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Abstract

We start the paper by pointing the potential important role of the prior
distribution of the roughness penalty parameter in the resulting smoothness
of Bayesian P-splines models (Ruppert et al. 2003 ; Lang and Brezger 2004).
The recommended specification for that distribution yields models that can
lack flexibility in specific circumstances. In such instances, these are shown
to correspond to a frequentist P-splines model (Eilers & Marx, 1996) with a
predefined and severe roughness penalty parameter, an obviously undesirable
feature.

We show that the specification of a hyperprior distribution for one param-
eter of that prior distribution provides the desired flexibility. Alternatively, a
mixture prior can also be used.

An extension of these two models by enabling adaptive penalties is pro-
vided. All the proposed models can be fitted quickly using the convenient
Gibbs algorithm.

1 Introduction

Bayesian P-splines have recently become a widely used tool to describe the con-
ditional mean of a response. Various authors have studied them either in normal
(Ruppert et al. 2003 ; Berry et al. 2002) or non-normal contexts (Fahrmeir et al.

2004 ; Brezger and Lang 2005 ; Lambert and Eilers 2005 ; Lambert 2005). In the
Bayesian P-splines model described in Lang and Brezger (2004), the prior distribu-
tion of the roughness penalty parameter τλ is taken to be a gamma with mean a/b
and variance a/b2 with a small value for b. What we highlight in this paper is the
influence that the choice of b can have on the smoothness of the fitted curve. Indeed,
we show that, in some specific circumstances, the results are highly sensitive to the
value picked for b.

∗Correspondence to: Philippe Lambert, Université catholique de Louvain, Institut de
Statistique, Voie du Roman Pays 20, B-1348 Louvain-la-Neuve (Belgium). E-mail: lam-
bert@stat.ucl.ac.be Phone: +32-10-47.28.01 Fax: +32-10-47.30.32
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We propose two solutions that avoid the need of a sensitive choice for b. With
the first solution, we consider the parameters of the roughness penalty gamma con-
jugate prior as parameters to be estimated. This solution requires a reparametrisa-
tion beforehand. The second solution suggests to use as prior distribution for the
penalty parameter a weighted sum of gamma distributions with different values for
b. These two models make the fitting procedure automatic since we do not require
a prespecification of a value for b. It is fast and easy to implement since one can
simulate from the posterior using the Gibbs sampler.

We also propose an extension to adaptive penalties. This extension can be useful
when the underlying function has second derivative varying with x. In this case,
adaptive penalties provide more flexibility and increase the quality of the fit. Some
suggestions have already been given to work in an adaptive way (Denison et al.

2002 ; Lang and Brezger 2004 ; Baladandayuthapani et al. 2005). The approach
that we propose here is to consider a different penalty parameter at each knot and
to obtain the vector of these penalty parameters sequentially, by multiplying the
previous one by a gamma random variable with mean 1 and a large variance. This
construction yields a smooth evolution of the penalty parameter with x. With this
specification, one can still use the Gibbs sampler. The presented techniques are
illustrated by smoothing pharmacokinetics data.

The plan of our paper is as follows. In Section 2, we review the basic Bayesian
P-splines model and we highlight the crucial role of the hyperparameters a and b. In
Section 3, we present two solutions to avoid the choice of b. There, we comment the
results of a simulation study realised to compare the two proposed methods with
the one in Lang and Brezger (2004). Section 4 provides the extension to adaptive
penalties. We conclude our presentation in Section 5 with a discussion.

2 Basic Bayesian P-splines model

The reader is expected to be familiar with P-splines. A first introduction can be
found for example in Ruppert et al. (2003). We give here a brief summary of the
ideas provided by Eilers and Marx (1996). A B-spline of degree q consists of q + 1
polynomial pieces, each of degree q. These polynomial pieces join at q inner knots.
The B-spline is positive on a domain spanned by q+2 knots and it is zero everywhere
else. A property of B-splines is that the derivatives up to order q-1 are continuous
at the joining points. Let Bj(x; q) denote the value at x of the jth B-spline of
degree q for a given equidistant grid of knots. A fitted curve ŷ to data {(xi, yi)} is a

linear combination ŷ(x) =
∑n

j=1 θ̂jBj(x; q). If we consider the regression of m data
points (xi, yi) on a set of n B-splines Bj(.), the least squares objective function to
minimise is :

