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1 Introduction

Multiresponse optimization is a common problem in industries. Each response defining the quality of the
product, Yi (i = 1, 2, . . . , p), is assumed to be related to the same set of varying factors, xj ’s (j = 1, 2, . . . , k).
The objective is to find the factors settings x = (x1, x2, . . . , xk) that simultaneously optimize the p responses
Y = (Y1, Y2, . . . , Yk).

The quality of a compromise between the responses can be measured by the desirability concept (?). Us-
ing desirability functions, the adequacy of each of the p responses, Yi, are first quantified by a value between
0 and 1 (the higher, the better). Those p values are then aggregated in a desirability index providing, for
any combination of factors levels, a value between 0 and 1 measuring the desirability of the resulting product
quality.

As industries can not face testing all possible combinations of factors levels and measure the quality of
resulting products, a model capturing the relationship between each response and factors is assumed over
the domain of interest, denoted χ, through an equation of the form

Yi = fi (x,βi) + εi with εi ∼ N(0, σ2
εi). (1)

We assume that the link function fi and the model parameters βi are known as well as the error term
variance σ2

εi .

The most well-known class of models is the multiple linear regression. The link between the ith response
Yi and transformed factors z = g(x) is assumed to follow an equation of the form

Yi = z′βi + εi with εi ∼ N(0, σ2
εi). (2)

For given factors settings x, each response Yi|x is supposed to be a random variable with known distri-
bution:

Yi|x ∼ N(E [Yi|x] , σ2
εi). (3)

The usual way to deal with those p random variables is to optimize the desirability of the expected quality
responses, E[Yi|x] (??). An other treatment of randomness could be, as proposed by ?, to optimize the
expected desirability of responses considering the desirability index as a random variable. This is possible if
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the distribution of the desirability index is known.

This paper discusses the derivation of the desirability index distribution using the density transforma-
tion theorem (?). First, desirability functions and desirability indexes are reviewed. A focus is made on
desirability functions based on the standard Normal distribution function. Then, the desirability functions
distribution is studied and formulas derived in the case of desirability functions based on the standard Nor-
mal distribution function. Finally, the question of desirability index distribution is treated. The practical
case of unknown models and parameters estimation is also discussed.

2 Desirability functions and desirability index

The concept of desirability was introduced by ? to provide a solution to multiresponse optimization prob-
lems. It allows to balance the optimized properties, Yi’s, one against the other, taking into account their
target value, their relative importance and their scale.

Harrington proceeds in two steps. First, each response Yi is transformed to the same scale using a de-
sirability function, denoted by di, such that di (Yi) ∈ [0, 1]. If di (Yi) = 0, the product is not at all acceptable
according to the specifications of the ith property and if di (Yi) = 1, the product fullfields them perfectly.
Secondly, the properties transformed by desirability functions are aggregated in a single value still in the [0, 1]
interval, the desirability index, representing the overall desirability of the product. The weighted geometric
mean or the weighted arithmetic mean of the desirability functions, as well as their minimum are the three
most often used desirability index, denoted by D:

D(Y) =

p∏

i=1

(di (Yi))
wi , D(Y) =

p∑

i=1

wi · di (Yi) or D(Y) = min di (Yi) with

p∑

i=1

wi = 1 (4)

The most well-known desirability functions are the Harrington’s ones (1965) based on the exponential
function of a linear transformation of the Yi’s and the Derringer and Suich’s ones (1980) based on a power of
a linear transformation of the Yi’s. ? proposed also smoother and differentiable desirability functions using
the logit function. These three types of desirability functions are presented in Table 1 for the cases where
the response Y (the sub-index i has been removed to simplify notations) must be maximized, minimized or
reach a target value. Desirability functions depend on parameters (a, b, s or T ) that have to be fixed by a
specialist of the product to define which responses values are desirable. As it can be seen on Figure ??, the
three desirability functions may provide similar desirability curves.

Maximum Minimum Target Value
Harrington (1965) exp(−exp(−a−bY )) 1−exp(−exp(−a−bY )) exp(−| Y−Tb |n)

Derringer
and Suich (1980)





0 if Y <a

(Y−ab−a )s if a≤Y≤b
1 if Y >b





1 if Y <b

( a−Ya−b )s if b≤Y≤a
0 if Y >a





0 if Y <a1

(
Y−a1
T−a1

)s1 if a1≤Y≤T
(
a2−Y
a2−T )s2 if T≤Y≤a2

0 if Y >a2

Gibb et al (2001) (1+exp(− Y−ab ))−1 (1−exp(− Y−ab ))−1 exp(− 1
2 (Y−Tb )2)

Table 1: Examples of desirability functions. Y is a response; the target value T and the parameters a, b and s have
to be adjusted according to the specifications.

