limit and, by Lemma 2.6, (74) → 0 a.s. There exists a
constant C such that

tX
k=1

k−1/2−δ
¯̄̄³
εk−1(bβk−2)− εk−1(β∗)

´³
εk−1(bβk−2) + εk−1(β∗)

´¯̄̄

6 C
tX

k=1

k−1/2−δ
¯̄̄
εk−1(bβk−2) + εk−1(β∗)

¯̄̄ °°°eβk−1°°° .
By (68) and Lemma 2.12, we have, ∀² > 0,

°°°t1/2−²eβt°°° → 0 a.s., hence for

² = δ − δ
0
> 0, where δ

0
> 0, we have

k1/2−(δ−δ
0
)
¯̄̄
εk−1(bβk−2) + εk−1(β∗)

¯̄̄ °°°eβk−1°°° = op(1),
which implies

k−1/2−δ
¯̄̄
εk−1(bβk−2) + εk−1(β∗)

¯̄̄ °°°eβk−1°°° = op(1/k1+δ0 ),
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from which
Pt
k=1 k

−1/2−δ
³
εk−1(bβk−2)− εk−1(β∗)

´³
εk−1(bβk−2) + εk−1(β∗)

´
con-

verges to a finite limit, and, by Lemma 2.6, (75) → 0 a.s. By Lemma 2.3, (76)
→ 0 a.s. when t→∞. ¥

Lemma 2.14. (Theorem 1, Brown, 1971)
Let {St,Ft, t = 1, ...} be a martingale. Let

Xt = St − St−1, V 2t =
tX

k=1

E
¡
X2
k

¯̄Fk−1¢ , s2t = EV 2t = ES2t .
Suppose that V 2t s

−2
t converges in probability to 1 when t → ∞, and that the

following Lindeberg condition is satisfied: ∀δ > 0, s−2t
Pt
j=1EX

2
j I (Xj > δst)

converges in probability to 1 when t→∞. Then St/ st converges in law to the
normal distribution with mean 0 and variance 1.

Lemma 2.15.

(1/
√
t)
Xt

k=1
Rk(β

∗)bσ−2k F−1(β∗)ψk(β∗)ek (77)

converges in law to the normal distribution N(0,σ4eF (β
∗)).

Proof of Lemma 2.15. A sketch of the proof is given by Ljung and Söderström
(1983, p. 448), Lemma 4.B.7. A more detailed proof is as follows.
We use Lemma 2.14 with the Cramér-Wold device. Let

Y 2t =
tX

k=1

E
h
Rk(β

∗)bσ−2k F−1(β∗)ψk(β∗)ek
¡
Rk(β

∗)bσ−2k F−1(β∗)ψk(β∗)ek
¢T ¯̄̄Fk−1i

and M2
t = EY

2
t . We have

Y 2t =
tX

k=1

{Rk(β∗)− σ2eF (β
∗)}bσ−4k F−1(β∗)ψk(β∗)ψTk (β

∗)F−1(β∗)Rk(β∗)σ2e

+
tX

k=1

σ4e bσ−4k ψk(β
∗)ψTk (β

∗)F−1(β∗){Rk(β∗)− σ2eF (β
∗)}

+
tX

k=1

σ6e
¡
σ2e − bσ2k ¢ ¡σ2e + bσ2k ¢ bσ−4k σ−4e ψk(β

∗)ψTk (β
∗) +

tX
k=1

σ2eψk(β
∗)ψTk (β

∗)

(78)

Let xk be the first component of Rk(β∗)bσ−2k F−1(β∗)ψk(β∗). To prove that
St =

Pt
k=1 xkek converges in law to the normal distribution, we check the two

conditions of Lemma 2.14, with V 2t =
Pt
k=1E

³
|xkek|2

¯̄̄
Fk−1

´
and s2t = E(V

2
t ).

First, by Lemma 2.13,
¡
σ2e − bσ2k ¢ = op( t1/2−δ) and by Lemma 2.3,¡

Rt(β
∗)− σ2eF (β

∗)
¢
= op(t

1/2−δ),
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so by applying Lemma 2.6 to (78), the first three terms of Y 2t /t converge to 0
a.s. when t→∞, hence Y 2t /t→ σ4eF (β

∗). It is obvious that M2
t /t→ σ4eF (β

∗)
so V 2t /s

2
t → 1 in probability when t→∞, where st/

√
t is the square root of the

element (1,1) of M2
t /t.

