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Abstract

Searching for an effective dimension reduction space is an important problem in regression, especially for high

dimensional data such as microarray data. A major characteristic of microarray data consists in the small number of

observations n and a very large number of genes p. This “large p, small n” paradigm makes the discriminant analysis

for classification difficult. To answer this curse of dimensionality, a solution consists in reducing the dimension. In this

paper, supervised classification is understood as a regression problem with a small number of observations and a large

number of covariates. We propose a new approach for dimension reduction. Based on a semi-parametric approach,

we use local likelihood estimates for single index generalized linear models. We consider asymptotic properties of our

procedure and illustrate its asymptotic performances by simulations. Finally, we consider applications of our method

when applied to binary and multi-class classification of three real data sets: Colon, Leukemia and SRBCT.

Keywords: Dimension reduction; Generalized linear models; Generalized linear single-index models; Local likeli-

hood estimates; Nonparametric regression; Microarray data.
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1 Introduction

Microarray technology generates a vast amount of data by measuring, through the hybridization process, the levels

of virtually all the genes expressed in a biological sample. One can expect that knowledge gleaned from microarray

data will contribute significantly to advances in fundamental questions in biology as well as in clinical medicine.

1



One important goal of analyzing microarray data is to classify the samples. To cite a few, Golub et al. [12] have

considered classification of acute leukemia, Alon et al. [2] have addressed the cluster analysis of tumor and normal

colon tissues. The approaches developed in these papers consist in discrimination methods and machine learning

methods (see [7] for a comparative study).

In microarray studies, the number of samples, n, is relatively small compared to the number of genes, p, usually

in thousands. Unless a preliminary variable selection step is performed, standard statistical methods in classification

perform poorly because there are far more variables than observations. One problem is multicolinearity: estimating

equations become singular and have no unique and stable solution. Furthermore even if all genes can be used as in

support vector machines, it does not seem to be sensible to use all the genes. This use allows presence of the noise

associated with genes of little or no discrimination power, that could inhibit and degrade the performances of the

classification rules in its application to unclassified tumor. In this situation, dimension reduction is needed to reduce

the high p-dimensional gene space. In most previously mentioned works, the authors have used univariate methods

for reducing the number of genes.

Alternative approaches to handle the dimension reduction problem can also be used. In particular, there exist

parametric methods based on “Partial Least Squares” (PLS). In the microarray context, PLS yields orthogonal linear

combinations of genes so reducing the dimension with few “super-genes”. Nguyen et Rocke [21, 20] proposed using

PLS for dimension reduction as a preliminary step to classification, based either on linear logistic discrimination, or

linear or quadratic discriminant analysis. However, this seems to be intuitively unappealing because PLS is really

designed to handle continuous responses and models that do not suffer from heteroscedasticity as it is the case for

Bernoulli or multinomial data. More recently, Ding and Gentleman [6] proposed an approach based on the procedure

of Marx [18]. They phrased the problem in a generalized linear models setting and applied Firth’s procedure to avoid

(quasi)separation. Indeed, for logistic regression, it is well known that convergence poses a long standing problem.

Infinite parameter estimates can occur depending on the configuration of the sample points in the observation space

([1]). Fort and Lambert-Lacroix [11] proposed a new method combining Partial Least Squares (PLS) and ridge

penalized logistic regression and applied this procedure to the microarray data classification.

There exist alternative semi-parametric approaches. Antoniadis et al. [3] proposed to use the Minimum Average

Variance Estimation (MAVE, [25]) to reduce the dimension before applying (non) parametric logistic regression. As

PLS, this procedure provides linear combinations of genes. It is based on a local least square criterion combined

with a nonparametric estimation by local polynomial of the regression function. Even if this procedure handles any

response variables, it does not take into account the particular generalized linear model structure. In particular it

does not use the relationship between mean and variance and the fact that in generalized linear models, we usually

consider criteria based on likelihood (which coincides with the least square criterion only for gaussian models).

In this paper, we view the classification problem as a regression one with few observations and many predictor

variables. We propose a new approach for dimension reduction which we call GSIM. Based on a semi-parametric

approach, GSIM use local likelihood estimates for single-index generalized linear models. This method is similar to
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the procedure OPG (Outer Product of Gradients) of [25] which is a simplified version of MAVE but with comparable

performances. The difference between GSIM and OPG stands in replacing the least square criterion by the likelihood

one. So we use the particular structure of generalized linear models.

In all the dimension reduction methods mentioned above, the reduction is obtained selecting some linear combi-

nations of covariables. The goal is to search some informative direction and to delete directions which contain only

noise. There exist another family of methods: the variable selection. These approaches consist in selecting the most

informative genes. For example in diagnostic context, it could be interesting to select some genes instead of linear

combinations (using a priori all the genes). Nevertheless, the compression approaches are not incompatible with

variable selection approaches. The procedure proposed here can be used to select variables by adapting for example

the Recursive Feature Elimination (RFE) of Guyon et al. [14].

This paper is organized as follows. In Section 2, we consider generalized linear model. In particular, we recall

classical parametric and nonparametric methods with some limitations in high dimension. Next we give the definition

of the generalized linear single-index models that allows to overcome the dimensionality problem. Section 3 is devoted

to our estimation method in these models. First, we propose a procedure in the asymptotic context and give its

asymptotic properties. Next, we propose to modify it in the “large p and small n” case by introducing a ridge

penalty. In Section 4, we illustrate the asymptotic performances of our procedure by simulations. We also consider

applications of our methods when applied to binary and multi-class classification on three real data sets: Colon,

Leukemia and SRBCT (that is in the “large p and small n” case). Section 5 contains the proofs of asymptotic

properties.

2 Model and Notations

After recalling the definition of the generalized linear models, we present the maximum likelihood method. In

particular, we point out the problem of existence of the maximum likelihood estimator for the logistic regression. A

nice overview for generalized linear models can be found in [8]. We also recall the local likelihood method, viewed as

a nonparametric approach. In both situations, we underline the limitations of these approaches in the case of “small

n large p” and we propose to consider instead the generalized linear single-index models.

2.1 Notations

For two integers l < m, l : m is the vector (l, l + 1, . . . , m). The p-dimensional vector of components equal to one is

denoted by 1In; (e1, · · · , en) is the canonical base of Rn and Idn is n× n identity matrix. For a matrix A, we denote

by Ai,j the element (i, j) (when A is one vector, we use the notation Ai); Ai:j,: is the matrix composed of A rows

from i to j; AT denotes its transpose and |A| its determinant.
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For l = (l1, . . . , lp) a vector of Np, we introduce the following notations,

|l| =
p∑

j=1

lj , l! =
p∏

j=1

lj !, ∀x ∈ Rp, xl =
p∏

j=1

x
lj
j .

Let f be a function which has continuous partial derivatives in Rp up to order q. For l ∈ Aq = {l; |l| ≤ q}, the

partial derivate ∂|l|f(x)/∂xl is denoted by Dlf(x). We also denote by ∇ the gradient operator.

2.2 Generalized linear models

2.2.1 Definition

Let (XT
1 , Y1), . . . , (XT

n , Yn) be an independent random sample of the random pair (XT , Y ), where Y is a response

variable of RG, where G is positive integer, and X is the associated covariate vector of Rp. We assume that the

conditional density of Y given X = x, belongs to a canonical exponential family [19]

fY/X(y) = exp
{

yT θ(x)− b(θ(x))
a(φ)

+ c(y, φ)
}

(1)

for some known functions a(·), b(·) and c(·, ·). The parameter θ(·) is called the canonical parameter and φ is called

the dispersion parameter. Recall that the law support of this distribution must be independent of θ(·). Under the

model (1), it can be shown that

E(Y |X = x) = ∇b(θ(x)) = µ(x), Var(Y |X = x) = a(φ)∇2b(θ(x)).

