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Abstract

We propose a new estimator, called the Generalized Maximum Rank Correlation
Estimator (GMRC), of the index coefficients in the context of the so-called Single-Index
Model : Yi = g(β′

0Xi)+εi, with g and β0 unknown. The underlying idea is very simple:
given a pair of observations (Xi, Yi) and (Xj , Yj), if g(β′

0Xi) is greater than g(β′
0Xj), it

is likely that Yi be greater than Yj . In other words, the ranks of the Yi’s and the ranks
of the g(β′

0Xi)’s would be highly positively correlated. The clue is thus to estimate β0

by the value of β which maximizes an estimated version of the rank correlation. Han
(1987) proposed such kind of estimation method, but assuming the strict monotonicity
of the link function g. We relax this assumption. The estimator is shown to be root-n
consistent and asymptotically normal, and has multiple advantages. In particular, an
extensive simulation study shows its very good finite-sample behavior : in most of the
situations, it seems that the GMRC estimator represents the best choice in practice.
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1 Introduction

Let Z = (X, Y ) be an observation from a distribution P , on a set S ⊆ Rp ⊗ R. Consider

the regression context, where the link between the response variable Y and the vector of

covariates X has to be emphasized. In other words, we are searching for the function m(x),

such that

Y = m(X) + ε,

where ε is a random disturbance with E(ε|X) = 0. Is is well known that this problem can

be tackled different ways, depending on the assumptions made about this function m. One

of the most popular model in literature during the last decade is certainly the single-index

model. For a comprehensive survey about this topic, see Geenens and Delecroix (2005). This

model keeps a great part of the flexibility of the nonparametric models, but avoiding the

well-known ”curse of dimensionality”. The hypothesis made about m is that the effect of

the covariates on the response is linear, up to an unknown transformation g. Formally, the

model is

Y = g(β ′
0X) + ε. (1.1)

From a sample {Z1, ..., Zn} of independent observations from P , the estimation problem

is thus twofold : the function g and the so-called index coefficients vector β0 have to be

estimated. An important remark is that the scale of β ′
0X can be arbitrarily chosen. Indeed,

any pair (index coefficients vector, link function) from the set {(cβ0, gc(.) = g(./c)), c ∈ R0}
exactly leads to the same regression function m, so that they cannot be distinguished even

if the whole distribution P was known. Hence, for identifiability purpose, it is necessary to

fix the scale of β0. We will choose to fix β
(1)
0 = 1, where v(k) denotes the kth component of

any vector v.

This paper address the problem of estimating the index coefficients. Note that, because

of the above identifiability condition, the parameter space is actually a p − 1 dimensional

subset of Rp. If the set of admissible β is taken to be compact, any β can be represented as

βθ = (1, θ), where θ ∈ Θ, Θ being a compact subset of Rp−1. One can also note β0 = (1, θ0).

Therefore, an estimator of β0 is directly given by an estimator of θ0, completed with a leading

component equal to 1.

Many estimators of these index coefficients have already been proposed. They can be

classified in two families : the M-estimators and the direct estimators. Direct estimators

provide an analytic form for the estimator of θ0. From any data set, the estimation is thus

very fast and easy. For example, we can mention the average derivative method (ADE), as in

Härdle and Stoker (1989), Powell et al (1989) or Hristache et al (2001), and the Sliced Inverse
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Regression (SIR), as in Duan and Li (1991) or Zhu and Fang (1996). The M-estimation

approach considers the link function as an infinite-dimensional nuisance parameter. The

estimator θ̂ is the minimizer of a certain criterion, where the unknown link function is

replaced by a nonparametric estimator ĝ :

θ̂ = arg min
θ∈Θ

n∑

i=1

Ψ (Yi, ĝ(β ′
θXi)) , (1.2)

with Ψ a contrast function particularizing the estimator. Typical examples of M-estimators

are the semiparametric least squares estimator (Ichimura (1993)) and the semiparametric

maximum likelihood estimator (Delecroix et al (2003)). The theoretical properties of the

M-estimators are much better of those of the direct ones, nevertheless they require solving

an intricate optimization problem (1.2), so that their computation is by far slower.

The estimator proposed in this paper is close to M-estimators, as it is given by the solution

of an optimization problem, but is not really as in (1.2). It is actually a generalization of

the Maximum Rank Correlation estimator (MRC) of Han (1987) and Sherman (1993). The

paper is organized as follows : section 2 describes the estimation scheme. Section 3 derives

the asymptotic properties of the estimator. Section 4 gives sufficient conditions to guarantee

these asymptotic results. Section 5 provides a general form of the variance-covariance matrix

of the estimator in terms of primitives of the model. Practical performances of the estimator

are analysed in section 6, before the conclusion in section 7.