We propose a new classe of desirability functions to transform a quality property Y in the (0, 1) interval.
It is based on the cumulative distribution function, abbreviated cdf, of the standard Normal:

Φ(y) =
1√
2π

∫ y

−∞
exp

(
− t

2

2

)
dt
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Figure 1: Different desirability functions. The continuous lines represent cases of a targeted property and the dotted
and dashed lines represent cases of a minimized and a maximized property respectively.

This function is continuous and differentiable, which will be usefull to apply the density transformation
theorem further. According to the desirable values of the property Y , we will use the following transforma-
tions as depicted on Figure ??:

d (Y ) = Φ

(
Y − a
b

)
ifY has to be maximized, (5)

d (Y ) = 1− Φ

(
Y − a
b

)
ifY has to be minimized, (6)

d (Y ) =

√
Φ

(
Y − a1

b1

)
·
[
1− Φ

(
Y − a2

b2

)]
ifY has to reach some optimal value. (7)

The parameters a and b have to be chosen according to the knowledge of both the statistician and the
specialist of the product. They can be fixed using one of the two simple following rules, :

- If the specialist notifies that under the value LL (Lower Limit) and over the value UL (Upper Limit)
changes for the property Y have no additional interest, the parameters a and b can be chosen as a
function of those limits according to the properties of the standard Normal distribution:

• If Y has to be maximized, take a = LL+UL
2 and b =

UL−LL+UL
2

2 such that d(LL) ≈ 0.023 and
d(UL) ≈ 0.977

• If Y has to be minimized, take a = LL+UL
2 and b =

UL−LL+UL
2

2 such that d(LL) ≈ 0.977 and
d(UL) ≈ 0.023

• If Y has to reach some optimal value T , take a1 = LL+T
2 , b1 =

T−LL+T
2

2 , a2 = T+UL
2 and

b2 =
UL−T+UL

2

2 such that d(LL) = d(UL) ≈ 0.151 and d(T ) = 0.977

- If the specialist does not notify any limit for the property Y and just desires to maximize or minimize
it, or to reach a target value T , the two parameters a and b can be chosen according to the values of
the response Y observed on a small sample of the experimental domain.

• If Y has to be maximized or minimized, take a and b respectively as the sample average and the
sample standard deviation.

• If Y has to reach some optimal value T , divide the sample into a first subset with smaller values
than T and a second subset with higher value than T. Take a1 and b1, as the arithmetic mean and
the standard deviation of the first subset and a2 and b2, as the arithmetic mean and the standard
deviation of the second subset respectively.
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Figure 2: Desirability functions based on the standard Normal cdf . The three graphs correspond to the case of
maximized property (left), minimized property (center) and targeted property (right). The dashed lines correspond
to the limits (LL and USL). Decreasing or increasing parameter a shifts the desirability curves respectively to the
left or to the right and decreasing or increasing parameter b makes the curves respectively more or less stiff.

If statistical models of the form (??) are assumed, there are two possibilities to associate a desirability
value to any factors settings x: applying desirability functions on expected responses or taking the expec-
tation of the desirability index. The first case is the classical use of desirability, DC(x), as Harrington and
Derringer and Suich proposed in their papers and the second case is the new concept introduced by ?, DN (x).

If for instance the weighted geometric mean is used as desirability index (??) the optimization problem
can be formalised as below:

max
x∈χ

DC(x) = max
x∈χ

D (E [Y|x]) = max
x∈χ

p∏

i=1

[di (E[Yi|x])]
wi = max

x∈χ

p∏

i=1

[di (fi (x,βi))]
wi or (8)

max
x∈χ

DN (x) = max
x∈χ

E [D(Y|x)] = max
x∈χ

E

[
p∏

i=1

[di (Yi|x)]
wi

]
= max

x∈χ
E

[
p∏

i=1

[di (fi (x,βi) + εi)]
wi

]
(9)

As the expectation of a random variable function is the function of the random variable expectation if
and only if the transformation is linear, most of the time, D (E [Y|x]) 6= E [D(Y|x)] and the corresponding
optima, xCopt and xNopt, are different.

The idea of maximizing the expected DI instead of the DI of expected responses is the same as in the util-
ity theory field (?). The expected utility function, u, is maximized instead of the utility function of expected
results, R, to take risk factors into account: maxE [u(R)] instead of maxu (E[R]). Similarly, as it takes into
account the propagation of the uncertainty of the response εi on the desirability index, Steuer proposes to
associate to each factors setting x the average desirability of the resulting product quality, E [D (Y|x)].

Steuer approximates for each design point x ∈ χ the distribution of D(Y|x) by Monte-Carlo simulations
on the basis of the model error distribution often assumed to be Normal. This is an heavy procedure, espe-
cially if there is more than two optimized properties and a huge experimental domain χ to explore.

