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ABSTRACT. Increasing practical interest has been shown in regression problems

where the errors, or disturbances, are centred in a way that reflects particular
characteristics of the mechanism that generated the data. In economics this occurs

in problems involving data on markets, productivity and auctions, where it can
be natural to centre at an endpoint of the error distribution, rather than at the

distribution’s mean. Often these cases have an extreme-value character, and in that
broader context, examples involving meteorological and record-value data have been

discussed in the literature. We shall suggest nonparametric methods for estimating
regression curves in these settings, showing that they have features that contrast

so starkly with those in better-understood problems that they lead to apparent
contradictions. For example, merely by centring errors at their endpoints rather

than their means the problem can change from one with a familiar nonparametric

character, where the optimal convergence rate is slower than n−1/2, to one in the
super-efficient class, where the optimal rate is faster than n−1/2. Moreover, when

the errors are centred in a non-standard way there is greater intrinsic interest in
estimating characteristics of the error distribution, as well as of the regression mean

itself. The paper will also address this aspect of the problem. The new function-
estimation methodology can also be viewed as a competitor of techniques such as

data envelopment analysis (DEA) and stochastic frontier analysis (SFA), relative
to which it has a greater degree of robustness against outliers.
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1. INTRODUCTION

The problem of estimating the endpoint and tail-shape of a distribution has

a distinguished history, not least because it provides important examples of non-

regular behaviour for various types of inference. See, for example, Harter and Moore

(1965) and Smith (1985). The problem also has important practical motivations,

arising in part from the prevalence of power-law distributions; see Zipf (1941, 1949).

More recently, endpoint and tail-shape problems have been studied in regression

settings, for example in econometric models for auctions.

The importance of endpoint-estimation to auction models, and the consequent

fact that statistical inference in such models is non-regular, were first noted by

Paarsch (1992) and Donald and Paarsch (1993). The endpoint problem arises there

because the distribution of bid price generally depends on all the parameters of the

model, for instance on parameters that determine the costs of bidders. For particular

examples of auction models, see Paarsch (1992) and Donald and Paarsch (2002).

Similar phenomena occur in truncated- or censored-regression models (e.g.

Breen, 1996; Long, 1997), market-structure analysis (e.g. Robinson and Chiang,

1996) and inference for production frontiers in econometrics (e.g. Aigner et al.,

1977; Park and Simar, 1994). There is a strong association between these fields and

those where extreme-value methods are used; for example, the successful bid at an

auction is the extremum of all bids.

Although the term “regression” is commonly used in these settings, strictly

speaking it is not correct. Since the error distribution is not centred at its expec-

tation then the “regression mean” no longer admits its conventional definition as

the average of the response variable given the value of the covariate, or explana-

tory, variable. This apparently minor distinction can have a major impact, and for

example can lead to an intriguing paradox, as we shall show shortly.

In the context of auction models, Hirano and Porter (2003), Jofre-Bonet and Pe-

sendorfer (2003) and Chernozhukov and Hong (2004) studied parametric approaches

to inference about distribution endpoints and jump heights. Related statistical

work is more in the setting of parametric regression; see, for example, Koenker

et al. (1994), Smith (1994), Jurec̆ková (2000), Portnoy and Jurec̆ková (2000) and

Knight (2001). However, it is feasible to take a nonparametric view of this problem,

permitting a greater degree of flexibility and generality.

The present paper suggests nonparametric methodology, and describes its prop-

erties, in the context of inference about endpoint and tail-shape functions in non-

parametric regression. In this case the errors, or disturbances, in the nonparametric

model are centred at their endpoints, rather than at their means. The endpoints
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may be assumed to take a convenient value such as zero. Thus, the problem of

estimating the nonparametric-regression mean becomes that of adaptively estimat-

ing the centring function. One of the advantages of the methodology to which this

approach leads is its high degree of robustness against outliers, relative to com-

peting methods such as data envelopment analysis (DEA) and stochastic frontier

analysis (SFA).

Estimation of characteristics of the error distribution is sometimes also of prac-

tical interest. This problem can have several forms, depending on the extent of

generality required. For example, if the error distribution has a jump discontinuity

at its endpoint then the height of the jump can be treated nonparametrically, or

modelled parametrically, as a function of the explanatory variable. The endpoint

might be approached in a polynomial way, and then the exponent, or degree, may

be one of the subjects of inference. This paper will address those issues, too.

The problem of nonparametric regression with endpoint-centred errors also has

significant theoretical motivation. In particular, depending on the way in which the

endpoint is approached, substantially faster convergence rates can be achieved than

in conventional settings. For example, suppose we observe Yi = a(Xi) + εi for

1 ≤ i ≤ n, where the errors εi are independent and identically distributed with a

distribution that has a jump discontinuity at one of its endpoints, and also has finite

variance; and a denotes a twice-differentiable function. The estimator of a given in

this paper has root-mean-square convergence rate n−2/3, which beats even the rate

n−1/2 for a parametric setting, let alone the rate n−2/5 for standard nonparametric

regression with twice-differentiable functions. We shall show that the rate n−2/3 is

minimax-optimal.

However, it is well-known that the rate n−2/5 is also minimax-optimal, for

estimating the same function. How can this be? This paradox can be resolved

by noting that the two functions being estimated are not quite identical. They

differ by a constant, equal to the difference, δ say, between the mean and the

endpoint of the error distribution. The constant cannot be estimated at a faster rate

than n−2/5. However, this explanation is not without its own element of surprise,

since it might be thought that estimation of δ would be a semiparametric rather

than a nonparametric problem; if we could observe the errors directly then we could

estimate their endpoint at rate n−1 and their mean at rate n−1/2, both expressed

in root-mean-square terms.

2. METHODOLOGY

2.1. Model. Assume that data (X1, Y1), . . . , (Xn, Yn) are generated by the model

Yi = a(Xi) + εi , (2.1)
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where a denotes a smooth function, each Xi is a p-vector and each Yi is a scalar.

It is supposed that the distribution of the error, or disturbance, εi, conditional on

Xi = x, has density f( · | x), with the property that f(u | x) = 0 for u < 0 and

f(u | x) = b(x) c(x)uc(x)−1 + O
(
uc(x)+d−1

)
as u ↓ 0 , (2.2)

where 0 < d < ∞. The quantities b and c are smooth, strictly positive functions

from IRp to IR. We wish to estimate a, and sometimes also b and c.

2.2. Nonparametric estimation of a. Let h > 0 denote a bandwidth. Given x ∈ IRp,

let S(x, h) be the set of pairs (α, β), where α is a scalar and β is a p-vector, such

that Yi ≥ α+ βT(Xi − x) for all indices i with ‖Xi − x‖ ≤ h. Our initial estimator

of a(x) is

ã(x) = sup{α : (α, β) ∈ S(x, h)} . (2.3)

The one-sided nature of inference in this problem raises interesting issues con-

nected with existence of the estimator, and edge effects. To appreciate why, consider

the case where the points Xi, for 1 ≤ i ≤ n, all lie in a p-variate half-space defined by

an infinite plane passing through x. Then, there exists β such that βT(Xi− x) < 0

for 1 ≤ i ≤ n. Since the length of β can be chosen arbitrarily large without altering

the sign property, then ã(x), defined at (2.3), equals +∞.