In parametric generalized linear models, some transformation of the regression function µ(x) = E(Y |X = x) is

supposed to be linear in the covariates:

gk(µ(x)) = ηk(x) = xT γ(k), k = 1, . . . , G, (2)

where the function g : RG → RG is called the link function. The choice of g = (∇b)−1 allows to identify the linear

predictor η(x) with the canonical parameter θ(x), and this special link is called canonical link.

In some cases, the linear relation of the parametric approach is not guaranteed. To enhance the flexibility of the

model, another approach consists in supposing that η(x) is a nonparametric function.

2.2.2 Example: logistic regression

This model is used for the polychotomous discrimination problem which will be considered for applications to mi-

croarrays. The categorical outcome have G + 1 classes labeled 0, 1, . . . , G, and the response variable Y is coded in

the following way. The k-th component of Y is equal to 1 and the others are zeros if and only if the label is k. The

label 0 is coded by G components equal to 0. This model is a multinomial one with parameters (µ0, · · · , µG) where

µk is the probability of the k-th class. The case G = 1 correspond to the Bernoulli model.
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That is a generalized linear models with Y ∈ {0, 1}G and link function gk(µ) = ηk = ln µk − ln µ0, 1 ≤ k ≤ G. The

canonical exponential family is defined by a(φ) = 1, b(η) = ln(1 +
∑G

l=1 exp(ηl)) and c = 0. It follows that

µk =
exp(ηk)

1 +
∑G

l=1 exp(ηl)
, 1 ≤ k ≤ G. (3)

2.3 The parametric approach: maximum likelihood

2.3.1 Log-likelihood function

In the model (2) the parameter vector of size G(p + 1) defined by γ = (γ(1)T
, . . . , γ(G)T

)T is estimated by maximum

likelihood. We suppose the model to be sufficiently regular as in the logistic regression case.

Here we need some additional notations. The observations (yi, xi) of (Yi, Xi), 1 ≤ i ≤ n, are collected in the vector

of response variables Y ∈ RGn and in the design matrix X(G) ∈ RGn×Gp. The k-th bloc of Y is given by

Yιk+1:ιk+G = yk, with ιk = (k − 1)G, k = 1, . . . , n. (4)

In the same way, the rows from ιk + 1 to ιk + G of X(G) are build from the realization xk of Xk. Precisely, we have

X(G)
ιk+1:ιk+G,: =




xT
k 0 · · · 0

0 xT
k · · · 0

· · · · · · · · · · · ·
0 · · · 0 xT

k




. (5)

The bloc matrix Z(G) ∈ RGn×G(p+1) is defined from the vector zk = [1 xT
k ]T in an analogous way. Notice that for

G = 1, X(G) is the usual design matrix X(1) of size n× p, and that Z(1) = [1In X(1)].

The log-likelihood of the observations for the value γ, simply denoted by `(γ), is given by (up to a multiplicative

term independent of γ)

`(γ) = YT Z(G)γ −
n∑

k=1

b
(
(Z(G)γ)ιk+1:ιk+G

)
.

Such an estimate is a solution to the normal equation Z(G)T
(Y − µ(γ)) = 0 and the means vector µ is given by

∀1 ≤ k ≤ n, µιk+1:ιk+G(γ) = ∇b(ε)
∣∣∣ε=(Z(G)γ)ιk+1:ιk+G

. (6)

Notice that `(γ) depends on γ through the linear predictor η = Z(G)γ. To make identifiable the parameters relating to

the constant in the model (γkp+1, k = 0, . . . , G−1), X(1) must be centered: X(1)−1In1ITnX(1). It is also recommended

to standardize the design matrix for numerical stability in the computations.

2.3.2 Iteratively Reweighted Least Squares

If Z(G) is of full column-rank, the parameter γ is identifiable. In general, the normal equations are not linear in γ and

are solved in an iterative way. When the estimate exists and is unique, it can be computed as a limit of a converging
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Newton-Rapson sequence. This algorithm is known as the Iteratively Reweighted Least Squares (IRLS) algorithm

([13]). Let W(γ) ∈ RGn×Gn be a bloc diagonal matrix, with its k-th bloc equal to ∇2b
(
(Z(G)γ)ιk+1:ιk+G

) ∈ RG×G,

for 1 ≤ k ≤ n. Since ∇2`(γ) = −Z(G)T
W(γ)Z(G), IRLS iterations lead to a sequence (γt)t given by

γt+1 = γt +
[
Z(G)T

W(γt) Z(G)
]−1

Z(G)T (
Y − µ(γt)

)

=
[
Z(G)T

W(γt) Z(G)
]−1

Z(G)T
W(γt)

{
Z(G)γt +

[
W(γt)

]−1 (Y − µ(γt))
}

.

That is γt+1 are obtained by a weighted least square regression of the pseudo-variable

z t = Z(G)γt +
[
W(γt)

]−1 (Y − µ(γt)) (7)

onto the columns of Z(G). For a convergent sequence, we have γ̂MV = limt γt.

If Z(G) is not full column-rank, the parameter γ is no longer identifiable. Nevertheless, we can always consider the

full column-rank matrix Z(red,G) obtained with common computation based on singular value decomposition. When

it exists, we have then a ML estimator γ̂MV ∈ Rrank(Z(G)) and γ̂MV is defined as the minimal norm vector among all

vectors satisfying Z(G)γ = Z(red,G)γ̂MV.

2.3.3 Particular case of the parametric logistic regression

When Z(G) is of full column-rank, the ML estimator does not necessary exist. It depends on the configuration of the

n sample points in the covariables space (cf. [1, 23, 17]). There are three exclusive cases: separate, quasi-separate

and overlap situations. In the first case, there exist γ such that for 1 ≤ k ≤ n, 1 ≤ i ≤ G,

[
(Z(1)γ(i))k > (Z(1)γ(l))k, ∀l ∈ {0, · · · , G} \ {i}

]
if and only if Yιk+i = 1, (8)

with γ(0) = 0. The quasi-separation stands when the strict inequality in (8) is replaced by a large one. In both these

cases, the function ` is maximal when ‖γ‖ → +∞ and the ML estimator does not exist. In the overlap case, normal

equations possess an unique solution, which in practice, is computed by the iterative Newton-Raphson method.

Notice that the choice γ0 = (G + 1)−1(3Y + (1IGn −Y)) is a good initialization to obtain a convergent sequence in

the IRLS algorithm ([8]).

In the applications considered in Subsection 4.2, we have n << p, such that in practice rank(Z(G)) = Gn. The

matrix Z(G) is not of full column-rank. By reparametrization, the likelihood equations leads to Y = µ that involves

(cf. (6))

(Z(red,G)γ̂)ιk+i = ln

(
Yιk+i

1−∑G
l=1 Yιk+l

)
, ∀1 ≤ k ≤ n, 1 ≤ i ≤ G.

So we have ‖γ̂‖ = +∞ and it follows that the likelihood estimator may never exist. So we must consider a dimension

reduction method to address the regression problem in a subspace of smaller dimension.
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2.4 The nonparametric approach

When η(·) is modeled in a nonparametric way, we can consider an estimation method based on local likelihood [9].

This method is commonly presented for the case of p = 1 and G = 1. Due to the applications considered here, we

present it for any p and G. The function η(·) is locally approximated by a polynomial of order q

ηk(u) ∼
∑

l∈Aq

Dlηk(x)(u− x)l/l! =
∑

l∈Aq

ak
l (u− x)l, k = 1, . . . , G,

for u in a neighborhood of x. We denote by al the vector (a1
l , . . . , a

G
l )T . Let Kp be a p-dimensional kernel, H a

bandwidth matrix, and Kp
H(·) = |H|−1Kp(H−1·) be the rescaling of Kp. The local likelihood is a weighted likelihood,

with weights Kp
H(Xi − x) :

n∑

i=1

L

 ∑

l∈Aq

al (Xi − x)l, Yi


 Kp

H(Xi − x). (9)

Here L(u, Y ) is the log-likelihood function in which η(x) is replaced by its polynomial approximation u. The local

likelihood leads to D̂lηk(x) = l! âk
l (x), where {âl(x), l ∈ Aq} maximizes (9) with respect {al, l ∈ Aq}. In particular,

we have

η̂k(x) = âk
(0,...,0)(x), ∇̂ηk(x) = (âk

e1
(x) . . . , âk

ep
(x))T , k = 1, . . . , G.