S =
m
∑

i=1

{yi −
n
∑

j=1

θjBj(xi)}2

The fitted curve will show more variation than is justified by the data if we let
the number of knots be relatively large. To make the result less flexible, Eilers and
Marx (1996) propose to introduce a penalty on finite differences of the coefficients
of adjacent B-splines :

S =
m
∑

i=1

{yi −
n
∑

j=1

θjBj(xi)}2 + λ
n
∑

j=k+1

(∆kθj)
2

In terms of likelihood, the penalty appears as a term that we subtract from the
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log-likelihood l(y; θ). The penalised likelihood function has the following form :

lpen = l(y; θ) − λ

2

n
∑

j=k+1

(∆kθj)
2

2.1 Model specification

Let us remind the specification of the basic Bayesian P-splines model (Lang and
Brezger 2004). The roughness penalty from the frequentist penalised likelihood ap-
proach translates into a prior distribution for the rth order differences of successive
B-splines parameters, θj , yielding for a conditional normal response.

(Yx|θ, τ) ∼ N
(

b′xθ, τ−1
)

p(τ) ∝ τ−1

p(θ) ∝ exp
[

−0.5 τλ θ
′Pθ

]

τλ ∼ G (a, b)

where

• Yx is a vector of responses, depending on x,

• bx is the B-splines basis evaluated at x and associated to a large number of
equidistant knots,

• θ is the vector of B-splines coefficients,

• P = D′D is the penalty matrix and D the rth-order difference matrix, yielding
θ′Pθ =

∑

k(∆rθk)2 where ∆ is the first-order difference operator. Thus, for
r = 2, we have

D =











1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
...

. . .
. . .

. . .
...

0 0 . . . 1 −2 1











• τλ is the roughness penalty parameter,

• G (a, b) denotes a gamma distribution with mean a/b and variance a/b2. A
large variance conjugate prior distribution is usually recommended and spec-
ified for τλ, as suggested by Lang and Brezger (2004) by setting a equal to 1
and b equal to a small quantity (10−5, say).

2.2 Conditional posterior distributions

Given a set y = {yx1
, . . . , yxn

} of independent observations, one can derive the
conditional posterior distributions :

(θ|τ, τλ; y) ∼ N
(

τ ΣθB
′R−1y, Σθ

)

(τ |rest; y) ≡ (τ |θ; y) ∼ G
(

0.5 n, 0.5 (y − Bθ)′R−1(y − Bθ)
)

(τλ|rest; y) ≡ (τλ|θ; y) ∼ G
(

a + 0.5 ρ(P ), b + 0.5 θ′Pθ
)

where ρ(P ) is the rank of P and

B = [bx1
, . . . , bxn

]′, R = In and Σ−1
θ = τB′R−1B + τλP

and ‘rest’ generically denotes all the other parameters from the joint distribution.
These formulas can be used to sample from the posterior distributions using the
Gibbs sampler.
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2.3 Marginal posterior distributions

The roughness penalty parameter τλ can be integrated out (Lambert 2005) yielding
the marginal posterior distribution

p(θ, τ |y) ∝ L(θ, τ ; y) p(τ)
(

1 + 1
2b θ′Pθ

)a+0.5ρ(P )
(1)

where L(θ, τ ; y) is the likelihood. In a classical (frequentist) likelihood framework,
this suggests working with a log-likelihood from which the following penalty is
subtracted

pen(a, b)
.
=

[

a +
1

2
ρ(P )

]

log

(

1 +
1

2b
θ′Pθ

)

where “
.
=” indicates equality up to an additive constant. This is to be compared

with the classical penalised log-likelihood (Eilers and Marx 1996)

lpen(θ) = l(θ) − 1

2
λ θ′Pθ

where λ is usually selected using cross-validation or an information criterion such
as the AIC. There, the final λ is a function of y.

It is interesting to note the limiting behaviour of the conditional posterior distri-
bution for θ when the prior variance for τλ tends to infinity, as obtained by letting b
tend to 0+. In that case, the denominator in Equation (1) tends to infinity whatever
the value of a, except if θ′Pθ also tends to 0. With a second order penalty, this
happens when the fitted mean Bθ tends to a line. Thus, what was first thought
to be an expression of our ignorance concerning the appropriate penalty actually
translates to an extremely severe roughness penalty.