Let R denote the support of the common density, gX say, of the Xi’s, and write

∂R for the boundary of R. If gX is continuous and positive in R, and if x is distant

at least sh, where s > 0, from ∂R, then the probability that ã(x) = +∞ converges

to zero exponentially fast, as a function of n, as the latter increases. See section 5.1.

However, if x lies exactly on ∂R, then, depending on the shape of the boundary,

the probability can equal 1, even for finite n. Details are given in section 3.1.

Arguably the simplest way of overcoming these difficulties is to set an upper

bound, B say, on the largest value that a(x) can take, and estimate a(x) by averaging

ã(u) over all values of u for which |x− u| ≤ h1 and |ã(u)| ≤ B, where h1 is another

bandwidth. We shall discuss this approach in the next paragraph. Another method,

more difficult to implement, is to distort the region of radius h centred at x, within

which Xi must lie in order for (Xi, Yi) to be used to construct ã(x), so that the region

includes values of Xi that are further than h from x and appropriately complement

the values of Xi that are within h of x.

One form that the averaging of ã(u) can take is based on local-linear smoothing.

There we choose α̂1 = α1 ∈ IR and β1 ∈ IRp to minimise

∫ {
ã(x+ h1u)− α1 − βT

1 u
}2
I{|ã(x+ h1u)| ≤ B}K(u) du , (2.4)
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where K is a bounded, spherically-symmetric probability density supported on the

p-variate unit sphere centred at the origin, and h1 is another bandwidth. Then we

put â(x) = α̂1.

Alternatively, we may define

ǎ(x) =

∫
R(x)

ã(x+ h1u) I{|ã(x+ h1u)| ≤ B}K(u) du
∫
R(x)

I{|ã(x+ h1u)| ≤ B}K(u) du
, (2.5)

where R(x) denotes the set of points u ∈ IRp such that x + h1u ∈ R. Both these

approaches also overcome problems caused by discontinuities in the function ã.

While both address the issue of boundary effects, the estimator â suffers less from

boundary bias than ǎ. In both â and ǎ we may use a soft-thresholding approach to

inclusion of values of u for which |ã(x+ u)| ≤ B, rather than the hard thresholding

suggested by (2.4) and (2.5).

Plug-in methods can be used to choose the bandwidth, h, empirically. However,

motivation for that technique requires theory about large-sample properties of ã,

and so discussion of empirical bandwidth selection is deferred to sections 2.5 and 3.2.

General polynomial-optimisation methods can be employed to estimate a, al-

though at the expense of substantially greater computational labour. Given a de-

gree q ≥ 1 for the polynomial, we might take S(x, h) to be the class of all scalar

parameters α and βr(j1, . . . , jr), for 1 ≤ r ≤ q and 1 ≤ j1, . . . , jr ≤ p, such that

Yi ≥ α+

q∑

r=1

1

q!

∑

1≤j1,...,jr≤p
βr(j1, . . . , jr) (Xi − x)j1 . . . (Xi − x)jr (2.6)

for all i with ‖Xi − x‖ ≤ h. Taking β to denote the vector of all components

βr(j1, . . . , jr) for 1 ≤ r ≤ q and 1 ≤ j1, . . . , jr ≤ p, we again define ã(x) by (2.3),

define â(x) = α1 by minimising (2.4), and define ǎ(x) by (2.5).

The local-linear estimator introduced in the first paragraph of this section can

be viewed as based on a local, functional version of a linear-programming algorithm.

See Smith (1994) and Portnoy and Jurec̆ková (2000) for related methodologies. The

more general estimator, introduced in the paragraph above, requires polynomial

programming for implementation.

2.3. Nonparametric estimation of b and c. In principle, completely nonparametric

methods may be used to estimate the functions b and c, although in practice one

would often take c to be a constant, rather than a nondegenerate function of x.

When estimating b and c we need not use the numerical value of h employed

for ã. However, in the brief account below we shall continue to use the notation h.

Define the residuals ε̃i = Yi− ã(Xi), and let T (x, h) denote the set of ε̃i’s for which
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ε̃i > 0 and ‖Xi − x‖ ≤ h. Put N1 = #T (x, h), and rank the elements of T (x, h) as

0 < ε̂(1)(x, h) ≤ . . . ≤ ε̂(N1)(x, h). Put

ĉ(x) =

{
log ε̂(r+1)(x, h)− 1

r

r∑

i=1

log ε̂(i)(x, h)

}−1

, b̂(x) = (r/N1) {ε̂(r+1)(x, h)}−ĉ(x) ,

where r, another smoothing parameter, denotes a threshold.

Optimal choice of bandwidth for estimating b and c is a highly complex mat-

ter. While it depends to some extent on the level of smoothing used to compute

residuals, it is also influenced by issues, such as the value of d in (2.2), which have

no direct bearing on choice of h when smoothing to estimate a. Therefore an ac-

count of optimal bandwidth selection when estimating b and c has a number cases,

determined by the intersection of circumstances for b and c with those for a. We

shall not discuss the matter further here.

The estimators b̂ and ĉ above can be thought of as local, function versions of

conditional maximum-likelihood estimators suggested by Hill (1975).

2.4. Alternative approaches to estimating b and c. Here we suggest quasi-paramet-

ric estimators of b and c, starting from the nonparametric estimators of a suggested

in section 2.2.

If the sample size were ν; if we were to observe all ν values of εi which did not

exceed a threshold, t say; and if there were just r of these, denoted by ε(1) < . . . <

ε(r), with ε(i) having density gi and distribution function Gi; then the conditional

likelihood of these data would be proportional to
{ r∏

i=1

gi(ε(i))

} ν∏

i=r+1

{1−Gi(t)} .

Writing X(i) for the concomitant of ε(i); assuming, in reflection of property (2.2),

that gi(u) = b(X(i) | θ) c uc−1 for 0 < u ≤ t, where b( · | θ) is a model for the scaling

“function of proportionality,” b, determined by a finite parameter vector, θ; and,

for simplicity, taking c to be a scalar rather than a function; we may estimate c and

θ by maximising
{ r∏

i=1

b(X(i) | θ) c εc−1
(i)

} ν∏

i=r+1

{
1− b(X(i) | θ) tc

}
.