The estimators {âl(x), l ∈ Aq} are determined by an iterative algorithm as IRLS with adequate design and weight

matrices. We can find in [9] several methods in order to estimate the bandwidth matrix in the case p = 1 and G = 1.

Due to the curse of dimensionality, surface smoothing techniques are not very useful in practice when there are

more than two or three predictors variables. Indeed this problem refers to the fact that a local neighborhood in

higher dimensions is no longer local. To deal with the curse of dimensionality problem, we propose to consider the

generalized linear single-index models.

2.5 Generalized linear single-index models

In order to overcome the dimensionality problem, a popular way consists in first projecting all the predictors X onto

a linear space spanned by the predictors and in fitting a nonparametric curve to their linear combinations. As in

the previous subsection, we introduce these models for any G although they are generally presented for G = 1. That

leads to the linear single-index model

Y = µ(X) + ε, µk(X) = µ̃k(β(k)T
X), k = 1, . . . , G, (10)

with E(ε|X) = 0 almost surely and where µ̃k (resp. µk) are functions defined over R (resp. Rp).

Clearly the scale of β(k)T
X in µ̃k(β(k)T

X) can be chosen arbitrarily: for any ck > 0 (β(k), µ̃k(·)) and

(ckβ(k), µ̃k(·/ck)) leads to the same regression function. On the other hand, we have

E[∇µk(X)] = E
[
∇{µ̃k(β(k)T

X)}
]

= E
[
{∇{µ̃k}(β(k)T

X)}
]
β(k).

For identifiability purposes we propose to set β(k) = E(∇µk(X)).
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3 Estimation method

Our goal is to estimate β(k) and ηk for k = 1, . . . , G. First we consider our approach in the asymptotical context and

give the properties of the resulting estimate. In the applications to microarray data, we are far from the asymptotical

case, and we propose to modify our approach by introducing a quadratic regularization term as ridge penalization.

After discussing the computational aspects and choice of the hyperparameters, we compare our procedure with

(r)OPG [25]. Notice that even if we consider applications with small n, we think that it is important to study

asymptotic properties of our estimator, to justify their use.

3.1 Asymptotical view

3.1.1 binary case

We first consider the case G = 1 and consequently we temporally omit the index k which takes only one value equal

to 1. We have β = E((g−1)′(η(X))∇η(X)). The idea developed here is to estimate η and ∇η by their maximum local

likelihood estimator η̂ and ∇̂η. Then β is estimated by the empirical mean of the variables (g−1)′(η̂(Xi))∇̂η(Xi). To

end, ̂̃η is given by maximum local likelihood estimator computed from the sample (β̂T X1, Y1), . . . , (β̂T Xn, Yn) and

µ̂(x) = g−1(̂̃η(β̂T x)).

Our procedure for estimating β and η is described in the following algorithm.

Algorithm 1

Step A: For j = 1, . . . , n, find η̂(Xj) = â(0,...,0)(Xj) and ∇̂η(Xj) = (âe1(Xj) . . . , âed
(Xj))T , by maximizing

n∑

i=1

L

 ∑

l∈Aq

al(Xi −Xj)l, Yi


 Kp

H(Xi −Xj), (11)

with respect al, l ∈ Aq. We put

β̂ =
1
n

n∑

i=1

(g−1)′(η̂(Xi))∇̂η(Xi).

Step B: Find η̂(x) = â0 by maximizing

n∑

i=1

L
[
a0 + a1(β̂T (Xi − x)), Yi

]
K1

hB
(β̂T (Xi − x)), (12)

with respect a0 and a1.

This procedure involves the choice of a smoothing parameter at two different levels and also the one of the order

q of the polynomial approximation in step A. This point will be developed in Subsection 3.3.

We are now considering asymptotic properties of the direction estimator in Step A. We first introduce some

notations. Let li(u, v) = (∂i/∂ui)L(g−1(u), v); li is linear in v for fixed u, and

l1(η(x), µ(x)) = 0, l2(η(x), µ(x)) = −ρ(x),
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where ρ(x) = {g′(µ(x))2V (µ(x))}−1 and V (µ(x)) = Var(Y |X = x). We suppose that the following conditions are

satisfied.

Conditions

1. The vector of covariates X have a density f with compact support SX .

2. The functions f(·), Dkη(·), |k| = q + 2, Dkf(·) and Dkρ(·) for |k| = 1, are continuous for x ∈ SX .

3. The function l2(u, v) < 0 for u ∈ R and v in the range of the response variable.

4. The functions l1(u, v) and (g−1)′′ are bounded and (g−1)′′ is continuous.

5. Var(Y |X = x) 6= 0, and g′(µ(x)) 6= 0, for x ∈ SX . We also assume that

inf
x∈SX

(ρ(x)f(x)) > 0.

6. The Kernel Kp is a probability density having compact support SKp . The bandwidth is a diagonal matrix

H = hIdp. We assume that h = cn−α, c being a constant, and we also assume that nhp+2 goes to infinity. This

last condition leads to the constraint α < 1/(p + 2).

7. We assume the existence of δ > 0 such that

1− 2δ

2q + p + 2
< α <

1− 2δ

p + 2
. (13)

These conditions are quite classical for this kind of models. Conditions 1 and 2 correspond to classical assumptions

on the covariates. The conditions 3 and 4 insure the concavity of the objective function L and regularity assumptions

on L and the link function. If the canonical link is used and if the variance is correctly specified (see condition 5)

then the condition 3 holds. In this case, condition 3 is equivalent to b
′′

> 0, which holds because of Var(Y |X = x) =

b
′′
(θ(x)). The condition 5 is not restrictive, it is a condition on the GLM, on the distribution of X and the second

derivative of the objective function. The assumption on Kernel and bandwidth (condition 6) are quite usual. Note

that conditions 3 and 5 imply that ρ is strictly positive over SX , the support of covariables. The constraints given on

alpha in the last two conditions are quite close to the choice that would be made for estimation without penalization,

and the choice to achieve a good balance between bias and variance is

α =
1

2q + p + 2
.

Theorem 1 (Consistency of the estimator β̂) Under the foregoing conditions, β̂ is a consistent estimator of β which

means that

∀ε > 0, lim
n→∞

P (|β̂ − β| > ε) = 0.
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The proof of Theorem 1 is given in Appendix 5.2. In this theorem, we obtain the consistency of the direction

estimator in stepA, but we do not have any convergence rate. We already tried to obtain a speed in
√

n but our

method of proof requires then constraints such as q > p/2. Considering that in practice we have q = 1 or 2, such a

constraint is unacceptable, and the task of obtaining better rates is left for future research.

3.1.2 Multicategorial outcomes

When G > 1, we can estimate the directions as in the step A. Indeed, in the logistic regression model for example,

we have

β(k) = E

(
G∑

m=1

ψk,m(X)∇ηm(X)

)
,

where

ψk,m(X) =
exp(ηk(X))

1 +
∑G

l=1 exp(ηl(X))

[
δk,m − exp(ηm(X))

1 +
∑G

l=1 exp(ηl(X))

]
,

and δk,m = 1 if k = m, 0 otherwise. So β(k) can be estimated by the corresponding empirical mean. On the other

hand, the application of the step B is not straightforward. Recall that a0 + a1(β̂T (Xi − x)) in (12) corresponds to

the local linear expansion of η̃ at β̂T x. The role of K1
hB

(β̂T (Xi − x)) is to weight strongly the point for which this

expansion is valid. For G > 1, at each point (Xi, Yi), we have G local linear expansions: η̃k at β̂(k)T x and the difficulty

stands in the determination of the weight. A natural choice is a weight equal to KG
HB

({β̂(k)T (Xi − x)}k=1,...,G) but

the determination of the matrix HB is a difficult problem still open. So we propose to replace the nonparametric fit

by a parametric one. This fit is slightly different from the one presented in the Subsection 2.3.1: the bloc X(G)
ιk+1:ιk+G,:

is replaced by

X(G)
ιk+1:ιk+G,: =




β̂(1)T xk 0 · · · 0

0 β̂(2)T xk · · · 0

· · · · · · · · · · · ·
0 · · · 0 β̂(G)T xk




.