2 The Generalized Maximum Rank Correlation Esti-

mator

Considering a slightly different model, namely

Y = D o F (β ′
0X, ε), (2.3)

where it is only specified that D : R → R is non-degenerate monotonic and F : R2 → R

is strictly monotonic in each of its variables, Han (1987) proposed an estimator based on

very intuitive arguments. Taking D(x) = x and F (u, v) = g(u) + v, it appears that the

Single-Index Model (1.1) is nothing else but a particular case of (2.3), if the link function g

is strictly monotonic. Han’s results thus hold in the SIM context and his methodology can

be particularized in the following way.

Assume, without loss of generality, that g is strictly increasing. Then, given an inequality

β ′
0Xi > β ′

0Xj for a pair of samples, it is likely that Yi > Yj. Indeed, as g(β ′
0Xi) > g(β ′

0Xj),
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only the error term can alter the ranking of the Yi’s. If the variance of this error term is

fair, this amounts to say that the ranks of the Yi’s and the ranks of the β ′
0Xi’s would be

highly positively correlated. Formally, this rank correlation between the Yi’s and the linear

combinations β ′
θXi’s, for any θ, is given by

Γn(θ) =

(
n

2

)−1∑

ρ

{1(Yi > Yj)1(β ′
θXi > β ′

θXj) + 1(Yi < Yj)1(β ′
θXi < β ′

θXj)} , (2.4)

with 1(.) being the indicator function and
∑
ρ

denoting the summation over the
(

n

2

)
combi-

nations of two distinct elements (i, j) from {1, ..., n}. Note that Γn(θ) is the count of the

pairs of samples for which the Y ’s and the β ′
θX’s are in concordance. Based on the above

idea, the estimator θ̂n of θ0 is defined as the value which maximizes Γn(θ) :

θ̂n = arg max
θ∈Θ

Γn(θ).

Han (1987) proved the strong consistency of this estimator, while Sherman (1993) showed

its root-n consistency and derived its asymptotic normality.

A drawback of the above procedure is obviously the monotonic assumption on the link

g. In most of situations, we do not have enough information about it to state that it is the

case. Worse, in some phenomena, we know for a fact that it is not. A generalization of the

above algorithm is thus needed. The idea is the following : no matter the link function g,

if a pair of samples is such that Yi > Yj, it is likely that g(β ′
0Xi) > g(β ′

0Xj). Therefore, the

ranks of the Yi’s and the ranks of the g(β ′
0Xi)’s would also be highly positively correlated.

Similarly to (2.4), for any θ, the rank correlation between observed and fitted values is given

by

T ∗
n(θ) =

(
n

2

)−1∑

ρ

{1(Yi > Yj)1(g(β ′
θXi) > g(β ′

θXj)) + 1(Yi < Yj)1(g(β ′
θXi) < g(β ′

θXj))}

(2.5)

and a good estimator of θ0 should be the value which maximizes T ∗
n(θ). Of course, in the

single-index context, such an estimator is not feasible since the link function g is unknown.

The way to overcome the problem is to consider it as a nuisance parameter, as it was done in

classical M-estimation methods. The link function in (2.5) is thus replaced by any consistent

nonparametric estimator, for example the Nadaraya-Watson estimator

ĝθ,h(u) =

n∑
i=1

K(
u−β′

θ
Xi

h
)Yi

n∑
i=1

K(
u−β′

θ
Xi

h
)

,
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with K a kernel function and h a bandwidth. The practical criterion to be maximized is

thus

Tn(θ) =
2

n(n − 1)

∑

ρ

{1(Yi > Yj)1(ĝθ,h(β ′
θXi) > ĝθ,h(β ′

θXj))

+ 1(Yi < Yj)1(ĝθ,h(β ′
θXi) < ĝθ,h(β ′

θXj))}

which can be written as

Tn(θ)
.
=

2

n(n − 1)

∑

ρ

Φ(Yi, Yj, ĝ
θ,h(β ′

θXi), ĝ
θ,h(β ′

θXj)). (2.6)

The estimator of θ0, called the Generalized Maximum Rank Correlation Estimator (GMRC

estimator), is finally given by

θ̂n = arg max
θ∈Θ

Tn(θ).

In a sense, the GMRC estimator is a M-estimator as it is the optimizer of the criterion Tn(θ).

However, we observe a difference between (2.6) and the criterion in (1.2) : the function Φ

admits two sample values as arguments, while the function Ψ admits only one.

3 Asymptotic theory

In this section we establish the root-n consistency and the asymptotic normality of the Gen-

eralized Maximum Rank Correlation Estimator. The proof follows the arguments developped

in Han (1987) and Sherman (1993), and is built on the following assumptions :

(1) {εi, i = 1, ..., n} are i.i.d. random variables ;

(2) {Xi} are i.i.d. random p-vectors, independent of {εi}, with distribution function FX

such that

(i) the support SX of FX is not contained in any proper linear subspace of Rp, and

(ii) there exists at least one regressor, say X(1), with everywhere positive Lebesgue

density, conditional on the set of the other covariates, say X(−1), almost surely

PX(−1) ;

(3) the link function g : R → R is continuous and does not remain constant on any

interval of R ;