Differentiating with respect to c and θ gives, respectively, the equations

(log t)

ν∑

i=r+1

tc b(X(i) | θ)
1− tc b(X(i) | θ)

−
r∑

i=1

log ε(i) = r/c , (2.7)

r∑

i=1

∂b(X(i) | θ)/∂θ
b(X(i) | θ)

−
ν∑

i=r+1

tc ∂b(X(i) | θ)/∂θ
1− tc b(X(i) | θ)

= 0 . (2.8)
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Of course, in practice we do not observe the εi’s. We replace them by the

values of strictly positive residuals ε̃i, defined as in section 2.3 and ranked as 0 <

ε̃(1) ≤ ε̃(2) ≤ . . .. (Recall that the ranking ε̂(1)(x, h) ≤ ε̂(2)(x, h) ≤ . . ., introduced in

section 2.3, is only a local ranking of positive residuals.) For the threshold we take

t = ε̃(r+1), i.e. the smallest strictly positive ε̃i not previously considered. There are

thus only two smoothing parameters, r and the value of h used to estimate a prior

to computing the residuals.

In some applications the value of c would be known. For example, a parametric

model, the detailed constraints of which we might wish to avoid, could assert that

the error distribution has a jump discontinuity at its endpoint. For example, this

is the case for the auction models discussed in section 1. In such instances, c = 1.

More generally, if c were known we would use only equations (2.8), and choose

b(x | θ) to be a relatively simple model, for example log-linear in x.

In principle, a plug-in rule could be developed for choosing the smoothing pa-

rameters h and r in this setting. However, several subsidiary smoothing parameters

would be needed in order to select the two main ones. A more attractive proposition

is to experiment with values that would be appropriate if the data were generated

by a relatively simple model, for example having a log-linear function b and gamma

or Weibull distributions for the errors.

2.5. Outline of theoretical properties. We shall show in section 3 that, when con-

structing the local-linear estimator ã and its smoothed versions â and ǎ, it is gen-

erally optimal to choose h ∼ const. n−1/(p+2c). In this case the estimators have

root-mean-square convergence rate n−2/(p+2c), when applied to cases where a has

two derivatives. For very general choices of the error distribution, this rate is op-

timal when 0 < c < 2. Even if the functions b and c ∈ (0, 2) take known, constant

values, and we know the error distribution exactly, for example that it is gamma or

Weibull, the rate n−2/(p+2c) cannot be improved upon.

However, when c ≥ 2, and we have sufficient information about the error

distribution, the convergence rate of estimators of a can be improved by using

other approaches. For instance, if b and c are constant, and if the error density

f is known, then an estimator of a that is based on maximising a “local” version

of log-likelihood can produce an estimator that converges to a at rate n−2/(p+4),

rather than n−2/(p+2c), when p > 2 and a has two derivatives.

The problem is more awkward when the error distribution is not known. There,

the convergence rate n−2/(p+2c) can be close to optimal. In particular, if we know

only that the errors have a common density f , with f(u) = b c uc−1 + O(uc+d) as

u ↓ 0, where b, c > 0 are fixed constants, then the minimax-optimal convergence
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rate of estimators of a is n−2/(p+2c)−δ(d), where δ(d) > 0 converges to zero as d ↓ 0.

Moreover, the approach to regression that centres the residuals at an endpoint

of the support, rather than at the mean, is more difficult to motivate when c is

relatively large. If the error density decreases to zero very smoothly and gradually

in its tails, then knowing one of the ends of its support is less important than

it would be if the tail ended relatively abruptly. This consideration, and that in

the previous paragraph, suggest that it is reasonable to confine attention to the

estimators of a considered in section 2.2.

The convergence rate of n−2/(p+4), mentioned in connection with the case c > 2

and a known error distribution, is optimal when estimating p-variate regression

functions that are twice-differentiable, provided the error distribution is centred

at its mean rather than its endpoint. See e.g. Stone (1980, 1982). The rate of

n−2/(p+2c) that we obtain when 0 < c < 2 is of course faster. This improvement

in the rate of convergence is another reason for paying special attention to the case

0 < c < 2.

3. THEORETICAL PROPERTIES

3.1. Convergence rates of estimators of a. Assume that data (Xi, Yi) are generated

by the model at (2.1), where

the p-variate explanatory variables X = {X1, X2, . . .} are independent;
conditional on the Xi’s, the errors ε1, ε2, . . . are independent, and the
marginal density fi of εi depends on X only through Xi; the Xi’s are
identically distributed as X, the density of which is supported in a com-
pact region, R ⊆ IRp, and is continuous and nonzero there; fi =
f( · | Xi), where f satisfies (2.2), d > 0 is fixed, b and c are Hölder-
continuous functions satisfying C1 ≤ b(x), c(x) ≤ C2 for all x ∈ R, C1

and C2 are constants satisfying 0 < C1 < C2 <∞, and the remainder in
(2.2) is of that order uniformly in x ∈ R; and supi,xE(|εi|2+η | Xi = x)
<∞ for some η > 0.

(3.1)

Recall from section 2 that the one-sided nature of the inference problem means that

the estimator ã will often tend not to be defined at the boundary. However, ã may

be well-defined very close to the boundary. To elucidate this behaviour we shall

consider two types of x:

Either x is fixed, as an interior point of R, or x is close to the boundary,
∂R, of R, and varying with n. In the latter case we ask that x = x(n) =
x0 + v(x0) sh, where x0 ∈ ∂R, s > 0, and v(x0) is the normal to the
tangent plane to ∂R at x0, oriented so that it points intoR. In this case,
x0 and s are held fixed.

(3.2)

If x ∈ R is an interior point, or if x = x(n) = x0 + v(x0) sh where x0 ∈ ∂R
and s ≥ 1, let U(x) denote the closed, p-variate sphere of unit radius centred at
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the origin. If x = x(n) = x0 + v(x0) sh with x0 ∈ ∂R and 0 < s < 1, take U(x)

to be the larger of the two parts of the just-mentioned sphere that are obtained by

cutting it by the plane that is perpendicularly distant s from the origin and has its

normal in the direction v(x), pointing towards the centre to the sphere.

Let ȧ and ä denote the p-vector of first derivatives, and p× p matrix of second

derivatives, of the function a, and suppose that

the function a has two continuous derivatives in R, and if x = x0 +
v(x0) sh then ∂R has a continuously turning tangent plane at x0.

(3.3)

Assume too that

for some 0 < η < 1/(2p) and all sufficiently large n, nη−(1/p) < h < n−η. (3.4)

Given x ∈ R, let E1, E2, . . . denote independent, exponentially distributed

random variables, all with unit mean, write γ for Euler’s constant, and define

Zj(x) = exp

[
− c(x)−1

{ ∞∑

i=j

(Ei − 1) i−1 + γ −
j−1∑

i=1

i−1

}]
, j ≥ 1 . (3.5)

Given x ∈ R, let U1(x), U2(x), . . . be independent and identically distributed ran-

dom p-vectors, independent too of the Zj(x)’s, and uniformly distributed on U(x).