Notice that, under similar assumptions and using exactly the same arguments as for the binary case, we can prove

the consistency of the resulting estimators β̂(k), k = 1, . . . , G.

3.2 Small n and large p case

The maximization of (11) corresponds to the research of a weighted log-likelihood maximum, with weights

(Kp
H(Xi −Xj))i and with a particular design matrix with columns growing with q. In practice, it is determined

by an algorithm as IRLS (Section 2.3.2). In Subsection 2.3.3, we have recalled that the maximum does not always

exist. In particular for the logistic regression, the likelihood maximum may never exist when the rank of the design

matrix is equal to n (Section 2.3.3). In the applications considered here, this rank is given by n. Two approaches

can be considered to avoid this problem. Firstly, we can select some covariables. Secondly, we can introduce a ridge

type penalty in the weighted log-likelihood.
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One could have chosen to select some genes instead of introducing a penalty term. Nevertheless, we tried our

algorithm without penalty for microarray data, by selecting genes, and then the best results were obtained for a very

small number of genes (two or three). These results were less good than those obtained when introducing a penalty

term. Moreover, the results were worsening quite fast when increasing the number of genes considered. In fact, the

noise triggered by the increasing number of genes is not compensated by the weighting which is not sufficient to

correct the variability introduced by the number of genes. To obtain a better stability, one needs a large value of h

parameter.

So in this paper we chose to introduce a ridge penalty, solution which allows to consider all the covariables.

Moreover, a ridge penalty for the gradient estimate has been introduced by [24] in the gaussian context when p = 1.

This penalty allows to solve problems such as sparse or clustered design. We expect to encounter this situation in

the classification problems. So we believe that this penalty is needed even for large n.

3.3 Computational view and hyperparameters selection

In the first step of the algorithm, we must chose the order q of the polynomial approximation. In practice we retain

a linear fit as for the rOPG method introduced in [25]. Moreover, we use in the step A a product kernel in order to

reduce the curse of dimensionality; that leads to take a diagonal bandwidth matrix H. The kernels are gaussian.

Recall that the covariables are not standardized to have unit sample variance. Let denote by Σ2 the diagonal

matrix such that Σ2
i,i is given by the empirical variance of the covariable Xi. When the covariables are measured in

different units, it is typically recommended that the variables be first standardized to make the penalty meaningful.

That yields to use the norm ‖u‖2Σ2 = uT Σ2u for the coefficients associated with the gradient. Precisely, for example

in the case of G = 1, that consists in replacing (11) by

n∑

i=1

L [
a~0 + bT (Xi −Xj), Yi

]
Kp

H(Xi −Xj)− λ

2
bT Σ2b,

where b = (ae1 , . . . , aep)T . Such a penalty strongly penalizes the gradient in the directions that are the most variable.

Notice that we make this standardization even in the case of expression arrays where for example the variables are

all measured in the same unit and where this standardization is optional. Let X(1)
s = (X(1) − 1In1ITnX(1)/n)Σ−1 be

the standardized design matrix. We denote by β̂λ
s (resp. β̂λ) the estimator corresponding to X(1)

s (resp. X(1)) with

bandwidth matrix Hs (resp. H) and the usual euclidian (resp. ‖ · ‖2Σ2) norm in the penalty term. We can show that

β̂λ = Σ−1β̂λ
s for Hs = HΣ−1. Then it is natural to compute the estimator by using the standardized design matrix.

So we consider Hs = hAIdp, and then we reduce the number of hyperparameters to chose.

Our procedure involves the choice of a smoothing parameter at two different levels. At the first one, the aim is

the estimation of η and its gradient, and the bandwidth hA should be optimal in this respect. When we need to

penalize the log-likelihood, we must also determinate the regularization parameter λ. We opt for cross-validation.

At the second step, we want to estimate η̃ and hB should be optimal for this task. For this most common choice, we

opt for the plug-in method proposed by [9]. In the applications to microarrays, the projections of the covariables on
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the estimated direction sometimes split into two groups with very close numerical values within each group. In this

case, it is not possible to compute hB by the plug-in method and it is natural to use a parametric fit.

For example when G = 1, the procedure, presently derived in Rp can be equivalently derived in Rr where

r = rank(X(1)) ≤ n. For this purpose, we compute the Singular Value Decomposition UDV ′ (SVD) of X(1)
s ,

the standardized design matrix and collect the first r columns of UD in X(red,1)
s = (UD):,1:r. It is readily seen that

GSIM, run by replacing X(1)
s by X(red,1)

s , yields an estimate β̂red,λ uniquely related to β̂λ
s by β̂λ

s = V β̂red,λ. Hence,

up to a SVD, the procedure is independent of p which is of computational importance. When G > 1, we have to use

the matrix X(red,1)
s to construct X(red,G)

s and β̂
(k),λ
s = V β̂red,(k),λ for k = 1, . . . , G.

3.4 Comparison with rOPG

The procedure (r)OPG, introduced by [25], estimates the estimated effective dimension reduction space spanned

by κ (κ ¿ p) orthogonal directions. When κ = 1, this method is equivalent to step A of GSIM but with a least

square criterion used instead of log-likelihood one. The direction is estimated by the vector associated to the largest

eigenvalues of the empirical estimation of E(∇µ(X)∇µ(X)T ). The refined version, denoted by rOPG, consists in

iterating until convergence a step A’ (after the step A) defined by the following instructions. Put {β̂}0 = β̂ and

at the k-th iteration, {β̂}k is obtained as in step A with weight K1
h({β̂}(k−1)T (Xi −Xj)) instead of Kp

H(Xi −Xj).

Indeed, in the linear single-index model, the function η is constant in the direction orthogonal to β, so we can stretch

the window in this direction. That makes the kernel K1
h(βT (· −Xj)).

Even if the (r)OPG method can handle any type of response variable, the least square criterion seems to be well

adapted to gaussian situations but not to a categorical response. For example, when applied to categorical responses,

we have observed that the results depends on the labels. Precisely, if we switch the labels, the direction estimation

changes. That could lead to classification results very different according to the labels order (see Subsection 4.2).

That does not occur for GSIM.

In [25], the procedure (r)OPG is not applied in high dimension data problems. In such cases, for the gradient

estimation, the method amounts in projecting (in some geometry inducted by the weights computed from the kernel)

one vector of length n on a space of dimension n. So the projection is the vector itself and does not depend on the

bandwidth. In fact, it is equivalent to consider the parametric model µ(X) = α+βX and to estimate β by likelihood

maximum. It seems to be not very interesting to do that in our situation. So we propose to introduce, as for GSIM,

a ridge penalty. Notice that in the code proposed by the authors, there exists one term of numerical stabilization

corresponding to one ridge penalty fixed to 0.0001. Our approach only makes this constant a parameter λ.

In a classification goal, we have applied the same step B of GSIM after estimating β to make comparable the

methods. So we show that taking account the relationship between expectation and variance in GLM, we improve

the results. As for GSIM, we use cross-validation technique to determine the hyperparameters and plug-in method

for compute the bandwidth of the second step.

Notice that this classification rule is slightly different from the method used in [3] where the dimension reduction
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is obtained with MAVE another method developed by [25]. In fact, rOPG is a simplified version of MAVE and we

have observed that both these methods lead to comparable performances. We have considered rOPG since it is most

directly related to the step A of GSIM.

Concerning the numerical implementation, the procedure (r)OPG is stable by reparameterization using SVD as

is GSIM. Only OPG is invariant up to the columns standardization. However we have choosen to standardize the

design matrix to compare fairly the methods.