(4) θ0 is an interior point of Θ, a compact subset of Rp−1 ;
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(5) denoting

τ(z, θ) = E {1(y > Y )1(g(β ′
θx) > g(β ′

θX)) + 1(y < Y )1(g(β ′
θx) < g(β ′

θX))}

∀z = (x, y) ∈ S and θ ∈ Θ, and N a neighborhood of θ0, we have :

(i) for all z in S, all mixed second partial derivatives of τ(z, .) exist on N ;

(ii) there is an integrable function M(z) verifying for all z in S and θ in N

‖∇2τ(z, θ) −∇2τ(z, θ0)‖ ≤ M(z) ‖θ − θ0‖ ;

(iii) E ‖∇1τ(., θ0)‖2 < ∞ ;

(iv) E |∇2| τ(., θ0) < ∞ ;

(6) the nonparametric estimator ĝθ,h is a consistent estimator of the link function g.

Note : ∇k denotes the kth partial derivative operator with respect to θ,

|∇k|f(θ) =
∑

i1,...,ik

∣∣∣∣
∂k

∂θi1 ...∂θik

f(θ)

∣∣∣∣

for any function f , and ‖.‖ denotes the matrix norm.

Assumptions (1) and (4) are classical assumptions in the context of Single-Index models.

Assumptions (2) and (3) are designed in order to ensure the identification of the model.

Remark that the hypotheses on the link function are very mild. The continuity is needed

to allow the use of a classical nonparametric estimator of g in (2.6), while functions g with

”flat” parts are to be excluded to avoid ex-aequos in the ranking of the g(β ′
θXi)’s. In the

presence of ties, only the error terms εi’s should determine the ranking of the Yi’s, so that

consistency could not be reached. Assumption (5) gives regularity conditions to allow a

Taylor expansion of τ(z, θ). Practical sufficient conditions for satisfying assumption (5) will

be given is section 4. Assumption (6) is obvious. Note that no particular rate of convergence

for the bandwidth sequence is needed, except the classical h → 0 and nh → ∞ ensuring the

consistency of ĝθ,h.

theorem 3.1. Under assumptions (1-6), θ̂n is a consistent estimator of θ0, and

√
n(θ − θ0)

L→ N(0, V −1∆V −1), (3.7)

with V = 1
2
E[∇2τ(Z, θ0)] and ∆ = E[∇1τ(Z, θ0)(∇1τ(Z, θ0))

′].
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Proof. Due to its length, the proof is split into 2 steps : we first establish the consitency of

the estimator, and then we derive its rate of convergence and its asymptotic normality.

Step 1 : consistency

Consider the criterion Tn(θ), the idealized criterion T ∗
n(θ) and define

T (θ) = E[T ∗
n(θ)] = P [Yi > Yj, g(β ′

θXi) > g(β ′
θXj)] .

Define also δn(θ) as the difference between Tn(θ) and T ∗
n(θ), i.e.

δn(θ) =
1

n(n − 1)

∑

i6=j

1(Yi > Yj)
[
1(ĝθ,h(β ′

θXi) > ĝθ,h(β ′
θXj)) − 1(g(β ′

θXi) > g(β ′
θXj))

]
,

and note that δn(θ) = oP (1) due to the consistency of ĝθ,h, by assumption (6). Now let

(Zi, Zj) be a pair of samples such that g(β ′
0Xi) > g(β ′

0Xj). Then we have

Pε|X(Yi > Yj) > Pε|X(Yi < Yj).

Indeed,

Pε|X(Yi > Yj) = Pε|X (g(β ′
0Xi) + εi > g(β ′

0Xj) + εj)

= Pε|X (εi − εj > g(β ′
0Xj) − g(β ′

0Xi)) (3.8)

which is greater than 1/2 since εi and εj are two replications of the same random variable.

Next, let

tij(θ) = EX

[
Pε|X(Yi > Yj)1(g(β ′

θXi) > g(β ′
θXj)) + Pε|X(Yi < Yj)1(g(β ′

θXi) < g(β ′
θXj))

]

and denote f(x1, x2) the joint density of (Xi, Xj),

A1(θ) = {x = (x1, x2) ∈ Rp ×Rp : g(β ′
θx1) > g(β ′

θx2)}

and

A2(θ) = {x = (x1, x2) ∈ Rp ×Rp : g(β ′
θx1) < g(β ′

θx2)} .