To avoid intensive use of Monte-Carlo simulations, ?, suggest to derive analytically the distribution
of D(Y|x) on the basis of the model error distribution using the density transformation theorem. If the
probability density function (abbreviated pdf ) of D(Y|x) is known, its expectation E [D(Y|x)] can be
computed by analytical or numerical integration. They derived the analytical expression of the Harrington
DFs distribution and deduced, for special cases, the DI distribution. In this paper we derive analytically the
distribution of DFs based on the Normal cdf .

4



3 Distribution of desirability functions

In this section, the pdf of the DFs di(Yi|x) and of the weighted DFs [di(Yi|x)]
wi are derived analytically in

the case of maximized, minimized and targeted properties. For simplicity we remove the i indice standing
for the ith property Yi.

3.1 Pdf of the desirability function d(Y |x)

Most of the following results are based on the univariate density transformation theorem.

Theorem 1 (Density transformation). Let Z have a pdf fZ(z). If h(z) is either increasing or decreasing
for all z such that fZ(z) > 0, then U = h(Z) has a pdf given by

fU (u) = fZ
(
h−1(u)

)
·
∣∣∣
d
(
h−1(u)

)

du

∣∣∣ (10)

Given the assumption that the error term ε for each model (??) follows a N(0, σ2
ε ) distribution, we know

that Y |x ∼ N(E[Y |x], σ2
ε ) and Y |x−a

b ∼ N
(
E[Y |x]−a

b ,
σ2
ε

b2

)
. As the DFs based on the Normal cdf for the

maximization and the minimization cases (see equations (??-??)) are respectively increasing and decreasing

functions of Y |x−a
b , we can derive their pdf ’s using the density transformation theorem.

In the following E[Y |x] is abbreviated µY , φM ;S2 and ΦM ;S2 denote respectively the pdf and the cdf of
the Normal with expectation M and variance S2 and φ and Φ without any indice denote respectively the
pdf and the cdf of the standard Normal.

Proposition 1 (DF - maximization). The pdf of U ≡ d(Y |x) = Φ
(
Y |x−a
b

)
is given by

fU (u) =





φ
µY −a
b

;
σ2
ε
b2

(Φ−1(u))

φ(Φ−1(u)) if 0 < u < 1

0 otherwise
(11)

Proposition 2 (DF - minimization). The pdf of U ≡ d(Y |x) = 1− Φ
(
Y |x−a
b

)
is given by

fU (u) =





φ
µY −a
b

;
σ2
ε
b2

(Φ−1(1−u))

φ(Φ−1(1−u)) if 0 < u < 1

0 otherwise
(12)

For both maximization and minimization cases, the DFs pdf ’s are the ratio of two Normal pdf ’s and are
then easy to compute in practice with any statistical software. The shapes of those two densities are similar
and vary in the same way with parameters µY , a, b and σ2

ε as presented in Figure ??.

The pdf of the DF in the case of a targeted property can not be derived directly using the density

transformation theorem (Theorem ??) as U ≡ d(Y |x) =

√
Φ
(
Y |x−a1

b1

)
·
[
1− Φ

(
Y |x−a2

b2

)]
does not satisfy

the monotonicity assumption. Nevertheless, d(Y |x) is strictly increasing in Y |x below the value target T
and strictly decreasing above the value target T . Thanks to this particular shape, as represented in Figure
??, realizations of U smaller than a given u correspond either to realizations of Y |x smaller than a certain
y1 ∈ (−∞, T ] such that d(y1) = u, or realizations of Y |x higher than a certain y2 ∈ [T,∞) such that
d(y2) = u. This allows to compute first the cdf of d(Y |x) and then derive this analytical expression to
obtain its pdf .

5



Figure 3: Different shapes for the pdf of DFs based on the standard Normal cdf in the case of maximized property.
The first graphs shows how the shape varies with a (inverse behaviour with µY ) and the second graph shows how
the shape varies with b (inverse behaviour with σ2

ε ).

Figure 4: DFs based on the standard Normal cdf in the case of a targeted property. y1 ∈ (−∞, T ] is such that
d(y1) = u and y2 ∈ [T,∞) is such that d(y2) = u.
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Proposition 3 (DF - target). The cdf and the pdf of U ≡ d(Y |x) =

√[
Φ
(
Y |x−a1

b1

)]
·
[
1− Φ

(
Y |x−a2

b2

)]

are respectively given by

FU (u) =





0 if u ≤ 0
ΦµY ;σ2

ε
(y1) + 1− ΦµY ;σ2

ε
(y2) if 0 < u < d(T) = 0.9772

1 if u ≥ d(T) = 0.9772
(13)

and

fU (u) = φµY ;σ2
ε

(y1) ·


0.5 · φ

“
y1−a1
b1

”
· 1
b1r

Φ
“
y1−a1
b1

” ·
√

1− Φ
(
y1−a2

b2

)
− 0.5 · φ

“
y1−a2
b2

”
· 1
b2r

1−Φ
“
y1−a2
b2

” ·
√

Φ
(
y1−a1

b1

)