Secondly, xkek = Rk(β
∗)bσ−2k F−1(β∗)ψk(β∗)ek is bounded, so there exists

t0 > 0 such that ∀t > t0, E |xkek|2 I (|xkek| > δst) = 0 and, since st →∞, then
(1/s2t )

Pt
k=1E |xkek|2 I (|xkek| > δst) → 0 when t → ∞. Hence Lemma 2.14

implies convergence in law of (St/
√
t)/(st/

√
t). In a similar way, we can show

that any linear combination of the components of (77) converges in law to a
normal distribution. ¥

Lemma 2.16. The series Ht and Lt defined by (47) and (48) converge to 0
a.s. when t→∞.
Proof of Lemma 2.16. Let us show that Lt converges to 0 a.s. when t→∞.
Consider the series

L1t =
tX

k=1

1√
k
Rk(β

∗)bσ−2k ³
F−1(bβk−1)− F−1(β∗)´ψk(β̂k−1)ek

+
tX

k=1

1√
k
Rk(β

∗)bσ−2k F−1(β∗)
³
ψk(β̂k−1)− ψk(β

∗)
´
ek.

L1t is a martingale and

E
°°L1t°°2 6 tX

k=1

1

k

°°°Rk(β∗)bσ−2k ³
F−1(bβk−1)− F−1(β∗)´ψk(β̂k−1)ek°°°2

+
tX

k=1

1

k

°°°Rk(β∗)bσ−2k F−1(β∗)
³
ψk(β̂k−1)− ψk(β

∗)
´
ek

°°°2 .
We know that F−1(β) and ∂F (β)/∂β are bounded, then by Lemma 1.2, we have
that ∂F−1(β)/∂β is bounded, and Lemma 2.4 implies that ψk(β) et ∂ψt(β)/∂βT

are bounded, then there exists a constant C such that

E
°°L1t°°2 6 C tX

k=1

1

k
E
°°°eβk−1°°°2E |ek|2 .

Using (68) and Lemma 2.12, for all ² positive,
°°°t1/2−²eβt°°°2 = t1−2²

°°°eβt°°°2 con-
verges to 0 a.s. hence E

°°L1t°°2 is bounded. Then L1t is a martingale with a
bounded variance, and using Chung, (1968, p. 310) L1t converges a.s. to a
finite limit when t → ∞, hence R−1t (β∗)L1t converges, and by Lemma 2.6, Lt
converges a.s. to 0 when t→∞.
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Let us now show that Ht → 0 a.s. when t→∞. Let

H1
t = R

−1
t (β∗)

tX
k=1

1√
k

¡
σ2e F (β

∗)−Rk(β∗)
¢ bσ−2k F−1(bβk−1)ψk(β∗)ψk(β∗)eβk

+R−1t (β∗)
tX

k=1

1√
k

¡bσ2k − σ2e
¢
F (β∗)bσ−2k F−1(bβk−1)ψk(β∗)ψk(β∗)eβk−1

+R−1t (β∗)
tX

k=1

1√
k
B1,k +R

−1
t (β∗)

tX
k=1

1√
k
B2,k,

By Lemma 2.3, we know that
√
t
¡
Rt(β

∗)− σ2e F (β
∗)
¢
converges in law, hence

∀δ > 0,
t1/2−δ

¡
Rt(β

∗)− σ2e F (β
∗)
¢
= op(1),

and since for every positive ², t1/2−²eβk → 0, then

t1−δ−²
n¡

σ2e F (β
∗)−Rk(β∗)

¢ bσ−2k F−1(bβk−1)ψk(β∗)ψk(β∗)eβko = op(1)
so that for all positive ² and δ

1√
k

¡
σ2e F (β

∗)−Rk(β∗)
¢ bσ−2k F−1(bβk−1)ψk(β∗)ψk(β∗)eβk = op(t−1−1/2+δ+²),

i.e.

R−1t (β∗)
tX

k=1

1√
k

¡
σ2e F (β

∗)−Rk(β∗)
¢ bσ−2k F−1(bβk−1)ψk(β∗)ψk(β∗)eβk

is convergent. In the same manner, we have

1√
k

¡bσ2k − σ2e
¢
F (β∗)bσ−2k F−1(bβk−1)ψk(β∗)ψk(β∗)eβk−1 = op(t−1−1/2+δ+²).

hence

R−1t (β∗)
tX

k=1

1√
k

¡bσ2k − σ2e
¢
F (β∗)bσ−2k F−1(bβk−1)ψk(β∗)ψk(β∗)eβk−1

is convergent.
In the same way as in Lemma 2.5, we can show from (43) that kB1,tk <

C
°°°eβt°°°2, where C is a positive constant, and since ∀² > 0, t1−2² °°°eβt°°°2 converges

to 0, then R−1t (β∗)
Pt

k=1B1,k/
√
k converges a.s. Let us now consider B2,t

defined by (44). We know by Lemma 2.4, that
°°°ψt − ψt(β̂t−1)

°°° = Op(1/t) and¯̄̄
εt − εt(β̂t−1)

¯̄̄
= Op(1/t), and since ψt(β) and εt(β) and bσ−2t are bounded,

then R−1t (β∗)
Pt
k=1B2,k/

√
k converges a.s. Finally H1

t is finite. According to
Lemma 2.6, Ht → 0 a.s. when t→∞. ¥
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