Another interesting limiting behaviour of the penalty is

lim
a, b → +∞

E(τλ) = a
b → µλ < ∞

pen(a, b)
.
=

1

2
µτλ

θ′Pθ

It is associated to an informative gamma prior distribution for τλ with given mean
µτλ

and a variance, µτλ
/b, tending to zero. It corresponds to the classical penalised

log-likelihood with penalty parameter equal to the prespecified prior mean µτλ
.

These two extreme situations reveal the potential sensitivity of the results to the
choice of b. This suggests that it should also be seen as a parameter in the model.

Another way to get the posterior distribution in Equation (1) is to consider the
following equivalent model:

(Yx|θ, τ) ∼ N
(

b′

xθ, τ−1
)

p(τ) ∝ τ−1

Dθ ∼ tν=2a

(

0,
b

a
Iρ(P )

)

where tν(µ, σ) is the multivariate Student-t distribution with ν degrees of freedom,
mean µ and variance-covariance matrix ν

ν−2Σ when these two moments exist.
It highlights the crucial roles of a and b. A small value for 2a = νd allows

an occasionally very large second-order difference between successive components
of θ, while the ratio b/a = δd determines the ‘marginal’ prior dispersion of these
differences (with a variance equal to b/(a − 1) when it exists).

It suggests a reparametrisation of the basic P-splines model in Section 2.1 ob-
tained by replacing a and b by νd/2 and δdνd/2, respectively.
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Figure 1: Illustrative data: fitted P-splines curves using the basic Bayesian P-splines
model. Graph (a) : a = 1 combined with b = 1 (dashed), b = 0.1 (thin dotted),
b = 0.01 (dash-dotted), b = 0.001 (thin solid). The fitted curves with b = 0.0001
and b = 0.00001 are confused on the thick dotted line. Graph (b) : a = b = 1
(dashed), a = b = 0.1 (thin dotted), a = b = 0.01 (dash-dotted), a = b = 0.001
(thin solid), a = b = 0.0001 (thick dotted), a = b = 0.0001 (thick dashed). On both
graphs, the underlying µx corresponds to the thick solid line.

2.4 Illustration

An illustration of the limitations of the basic Bayesian P-splines model is obtained
by applying it on 50 simulated data from the function yx = µx + εx with εx ∼
N (0, 0.0169) and

µx =
(

1 + e−4(x−0.3)
)

−1
+
(

1 + e3(x−0.2)
)

−1
+
(

1 + e−4(x−0.7)
)

−1
+
(

1 + e5(x−0.8)
)

−1
(2)

Different P-splines curves were fitted using the cubic B-splines associated to 20
equally spaced knots on (−2, 2). It is suggested in Lang and Brezger (2004) to
standardise the vector of responses y before estimation and to retransform the
results afterwards. On Figure 1, Graph (a) shows the fitted curves with a = 1,
b = 1 (dashed), b = 0.1 (thin dotted), b = 0.01 (dash-dotted), b = 0.001 (thin
solid). The fitted curves with b = 0.0001 and b = 0.00001 are confused on the thick
dotted line. The underlying µx corresponds to the thick solid line. One can see
the strong influence of the choice of the hyperparameter on the resulting fit. A too
small value for b, initially thought to express our ignorance about the smoothing
variance parameter τλ, leads to an oversmoothed curve for the reasons explained in
Section 2.3. A larger value for b than suggested in the literature yields a satisfactory
fit.

Note that, if we consider the case where a = b, we still observe the same depen-
dence of the results on the choice of the value picked for a and b (see Figure 1, graph
(b)). Thus, some guidance should be provided to choose these hyperparameters (see
Section 3).
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3 Specification of the roughness penalty prior dis-

tribution

3.1 First method : hyperpriors on the roughness prior

As shown in the previous section, the choice of the parameters a and b for the
prior distribution of the penalty parameter τλ has an important influence on the
smoothness of the fitted curve.

Section 2.3 has highlighted the role of these quantities leading to a reparametri-
sation in terms of νd and δd. These two parameters are difficult to prespecify and,
hence, it is desirable to see them as parameters to be estimated. This is the topic
of this section.