−1

−φµY ;σ2
ε

(y2) ·


0.5 · φ

“
y2−a1
b1

”
· 1
b1r

Φ
“
y2−a1
b1

” ·
√

1− Φ
(
y2−a2

b2

)
− 0.5 · φ

“
y2−a2
b2

”
· 1
b2r

1−Φ
“
y2−a2
b2

” ·
√

Φ
(
y2−a1

b1

)


−1

if 0 < u < d(T) = 0.9772 ; 0 otherwise
(14)

where y1 ∈ (−∞, T ] and y2 ∈ [T,∞) depend on u through the equations

√
Φ
(
y1−a1

b1

)
·
[
1− Φ

(
y1−a2

b2

)]
=

u and

√
Φ
(
y2−a1

b1

)
·
[
1− Φ

(
y2−a2

b2

)]
= u.

It has to be noted that the two roots y1 and y2 such that d(y1) = d(y2) = u can not analytically be
calculated. An adequate algorithm, such as the one of Newton-Raphson, provides easily the two values.

The shapes of this density vary with parameters µY , a1 and a2, b1 and b2, and σε as presented in Fig-
ure ??.

Figure 5: Different shapes for the pdf of DFs based on the standard Normal cdf in the case of targeted property. The
graphs show how the shape varies with a1 and a2 (inverse behaviour with µY ) and with b1 and b2 (inverse behaviour
with σε).

3.2 Pdf of the weighted desirability function (d(Y |x))w

Propositions ??, ?? and ?? provide the pdf of DFs for the three optimization cases, d(Y |x) = Φ
(
Y |x−a
b

)
,

d(Y |x) = 1 − Φ
(
Y |x−a
b

)
and d(Y |x) =

√
Φ
(
Y |x−a1

b1

)
·
[
1− Φ

(
Y |x−a2

b2

)]
. The DI based on the geometric

mean (equation (??)) makes use of such functions weighted by a certain exponent w ∈ (0, 1). The following
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question arises then: what’s the pdf of a weighted DF (d(Y |x))w? The density transformation theorem
(Theorem ??) provides the following results as (d(Y |x))w is an increasing function of d(Y |x):

Proposition 4 (weighted DF - maximization). The pdf of V ≡ (d(Y |x))w =
[
Φ
(
Y |x−a
b

)]w
is given by

fV (v) =





φ
µY −a
b

;
σ2
ε
b2

(Φ−1(v1/w))

φ(Φ−1(v1/w))
·
(

1
wv

1
w−1

)
if 0 < v < 1

0 otherwise

(15)

Proposition 5 (weighted DF - minimization). The pdf of V ≡ (d(Y |x))w =
[
1− Φ

(
Y |x−a
b

)]w
is given by

fV (v) =





φ
µY −a
b

;
σ2
ε
b2

(Φ−1(1−v1/w))

φ(Φ−1(1−v1/w))
·
(

1
w v

1
w−1

)
if 0 < v < 1

0 otherwise

(16)

For both maximization and minimization cases, the pdf ’s are the ratio of two Normal pdf ’s times a simple
factor depending on the realisation v and the weight w. Those two pdf ’s are still easy to compute with any
statistical software. The shapes of the densities for both cases are similar and vary in the same way with
parameters µY , a, b, σε and w as presented in Figure ??.

Figure 6: Different shapes for the pdf of weighted DFs based on the standard Normal cdf in the case of maximized
property. The three graphs show how the shape varies with w, a (inverse behaviour with µY ) and b (inverse behaviour
with σε) respectively.

The cdf and the pdf of the weighted DF in the case of a targeted property can be obtained in the same
way as proposition ??, using the particular increasing-decreasing shape of (d(Y |x))w like d(Y |x) (Figure
??).

Proposition 6 (weighted DF - target). The cdf and the pdf of

V ≡ (d(Y |x))w =

(√[
Φ
(
Y |x−a1

b1

)]
·
[
1− Φ

(
Y |x−a2

b2

)])w
are respectively given by

FV (v) =





0 if v ≤ 0
ΦµY ;σ2

ε
(y1) + 1− ΦµY ;σ2

ε
(y2) if 0 < v < d(T)w = 0.9772w

1 if v ≥ d(T) = 0.9772w
(17)
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and