Then observe that tij(θ) can be written as

tij(θ) =

∫∫

Rp×Rp

α(x1, x2; θ)f(x1, x2)dx1dx2,

where the function α is defined as

α(x1, x2; θ) =

{
Pε|X(Yi > Yj) if (x1, x2) ∈ A1(θ)
Pε|X(Yi < Yj) if (x1, x2) ∈ A2(θ)

.
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From (3.8), it appears that α(x1, x2; θ0) is always greater than 1/2, which amounts to say

that tij(θ0) is a maximum of the function tij(θ). Next it is easy to see that1

P [(Xi, Xj) ∈ {(x1, x2) ∈ SX × SX : g(β ′
0x1) > g(β ′

0x2), g(β ′
θx1) < g(β ′

θx2)}] > 0. (3.9)

Therefore, the function α(x1, x2; θ) is not maximum for all (x1, x2) ∈ SX × SX , and there

exists some η such that tij(θ0) > η > tij(θ). θ0 is thus the unique maximizer of tij for each set

of (i, j), and therefore is also the unique maximizer of the sum T (θ). The uniform convergence

of the criterion T ∗
n(θ) towards its expectation T (θ) is direct, due to the U-statistic structure

of T ∗
n , and by following the step 2 of the proof of Han (1987). We find

sup
θ∈Θ

|T ∗
n(θ) − T (θ)| P→ 0.

Now, since θ̂n is the maximizer of Tn(θ), we have :

Tn(θ̂n) ≥ max
θ∈Θ

Tn(θ)

T ∗
n(θ̂n) + δn(θ̂n) ≥ max

θ∈Θ
[T ∗

n(θ) + δn(θ)]

≥ max
θ∈Θ

T ∗
n(θ) + min

θ∈Θ
δn(θ),

so that

T ∗
n(θ̂n) ≥ max

θ∈Θ
T ∗

n(θ) − op(1).

The consistency of θ̂n then follows from the theorem 5.7 of van der Vaart (1998) :

θ̂n
P→ θ0.

Step 2 :
√

n-consistency and asymptotic normality

Consider

S∗
n(θ) = T ∗

n(θ) − T ∗
n(θ0)

and

S(θ) = T (θ) − T (θ0).

As T , S is maximized in θ0 and its maximal value is thus 0. For all (z1, z2) ∈ S × S and for

all θ ∈ Θ, define

f(z1, z2, θ) = 1{y1 > y2}[1{g(β ′
θx1) > g(β ′

θx1)} − 1{g(β ′
0x1) > g(β ′

0x1)}]
+ 1{y1 < y2}[1{g(β ′

θx1) < g(β ′
θx1)} − 1{g(β ′

0x1) < g(β ′
0x1)}].

1a proof is provided in the appendix.
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Since S∗
n(θ) is a U-statistic of order 2 with expectation S(θ), we may apply the decomposition

(5) of Sherman (1993) and write

S∗
n(θ) = S(θ) +

1

n

∑

i

a(Zi, θ) +
2

n(n − 1)

∑

ρ

b(Zi, Zj, θ) (3.10)

with

a(z, θ) = E[f(z, Z, θ)] + E[f(Z, z, θ)] − 2S(θ)

and

b(z1, z2, θ) = f(z1, z2, θ) − E[f(z1, Z, θ)] − E[f(Z, z2, θ)] + S(θ).

Assumption (5i) allows to expand τ(z, θ) around τ(z, θ0) :

τ(z, θ) = τ(z, θ0) + (θ − θ0)
′∇1τ(z, θ0) +

1

2
(θ − θ0)

′∇2τ(z, θ̃)(θ − θ0)

with θ̃ between θ and θ0. By assumption (5ii) we have

‖(θ − θ0)
′[∇2τ(z, θ) −∇2τ(z, θ0)](θ − θ0)‖ ≤ M(z)||θ − θ0||3.

Remark also that

2S(θ) = E[τ(Z, θ) − τ(Z, θ0)],

so that we can write

2S(θ) = (θ − θ0)
′E[∇1τ(Z, θ0)] +

1

2
(θ − θ0)

′E[∇2τ(Z, θ0)](θ − θ0) + o(||θ − θ0||2).

Since S(θ) admits a maximum, the coefficient E[∇1τ(z, θ0)] of the linear term in the above

expression must be zero, and V is seen to be negative definite. We finally find

S(θ) =
1

2
(θ − θ0)

′V (θ − θ0) + o(||θ − θ0||2). (3.11)

Now, note that a(z, θ) = τ(z, θ) − τ(z, θ0) − 2S(θ). Hence, we have

1

n

∑

i

a(Zi, θ) =
1

n

∑

i

τ(Zi, θ) −
1

n

∑

i

τ(Zi, θ0) − 2S(θ)

=
1

n

∑

i

(θ − θ0)
′∇1τ(Zi, θ0) +

1

2n

∑

i

(θ − θ0)
′∇2τ(Zi, θ0)(θ − θ0)

− (θ − θ0)
′V (θ − θ0) + o(||θ − θ0||2)

=
1√
n

(θ − θ0)
′Wn +

1

2
(θ − θ0)

′Dn(θ − θ0)
′ + o(||θ − θ0||2) + Rn(θ)
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with

Wn =
1√
n

∑

i

∇1τ(Zi, θ0)

Dn =
1

n

∑

i

∇2τ(Zi, θ0) − 2V

and

||Rn(θ)|| ≤ 1

n

∑

i

M(Zi) ||θ − θ0||3.