For c1, c2 ≥ 0, define

Q1(c1, c2 | x) = sup
β∈IRp

inf
1≤i<∞

[
c1
{
βT Ui(x) + 1

2 Ui(x)T ä(x)Ui(x)
}

+ c2 b(x)−1/c(x)Zi(x)
]
.

In the statement of Theorem 1 below, we let x1 denote x if x is an interior

point of R, and x1 = x0 if x = x(n) = x0 + v(x0) sh. Let w(p) be the content

of the p-variate unit sphere (thus, w(1) = 2, w(2) = π), let gX(x) represent the

value of the density of the distribution of X at x, and put wx = w(p) gX(x1). (To

simplify notation we suppress the role of x1 here.) We use a simpler rule than that

in section 2.2 to take care of cases where ã(x) is infinite. However, the last sentence

in the theorem remains true if we define ã(x) to equal zero whenever |ã(x)| > B,

provided B > |a(x)|.

Theorem 1. Assume (3.1)–(3.4). (a) If (wxnh
p)1/c(x1) h2 → ρ, where ρ ∈ [0,∞),

then (wxnh
p)1/c(x1) {ã(x)−a(x)} → Q1(ρ, 1 | x1) in distribution. (b) If (nhp)1/c(x1)

× h2 →∞ then h−2 {ã(x)− a(x)} → Q1(1, 0 | x1) in distribution. Furthermore, if

we take the precaution of defining ã(x) to equal an arbitrary but fixed constant in
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cases where it would otherwise be infinite, then second moments converge to those

of the limiting distributions.

Proofs of Theorems 1–3 will be given in section 5. It is crucial, in condition

(3.2), that we take s > 0 rather than s ≥ 0. If s = 0 then x lies right on the

boundary of R, and in such cases the theorem is false. For example, if R is a

convex region with a smooth boundary, such as a sphere, then with probability 1,

ã(x0) =∞ for all x0 ∈ ∂R. However, it follows from the theorem that for points x

that are arbitrarily close to ∂R, on the scale of the bandwidth, without being right

on the boundary, the probability that ã(x) is finite converges to 1, and in fact the

estimator ã(x) attains optimal convergence rates.

Asymptotic properties of â and ǎ are similar, except that the limiting distri-

bution of â is more tedious to define. Therefore we shall confine ourselves to ǎ. To

further abbreviate our treatment we shall restrict attention to the case where

x is an interior point of R, h1 = th for a fixed constant t > 0, and
(wxnh

p)1/c(x) h2 → ρ ∈ [0,∞).
(3.6)

Let Z1, Z2, . . . be as at (3.5); for simplicity we drop the argument x. Re-define

U1, U2, . . . to be independent, of one another and of the Zj ’s, and uniformly dis-

tributed in the p-variate sphere of radius t + 1 centred at the origin. Given a

p-vector u with ‖u‖ ≤ t, let (S1(u), T1(u)), (S2(u), T2(u)), . . . denote the values

(Ui1(u), Zi1(u)), (Ui2(u), Zi2(u)), . . . of (Ui, Zi) = (Ui, Zi(x)) for which ‖Ui − u‖ ≤ h,

ordered such that Zi1(u) < Zi2(u) < . . .. With κ = p−1
∫
‖u‖2K(u) du, ∇2 denoting

the Laplacian operator, and ρ ≥ 0 as in (3.6), define

Q2(u | x) = sup
β∈IRp

inf
1≤i<∞

[
ρ
{
βT Si(u) + 1

2 Si(u)T ä(x)Si(u)
}

+
{

(t+ 1)p b(x)
}−1/c(x)

Ti(u)
]
,

Q3(x) = 1
2 ρ t

2 κ
(
∇2a

)
(x) +

∫
Q2(u | x)K(u) du .

Under conditions (3.1)–(3.6), and taking B > |a(x)| in (2.5), it can be shown

that with probability 1−O(n−C) for all C > 0, the estimator ǎ(x), at (2.5), satisfies

ǎ(x) =

∫
ã(x+ h1u)K(u) du . (3.7)

Theorem 2 applies with equal validity to the estimators at (2.5) and (3.7).

Theorem 2. Assume (3.1)–(3.6), and that the kernel K, used to define ǎ(x), is a

bounded, spherically-symmetric probability density supported on the unit sphere

centred at the origin. Then (wxnh
p)1/c(x) {ǎ(x) − a(x)} → Q3(x) in distribution.
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Furthermore, if in the integrand at (3.7) we take the precaution of defining ǎ(x+h1u)

to equal an arbitrary but fixed constant in cases where it would otherwise be infinite,

then the second moment converges to that of the limiting distribution.

3.2. Choice of bandwidth. Theorems 1 and 2 imply that, except in pathological

cases where ä(x) = 0, the optimal convergence rate of ã(x) and ǎ(x) to a(x) is

achieved by choosing the bandwidth, h, so that (nhp)−1/c(x) and h2 are of the same

size, and in particular, h ∼ const. n−1/{p+2c(x)}. If x does not lie on the boundary

of R, and if (wxnh
p)1/c(x) h2 → ρ ∈ [0,∞), then the asymptotic mean squared error

of ã(x) is given by

Q4(ρ | x) = E

{
sup
β∈IRp

inf
1≤i<∞

[
ρ
{
βT Ui + 1

2
UT
i ä(x)Ui

}
+ b(x)−1/c(x) Zi(x)

]}2

,

(3.8)

where U1, U2, . . . are uniformly distributed on the unit sphere centred at the origin,

Z1(x), Z2(x), . . . are defined at (3.5), and the Ui’s and Zi(x)’s are completely inde-

pendent. Therefore, if h = w
−1/{p+2c(x)}
x ρ1/{2+p/c(x)} n−1/{p+2c(x)} then ρ should

ideally be chosen as

ρ0(x) = argmin
ρ

Q4(ρ | x) . (3.9)

In principle, ä(x) can be estimated by fitting the polynomial smoother at (2.6)

with q = 2, and taking the value of β2(j1, j2) that results to be our estimator of

äj1,j2(x) =
∂2a(x)

∂xj1∂xj2
.

However, this approach is highly computer-intensive. A simpler method is to twice

numerically differentiate a heavily smoothed version of ã. Simpler still, if we may

make the assumption (A), say, that, for each i, the distribution of εi does not depend

on Xi, then a traditional smoother passed through the data (Xi, Yi) estimates the

value of µ(x) = E(Y | X = x). Under (A), this quantity differs from a only by a

constant, and so ä = µ̈. The latter function can be estimated using conventional

cubic smoothing. This approach is attractive even if the distribution of εi depends

to some extent on Xi, since it gives a working empirical approximation to ä.