fV (v) = φµY ;σ2
ε

(y1) ·
[
w
2 ·

φ
“
y1−a1
b1

”
· 1
b1h

Φ
“
y1−a1
b1

”i1−w
2
·
[
1− Φ

(
y1−a2

b2

)]w
2 − w

2 ·
φ
“
y1−a2
b2

”
· 1
b2h

1−Φ
“
y1−a2
b2

”i1−w
2
·
[
Φ
(
y1−a1

b1

)]w
2

]−1

−φµY ;σ2
ε

(y2) ·
[
w
2 ·

φ
“
y2−a1
b1

”
· 1
b1h

Φ
“
y2−a1
b1

”i1−w
2
·
[
1− Φ

(
y2−a2

b2

)]w
2 − w

2 ·
φ
“
y2−a2
b2

”
· 1
b2h

1−Φ
“
y2−a2
b2

”i1−w
2
·
[
Φ
(
y2−a1

b1

)]w
2

]−1

if 0 < v < d(T)w = 0.9772w; 0 otherwise
(18)

where y1 ∈ (−∞, T ] and y2 ∈ [T,∞) depend on v by the equations

(√[
Φ
(
y1−a1

b1

)]
·
[
1− Φ

(
y1−a2

b2

)])w
=

v and

(√[
Φ
(
y2−a1

b1

)]
·
[
1− Φ

(
y2−a2

b2

)])w
= v.

3.3 Pdf of the weighted desirability function w · d(Y |x)

In the DI based on the arithmetic mean (equation (??)), DFs can be multiplied by a constant w ∈ (0, 1) to
take into account the relative importance of each response. The pdf of w · d(Y |x) can be easily derived by
applying once again the density transformation theorem for the maximization and the minimization cases

where d(Y |x) = Φ
(
Y |x−a
b

)
and d(Y |x) = 1 − Φ

(
Y |x−a
b

)
. For the targeted case, the double monotonic

shape of d(Y |x) =

√
Φ
(
Y |x−a1

b1

)
·
[
1− Φ

(
Y |x−a2

b2

)]
allows to derive the pdf of w · d(Y |x).

Proposition 7 (weighted DF - maximization). The pdf of V ≡ w · d(Y |x) = w · Φ
(
Y |x−a
b

)
is given by

fV (v) =





φ
µY −a
b

;
σ2
ε
b2

(Φ−1( vw ))

φ(Φ−1( vw ))
· 1
w if 0 < v < w

0 otherwise

(19)

Proposition 8 (weighted DF - minimization). The pdf of V ≡ w · d(Y |x) = w ·
[
1− Φ

(
Y |x−a
b

)]
is given

by

fV (v) =





φ
µY −a
b

;
σ2
ε
b2

(Φ−1(1− v
w ))

φ(Φ−1(1− v
w ))

· 1
w if 0 < v < w

0 otherwise

(20)

Proposition 9 (weighted DF - target). The cdf and the pdf of

V ≡ w · d(Y |x) = w ·
[
Φ
(
Y |x−a1

b1

)]0.5 [
1− Φ

(
Y |x−a2

b2

)]0.5
are respectively given by

FV (v) =





0 if v ≤ 0
ΦµY ;σ2

ε
(y1) + 1− ΦµY ;σ2

ε
(y2) if 0 < v < w · d(T) = w · 0.9772

1 if v ≥ w · d(T) = w · 0.9772
(21)

and

fV (v) = φµY ;σ2
ε

(y1) ·


w ·


0.5 · φ

“
y1−a1
b1

”
· 1
b1r

Φ
“
y1−a1
b1

” ·
√

1− Φ
(
y1−a2

b2

)
− 0.5 · φ

“
y1−a2
b2

”
· 1
b2r

1−Φ
“
y1−a2
b2

” ·
√

Φ
(
y1−a1

b1

)




−1

−φµY ;σ2
ε

(y2) ·


w ·


0.5 · φ

“
y2−a1
b1

”
· 1
b1r

Φ
“
y2−a1
b1

” ·
√

1− Φ
(
y2−a2

b2

)
− 0.5 · φ

“
y2−a2
b2

”
· 1
b2r

1−Φ
“
y2−a2
b2

” ·
√

Φ
(
y2−a1

b1

)




−1

if 0 < v < w · d(T) = w · 0.9772; 0 otherwise
(22)
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where y1 ∈ (−∞, T ] and y2 ∈ [T,∞) depend on v by the equations w ·
√

Φ
(
y1−a1

b1

)
·
[
1− Φ

(
y1−a2

b2

)]
= v

and w ·
√

Φ
(
y2−a1

b1

)
·
[
1− Φ

(
y2−a2

b2

)]
= v.

Those expressions are similar to the pdf of the unweighted cases of section 3.1 but evaluated in v
w and

multiplied by 1
w .

4 Distribution of desirability indexes

Different formulas can be used to aggregate the p desirability functionss into an unique desirability index.
This section analyze the pdf ’s of the three most often used indexes presented in equations (??). The DFs
di(Yi|x) considered are still the ones based on the cdf of the standard Normal.