By assumption (5iii), the fact that E[∇1τ(z, θ0)] = 0 and the Central Limit Theorem, we

have that Wn
L→ N(0, ∆) with ∆ = E[∇1τ(z, θ0)(∇1τ(z, θ0))

′]. By assumption (5iv) and a

weak law of large numbers, Dn
P→ 0. Finally the integrability of M and a weak law of large

numbers imply that Rn(θ) = oP (||θ − θ0||2). We then conclude that

1

n

∑

i

a(Zi, θ) =
1√
n

(θ − θ0)
′Wn + oP (||θ − θ0||2). (3.12)

By assumption (2ii), β ′
θX is absolutely continuous for any θ. Therefore, with assump-

tion (3), we find that P [g(β ′
0X1) = g(β ′

0X2)] = 0. For any (z1, z2) ∈ S × S, f(z1, z2, θ) is

thus continuous and bounded in θ0 almost surely. This remains true for b(z1, z2, θ). Since

f(z1, z2, θ0) ≡ 0, one can deduce that E[b(Z1, Z2, θ)
2] → 0 when θ → θ0. The Euclidean prop-

erties of the class of functions {b(., ., θ) : θ ∈ Θ} can be found on the same way as in Sher-

man (1993) section 5, using the 5-dimensional vector space Hθ = {hθ(., ., .; γ, γ1, γ2, δ1, δ2) :

γ, γ1, γ2, δ1, δ2 ∈ R}, with

hθ(z1, z2, t; γ, γ1, γ2, δ1, δ2) = γt + γ1y1 + γ2y2 + δ1g(β ′
θx1) + δ2g(β ′

θx2)

for any (z1, z2, t) ∈ S × S × R. Then, using theorem 3 of Sherman (1993), we have that

2

n(n − 1)

∑

ρ

b(Zi, Zj, θ) = oP (
1

n
). (3.13)

Using (3.11), (3.12) and (3.13), we can rewrite (3.10) as

S∗
n(θ) =

1

2
(θ − θ0)

′V (θ − θ0) +
1√
n

(θ − θ0)
′Wn + oP (||θ − θ0||2) + oP (

1

n
).

Now write

Sn(θ) = Tn(θ) − Tn(θ0)

and see that

Sn(θ) = S∗
n(θ) + δn(θ) − δn(θ0).
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For all θ ∈ Θ, δn(θ) can be written as ∆n(θ)/n, with

∆n(θ) =
1

(n − 1)

∑

i6=j

1(Yi > Yj)
[
1(ĝθ,h(β ′

θXi) > ĝθ,h(β ′
θXj)) − 1(g(β ′

θXi) > g(β ′
θXj))

]
.

It follows that ∀ε > 0,

P [|∆n(θ)| > ε] ≤ P

[
1

(n − 1)

∑

i6=j

∣∣1(ĝθ,h(β ′
θXi) > ĝθ,h(β ′

θXj)) − 1(g(β ′
θXi) > g(β ′

θXj))
∣∣ > ε

]
.

Write λn(θ) for
∣∣1(ĝθ,h(β ′

θXi) > ĝθ,h(β ′
θXj)) − 1(g(β ′

θXi) > g(β ′
θXj))

∣∣. λn(θ) is a random vari-

able such that

λn(θ) =

{
1 with probability πn

0 with probability 1 − πn
,

with πn being the probability of discordance between the pairs (ĝθ,h(β ′
θXi), ĝ

θ,h(β ′
θXj)) and

(g(β ′
θXi), g(β ′

θXj)). We find that

P [nλn(θ) > ε] =

{
πn if 0 < ε < n
0 if ε ≥ n

and, since πn → 0 due to the consistency of ĝθ,h,

lim
n→∞

P [nλn(θ) > ε] = 0 ∀ε > 0.

This means that λn(θ) = op(
1
n
), and we have that

lim
n→∞

P [|∆n(θ)| > ε] ≤ lim
n→∞

P

[
1

(n − 1)

∑

i6=j

λn(θ) > ε

]
= 0.

This amounts to say that ∀θ ∈ Θ, δn(θ) = oP ( 1
n
), so that

Sn(θ) =
1

2
(θ − θ0)

′V (θ − θ0) +
1√
n

(θ − θ0)
′Wn + oP (||θ − θ0||2) + oP (

1

n
).

Therefore, since V is a negative definite matrix, we can apply to Sn(θ) theorems 1 and 2 of

Sherman (1993) and conclude that

√
n(θ̂n − θ0)

L→ N(0, V −1∆V −1).
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4 Sufficient conditions for assumption 5

A key assumption in the theorem is assumption (5). Similarly to what is done in Sher-

man (1993), we derive here sufficient conditions on the distribution of Z to guarantee this

assumption. Remark that, for any z ∈ R×SX and θ ∈ Θ, the function τ(z, θ) can be written

τ(z, θ) =

y∫

−∞

g(β′

θ
x)∫

−∞

f θ
g(U),Y (w, t) dw dt +

∞∫

y

∞∫

g(β′

θ
x)

f θ
g(U),Y (w, t) dw dt.

and that

f θ
g(U),Y (w, t) = fY |g(U)(t|w) f θ

g(U)(w)

= fε(t − w) f θ
g(U)(w)

with U = β ′
θX, f θ

g(U),Y the joint density of g(U) and Y , fY |g(U) the density of Y conditional

to g(U), fε the marginal density of the residual ε and f θ
g(U) the marginal density of g(U).