4 Numerical examples

4.1 Asymptotic study

In this subsection, we use one binary regression example to demonstrate the relation between estimation errors and

the bandwidth for step A of GSIM and to check the asymptotic performance of our estimation.

As in the rOPG method, we fix λ = 10−4 to stabilize numerical computations. Then the parameter hA is

determined by cross-validation on the mean-squared error. Indeed ([16]) the choice of the error criterion depends

mainly on the way that the model is used to predict future observations. Notice that when n is very large (500 for

example) cross-validation requires very long computational time. In this case, since n is very large we can randomly

split the sample into a learning set and a test set for which we compute the mean-squared error as above. We recall

that the bandwidth hB is determined by plug-in method.

We consider the following binary regression model:

η(Xi) = η̃(βT Xi), β = (−1, 1, 1, 1)T /2, η̃(u) = 3 sin(2u).

The covariables Xi = (X(1)
i , . . . , X

(4)
i )T are such that X

(1)
i ∼ N (0.5; 1) and X

(k)
i ∼ N (0; 1), k = 2, 3, 4. The

components of Xi are independent. We run 100 replicates of the observation sequence of sizes n = 50, 100, 250 and

500. Concerning step A, we define the estimation error as ‖β̂ − β‖2 (where ‖ · ‖2 is the usual euclidian norm).

With different sample sizes and bandwidths, the average errors are shown in Figure 1. The vertical lines are the

corresponding average of cross-validation bandwidths. This figure shows that the estimation procedure works well

and cross-validation bandwidth is applicable to parameters estimation. Simulation results are listed in Table 1.

In order to evaluate the step B, the performance of the estimator ̂̃η is assessed via the square root of average

squared errors (RASE)

RASE =


 1

ngrid

ngrid∑

j=1

[̂̃η(uj)− η̃(uj)]2




1/2

,

where {uj , j = 1, . . . , ngrid} are the grid points at which the function η̃ is estimated. Here we have taken 50 points

uniformly spaced in the range [−1.5; 1.5]. The results are given in Table 1. Figure 2 summarizes typical performance

of the estimators of the function η̃ for n = 250 and 500.
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4.2 Applications to microarray data

4.2.1 Supervised learning

The goal of the supervised learning is to predict the labels of some sample (like tumor class) from its gene expression

profile. The classes are predefined and the task is to understand the basis for the classification from a set of labeled

objects (training or learning set). This information is then used to classify future observation. This classification

problem can be viewed as a regression one. As seen, categorical outcomes belong to generalized linear models family.

For a new gene expression profile x, we can compute from the learning set, η̂(x) ∈ RG where η̂ is any estimator

of the predictor η. Therefore the classification rule consists in predicting the class by that which gives the largest

likelihood. This is equivalent to predict class i if and only if

[η̂i(x) ≥ η̂l(x), ∀l ∈ {0, · · · , G}] ,

where η̂0 = 0 by convention. Hence methods such as rOPG or GSIM may be used in applications to classification of

microarrays data.

4.2.2 Comparison methods

We compare the classification results from our procedure to those of other classifiers including rOPG, diagonal linear

discriminant analysis (DLDA), diagonal quadratic discriminant analysis (DQDA) and k-nearest neighbors (KNN)

based on the Euclidean distance (see [5] for an overview of these last three methods).

DLDA, DQDA and KNN are thus introduced in the present paper as “classical statistical method”. Comparing

our method with rOPG, we show how to improve the results obtained by rOPG by taking into account the GLM

structure.

4.2.3 Data and pre-processing

We will consider in turn two data sets.

Colon1: The Colon data set contains 62 tissue samples with 2000 genes: 40 tumors tissues, coded 1, and 22 normal

tissues, coded 0 (see [2] for more details).

Leukemia2: The Leukemia data set, contains 72 tissue samples with 7129 genes: 47 cases of acute lymphoblastic

leukemia (ALL), coded 0, and 25 cases of acute myeloid leukemia (AML), coded 1 (see [12] for more details).

Furthermore, we can also treat these data as a multi-class problem by considering both type B (38 samples) and T

(9 samples) of the ALL case.

SRBCT3: This data set consists of microarray experiments of small round blue cell tumors (SRBCT) of childhood

cancer (see [15]). It contains 88 samples with 2308 genes: 29 cases of Ewing sarcoma (EWS), coded 1, 11 cases of

1http://microarray.princeton.edu/oncology/affydata/index.html
2http://www.broad.mit.edu/cancer/software/genepattern/datasets/
3http://www.thep.lu.se/pub/Preprints/01/lu tp 01 06 supp.html
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Burkitt lymphoma (BL), coded 2, 18 cases of neuroblastoma (NB), coded 3, 25 cases of rhabdomyosarcoma (RMS),

coded 4. A total of 63 training samples and 25 test samples are provided. Five of the test set are non-SRBCT and

are not considered here.

Pre-processing: For Leukemia and Colon data, the pre-processing steps recommended in [7] are applied: thresh-

olding (floor of 100 and ceiling of 16000)/ filtering (exclusion of genes with max/min≤ 5 and (max-min)≤ 500 /

log10-transformation / standardization in row (each sample is centered and normalized). Notice that this last step

is essential to have microarrays at the same scale. The goal of this standardization differs from the one of the

standardization “in column” in order to avoid identifiability problem and to have good regression behavior. These

pre-processing steps yield a resulting number of covariates depending on the subdivision Learning and Testing set,

lower than the initial number of genes but still far larger than the number of observations. Notice that the SRBCT

data do not need pre-processing.

4.2.4 Assessing prediction methods

Resampling study: It is common to assess the performance of the classification rules for a selected subset of genes

by their errors on the test set and also by their leave-one-out cross-validated errors. Due to the instability of leave-

one-out error rates, we perform a re-randomization study i.e. an out-of-sample analysis on 100 random subdivisions

of the data set into a learning set and a test set. For the Colon data no learning and test sets are available and we

have chosen a test set size equal to one third of the data (2:1 scheme of [7]). In each learning test, each subclass is

represented with the same proportion as in the total population. For the Leukemia and SRBCT data, a test set is

available and we randomly split the original data set into a training set and a test set of the same size as the original

ones. Here each subclass is represented with the same proportion as in the original learning set (for example 19

ALL-Bcell, 8 ALL-Tcell and 11 AML for Leukemia data). We use the same subdivisions for Leukemia data, when

we treat these data as two or three classes problem. Each subdivision yields a test set error rate for each predictor;

Boxplots are used to summarize these error rates over the runs.

Hyperparameters choice:

The optimal number of neighbors k for KNN method is determined by a cross-validation technique based on the

misclassified rate. The k range for is given by Kl = {1, . . . , 20}. Moreover, bandwidth and regularization parameter

(for rOPG or GSIM step A) are simultaneously determined by cross-validation techniques based on misclassified rates.

For rOPG (resp. GSIM), we use 5 log-linearly spaced points in the range [10−3; 30] (resp. [10−3; 30]) for λ and in the

range [0.5; 6] (resp. [0.8; 100]) for hA. The hA range for the both methods differs. Indeed, the bandwidth for rOPG

method correspond to univariate kernel since in the refined version of OPG, the kernel is computed over covariables

after projection. Note that, to fairly evaluate and compare the methods, pre-processing and (hyper)parameters

estimations are performed on the training set (at each step of the cross-validation process).
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4.2.5 Discussion

Misclassification rates results are reported in tables 2 to 6 and boxplots are plotted in figures 3 to 6. For Colon

data, one can observe that DLDA, DQDA and GSIM methods leads to similar misclassification rate with slightly

best results for DLDA. However, for Leukemia data, one can notice that GSIM seems to provide best results than all

the other methods. If DLDA remains good for two class data, when we consider three classes, GSIM misclassication

rate is significantly smaller. For SRBCT data, the results of GSIM become very good compared to other methods.