3.1.1 Prior distribution on δd

A possible uninformative proper prior distribution for the dispersion parameter δd

is
δd ∼ G (aδ, bδ)

where we may take for instance aδ = bδ equal to a small value. For a fixed value of
νd, we have the following conditional posterior distributions :

(θ|rest; y) ≡ (θ|τ, τλ; y) ∼ N
(

τ ΣθB
′R−1y, Σθ

)

(τ |rest; y) ≡ (τ |θ; y) ∼ G
(

0.5 n, 0.5 (y − Bθ)′R−1(y − Bθ)
)

(τλ|rest; y) ≡ (τλ|θ, δd, νd; y) ∼ G
(

0.5 νd + 0.5 ρ(P ), 0.5 δdνd + 0.5 θ′Pθ
)

(δd|rest; y) ≡ (δd|τλ, νd; y) ∼ G (aδ + 0.5 νd, bδ + 0.5 νdτλ)

These can be used directly to set up a Gibbs algorithm.

3.1.2 Prior distribution on νd

We propose to take a uniform prior for νd on (0, K):

p(νd) ∝ I(0,K)(νd)

where K > 0 is a large degrees of freedom yielding a Student-t density hardly
distinguishable from the normal one.

Thus, the conditional posterior distribution for νd is

p(νd|θ, τ, τλ, δd; y) ≡ p(νd|τλ, δd; y) ∝ 1

Γ
(

νd

2

)

(

δdτλ
νd

2

)νd/2

e−δdτλ

ν
d

2 I(0,K)(νd) (3)

In principle, any prior distribution can be considered for νd. But none of them
will provide an identifiable conditional posterior distribution for νd. Therefore, a
Metropolis-Hastings step will be required to generate a chain for νd.

Alternatively, the Stirling’s formula could be used in Equation (3) to approxi-
mate Γ(νd/2) :

Γ(νd/2) =
2

νd
Γ(νd/2 + 1) ≈

√
2π
(νd

2

)νd/2−1/2

e−
ν

d

2 (4)

Substituting Equation (4) in Equation (3), one obtains

1

2
√

π
ν

1/2
d e−

1

2
(δdτλ−log δd−log τλ−1)νd I(0,K)(νd) (5)
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As the Stirling’s formula provides an excellent approximation1 to the gamma func-
tion for most of the relevant values of νd, one can use the gamma density

G (1.5, 0.5 [δdτλ − log δd − log τλ − 1])

(as suggested by Equation (5)) truncated to (0, K) in an independence sampler to
generate from the posterior distribution in Equation (3).

But, in our experience, no relevant information concerning the degrees of free-
dom can be obtained in practice, our MCMC simulations yielding a posterior dis-
tribution very close to a uniform on (0, K). This is not surprising as, when aδ = bδ

are small,

E(δd|θ, τ, τλ, δd, νd; y) =
aδ + 0.5 νd

bδ + 0.5 νdτλ
≈ 1

τλ

suggesting that the second parameter of the truncated gamma approximating the
conditional posterior distribution of νd is expected to take small values. This cor-
responds to a posterior distribution with a large variance, as observed in our unre-
ported examples.

Therefore, we simply suggest to fix νd to some value and to evaluate the sensi-
tivity of the fitted curve to that choice.

3.2 Alternative method: a mixture prior for the penalty

An alternative solution to avoid the sensitive choice of b is to consider as prior
distribution for τλ a weighted sum of M gamma distributions with different values
for b.

This leads to the following model specification :

(Yx|θ, τ) ∼ N
(

b′xθ, τ−1
)

p(τ) ∝ τ−1

p(θ) ∝ exp
[

−0.5 τλ θ′P θ
]

τλ ∼
M
∑

m=1

pmG (a, bm)

p ∼ D(u)

where {b1, ..., bM} is a set of prespecified values, D stands for the Dirichlet distri-
bution, and u′ = {u1, . . . , uM} is a set of (small and equal) hyperprior parameters
expressing our likely prior ignorance about the optimal choice for b.