4.1 Distribution of the weighted geometric mean of DFs

The weighted geometric mean is defined as the product of the weighted individual DFs: D(Y|x) =
∏p
i=1 (di (Yi|x))

wi

with wi ∈ (0, 1) and
∑p
i=1 wi = 1. This DI is a random variable, abbreviated D, constructed by the product

of p continuous random variables Vi ≡ di(Yi|x)wi : D =
∏p
i=1 Vi. The pdf of a product of such p random

variables can be generalized from the following theorem that provides the pdf of the product of two random
variables. A demonstration can be found in (?).

Theorem 2 (Density of the product of two random variables). Let (V1, V2) be a vector of two continuous
random variables with known joint distribution fV1,V2(·, ·) then W ≡ V1 · V2 is a continuous random variable
with pdf given by.

fW (w) =

∫ ∞

−∞
fV1,V2(t,

w

t
)

1

|t|dt =

∫ ∞

−∞
fV1,V2(

w

t
, t)

1

|t|dt (23)

The density of the product V1 · V2 depends on the joint density of the vector (V1, V2). If the realistic
assumption is made that, conditionally to x, the two responses are independent, i.e. (Y1|x) q (Y2|x), then
V1 ≡ d1(Y1|x)w1 q V2 ≡ d2(Y2|x)w2 and the joint density of (V1, V2) is simply the product of the two known
marginal densities: fV1,V2(v1, v2) = fV1(v1) · fV2(v2). Generalizing that, by recurrence, to the product of p
independent random variables leads to the new proposition:

Proposition 10 (Pdf of the weighted geometric mean). Under the assumption that (Yi|x)q (Yj |x) ∀i 6= j,
the pdf of D ≡ D(Y|x) =

∏p
i=1 (di (Yi|x))wi is given by

fD(d) =

∫ ∞

−∞
· · ·
∫ ∞

−∞

∫ ∞

−∞
fV1 (t1) · fV2

(
t2
t1

)
· · · fVp−1

(
tp−1

tp−2

)
· fVp

(
d

tp−1

)
1

|t1 · t2 · · · tp−1|
dt1dt2 · · · dtp−1

(24)
where fVi(·) is the pdf of the random variable Vi ≡ di(Yi|x)wi for i = 1, 2, · · · , p.

This results can not be extented to the case of non-independent random variables. It has also to be noted
that the range of each integral can be simplified has the marginal densities fVi(vi) are positive for 0 < vi < 1
if the ith response must be maximized or minimized and for 0 < vi < d(T )w = 0.9772w if the ith response
must reach some optimal target value T (see propositions ??-??-??). According to those domains to have
fVi(vi) > 0, the density fD(d) is non zero for d ∈ (0, 1) without any targeted property but could be more
narrow otherwise.

The pdf of D(Y|x) (??) is difficult to handle analytically as the multiple integral to solve makes use of
complex marginal pdf ’s fVi(·). The quantity of interest E[D(Y|x)] can, on the other hand, be computed
without using the pdf of D(Y|x) as the expectation of a product of independent random variables is the
product of the marginal expectations.
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Proposition 11 (Expectation of the weighted geometric mean). If (Yi|x) q (Yj |x) ∀i 6= j, then

E [D(Y|x)] = E

[
p∏

i=1

(di (Yi|x))
wi

]
=

p∏

i=1

E [(di (Yi|x))
wi ] (25)

where each individual expectation E [(di (Yi|x))
wi ], i = 1, 2, · · · , p, can be computed using the pdf of (di (Yi|x))

wi

presented in proposition ??, ?? or ??.

Proposition ?? can be used to associate to any combination of factors levels x the expected desirability
of the resulting product E[D(Y |x)] and find the corresponding optimum. This approach is different from
the classical use of DI,

∏p
i=1 (di (E [Yi|x]))

wi , as (di (·))wi is a non linear function.

4.2 Distribution of the weighted arithmetic mean of DFs

The weighted arithmetic mean is constructed by summing the individual DFs multiplied by a constant
weight: D(Y|x) =

∑p
i=1 wi · di (Yi|x) with wi ∈ (0, 1) and

∑p
i=1 wi = 1. This DI is a random variable,

abbreviated D, constructed by the sum of p continuous random variables Vi ≡ wi · di (Yi|x): D =
∑p

i=1 Vi.
There is a well-known result (?) for the case of the sum of two random variables (?).