This method seems to be the most relevant method for categorical data.

When proposing the GSIM method, the aim was to improve rOPG results by developing a method adapted to

categorical data. This purpose seems to be fully reached: the results are a lot better. Furthermore, it is important to

point out a serious drawback of the rOPG method: if we switch the data labels (that is, for example, replacing 0 by 1

and 1 by 0 for two classes data), we observe differences in the results. For example, in table 5, we give the results for

rOPG method, considering all the possible different labels orders for Leukemia data with 3 classes. Misclassification

rate can be almost doubled depending on the labels order. We also observe differences for two classes data when

switching labels: a mean error rate of 0.061 instead of 0.052 for Leukemia data and 0.201 instead of 0.199 for Colon

data. Moreover, even when the misclassification rates are quite the same globally, they often differ in detail, the

misclassified samples are not the same. That confirms that such a method is not suitable for categorical data.

The results obtained with KNN method are slightly less good than those obtained with DLDA, DQDA and GSIM

methods. Besides, in practice we observe many cases of indecisions. We really believe that the frequent occurrence

of the indecision case shows that KNN is not a pertinent method (for this kind of data sets). The weakness of this

classical statistical method is clearly illustrated by the numerical results. This problem probably refers to that in

higher dimensions, nearest neighbors are not in a local neighborhood.

We also want to stress on the importance of the standardization in row of the data, that we see as a normalization

between the microarrays. Note that this treatment is not needed for SRBCT data which is already conveniently

preprocessed. DLDA and DQDA methods are very sensitive to this standardization in row: if the results obtained

are quite good when the standardization is done, they deteriorate when this pre-processing step is suppressed. For

example in Colon data case, we obtain a mean error rate of 0.286 (instead of 0.144) for DLDA and 0.314 (instead of

0.154) for DQDA. GSIM method has showed a better stability respect to this standardization in row step, the results

are almost the same when the standardization is not done: 0.170 (instead of 0.155).

Thus, GSIM method provides good results for all the considered data sets, especially for Leukemia data with three

classes and SRBCT data. We may expect to still have good results even with more classes which is not the case for

the other methods tested.
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5 Appendix

In this section, we give the proof of Theroem 1. In order to obtain asymptotical properties of β̂, we need some

asymptotical properties of the estimators of Dkη(x). These properties are given by two lemma presented and proved

in Section 5.1. Theorem is proved in Section 5.2.

5.1 Proof of two lemma

The proofs of the two lemmas presented in this appendix are quite similar as in the univariate case, notations are

just becoming a little more complicated (for the univariate case, see [10, 9]). Here we assume that the conditions of

the Theorem 1 are verified.

We consider the normalized estimator â∗(x) which is a vector of length equal to the cardinal of Aq and with

component l ∈ Aq given by

c−1
n h|l|[âl(x)−Dlη(x)/l!],

where cn = (nhp)−1/2. It can easily be seen that â∗(x) maximizes

n∑

i=1

L
[
g−1

(
η̄(x,Xi) + cna∗T R(x,Xi)

)
, Yi

]
Kd(H−1(Xi − x)),

as a function of a∗, where

η̄(x,Xi) = η(x) +
∑

k∈Aq\A0

Dkη(x)(Xi − x)k/k!

and

R(x,Xi) =
{
(H−1(Xi − x))k

}
k∈Aq

.

Equivalently, â∗(x) maximizes

Ln(a∗) =
n∑

i=1

(
L

[
g−1

(
η̄(x,Xi) + cna∗T R(x,Xi)

)
, Yi

]
− L [

g−1 (η̄(x,Xi)) , Yi

])
Kp(H−1(Xi − x)).

Condition 3 implies that the function Ln is concave in a∗. A Taylor series expansion of L ([
g−1(·), Yi

])
leads to

Ln(a∗) = WT
x a∗ +

1
2
a∗T Ana∗ +

c3
n

6

n∑

i=1

l3(ηi, Yi)(a∗
T R(x, Xi))3Kp(H−1(Xi − x)), (14)

where ηi is between η̄(x, Xi) and η̄(x,Xi) + cna∗T R(x,Xi),

Wx = cn

n∑

i=1

l1 [η̄(x,Xi), Yi]R(x,Xi)Kp(H−1(Xi − x)),

and

An = (cn)2
n∑

i=1

l2 [η̄(x,Xi), Yi]R(x,Xi)T R(x,Xi)Kp(H−1(Xi − x)).

Let D be the set defined by {u; x + Hu ∈ SX} ∩ SKp .
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Also, define

Σx =
{
ρ(x)f(x)νl+k

}
l∈Aq,k∈Aq

.

where νl =
∫
D ulKp(u)du.

Lemma 1 Under the foregoing conditions,

sup
x∈SX

∣∣â∗ − Σ−1
x Wx

∣∣ P−−−−→
n→∞

0 (15)

Proof. First, we prove that An = −Σx + oP (1). This can be shown using the fact that, for l and k in Aq,

(An)l,k = (EAn)l,k + OP

[{
Var (An)l,k

} 1
2
]

.

The mean in the above expression equals to

(EAn)l,k =
∫

D
l2 [η̄(x, x + Hu), µ(x + Hu)] f(x + Hu)Kd(u)ul+kdu.

Because the support of Kp is compact,

η̄(x, x + Hu) = η(x + Hu)−
∑

|k|=q+1

Dkη(x)(Hu)k/k! + o(hq+1),

uniformly in x. Using a Taylor expansion of l2 about (η(x + Hu), µ(x + Hu)), we obtain

(EAn)l,k = −
∫

D
ρ(x + Hu)f(x + Hu)Kp(u)ul+kdu + o(hq).

Next the use of a Taylor expansion of ρf about x leads to

(EAn)l,k = −ρ(x)f(x)νl+k + O(h) = −Σx + O(h),

uniformly in x. Similar arguments show that Var
({An}l,k

)
= O((nhp)−1) and the last term of (14) is OP ({nhp}−1/2),

and the condition nhp+2 →∞ involves that:

Ln(a∗) = WT
x a∗ − 1

2
a∗T Σxa∗ + oP (1), (16)

uniformly in x ∈ SX .

By the Convexity Lemma (see [22]), the equation (16) holds uniformly in a∗ ∈ C for any compact set C and we

can apply the Lemma A.1 of [4] which yields

sup
x∈SX

∣∣â∗ − Σ−1
x Wx

∣∣ P−−−−→
n→∞

0.

Now we compute the first two moments of Wx. Precisely we have the following lemma:
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Lemma 2 Under the foregoing conditions,

E
({Wx}l

)
= ρ(x)f(x)


(

nh2q+2+p
) 1

2
∑

|k|=q+1

Dkη(x)
k!

νl+k

+
(
nh2q+4+p

) 1
2


 ∑

|k|=q+1

Dkη(x)
k!

∑

|m|=1

Dm(ρf)(x)
(ρf)(x)

νl+k+m +
∑

|k|=q+2

Dkη(x)
k!

νl+k







+ o(
[
nh2p+4+d

] 1
2 )

Cov
({Wx}l,k

)
=

f(x)Var (Y |X = x)
[V {µ(x)}g′{µ(x)}]2

∫

D
Kp(u)2ul+kdu + o(1).

Remark Note that for this lemma we have kept two terms to express the expectation of {Wx}l, the first term

is O(nh2q+2+p) and the second one is O(nh2q+4+p). Thus the second term is negligible compared to the first one;

in some cases, problems can occur depending on the order q of the development. If one uses a symmetrical kernel

(which is often the case), one can obtain some nul moments νl+k. Thus, if q is even, all the νl+k will be zero and

the second term becomes necessary. If q is odd, the second term is equal to zero. In the sequel of the proof, we will

consider that we have O(nh2q+2+p).

Proof. By Taylor’s expansion,

l1 [η̄(x, x + Hu), µ(x + Hu)] = ρ(x + Hu)
∑

q+1≤|k|≤q+2

Dkη(x)
k!