The conditional posterior distributions are :

(θ|rest; y) ≡ (θ|τ, τλ; y) ∼ N
(

τ ΣθB
′R−1y, Σθ

)

(τ |rest; y) ≡ (τ |θ; y) ∼ G
(

0.5 n, 0.5 (y − Bθ)′R−1(y − Bθ)
)

(τλ|rest; y) ≡ (τλ|θ, p; y) ∼
M
∑

m=1

pmG
(

a + 0.5 ρ(P ), bm + 0.5 θ′Pθ
)

(p|rest; y) ≡ (p|τλ; y) ∝
M
∑

m=1

cm
∑M

j=1 cj

D(u1, ..., um−1, um + 1, um+1, ...uM )

where

cm = exp(−τλbm)ba
m

∑M
j=1 uj

um

1Stirling’s formula underestimates the exact value of the gamma function by about 4 (3, 2)
percents for an argument of the gamma function greater of equal to 3 (4, 5).
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Figure 2: Illustrative data: fitted curves obtained using a Bayesian P-splines model
combined with a mixture prior (dashed) or with a hyperprior on δd where νd =
2a = 2 and aδ = bδ = 0.0001 (thin solid). The underlying µx corresponds to the
thick solid line.

3.3 Illustration

Let us consider the same example as in Section 2.4. We use a Gibbs simulation
with a chain of length 3, 000 (and a burn-in of 1, 000) to get the fitted curves shown
in Figure 2. The curve fitted with the first method is the thin solid one while the
dashed one is the curve fitted with the mixture prior method. The underlying µx

corresponds to the thick solid line. For the mixture prior method, we consider a
grid of 33 values for b, logarithmically equally spaced between 10−6 and 102. We
can see that the two fitted curves are close to each other and that both methods
provide a satisfactory fit. Concerning the first method, a sensitivity analysis shows
that the results do not depend on the choices made for ν, aδ or bδ (see Figure 3).

In Figure 4, graph (a) shows the distribution of b = δdνd/2, as obtained from
the Gibbs simulation with the first method. The posterior distribution suggests
pretty large value for b (compared to the values recommended in the literature for
that quantity). The mode of this distribution is 0.0046. Graph (b) represents the
weights associated with each value of the grid of b for the mixture prior method.
The value of b with the largest weight is 0.0032.

3.4 Simulation study

We have performed a simulation study to compare the performances of the two
proposed specifications for the penalty prior with the basic Bayesian P-splines model
with different values for b (0.1, 0.01, 0.001 and 0.0001). To simulate the data, we
consider the same functions as in Lang and Brezger (2004), i.e. a linear function,
f(x) = 1

1.758x, a quadratic one, f(x) = 1
2.75x2 − 1.5, and a sinusoidal one f(x) =

1
0.72 sin(x). We also take the same values for the overall variance parameter σ2, i.e.
σ=1, 0.5 and 0.33. We simulated 100 repetitions for each of the nine combinations
with n = 20 design points2 on an equidistant grid between -3 and 3. We also
considered the ‘illustration function’ presented in Section 2.4, i.e. yx = µx + εx with

2100 design points were considered in Lang and Brezger (2004)
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Figure 3: Illustrative data: sensitivity analysis of the fitted curve obtained with a
Bayesian P-splines model combined with a hyperprior on δd. Graph(a): sensitivity
to the choice of aδ = bδ : aδ = bδ = 0.00001 (solid line), aδ = bδ = 0.0001 (dashed
line), aδ = bδ = 0.001 (dotted line), aδ = bδ = 0.01 (dashed-dotted line). Graph
(b) : sensitivity to the choice of ν : ν = 2 (solid line), ν = 5 (dashed line), ν = 10
(dotted line), ν = 20 (dashed-dotted line).
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Figure 4: Illustrative data: posterior distribution of b in the Bayesian P-splines
model with (a) a hyperprior on δd where b = δdνd/2 ; (b) a mixture prior.
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Function σ Hyperprior on δd Mixture prior
Linear 1 0.049 0.010

0.5 0.012 0.003
0.33 0.005 0.003

Quadratic 1 0.238 0.056
0.5 0.125 0.032
0.33 0.096 0.032

Sine 1 0.170 0.056
0.5 0.158 0.056
0.33 0.140 0.056

Illustration 0.003 0.001

Table 1: Simulation study: median of the posterior modes for b under our two
proposed priors in the Bayesian P-splines model.
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Figure 5: Simulation study: boxplots of log(MSE) for the linear function. The
considered models are the basic Bayesian P-splines model with b=0.1, 0.01, 0.001
or 0.0001 (Priors 1 to 4) ; the Bayesian P-splines model with a hyperprior on δd

(Prior 5) or a mixture prior (Prior 6).