Theorem 3 (Density of the sum of two random variables). Let (V1, V2) be a vector of two continuous random
variables with known joint distribution fV1,V2(·, ·) then W ≡ V1 + V2 is a continuous random variable with
pdf given by

fW (w) =

∫ ∞

t=−∞
fV1,V2(t, w − t)dt =

∫ ∞

t=−∞
fV1,V2(w − t, t)dt (26)

This theorem is easely proved by derivating the cdf of W ≡ V1 + V2. Unfortunatly theorem ?? can not
be generalized to obtain the pdf of the sum of p continuous random variables. The only result about the pdf
of the sum of p continuous random variables necessitates the independence assumption. This leads to the
next corollary:

Corollary 1 (Density of the sum of two independent random variables). Let (V1, V2) be a vector of two
continuous independent random variables with known marginal distributions fV1(·) and fV2(·) then W ≡
V1 + V2 is a continuous random variable with pdf given by the convolution of fV1(·) and fV2(·):

fW (w) = fV1 ∗ fV2(x) =

∫ ∞

t=−∞
fV1(t) · fV2(w − t)dt = fV2 ∗ fV1(x) =

∫ ∞

t=−∞
fV1(w − t) · fV2(t)dt (27)

This corollary can be extended, by recurrence, to any number of independent random variables. This
way, the pdf of the weighted arithmetic mean can be obtained only under the independence assumption.

Proposition 12 (weighted arithmetic mean). Under the assumption that (Yi|x)q (Yj |x) ∀i 6= j, the pdf of
D ≡ D(Y|x) =

∑p
i=1 wi · di (Yi|x) is given by

fD(d) =

∫ ∞

−∞
· · ·
∫ ∞

−∞

∫ ∞

−∞
fV1 (v1) · fV2 (v2) · · · fVp−1 (vp−1) · fVp (d− vp−1 − · · · − v2 − v1) dv1dv2 · · · dvp−1

(28)
where fVi(·) is the pdf of the random variable Vi ≡ wi · di (Yi|x) for i = 1, 2, · · · , p.

The range of each integral can be simplified according to the values of vi such that fVi(vi) > 0 (see
propositions ??-??-??). According to those domains to have fVi(vi) > 0, the density fD(d) is non zero for
d ∈ (0, 1) without any targeted property but could be more narrow otherwise.

The pdf of D(Y|x) is difficult to handle analytically as the multiple integral to solve makes use of complex
marginal pdf ’s fVi(·). The quantity of interest E[D(Y|x)] can, on the other hand, be computed without
using the pdf of D(Y|x) as the expectation of a sum is the sum of the expectations for independent or
non-independent random variables.
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Proposition 13 (Expectation of the weighted arithmetic mean).

E [D(Y|x)] = E

[
p∑

i=1

wi · di (Yi|x)

]
=

p∑

i=1

E [wi · di (Yi|x)] =

p∑

i=1

wi ·E [di (Yi|x)] (29)

where each individual expectation E [di (Yi|x)], i = 1, 2, · · · , p, can be computed using the pdf of di (Yi|x)
presented in propositions ??, ?? and ??.

This proposition can be used to associate to any combination of factors levels x the expected desirability
of the resulting responses E[D(Y |x)] and to find the corresponding optimum. Like the geometric mean DI,
E [
∑p
i=1 wi · di (Yi|x)] is different from the classical use of DI

∑p
i=1 wi · di (E [Yi|x]) as di (·) is a non linear

function.

4.3 Distribution of the minimum of DFs

A third often used way to summarize the individual DFs is to take their minimum: D(Y|x) = min
i=1,2,··· ,p

di (Yi|x).

This desirability index is a random variable, abbreviated D, constructed as the min of p continuous random
variables Vi ≡ di (Yi|x): D = min

i=1,2,··· ,p
Vi. In most cases, nothing can be said about the density of the

minimum of random variables without assuming their independence (?).

Theorem 4 (Density of the minimum of p random variables). If V1, V2, · · · , Vp are independent random
variables with pdf fV1(·), fV2(·), · · · , fVp(·) and cdf FV1(·), FV2 (·), · · · , FVp(·), then the pdf of D = min

i=1,2,··· ,p
Vi

is given by

fD(d) =

p∑

i=1


fVi(d) ·

p∏

j=1
j 6=i

(
1− FVj (d)

)

 (30)

Applying this result to the minimum of DFs leads to the following proposition:

Proposition 14 (Pdf of the minimum). Under the assumption that (Yi|x) q (Yj |x) ∀i 6= j, the pdf of
D ≡ D(Y|x) = min

i=1,2,··· ,p
di (Yi|x) is given by

fD(d) =

p∑

i=1


fVi(d) ·

p∏

j=1
j 6=i

(
1− FVj (d)

)

 (31)

where fVi(·) and FVi(·) are respectively the pdf ’s and the cdf ’s of the random variables Vi ≡ di(Yi|x) for
i = 1, 2, · · · , p.

The values of d for which fD(d) is non zero depends on the types of individual DFs di (Yi|x). Without
any targeted response, d ∈ (0, 1) but this could be more narrow otherwise.