Methods for estimating b(x) and c(x) were discussed in section 2.2. Substituting

these estimators for the true values of ä(x), b(x), c(x) and ρ(h, x) in (3.8), we may

compute an estimator Q̂4(ρ | x) of Q4(ρ | x) using Monte Carlo simulation, leading

to an estimator ρ̂0(x) of ρ0(x) at (3.9). The density of X at x, i.e. gX(x), can be

estimated more conventionally, and thus an estimator ŵx of wx = w(p) gX(x) can

be constructed. An empirical bandwidth selector is then given by

h(x) = ŵ−1/{p+2ĉ(x)}
x ρ̂0(x)1/{2+p/ĉ(x)} n−1/{p+2ĉ(x)} .
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In many circumstances it is feasible to take c(x) to be a constant, not depend-

ing on x. Section 2.4 discussed inference in this setting. Then a global approach to

bandwidth choice is possible, as follows. We shall proceed as though the density gX

is constant; if it is not, using its average value, rather than attempting to accommo-

date its variation, greatly simplifies matters. Thus, we take ŵ to be an estimator of

the average value of wx. The mean integrated squared error of ã(x) is asymptotic to

Q4(ρ) =
∫
RQ4(ρ | x) dx, of which an estimator is Q̂4(ρ) =

∫
R Q̂4(ρ | x) dx, leading

to an estimator ρ̂0 = argminρ Q̂4(ρ) of ρ0 = argminρ Q4(ρ). A global bandwidth

for constructing ã is thus h = ŵ−1/(p+2ĉ) ρ̂
1/(2+p/ĉ)
0 n−1/(p+2ĉ).

3.3. Optimality. We shall show in this section that the convergence rates implied by

Theorems 1 and 2, and also lower bounds of the same orders, are available uniformly

over classes A of functions a with two bounded derivatives. The possibility that

either the proportionality constant, b, or the exponent, c, varies with the design

variable, Xi, is not relevant to discussion of the lower bound, and for this reason,

for simplicity, and since our lower-bound results are stronger if we narrow the class

of error distributions for which worst-case performance is achieved, we shall take

the distribution of ε = εi to be a single, specific one, say the gamma:

f(u) = fi(u) =
1

Γ(c)
uc−1 e−u , where c > 0 is fixed . (3.10)

In the lower-bound calculations, c > 0 will be assumed known.

Likewise, we shall treat just one distribution of X = Xi and one region R. In

particular, writing V(x, r) for the closed sphere centred at x and of radius r > 0,

we shall assume that

R = V(x0, 1) and X is uniformly distributed on R. (3.11)

Given C > 0, let A = A(C) denote the class of functions a for which first and

second derivatives exist and are bounded absolutely by C, let Ā denote the class of

bounded functions ā of the data (X1, Y1), . . . , (Xn, Yn), the latter generated as at

(2.1), and let Rh be the set of all points in R that are distant at least h from ∂R.

Theorem 3. Assume (3.10) and (3.11), and, when constructing ã(x), let h =

const. n−1/(p+2c), except that we take ã(x) equal to an arbitrary but fixed constant

in cases where it would otherwise be infinite. Then,

sup
x∈Rh

sup
a∈A

E{ã(x)− a(x)}2 = O
(
n−2/(p+2c)

)
(3.12)

as n→∞. Furthermore, if 0 < c < 2,

lim inf
n→∞

n2/(p+2c) inf
ā∈Ā

sup
a∈A

E{ā(x)− a(x)}2 > 0 for each x ∈ R \ ∂R , (3.13)
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lim inf
n→∞

n2/(p+2c) inf
ā∈Ā

sup
a∈A

∫

Rh
E{ā(x)− a(x)}2 dx > 0 . (3.14)

Together, (3.12)–(3.14) imply that the estimator ã achieves the minimax-op-

timal rate, n−2/(p+2), uniformly over all functions a ∈ A, and that the optimality

can be expressed in either a local or a global sense. Similarly, it may be proved

that if Aq is taken to be the class of functions a with q+ 1, rather than 2, bounded

derivatives, then the qth degree local-polynomial approach, discussed in section 2.2,

achieves the minimax-optimal convergence rate of n−2q/(p+2cq)), uniformly over

functions in Aq.

4. NUMERICAL PROPERTIES

4.1. Simulations. Consider independent and identically distributed data (Xi, Yi)

(1 ≤ i ≤ n) satisfying the model Yi = a(Xi) + εi given in (2.1). The covariate Xi

has a uniform distribution on the interval [0, 1]. We consider three models for a(x)

(0 ≤ x ≤ 1):

Model 1 : a(x) = 10 (x− a0)3, a0 = 0.25, 0.5

Model 2 : a(x) = exp(−a0x
2), a0 = 1, 2 (4.1)

Model 3 : a(x) = a0 cos(πx), a0 = 0.25, 0.5.

Figure 1 shows the graphs of these six frontier functions. The error εi is taken from

a Gamma distribution:

f(u|x) =
1

s(x)c Γ(c)
uc−1 exp{−u/s(x)}

(u ≥ 0), where s(x) = 1 + 2x and c = 0.5, 1 or 1.5. These three values of c are such

that, as u ↓ 0, f(u|x) → ∞, f(u|x) → s(x)−1 and f(u|x) → 0 respectively. Note

that this density is of the general type (2.2), with b(x) = {c s(x)c Γ(c)}−1.

The simulations are executed based on 100 arbitrary samples of size n = 200

and n = 400. For each sample we estimate a(x) at x = 0.5, and use local-linear

smoothing to obtain both ã(x) and â(x). The bandwidth h is calculated from for-

mula (3.8), and we have taken h1 = h. To estimate ä(x) we work, as explained in

section 3.2, under the working model that the distribution of εi does not depend

on Xi, in which case ä(x) equals the second derivative of the regression function

E(Y | X = x). This second derivative is estimated using local-cubic smoothing,

with bandwidth 0.25. The functions b(x) and c(x) ≡ c are estimated employing the

procedure explained in section 2.3, where r equals the smallest integer larger than

0.90N1, and the bandwidth for estimating b(x) and c(x) is chosen as 0.25. The ker-

nel used throughout is the biquadratic kernel, K(u) = (15/16) (1− u2)2 I(|u| ≤ 1).
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Tables 1 and 2 show the estimated bias, variance and mean-squared error

(MSE) of â(x) at x = 0.5, for each of the considered models, as well as the av-

erage value of the bandwidth h over the 100 simulation runs, obtained using Monte

Carlo simulation of formula (3.8). Note that the functions a(x) considered in this

simulation study are neither convex nor concave. In fact, our method imposes nei-

ther condition, in contradistinction to, for instance, the DEA (data envelopment

analysis) estimator, which requires the function a(x) to be convex.

The tables show that the MSE increases when c increases, which is to be

expected since the higher the value of c, the smaller the density f(· | x) of the

error close to the frontier, and so the harder the estimation of the frontier. These

findings also agree with the theoretical results of section 3. This sparsity of data

close to the frontier affects especially the bias of the estimator, since it is clear that

the estimator ã(x) tends to overestimate a(x) whenever there are few observations

near the boundary. Finally, comparing Tables 1 and 2 we see that both the bias

and the variance decrease as the sample size increases.