Now suppose that the function g has a continuous derivative at every point and that the

derivative is 0 only at the points a1, a2, ..., ak−1, where a1 < a2 < ... < ak−1. Let R be

partitioned into k disjoints intervals I1, ..., Ik, such that g is either monotonic increasing or

monotonic decreasing (thus invertible) in the ith interval ]ai−1, ai[, for each i, and denote

gi(u) the restriction of g to the interval Ii. We have

g(u) =

k∑

i=1

gi(u) 1{u∈Ii}. (4.14)

Let ui(w) = g−1
i (w) be the solution of w = g(u) for u in the ith interval. By the above

assumption on g, dui/dw exists for all w, and it is known that the density of g(U) can be

written

f θ
g(U)(w) =

∑

λ

f θ
U(ui(w))

∣∣∣∣
dui

dw
(w)

∣∣∣∣ ,

where the summation λ is taken over the values of i for which gi(u) = w for some value of

u in the ith interval Ii, and fU is the marginal density of the index U .

We find

f θ
g(U),Y (w, t) = fε(t − w)

∑

λ

f θ
U(ui(w))

∣∣∣∣
dui

dw
(w)

∣∣∣∣

= fε(t − w)
∑

λ

∫
fX(1)|X(−1)(ui(w) − θ′r | r)fX(−1)(r) dr

∣∣∣∣
dui

dw
(w)

∣∣∣∣ ,
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with fX(1)|X(−1) the density of the first component of vector X conditional to the others

components and fX(−1) the density of the vector (X(2), ..., X(p)). Consequently, it is shown

that assumption 5 is met if fX(1)|X(−1)(.|X(−1) = r) has bounded derivatives up to order three

for each r in the support of X(−1), so that this assumption is not very restrictive.

5 The asymptotic covariance matrix

The theorem should be much more attractive if the covariance matrix in (3.7) was given in

terms of model primitives. It is possible to return to them after some arithmetic develop-

ments. Note that

τ(Z, θ) =

∫

g(β′

θ
x)<g(β′

θ
X)

ξ(Y, g(β ′
0x))fX(x)dx +

∫
ρ(Y, g(β ′

0x))fX(x)dx, (5.15)

with fX the density of vector X, ξ(y, w) = E[1(y > Y ) − 1(y < Y )|g(β ′
0X) = w] and

ρ(y, w) = E[1(y < Y )|g(β ′
0X) = w]. Denote ∇(i) the ith component of ∇1, the first partial

derivative with respect to θ. We have that

∇(i)τ(Z, θ0) = lim
ε→0

ε−1[τ(Z, θ0 + εai) − τ(Z, θ0)],

where ai is the unit vector of Rp−1 with ith component equal to 1. With (5.15), we have

τ(Z, θ0 + εai) − τ(Z, θ0) =

∫

g((β0+εbi+1)′x)<g((β0+εbi+1)′X)

ξ(Y, g(β ′
0x))fX(x)dx

−
∫

g(β′

0x)<g(β′

0X)

ξ(Y, g(β ′
0x))fX(x)dx

with bi the unit vector of Rp with ith component equal to 1. If dg

du
(u) exists, we have also

that

g((β0 + εbi+1)
′x) = g(β ′

0x + εx(i+1)) = g(β ′
0x) + εx(i+1) dg

du
(β ′

0x
∗),

with x∗ such that β ′
0x

∗ is between β ′
0x and β ′

0x + εx(i+1). Therefore, we find that

τ(Z, θ0 + εai) − τ(Z, θ0) =

∫

g(β′

0x)<g(β′

0X)+ε(X(i+1) dg
du

(β′

0X∗)−x(i+1) dg
du

(β′

0x∗))

ξ(Y, g(β ′
0x))fX(x)dx

−
∫

g(β′

0x)<g(β′

0X)

ξ(Y, g(β ′
0x))fX(x)dx.

12



Now define the random variable W as g(β ′
0X). Although g is not injective, it is possible to

define a ”generalized” inverse g−1 of g, based on the decomposition (4.14) of g :

g−1(wu) =

k∑

i=1

g−1
i (wu) 1(u ∈ Ii),

if it is known that wu = g(u). Then apply the change of variables from x = (x(1), r) to

(g(β ′
0x), r). It is found that

τ(Z, θ0 + εai) − τ(Z, θ0) =

∫
IY (r)fX(−1)(r)dr

where

IY (r) =

g(β′

0X)+ε(X(i+1) dg

du
(β′

0X∗)−x(i+1) dg

du
(β′

0x∗))∫

g(β′

0X)

ξ(Y, w)

∣∣∣∣
dg−1

dw
(w)

∣∣∣∣ fW |X(−1)(w|r)dw.