εx ∼ N (0, 0.0169) and µx given by Equation (2) with n = 50 design points between
-2 and 2. In all cases, we took cubic B-splines with 20 equidistant knots.

For the first specification (cf. hyperprior on δd), we take aδ = bδ = 0.0001. Note
that, in the nine simulation settings, a sensitivity analysis revealed no significant
influence of aδ = bδ on the fit.

For the mixture prior method, a grid of 33 values logarithmically equally spaced
between 10−6 and 102 was taken for b.

The quality of the fit is measured by the logarithm of the empirical mean squared
error given by :

log(MSE(f̂)) = log{ 1

100

100
∑

i=1

(f(xi) − f̂(xi))
2}

smaller values indicating better performances.
The results of the simulations are summarised in Figs 5 to 8. Table 1 also

provides the median of the posterior modes for b under our two proposed priors.
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Figure 6: Simulation study: boxplots of log(MSE) for the quadratic function. The
considered models are the basic Bayesian P-splines model with b=0.1, 0.01, 0.001
or 0.0001 (Priors 1 to 4) ; the Bayesian P-splines model with a hyperprior on δd

(Prior 5) or a mixture prior (Prior 6).

In the linear case (see Fig 5), the best results are obtained with the basic
Bayesian P-splines model with the smallest value for b (= 0.0001). That small
value for b implies a large penalty (cf. Section 2.3) with an expected linear fit at
the limit when b tend to 0+. Our two priors provide higher log(MSE) with better
results for the mixture prior.

The influence of b on the fit in the basic Bayesian P-splines model is negligible
in the quadratic case, all methods performing equally well (see Fig 6).

It is not true anymore with the sine function (see Fig 7) where the recommended
small values for b generate relatively large MSE’s when the signal-to-noise ratio is
low or very low. Then, larger values for b should be considered to be competitive
with our proposals for the prior.

The same conclusions apply for the “illustration function” (see Fig 8).
This suggests that the recommendation to take a very small value for b may

reveal not to be a good choice in specific circumstances (such as a small sample
size and/or data with a moderate signal-to-noise ratio). This would, of course, be
revealed by a sensitivity analysis of the results to the choice of b. However, the ease
with which the mixture prior method can be implemented makes it attractive while
relieving us from such an analysis.

Finally, note that the hyperprior on δd method generally yields MSE’s that are
a bit larger than the ones obtained with the mixture prior. Nevertheless, it often
performs better that the basic Bayesian P-splines model with the recommended
values for b.

4 P-splines model with smoothly adapting penal-

ties

An adaptive penalty is desirable to smooth function with a second derivative sig-
nificantly varying with x.
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Figure 7: Simulation study: boxplots of log(MSE) for the sine function. The
considered models are the basic Bayesian P-splines model with b=0.1, 0.01, 0.001
or 0.0001 (Priors 1 to 4) ; the Bayesian P-splines model with a hyperprior on δd

(Prior 5) or a mixture prior (Prior 6).
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Figure 8: Simulation study: boxplots of log(MSE) for the illustration function.
The considered models are the basic Bayesian P-splines model with b=0.1, 0.01,
0.001 or 0.0001 (Priors 1 to 4) ; the Bayesian P-splines model with a hyperprior on
δd (Prior 5) or a mixture prior (Prior 6).
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4.1 Smoothly adapting penalties combined with a hyperprior

for δd

Smoothly adapting penalties can be added with the following model specification:

(Yx|θ, τ) ∼ N
(

b′xθ, τ−1
)

p(τ) ∝ τ−1

p(θ) ∝ exp

[

−0.5 τλ

K
∑

k=r+1

(

k
∏

l=r+1

λl

)

(∆rθk)2

]

= exp

[

−0.5 τλ

K
∑

k=r+1

λ(k)(∆rθk)2

]

= exp
[

−0.5 τλ θ′D′ΛDθ
]

λk ∼ G (ω, ω) when k > r + 1 ; λr+1 = 1

τλ ∼ G (0.5 νd, 0.5 δdνd)

δd ∼ G (aδ, bδ)

where
Λ = diag

(

λ(r+1), . . . , λ(K)
)

That diagonal matrix contains a penalty parameter for each rth-order difference
between successive components of θ. They are obtained sequentially by multiplying
the previous one by a gamma random variable with mean 1 and (an arbitrarily
large) variance ω−1. That construction yields a smooth evolution of the penalty
parameters with x.