4.2. Data analysis. We consider data on 123 American electric utility compa-

nies, studied by Christensen and Greene (1976), Greene (1990) and Hall and Simar

(2002), among others. We focus here on the relation between Yi = − log(Ci/Pi)

and Xi = log(Qi), where Ci is the cost, Qi the output and Pi the price of fuel for

each company. We fit the model

Yi = a(Xi) + εi ,

where it is assumed that the conditional density of the errors εi satisfies relation

(2.2). The scatterplot of the data, together with the estimated frontier curve â(x),

is shown in Figure 2. We restrict the region of estimation to [4.6, 11.2], to avoid

estimation in sparse areas of X. Both the estimation of ã(x) and â(x) is done using

local-linear smoothing. At each point of an equispaced grid of 34 values between

4.6 and 11.2 we estimate the bandwidth h = h1 from formula (3.8), yielding values

in the range from 0.54 to 1.06. The bandwidth for estimating ä(x), b(x) and c(x) is

chosen as one fifth of the total range, namely 1.32, whereas to estimate the design

density, we use kernel estimation based on the normal reference rule. The kernel

used throughout is again the biquadratic kernel.

Figure 2 suggests that a linear model is appropriate for these data. However,

it is particularly satisfying to reach that conclusion using a highly adaptive method

which does not impose linearity, or even convexity, as a prior assumption.
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5. TECHNICAL ARGUMENTS

5.1. Proof of Theorem 1. To simplify notation we shall assume that wx = 1

throughout; this can always be achieved via a change of scale. For brevity we shall

deal only with the case where x is an interior point of R. Put γα(x) = a(x)− α, a

scalar, and γβ(x) = h−1{ȧ(x)−β}, a p-vector. Let I(x, h) denote the set of indices

i such that ‖Xi − x‖ ≤ h, and for i ∈ I(x, h), define Vi = h−1(Xi − x). In this

notation,

Yi − α− βT(Xi − x) = γα(x) + h2
{
γβ(x)T Vi + 1

2 V
T
i ä Vi

}
+ h2Ri(x) + εi ,

where the remainder, Ri(x), has the property that

sup
x∈R

sup
i∈I(x,h)

|Ri(x)| ≤ R(h) ≡ h−2 sup
x∈R

sup
u : ‖u‖≤1, x+hu∈R

∣∣∣a(x+ hu)

− a(x)− huTȧ(x)− 1
2
h2 uTä(x)u

∣∣∣ , (5.1)

and R(h)→ 0 as h→ 0.

In particular, asking that Yi ≥ α + βT(Xi − x) for all indices i ∈ I(x, h) is

equivalent to insisting that

γα + inf
i∈I(x,h)

{
h2
(
γT
β Vi + 1

2 V
T
i ä Vi

)
+ h2 Ri + εi

}
≥ 0 , (5.2)

where we have dropped the argument from γα(x), γβ(x), ä(x) and Ri(x). Let

S1(x, h) denote the set of pairs (γα, γβ) such that (5.2) holds, and let γ̃1 denote the

infimum of γα over (γα, γβ) ∈ S1(x, h). Then, ã(x) = a(x)− γ̃1.

It follows from this result and (5.1) that, defining

γ̃2 = γ̃2(x) = sup
γβ

inf
i∈I(x,h)

{
h2
(
γT
β Vi + 1

2 V
T
i ä Vi

)
+ εi

}
, (5.3)

and noting that, for any random variable A, essupA is the infimum of constants C

for which P (A ≤ C) = 1, we have:

h−2 essup sup
x∈R

∣∣ã(x)− a(x)− γ̃2

∣∣→ 0 . (5.4)

Defining N = N(x, h) = # I(x, h), we may write γ̃2 equivalently as

γ̃2 = (nhp)−1/c(x) sup
γβ

inf
1≤i≤N

{
ρ1

(
γT
β V(i) + 1

2
V T

(i) ä V(i)

)
+ ξ(i)

}
,

where ρ1 = (nhp)1/c(x) h2, ξ(1) < ξ(2) < . . . are the ordered values of (nhp)1/c(x) εi

for i ∈ I, and V(1), V(2), . . . denote the concomitant values of V1, V2, . . ..
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For each r ≥ 1,

the limiting joint distribution of ξ(1), . . . , ξ(r) and V(1), . . . , V(r) is that of
b(x)−1/c(x) (Z1, . . . , Zr) and U1, . . . , Ur, where the sequence Z1, Z2, . . .
is as defined at (3.5) and, independently of the Zj ’s, the Uj ’s are
uniformly distributed on the unit p-variate sphere.

(5.5)

(See Hall, 1978). It may be deduced from (5.5) that, if ı̂ denotes the supremum

over integers i0 for which

sup
γβ

inf
1≤i≤N

{
ρ1

(
γT
β V(i) + 1

2
V T

(i) ä V(i)

)
+ ξ(i)

}

< sup
γβ

inf
1≤i≤i0

{
ρ1

(
γT
β V(i) + 1

2
V T

(i) ä V(i)

)
+ ξ(i)

}
,

and if ρ1 → ρ ∈ (0,∞) as n→∞, then

lim
i→∞

lim inf
n→∞

P (̂ı ≤ i) = 1 .

Therefore, if ρ1 → ρ ∈ (0,∞) as n→∞ then

(nhp)1/c(x) γ̃2 → sup
β∈IRp

inf
1≤i<∞

[
ρ
{
βT Ui + 1

2
UT
i ä(x)Ui

}
+ b(x)−1/c(x) Zi

]

in distribution. The part of Theorem 1 pertaining to ρ1 → ρ ∈ (0,∞) follows from

this property and (5.4).

If ρ1 → 0 then, since ξ(1) → b(x)−1/c(x)Z1 in distribution, we have (nhp)1/c(x)×
γ̃2 → b(x)−1/c(x)Z1 in distribution. And if ρ1 →∞ then

h−2 γ̃2 → sup
β∈IRp

inf
1≤i<∞

{
βT Ui + 1

2
UT
i ä(x)Ui

}

in distribution. Parts (a) and (b) of Theorem 1 are consequences of these properties.

To establish convergence of second moments it suffices, in view of (5.4), to

prove that for some η1 > 0,

there exist random variables A1 and A2 such that A1 ≤ (nhp
)1/c(x)

γ̃2 ≤
A2 with probability 1, and E(|Aj|2+η1) is uniformly bounded for j = 1, 2.