When ε → 0, IY (r) equals

ε(X(i+1) − x(i+1))
dg

du
(β ′

0X)ξ(Y, g(β ′
0X)))

∣∣∣∣
dg−1

dw
(g(β ′

0X))

∣∣∣∣ fW |X(−1)(g(β ′
0X)|r) + o(ε),

so that, by integration and using the fact that dg−1

dw
(w) =

(
dg

du
(g−1(w))

)−1
,

∇1τ(Z, θ0) =
(
X(−1) − E[X(−1)|g(β ′

0X)]
)
ξ(Y, g(β ′

0X))fW (g(β ′
0X))sign

(
dg

du
(β ′

0X)

)
,

with sign(x) = x/|x|. From the expression of ∆ given in the theorem, we find that

∆ = E
[
(X(−1) − E[X(−1)|g(β ′

0X)])(X(−1) − E[X(−1)|g(β ′
0X)])′ξ2(Y, g(β ′

0X))f 2
W (g(β ′

0X))
]
.

Also, denote λ(y, w) = ξ(y, w)fW (w)dg−1

dw
(w). Similar derivations as above lead to

2V = E

[
(X(−1) − E[X(−1)|g(β ′

0X)])(X(−1) − E[X(−1)|g(β ′
0X)])′

∂λ

∂w
(Y, g(β ′

0X))

(
dg

du
(β ′

0X)

)2
]

.

Then, remark that, for each w, ξ(Y, w) is bounded and has symmetric distribution around

0 conditional to g(β ′
0X) = w, so that

E [ξ(Y, w)|g(β ′
0X) = w] = 0.

We finally find

2V = E[(X(−1) − E[X(−1)|g(β ′
0X)])(X(−1) − E[X(−1)|g(β ′

0X)])′

× ∂ξ

∂w
(Y, g(β ′

0X))fW (g(β ′
0X))

∣∣∣∣
dg

du
(β ′

0X)

∣∣∣∣].
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6 A simulation study

The aim of this section is to compare the practical performances of the GMRC estimator

with other index coefficients estimators. First of all, we have considered the Single-Index

Model (1.1) with p = 2,

g(u) = u2,

β0 = (1, 2)′,

X1 ∼ N(0, 1),

X2 ∼ Bern(0.5),

ε ∼ N(0, 0.05).

The sample size is set to n = 50, n = 100, n = 200 and n = 500, and 500 Monte-Carlo

replications are drawn in each case, and we estimate θ0 by the GMRC estimator and by

two reliable classical methods : Semiparametric Least Squares (SLS) and Semiparametric

Maximum Likelihood (SML)2. The mean and the Mean Squared Error of the estimations of

θ0 are given in the table below :

n = 50 n = 100 n = 200 n = 500

mean(θ̂) MSE(θ̂) mean(θ̂) MSE(θ̂) mean(θ̂) MSE(θ̂) mean(θ̂) MSE(θ̂)
GMRC 1, 9095 0, 0667 1, 9282 0, 0322 1, 9800 0, 0187 2, 0112 0, 0086

SLS 1, 8047 0, 2000 1, 8489 0, 0820 1, 8884 0, 0282 1, 8887 0, 0150
SML 1, 8928 0, 5104 1, 7993 0, 1454 1, 8509 0, 0585 1, 9600 0, 0082

It clearly appears that the GMRC estimator performs better than the other two methods

for small to moderately large samples. Actually, the nonparametric estimation of g, what

we can expect to be poor when n is small, does not directly arise in criterion (2.6), as it

does in criterion (1.2), but only through indicator functions. This fact can explained the

better behavior of the GMRC compared with classical M-estimators. Note that for larger n,

the Semiparametric Maximum Likelihood seems to become slightly better, what could also

be expected as it is known that this estimator is asymptotically efficient. Nevertheless, the

GMRC remains very good.

We have also compared the practical performance of the GMRC versus the MRC es-

timator in the case of an increasing link function. We used the model (1.1) with p = 2

2The distribution of the covariates is supposed unknown and is nonparametrically estimated : this is
what Geenens and Delecroix (2005) called the ”Ignorant Semiparametric Maximum Likelihood”.
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and

g(u) = u3,

β0 = (1, 2)′,

X1 ∼ N(0, 1),

X2 ∼ N(0, 1),

ε ∼ N(0, 0.05).

We set the sample size to n = 50, n = 100 and n = 200 and again for each case 500 Monte

Carlo replications were drawn. We estimated θ0 by the GMRC and the MRC estimators.

We obtained :

n = 50 n = 100 n = 200

mean(θ̂) MSE(θ̂) mean(θ̂) MSE(θ̂) mean(θ̂) MSE(θ̂)
GMRC 2, 0081 0, 0253 2, 0021 0, 0078 1, 9971 0, 0016

MRC 2, 0193 0, 0315 2, 0043 0, 0081 1, 9972 0, 0017

An interesting observation is that the GMRC performs as good as the MRC estimator,

so that nothing lost by estimating the link function.