Note that this proposal differs from Lang and Brezger (2004) where no smooth-
ness is imposed on the roughness penalty coefficient. Such a smoothness was im-
posed in Baladandayuthapani et al. (2005) on the log-scale of the variance. Unfor-
tunately, it required the use of the Metropolis-Hastings as some conditional distri-
butions could not be identified anymore.

Here, the Gibbs sampler can be used as all the conditional distributions can be
identified:

(θ|τ, τλ, δd, λ; y) ∼ N
(

τ ΣθB
′R−1y, Σθ

)

(τ |rest; y) ≡ (τ |θ; y) ∼ G
(

0.5 n, 0.5 (y − Bθ)′R−1(y − Bθ)
)

(λl|rest; y) ≡ (λl|θ, τλ, λ−l; y)
l>r+1∼ G

(

ω +
K − l + 1

2
, ω +

τλ

2

K
∑

k=l

λ(k)

λl
(∆rθk)2

)

(τλ|rest; y) ≡ (τλ|θ, δd, λ; y) ∼ G
(

0.5 νd + 0.5 ρ(P ), 0.5 δdνd + 0.5 θ
′D′ΛDθ

)

(δd|τ, τλ, λ; y) ∼ G (aδ + 0.5 νd, bδ + 0.5 νdτλ)

where
Σ−1

θ = τB′R−1B + τλD′ΛD

4.2 Smoothly adapting penalties with a mixture prior for the

reference penalty

If, instead, a mixture prior for the reference penalty is considered (cf. Section 3.2),
we get the following model specification:

(Yx|θ, τ) ∼ N
(

b′xθ, τ−1
)
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x y x y x y
0 0 4.47e-02 3.142 2.89e-01 3.278

2.74e-03 0.399 5.98e-02 3.742 3.72e-01 2.628
6.25e-03 1.138 7.90e-02 3.519 4.77e-01 2.292
1.07e-02 1.511 1.03e-01 3.067 6.11e-01 2.359
1.64e-02 2.005 1.34e-01 3.870 7.82e-01 2.011
2.36e-02 2.957 1.74e-01 2.977 1.00e+00 1.717
3.29e-02 3.421 2.25e-01 3.093

Table 2: Simulated pharmacokinetics data corresponding to a two-compartment
model with multiplicative log-normal error: yx = µx exp(εx) with εx ∼ N (0, 0.01)
and µx = A ka

ka−ke
[exp(−kex) − exp(−kax)] where A = 3.74, ke = 0.78, ka = 50.

p(τ) ∝ τ−1

p(θ) ∝ exp
[

−0.5 τλ θ′D′ΛDθ
]

λk ∼ G (ω, ω) when k > r + 1 ; λr+1 = 1

τλ ∼
M
∑

m=1

pmG (a, bm)

p ∼ D(u)

The conditional posterior distributions are:

(θ|rest; y) ≡ (θ|τ, τλλ; y) ∼ N
(

τ ΣθB
′R−1y, Σθ

)

(τ |rest; y) ≡ (τ |θ; y) ∼ G
(

0.5 n, 0.5 (y − Bθ)′R−1(y − Bθ)
)

(λl|rest; y) ≡ (λl|θ, τλ, λ−l; y)
l>r+1∼ G

(

ω +
K − l + 1

2
, ω +

τλ

2

K
∑

k=l

λ(k)

λl
(∆rθk)2

)

(τλ|rest; y) ≡ (τλ|θ, λ, p; y) ∼
M
∑

m=1

pmG
(

a + 0.5 ρ(P ), bm + 0.5 θ′D′ΛDθ
)

(p|rest; y) ≡ (p|τλ; y) ∝
M
∑

m=1

cm
∑M

j=1 cj

D(u1, ..., um + 1, ...uM )

where

cm = exp(−τλbm)ba
m

∑M
j=1 uj

um

4.3 Illustration

A demanding illustration of the model performances is obtained by applying it on
pharmacokinetics data giving the measured evolution of the concentration of a drug
in the plasma over time (see Table 2). The measurement times are approximately
equally spaced on the log-scale. Most measurements are taken at early times where
the underlying curvature has the largest gradient.