(5.6)

It follows from (5.3) that, with ‖ä‖ denoting the supremum of |vTäv| over unit

vectors v, and provided I(x, h) is not empty,

γ̃2 ≥ inf
i∈I(x,h)

(
1
2 h

2 V T
i ä Vi + εi

)
≥
{

inf
i∈I(x,h)

εi

}
− 1

2 h
2 ‖ä‖ . (5.7)

We may take the lower bound to be simply a fixed constant if I(x, h) is empty,

and so, since the latter event has exponentially small probability, then, in proving
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finiteness of second moments, we may ignore that case. Denote by i1, . . . , iN the

elements of I(x, h), and put cn = supu : ‖x−u‖≤h c(u). Then, for constants B1, B2 >

0 with B1B
c(x)
2 < 1, and for each η2 ∈ (0, 1),

E

[{
inf

i∈I(x,h)
εi

}2+η1
]

= (2 + η1)

∫ ∞

0

u1+η1 E
{
P (εi1 > u | Xi1) . . .

× P (εiN > u | XiN )
}
du

= O

{∫ B2

0

u1+η1
(
1− B1 u

cn
)(1−η2)E(N)

du

}

= O
{

(EN)−(2+η1)/cn
}

= O
{(
nhp

)−(2+η1)/c(x)
}
. (5.8)

From (5.7) and (5.8) we deduce the part of (5.6) pertaining to A1. To obtain

the part of (5.6) for A2 we shall, for the sake of brevity, assume that the distribution

of ε is bounded above. The contrary case may be treated using the assumption, in

(3.1), that supi,xE(|εi|2+η | Xi = x) <∞.

We may write εi = F−1
i (Di), where Fi is the distribution function of εi con-

ditional on Xi, and D1, D2, . . . are independent and uniformly distributed on the

unit interval, independent too of V1, V2, . . .. In view of (2.2), there exists B3 > 0

such that F−1
i (u) ≤ B3 u

1/cn , uniformly in Xi for which ‖Xi − x‖ ≤ h. Therefore,

by (5.3),

γ̃2 ≤ sup
γβ

inf
i∈I(x,h)

{
h2
(
γT
β Vi + 1

2
V T
i ä Vi

)
+B3D

1/cn
i

}
. (5.9)

Let D(j) denote the jth smallest value of εi, among indices i ∈ I(x, h), and

let V(j) be the concomitant value of Vi. (Since the Di’s and Vi’s are independent

then V(1), V(2), . . . are independent and identically distributed as V1, V2, . . ..) Let

M denote the least value of m for which there is at least one vector V(i), with

1 ≤ i ≤ m, in each half-sphere. That is, for each unit p-vector v there exist

1 ≤ i+(v), i−(v) ≤ m such that vTV(i+(v)) > 0 and vTV(i−(v)) < 0. Define M = ∞
if no such m exists, and let E denote the event that M <∞. If E holds then

S(x) ≡ sup
γβ

inf
1≤i≤M

γT
β V(i) ≤ sup

γβ

min
{
γT
β V(i+(γβ)), γ

T
β V(i−(γβ))

}
= 0 .

(If γβ 6= 0 then at least one of the terms within braces is strictly negative, and so the

supremum must be attained at γβ = 0.) More simply, S(x) ≥ 0, and so S(x) = 0.

Therefore, by (5.3) and (5.9), if E holds,

γ̃2 ≤ h2 S(x) + 1
2
h2 ‖ä‖+ ε(M) ≤ 1

2
h2 ‖ä‖+B3D

1/cn
(M) ,

where ε(j) denotes the jth smallest value of εi. If E fails then, by the formal definition

of γ̃2, that quantity is infinite, and we have agreed to take γ̃2 equal to a constant

in such cases. Hence, for some C > 0,

γ̃2 ≤ C I(M =∞) + 1
2
h2 ‖ä‖+ B3D

1/cn
(M) I(M <∞) . (5.10)
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We may divide the p-variate unit sphere into 2p regions of equal content, such

that, if M1 denotes the smallest value of m for which each region contains at least

one point among V(1), . . . , V(m), then M ≤M1. Hence, by (5.10),

γ̃2 ≤ C I(M1 > N) + 1
2 h

2 ‖ä‖+B3D
1/cn
(M1∧N) . (5.11)

Taking the sequence V(1), V(2), . . . to be unboundedly large rather than stopping at

V(N), we may replace D(M1∧N) on the right-hand side of (5.11) by simply D(M1),

although we keep I(M1 > N) as it is. It may be proved that for constants B5 > 0

and B4 ∈ (0, 1), P (M1 ≥ m) ≤ B4B
m
5 whenever m ≥ 1. Therefore, obtaining the

last line using an argument similar to that leading to (5.8),

E
{(
nhp

)1/c(x) |γ̃2|
}2+η1

≤ O(1) +B3

(
nhp

)(2+η1)/c(x)
n∑

m=2p

E
{
I(M1 = m)D

(2+η1)/cn
(m)

}

≤ O(1) +B3

(
nhp

)(2+η1)/c(x)
n∑

m=2p

P (M1 = m)1/2
{
ED

2(2+η1)/cn
(m)

}1/2

≤ O(1) +B6

(
nhp

)(2+η1)/c(x)
n∑

m=2p

B
m/2
5 (m/EN)(2+η1)/cn = O(1) ,

where 0 < B6 <∞. This gives the part of (5.6) pertaining to A2.

5.2. Proof of Theorem 2. (Recall that we assume that wx = 1.) We shall work with

the definition (3.7) of ǎ(x). Defining γ̃2(x) as at (5.3), and noting (5.4), we have:

ǎ(x) =

∫
a(x+ h1u)K(u) du+

∫
γ̃2(x+ h1u)K(u) du+ op

(
h2
)
. (5.12)

The first integral on the right-hand side, I1(x) say, equals a(x) + h2 g(x) + o(h2),

where g(x) = 1
2
t2 κ (∇2a)(x), whence it follows that (nhp)1/c(x) {I1(x) − a(x)} →

ρ g(x). The stochastic process S(u) = (nhp)1/c(x) γ̃2(x+ h1u) converges weakly to

Q2(u) ≡ Q2(u | x) (see below), whence it follows that the second integral, I2(x)

say, on the right-hand side of (5.12), satisfies (nhp)1/c(x) I2(x)→
∫
Q2(u)K(u) du.

To appreciate why the finite-dimensional distributions of S converge to those of

Q2, consider the marked point process in IRd, where the ith point is Vi = h−p(Xi−x)

and the associated mark is ζi = {nhp (t+1)p}1/c(x) εi. Only the marked points which

lie in the disc of radius t + 1, centred at the origin, contribute to ǎ(x), and so we

confine attention to those. Define ζ(1) < ζ(2) < . . . to be the ordered values of

ζ1 < ζ2 < . . ., and let V(1), V(2), . . . be the concomitant values of V1, V2, . . .. In

this new notation, (5.5) continues to hold. From that result it follows, using the

argument in the paragraph containing (5.5), that for each finite set u1, . . . , uk in the
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sphere of radius t+1, centred at the origin, the joint distribution of S(u1), . . . , S(uk)

converges to that of Q2(u1), . . . , Q2(uk). Tightness of the stochastic process S can

be proved using the fact that, defining

D(u, j0) = sup
γβ

inf
1≤j≤j0

{
ρ1

(
γT
β V(ij(u))+ 1

2 V
T
(ij(u)) ä V(ij(u))

)
+(1+p)−p/c(x) ζ(ij(u))

}
,

where the ordering j1(u), j2(u), . . . is such that V(i1(u)) < V(i2(u)) < . . . among

all indices i(u) such that ‖V(i(u)) − u‖ ≤ 1, the process D( · , j0) decreases with

increasing j0.