A necessary assumption to prove the consistency of the GMRC was to suppose that the

link function does not remain constant on any interval of R. We studied a third scenario

with the same design as the previous one and the logit link function

g(u) =
exp(u)

1 + exp(u)
,

that is a link function almost flat for large absolute values of the index. In this case, we

compared the GMRC with the MRC, also probably disadvantaged by the shape of the link,

the SLS and the SML. From 500 Monte Carlo replications for sample size set to 50, 100 and

200, we found :

n = 50 n = 100 n = 200

mean(θ̂) MSE(θ̂) mean(θ̂) MSE(θ̂) mean(θ̂) MSE(θ̂)
GMRC 1, 4839 7, 2045 2, 0329 6, 1301 2, 3729 2, 6000

MRC 3, 0514 8, 0274 3, 0826 7, 0986 2, 4516 2, 7048
SLS 1, 4408 9, 8741 1, 9661 7, 2968 2, 3653 3, 1638
SML 1, 2308 10, 0190 1, 6675 7, 6794 1, 6582 6, 0794

Due to the shape of the link, the MSE of the estimates are much larger than for the

second scenario. However, once again, it is seen that the GMRC estimator remains the best

choice, even better than the SLS and the SML estimators.
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7 Conclusion

In this paper we have introduced a new estimator of the index coefficients in a Single-

Index Model. The underlying idea of the estimation procedure is very intuitive : the ranks

of the real unobservable data and the ranks of the observed noisy data should be highly

positively correlated. The estimator of the index coefficients is thus given by the vector

which maximizes an estimated version of this rank correlation, where the unknown link

function g is considered as a infinite-dimensional nuisance parameter and replaced by any

consistent nonparametric estimator ĝ. Despite the discontinuous nature of the criterion Tn

to be maximized, we have developed an asymptotic theory for the estimator, mainly based

on the U-statistic structure of an idealized criterion T ∗
n , very close to Tn. The estimator is

shown to be root-n consistent and asymptotically normal. The advantages of this estimator

are multiple : first, the criterion Tn is very simple and fast to compute as it is nothing

else but a count of pairs of samples in concordance. Second, the estimated criterion is less

influenced by the nonparametric estimation of the link than other classical M-estimators as ĝ

arises in Tn only through a rank correlation. This fact can play an important role, especially

when the sample size is small. Third, the assumptions made in order to show the asymptotic

properties of the estimator are very mild : for the link for example, it is only asked that it

is continuous and never flat. Also, the nonparametric estimator ĝ is only supposed to be

consistent, without other restriction on the smoothing parameter. Finally, the simulation

study has shown the very good finite-sample behavior of the GMRC estimator. In most of

the situations, even challenging, is seems that it represents the best choice in practice.

APPENDIX

We first prove the statement (3.9) for the following particular case : p = 2, X(2) is a binary

regressor and X(1) is a continuous regressor with everywhere positive density conditional to

X(2), as required by assumption 2(ii). SX is therefore equal to R × {0, 1}.

Consider θ 6= θ0. Define U = {u ∈ R : g(u) is not a global optimum of g}. By assumption

(3), U is clearly a non-empty open set of R. Let A(θ) be the set {x ∈ SX : β ′
0x ∈ U and

β ′
θx ∈ U}. It is easy to see that P [X ∈ A(θ)] = 1. Define

B1(x; θ) = {u ∈ R : g(u) < g(β ′
θx)}

and

B2(x; θ) = {u ∈ R : g(u) > g(β ′
θx)}.
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Let x1 be any point of A(θ) and suppose, without loss of generality, that g(β ′
0x1) > g(β ′

θx1).

Remark that B1(x; θ0) and B2(x1; θ) are non-empty open sets of R, such that

B1(x1; θ0) ∩ B2(x1; θ) 6= ∅ (7.16)

and

B1(x1; θ0) ∪ B2(x1; θ) = R. (7.17)

Now let a(x1) ∈ B1(x1; θ0) and b(x1) ∈ B2(x1; θ), with a(x1) 6= b(x1). The question is : does

there exist x2 ∈ SX , such that β ′
0x2 = a(x1) and β ′

θx2 = b(x1) ? The answer is affirmative if

there is a solution in SX of the system

{
x

(1)
2 + θ0x

(2)
2 = a(x1)

x
(1)
2 + θx

(2)
2 = b(x1)

. (7.18)

The solution is x
(2)
2 = 1 and x

(1)
2 = a(x1) − θ0 = b(x1) − θ, provided a(x1) − b(x1) = θ0 − θ.

Such a(x1) and b(x1) exist for all x1 and whatever θ0−θ, due to (7.16) and (7.17). Inequality

(3.9) follows.

Finally, remark that such a solution should naturally exist with greater p or different

distribution for X(2), as the number of degrees of freedom of system (7.18) should be greater.
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