[Hu]k + o(hq+2),

and we obtain

E
({Wx}l

)
= c−1

n


 ∑

q+1≤|k|≤q+2

h|k|
Dkη(x)

k!

∫

D
f(x + Hu)ρ(x + Hu)ul+kKp(u)du + o(hq+2)


 .

By a Taylor expansion of ρf about x, we obtain

E
({Wx}l

)
= c−1

n


(ρf)(x)

∑

q+1≤|k|≤q+2

h|k|
Dkη(x)

k!
νl+k

+
∑

q+1≤|k|≤q+2

h|k|+1 Dkη(x)
k!

∑

|m|=1

Dm(ρf)(x)νl+k+m


 + o(c−1

n hq+2).

That leads to

E
({Wx}l

)
= c−1

n (ρf)(x)


hq+1

∑

|k|=q+1

Dkη(x)
k!

νl+k + hq+2
∑

|k|=q+2

Dkη(x)
k!

νl+k

+ hq+2
∑

|k|=q+1

Dkη(x)
k!

∑

|m|=1

Dm(ρf)(x)
(ρf)(x)

νl+k+m


 + o(c−1

n hq+2).

19



Since c−1
n hq+1 =

(
nh2q+2+p

) 1
2 and then c−1

n hq+2 =
(
nh2q+4+p

) 1
2 , we obtain the first result.

The covariance between the lth and kth component of Wx is

E({Wx}l{Wx}k) + O(h2q+2+p).

We have

E({Wx}l{Wx}k) = nc2
nE

(
l21 [η̄(x,X1), Y1]R(x,X1)lR(x,X1)k

[
Kp

(
H−1(X1 − x)

)]2)
.

With η̄(x,X1) = η(x) + O(hq) and using a Taylor expansion of l1 in the first variable about η(x), we obtain:

l21 [η̄(x,X1), Y1] = l21 [η(x), Y1] + O(hq).

With nc2
n = h−p, we have

E({Wx}l{Wx}k) = h−pE
[
l21 (η(x), Y1)R(x,X1)lR(x,X1)k

[
Kp

(
H−1(X1 − x)

)]2]

+ h−pO(hq)E
[
R(x,X1)lR(x,X1)k

[
Kp

(
H−1(X1 − x)

)]2]
.

We are now considering the second term of the right member of this equation. We note it T2.

T2 = h−pO(hq)
∫

SX

R(x, X1)lR(x,X1)k

[
Kp

(
H−1(X1 − x)

)]2
f(X1)dX1

which leads to

T2 = O(hq)
∫

D
uk+l [Kp(u)]2 f(x + Hu)du

= O(hq) = o(1).

and then

E({Wx}l{Wx}k) = h−p E
(
l21 (η(x), Y1) R(x,X1)lR(x,X1)k

[
Kp

(
H−1(X1 − x)

)]2)
+ o(1).

Using the definition of l1, we do a Taylor expansion of the function ρf about x, and with the definition of ρ(x), we

obtain the second result of the lemma.

5.2 Proof of Theorem

In this section, we give the proof of Theroem 1 using the results of the two lemmas in Section 5.1. Notations are

those introduced in 5.1.

We have

β = E
[
(g−1)′(η(X))∇η(X)

]

β̂ =
1
n

n∑

i=1

(g−1)′(η̂(Xi))∇̂η(Xi)

and therefore

β̂ − β =
1
n

n∑

i=1

[
(g−1)′(η̂(Xi))∇̂η(Xi)− E

[
(g−1)′(η(X))∇η(X)

]]
.
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By introducing the term (g−1)′(η(Xi))∇η(Xi), we can write

β̂ − β =
1
n

n∑

i=1

[
(g−1)′(η(Xi))∇η(Xi)− E

[
(g−1)′(η(X))∇η(X)

]]

+
1
n

n∑

i=1

[
(g−1)′(η̂(Xi))∇̂η(Xi)− (g−1)′(η(Xi))∇η(Xi)

]
.

Thanks to the properties of empirical mean, we have

1
n

n∑

i=1

[
(g−1)′(η(Xi))∇η(Xi)− E

[
(g−1)′(η(X))∇η(X)

]]
= oP (1).

Now we consider the second term (g−1)′(η̂(Xi))∇̂η(Xi)−(g−1)′(η(Xi))∇η(Xi). By a Taylor expansion of (g−1)′(η̂(x))

about η(x) we obtain

(g−1)′(η̂(x)) = (g−1)′(η(x)) + (g−1)′′(η(x))(η̂(x)− η(x)) + O([η̂(x)− η(x)]2).

We introduce

εn(x) = (g−1)′′(η(x))∇η(x)(η̂(x)− η(x)) + (g−1)′(η(x))(∇̂η(x)−∇η(x))

and

rn(x) = (g−1)′(η̂(x))∇̂η(x)− (g−1)′(η(x))∇η(x)− εn(x).

Then, we have

rn(x) = (g−1)′′(η(x))(η̂(x)− η(x))(∇̂η(x)−∇η(x)) + ∇̂η(x)O([η̂(x)− η(x)]2).

The estimation error becomes

β̂ − β =
1
n

n∑

i=1

[εn(Xi) + rn(Xi)] + oP (1).

To obtain the result, we just have to prove that

1
n

n∑

i=1

rn(Xi) = oP (1) ,
1
n

n∑

i=1

εn(Xi) = oP (1). (17)

The first condition of (17) will be true if we have

sup
x∈SX

|rn(x)| = oP (1).

Since η̂(x) = D̂kη(x) with |k| = 0 and ∇̂η(x) = D̂kη(x) with |k| = 1 and since, by Condition 4 of the Theorem 1

(g−1)
′′

is bounded, the following condition is sufficient

sup
x∈SX

|(η̂(x)− η(x))(D̂kη(x)−Dkη(x))| = oP (1), for |k| = 0 and |k| = 1 (18)
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provided that ∇̂η(x) is bounded when n goes to infinity. This will be ensured later since we will show in the following

that supx∈SX
|∇η(x)−∇̂η(x)| = oP (1). In order to prove the sufficient Condition (18), we first show that, for |k| = 0

or 1, we have

∀ε > 0, sup
x∈SX

|D̂kη(x)−Dkη(x)| = oP (n−(1−αp)/2+α|k|+ε).

We consider ∆n a discretization of the hypercube SX fine enough to ensure:

sup
x∈SX

inf
x′∈∆n

∣∣Σ−1
x Wx − Σ−1

x′ Wx′
∣∣ = oP (1)

Using Lemma 1, we have:

sup
x∈SX

∣∣â∗ − Σ−1
x Wx

∣∣ P−−−−→
n→∞

0,

with

â∗(x)k =
c−1
n h|k|

k!

[
D̂kη(x)−Dkη(x)

]
.

Therefore, since cn = (nhp)−1/2, we obtain, for |k| = 0 or 1:

sup
x∈SX

∣∣∣D̂kη(x)−Dkη(x)
∣∣∣ =

1
h|k|

√
nhp

sup
x∈SX

â∗(x)k

=
1

h|k|
√

nhp

{
sup

x∈SX

|(Σ−1
x Wx)k|+ oP (1)

}

=
1

h|k|
√

nhp

{
sup

x∈∆n

|(Σ−1
x Wx)k|+ oP (1)

}
.

Let Dk,l = supx∈SX
(Σ−1

x )k,l. We know, using the constraint infx∈SX
(ρ(x)f(x)) > 0 (see Condition 5), that all the

Dk,l are finite. Thus, with the results of Lemma 2, we have:

sup
x∈SX

∣∣∣D̂kη(x)−Dkη(x)
∣∣∣ ≤

∑

l∈Aq

Dk,l sup
x∈∆n

∣∣∣∣
1

h|k|
√

nhp
(Wx)l − E

[
1

h|k|
√

nhp
(Wx)l

]∣∣∣∣

+ O(hq+1−|k|) + oP (
1

h|k|
√

nhp
). (19)

In the previous expression, one can notice that the term O(hq+1−|k|) gives us the order of magnitude of the expectation

of Wx. As pointed out in a remark after Lemma 2, one may have a more refined term O(hq+2−|k|) depending on the

parity of q. As we just need to obtain an upper bound, the term O(hq+1−|k|) is sufficient. We note

dx =
∣∣∣∣

1
h|k|

√
nhp

(Wx)l − E
[

1
h|k|

√
nhp

(Wx)l

]∣∣∣∣ .