5.3. Proof of Theorem 3. Derivation of (3.12) is similar to that of the last part

of Theorem 1, and so will not be given here. We shall outline proofs of (3.13)

and (3.14).

In the case of (3.13), take a(x) = δ2 ψ(x/δ) where δ = n−1/(p+2c) and ψ is a

spherically symmetric function, supported on V(0, 1
2 ), with bounded derivatives of

first and second orders, all of them dominated by 1
2 C. Then, a ∈ A. Consider the

problem of discriminating between the models (a) Yi = εi and (b) Yi = a(Xi) + εi,

using only the data (X1, Y1), . . . , (Xn, Yn). The likelihood-ratio approach, which in

view of the Neyman-Pearson lemma is optimal, is to decide in favour of model (b)

if and only if the ratio

L =

n∏

i=1

[
f{Yi − a(Xi)}

/
f(Yi)

]

exceeds an appropriate critical point. Here, f is the density at (3.10). If Yi =

I a(Xi) + εi, where I = 0 or 1 in cases (a) or (b), respectively, then

logL = (c− 1)
n∑

i=1

log
{

1− Y −1
i a(Xi)

}
+

n∑

i=1

a(Xi) .

Hence, the likelihood-ratio rule involves deciding in favour of (b) if and only if the

sum ` =
∑
i log{1− Y −1

i a(Xi)} exceeds a critical point.

Asymptotically correct discrimination is readily seen to be impossible if ν ≡ nδp
is bounded; this quantity is of the same order as the number of pairs (Xi, Yi),

for 1 ≤ i ≤ n, that contain information about a. The theorem will follow if we

show that, when ν ≡ nδp → ∞ but δ = o(n−2/(p+2c)) along a subsequence, the

probability of correct discrimination using the likelihood-ratio rule, when cases (a)

and (b) above both have prior probability 1
2 , converges to 1

2 ; it is assumed that all

calculations are done for the subsequence.

We may Taylor-expand `, showing that `/δ2 = `1 + (I − 1
2 ) `2 + `3, where

`1 = −∑i ε
−1
i ψi, `2 = δ2

∑
i ε
−2
i ψ2

i , ψi = ψ(Xi/δ) and, when ν → ∞ and
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δ = o(n−1/(p+2c)), the remainder, `3, equals op(|`1| + |`2|). Using the fact that

0 < c < 2 it may be proved that ν−1/c `1 has a limiting, symmetric, nondegener-

ate stable distribution with exponent c, and δ−2 ν−2/c `2 has a limiting, positive,

nondegenerate stable law with exponent c/2. Therefore, if δ = o(n−1/(p+2c)) then

`2 = op(`1), from which it follows that the probability of correct classification using

the likelihood-ratio rule converges to 1
2 .

To obtain (3.14), letW denote the cube of diameter 2 inscribed within V(0, 1),

with its sides parallel to the coordinate axes. Place into W a rectangular grid of

points, x1, . . . , xN say, with nearest neighbours exactly δ apart and no point distant

less than 1
2
δ from the boundary of V(0, 1). We may take N ∼ const. δ−p as δ → 0.

Define aI(x) = δ2
∑
i Ii ψ{(x − xi)/δ}, where I = (I1, . . . , IN) is a vector of 0’s

and 1’s. Then aI ∈ A for each choice of I. Since ψ vanishes outside radius 1
2

from

the origin then, for each x, no more than one term in this series is nonzero. Treating

the problem of estimating aI on Rh as one of discriminating between Ii = 0 and

Ii = 1, for each i such that the sphere of radius 1
2δ centred at xi intersects Rh, and

arguing as in the proof of (3.13), we may derive (3.14).
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Table 1: Monte Carlo simulations for n = 200.

Model a0 c Mean(h) 10 Bias 100 Var 100 MSE

1 0.25 0.5 0.048 0.140 0.066 0.086

1 0.081 1.301 1.014 2.712

1.5 0.103 3.012 2.091 11.16

0.50 0.5 0.074 −0.240 0.054 0.112

1 0.096 0.807 0.667 1.317

1.5 0.111 2.496 1.987 8.218

2 1 0.5 0.072 −0.052 0.018 0.021

1 0.091 0.876 0.774 1.540

1.5 0.108 2.540 2.068 8.528

2 0.5 0.059 0.047 0.034 0.036

1 0.086 0.974 1.019 1.968

1.5 0.107 2.584 2.016 8.694

3 0.25 0.5 0.071 −0.033 0.015 0.016

1 0.091 0.896 0.866 1.669

1.5 0.107 2.577 2.102 8.743

0.50 0.5 0.069 −0.112 0.035 0.047

1 0.089 0.931 1.044 1.910

1.5 0.107 2.568 2.030 8.625
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Table 2: Monte Carlo simulations for n = 400.

Model a0 c Mean(h) 10 Bias 100 Var 100 MSE

1 0.25 0.5 0.036 0.009 0.027 0.027

1 0.067 0.763 0.376 0.958

1.5 0.081 2.272 0.949 6.112

0.50 0.5 0.058 −0.273 0.037 0.112

1 0.091 0.305 0.416 0.509

1.5 0.101 1.733 0.986 3.990

2 1 0.5 0.056 −0.073 0.008 0.013

1 0.085 0.478 0.358 0.587

1.5 0.097 1.820 0.981 4.293

2 0.5 0.045 −0.013 0.015 0.015

1 0.079 0.534 0.381 0.666

1.5 0.095 1.868 0.948 4.436

3 0.25 0.5 0.055 −0.063 0.008 0.012

1 0.085 0.491 0.362 0.603

1.5 0.098 1.836 0.998 4.368

0.50 0.5 0.053 −0.139 0.022 0.041

1 0.083 0.440 0.403 0.597

1.5 0.097 1.835 0.989 4.357
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Figure 1: Graphs of the functions a(x) given in (4.1): the left figure shows a(x) for
Model 1 (a0 = 0.25 (thin curve) and a0 = 0.50 (thick curve)), the right figure shows
a(x) for Model 2 (a0 = 1 (thin solid curve) and a0 = 2 (thick solid curve)) and
Model 3 (a0 = 0.25 (thin dashed curve) and a0 = 0.50 (thick dashed curve)).
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Figure 2: Scatterplot of the American Electric Utility Data. The observations are
represented by circles, the solid curve is the estimated ‘regression’ (frontier) curve.