In Figure 9, the curves are fitted with the first method (thin solid line) and with
the mixture prior method (dashed line) but without smoothly adapting penalties.
The underlying µx corresponds to the thick solid line. These curves were obtained
from a Gibbs simulation with a chain of length 3, 000 (and a burn-in of 1, 000).
For the first method, we use ν = 2 and aδ = bδ = 0.0001. For the mixture
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Figure 9: Simulated pharmacokinetics data from Table 2: fitted curves using the
Bayesian P-splines models with a hyperprior on δd (thin solid line) or a mixture
prior (dashed line). The underlying µx corresponds to the thick solid line.

prior method, we consider a grid of 33 values for b, logarithmically equally spaced
between 10−6 and 102. For both methods, we obtain a wiggly curve that captures
part of the early quick rise in the response, but with overfitting at later times. It is
obviously a compromise between ideally a large value for b for small times (where
the curvature is large) and a small value for b for later times (where the target curve
is approximately a line).

Figure 10 shows the fitted curves obtained with smoothly adapting penalties
combined with the hyperprior on δd (thin solid line, cf. Section 4.1) and with the
mixture prior (dashed line, cf. Section 4.2). The two fitted curves are hardly dis-
tinguishable from the target curve in the rising phase that requires flexibility and,
thus, a small penalty. A linear pattern is obtained for later times as a consequence
of large penalty parameters.

The posterior distribution of log(b = δdνd/2) under each of the two prior spec-
ifications with adaptive penalties are given in Fig 11. The posterior modes under
the hyperprior for δd and the mixture prior methods are equal to 2.07 (see Fig 11-
a-) and 2.25 (see Fig 11-b-), respectively. Note that a larger grid (33 values for b,
logarithmically equally spaced between 10−6 and 105) than before (with an upper
limit set previously at 102) had to be considered for b.

5 Discussion

In Bayesian P-splines models, the prior distribution for the roughness penalty pa-
rameter is usually taken to be a gamma with a fixed to 1 and a small value for b or
with a = b equal to small value in order to have a large variance. We have shown
that the choice of the gamma parameters can have a critical influence on the result-
ing smoothness of the fit in some specific circumstances i.e. for some functions (see
Section 2.4) or/and when the sample size is small. Indeed, the simulation study has
shown that even for simple functions like linear, quadratic or sine ones, the choice
of b can have an influence on the fit if the number of observations is small. When
the sample size is large, a sensitivity analysis for the choice of the hyperparameters
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Figure 10: Simulated pharmacokinetics data from Table 2: fitted curves using the
Bayesian P-splines models with a hyperprior on δd (thin solid line) or a mixture prior
(dashed line) in combination with smoothly adapting penalties. The underlying µx

corresponds to the thick solid line.
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Figure 11: Simulated pharmacokinetics data from Table 2: posterior distribution of
log(b = δdνd/2) under the hyperprior (for δd) and the mixture prior methods with
adaptive penalties.
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often lead to the conclusion that results hardly depend on them. However, we have
provided an illustration where the number of observations is large and where the
choice of the hyperparameters still has an influence on the fit. In order to spare a
likely useless sensitivity analysis and to warrant against the possible consequences
of its neglect, it is desirable to make the fitting procedure automatic. The two
solutions proposed in this paper do not require a sensitive choice of hyperparame-
ters in the prior distribution. The simulation study suggests that the mixture prior
approach performs better.

We have also provided an extension enabling smoothly adapting penalties. Its
usefulness was illustrated by fitting pharmacokinetics data. The data of interest
show a sharp linear increase of drug concentration at early times, reach a peak and
then present a slow linear decrease. Ideally, one should have a large penalty for
early and later times combined with a small penalty in between to enable a smooth
description of the gradient when its sign changes at the concentration peak.

Combined with one of the two proposed specifications for the reference roughness
penalty prior distribution (see Section 3), we end up with a very powerful, easy to
set up (cf. Gibbs sampling) and quick Bayesian smoother.
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