Wx was defined by

Wx = cn

n∑

i=1

l1 [η̄(x,Xi), Yi]R(x,Xi)Kp(H−1(Xi − x)).

We note

Ψ(x,Xi, Yi) = l1 [η̄(x,Xi), Yi] R(x,Xi)Kp(H−1(Xi − x)).

We then obtain

Wx = cn

n∑

i=1

Ψ(x,Xi, Yi)
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and

dx =

∣∣∣∣∣
n∑

i=1

{
1

nh|k|+p
{Ψ(x,Xi, Yi)}l − E

[
1

nh|k|+p
{Ψ(x,Xi, Yi)}l

]}∣∣∣∣∣
We now use Bernstein’s inequality in order to obtain, for a given τ > 0 and for l ∈ Aq:

P (dx > τ) ≤ 2 exp


 −τ2

2
∑n

i=1 V ar
(

1
nh|k|+p {Ψ(x,Xi, Yi)}l

)
+ 2

3nh|k|+p Mτ


 .

with M a constant such as

P
(
{Ψ(x,Xi, Yi)}l − E

[
{Ψ(x,Xi, Yi)}l

]
≤ M

)
= 1.

For v > 0 and ε > 0, let τ be

τ = n−(1−αp)/2+α|k|+εv.

Bernstein’s inequality is then written:

P
(
dx > n−(1−αp)/2+α|k|+εv

)
≤

2 exp


 −n1+αp+2α|k|+2ε

2
∑n

i=1 V ar
(

1
h|k|+p {Ψ(x,Xi, Yi)}l

)
+ 2n

3h|k|+p Mn−(1−αp)/2+α|k|+εv


 .

Lemma 2 gives V ar({Wx}l = O(1) which implies

V ar

(
1

h|k|+p
{Ψ(x,Xi, Yi)}l

)
= O(nαp+2α|k|).

Thus, we obtain, for the right member of the inequality, an expression in exp(−C∗n2ε) where C is a positive constant.

Consequently, in the inequality (19), the first term of the right member is upper-bounded by

2
∑

l∈Aq

Dk,lexp(−Cn2ε)

which goes to zero when n goes to infinity. For all τ > 0, we can write

|dx| ≤ τ1I|dx|≤τ + |dx|1I|dx|>τ .

With τ = n−(1−αp)/2+α|k|+εv, we have seen that P (|dx| > τ) is upper-bounded by a term in 2exp(−Cn2ε). We

obtain:

sup
x∈SX

|dx| ≤ OP (n−(1−αp)/2+α|k|+ε).

So, for ε > 0,

sup
x∈SX

∣∣∣D̂kη(x)−Dkη(x)
∣∣∣ ≤ OP (n−(1−αp)/2+α|k|+ε) + O(hq+1−|k|) + oP (

1
h|k|

√
nhp

)

≤ OP (n−(1−αp)/2+α|k|+ε) + O(hq+1−|k|) + oP (n−(1−αp)/2+α|k|)

≤ OP (n−(1−αp)/2+α|k|+ε) + O(hq+1−|k|).
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The previous inequality is true for every ε > 0. Let ε = δ with δ defined in the Condition 7 of the Theorem 1.

We use this value δ for the term with |k| = 0 and for the term with |k| = 1. Now let’s show that the term in

OP (n−(1−αp)/2+α|k|+δ) is dominating. We want to show hq+1 = o(n−(1−αp)/2+δ). That will be true only if

α >
1− 2δ

2q + p + 2

for |k| = 0 or 1. δ has been choosen in such a manner that it verifies this condition. Thus, for |k| = 0 or 1:

sup
x∈SX

|(η̂(x)− η(x))(D̂kη(x)−Dkη(x))| ≤ OP (n−1+α(p+|k|)+2δ). (20)

Here, we want to have the right member of the inequality (20) going to zero when n goes to infinity for |k| = 0 or 1.

So we will need to have:

α <
1− 2δ

p + |k|
For |k| = 0 or 1, this condition is verified because it is less strict than Condition 7 of the Theorem 1. We have proved

that

lim
n→∞

1
n

n∑

i=1

rn(Xi) = oP (1).

It remains to study the term 1
n

∑n
i=1 εn(Xi) (second condition of (17)). It is sufficient to show that

sup
x∈SX

|εn(x)| = oP (1).

By definition, we have

εn(x) = (g−1)′′(η(x))∇η(x)(η̂(x)− η(x)) + (g−1)′(η(x))(∇̂η(x)−∇η(x)).

With the previous calculus and with the assumptions of the Theorem 1, we have

sup
x∈SX

|εn(x)| ≤ OP (n−(1−αp)/2+δ) + OP (n−(1−αp)/2+α+δ)

≤ OP (n−(1−αp)/2+α+δ).

And, thanks to the condition α < (1− 2δ)(p + 2), we obtain the result. That finishes the proof.
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Tables and Figures
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Figure 1: Simulation results. The solid line are means of the estimation errors from 100 replications. The vertical

lines are means of corresponding cross-validation bandwidths.
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Figure 2: Curve estimate. Solid curve corresponds to η̃ and the dotted curve is its estimate (n = 250, 500).

n β1 β2 β3 β4 RASE

50 -0.5338 (0.2024) 0.2558 (0.3620) 0.3306 (0.3598) 0.38116 (0.3124) 1.5491 (0.3016)

100 -0.4961 (0.1097) 0.4718 (0.1310) 0.4774 (0.1363) 0.4828 (0.1522) 1.1577 (0.2490)

250 -0.4757 (0.1285) 0.4861 (0.1465) 0.4716 (0.1402) 0.4833 (0.1568) 1.1847 (0.2487)

500 -0.4967 (0.0757) 0.5266 (0.0494) 0.4802 (0.0829) 0.4747 (0.0717) 0.8972 (0.0736)

Table 1: Simulation results. Mean and mean squared error (in parentheses) of estimated parameters and RASE.
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Figure 3: Colon. Resampling analysis: boxplot.
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Figure 4: Leukemia with 2 classes. Resampling analysis: boxplot.
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Figure 5: Leukemia with 3 classes. Resampling analysis: boxplot.
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Figure 6: SRBCT (with 4 classes). Resampling analysis: boxplot.
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DLDA DQDA KNN rOPG-np GSIM-np

moy 0.144 0.154 0.205 0.201 0.155

std 0.057 0.064 0.072 0.077 0.056

Table 2: Colon. Resampling analysis: mean and standard-deviation.

DLDA DQDA KNN rOPG-np GSIM-np

moy 0.032 0.046 0.046 0.061 0.027

std 0.034 0.044 0.032 0.072 0.026

Table 3: Leukemia with 2 classes. Resampling analysis: mean and standard-deviation.

DLDA DQDA KNN rOPG-p GSIM-p

moy 0.039 0.046 0.055 0.088 0.025

std 0.037 0.039 0.036 0.048 0.023

Table 4: Leukemia with 3 classes. Resampling analysis: mean and standard-deviation.

moy 0.088 0.155 0.117 0.124 0.086 0.153

std 0.048 0.067 0.074 0.083 0.052 0.063

Table 5: Leukemia with 3 classes. Resampling analysis: mean and standard-deviation for rOPG-p according to

different labels order.

DLDA DQDA KNN rOPG-p GSIM-p

moy 0.040 0.046 0.065 0.149 0.008

std 0.047 0.045 0.053 0.069 0.026

Table 6: SRBCT (with 4 classes). Resampling analysis: mean and standard-deviation.
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