The expected minimum desirability can then be computed by intergration of its density for any combi-
nation of factors levels x and the optimum can be found using an adequate optimization algorithm.

5 Distribution of DI when models are estimated

All the densities presented in the preceding sections depend on the quantities E[Yi|x] and σ2
εi (i = 1, 2, . . . , p),

that are unknown in practice. Indeed, the models given by equation (??) are not known and have to be
estimated. Using powerful tools of experimental design, a set of n experiences within the domain of interest
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χ can be adequately chosen and performed to collect data on which the assumed models can be fitted. For
each property, the estimated model is denoted by

Ŷi = f̂i

(
x, β̂i

)
. (32)

Thanks to equation (??), the responses can be predicted for any point x in the experimental domain χ,
and the unknown quantities, E[Yi|x] and σ2

εi (i = 1, 2, . . . , p), can be estimated by

Ê[Yi|x] = Ŷi = f̂i

(
x, β̂i

)
and σ̂2

εi =
1

n− qi

n∑

j=1

(yij − ŷij)2
(33)

where n is the number of observations, qi is the number of model parameters, yij (j = 1, 2, · · · , n) are the
observed values for the ith property and ŷij are the corresponding predicted values.

Before using the estimated models for prediction, it’s crucial to analyze their adequacy for the training
data (using R2, adjusted R2, goodness-of-fit tests,. . . ) and their performance for predicting responses of
new points x (using a test set, cross-validation, bootstrap,. . . ). Nevertheless, even if the conclusions of these
analysis are good, it is well known that all models are wrong and that Ê[Yi|x] and σ̂2

εi are only uncertain
estimation of the true parameters E[Yi|x] and σ2

εi , leading to uncertain estimation of the densities of DFs
and DI, as well as uncertain estimation of the expectation of interest: E[D(Y |x)].

There is no method available to quantify the propagation of the uncertainty of the estimated parameters
E[Yi|x] and σ2

εi on the estimated expected desirability index E[D(Y |x)]. This is a subject for futur research.

If the uncertainty is small, i.e. E[Yi|x] and σ2
εi are precisely estimated by Ê[Yi|x] and σ̂2

εi , using the estimated
densities provides quite accurate estimate of E[D(Y |x)].

6 Conclusion

New DFs based on the standard Normal distribution are presented for cases of maximized, minimized or
targeted responses. The parameters of those functions are easy to choose in practice with or without the
knowledge of a production specialist.

Due to the error terms of the assumed models linking the responses to the factors, DFs and DIes are
random variables and the optimization consists of maximizing the expected desirabity index to take the
random errors into account, as suggested by ?.

The densities of the Normal based DFs are derived analytically using the univariate density transforma-
tion theorem under the assumption that the error terms are Normally distributed.

Under the assumption that conditionally to the factors levels, the responses are independent, the densi-
ties of the geometric mean and the arithmetic mean DIes are provided by applying two theorems of the
statistical literature about the density of the product of random variables and the sum of random variables
(convolution). Those densities can be used to compute some kind of prediction interval for the DI of a
new experiment. But they are difficult to handle when integrating to obtain the quantity of interest, the
expected DI. Under the same independence assumption, the expected DI can be computed on the basis of
the expected weighted DFs for which densities are also known and more easy to handle. The density of the
minimum of DFs is also derived and can be integrated to obtain the expected minimum.

The developed densities assume that the models parameters as well as the errors variances are known.
Nevertheless, in practice, only estimates of those quantities are available. If those estimates are quite ac-
curate, the computation of the expected DI on the basis of estimated densities is of reasonnable precision.
Otherwise, the estimated expected DI is suiled with error and the propagation of the models prediction error
has to be taken into account. A way to quantify this uncertainty propagation is through the use of the Delta
method theorem (?).
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Distribution of Desirability Index in Multicriteria Optimization

using Desirability Functions based on the Cumulative Distribution

Function of the Standard Normal

B. Govaerts1 C. Le Bailly de Tilleghem1
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1 Introduction

Multiresponse optimization is a common problem in industries. Each response defining the quality of the
product, Yi (i = 1, 2, . . . , p), is assumed to be related to the same set of varying factors, xj ’s (j = 1, 2, . . . , k).
The objective is to find the factors settings x = (x1, x2, . . . , xk) that simultaneously optimize the p responses
Y = (Y1, Y2, . . . , Yk).

The quality of a compromise between the responses can be measured by the desirability concept (?). Us-
ing desirability functions, the adequacy of each of the p responses, Yi, are first quantified by a value between
0 and 1 (the higher, the better). Those p values are then aggregated in a desirability index providing, for
any combination of factors levels, a value between 0 and 1 measuring the desirability of the resulting product
quality.

As industries can not face testing all possible combinations of factors levels and measure the quality of
resulting products, a model capturing the relationship between each response and factors is assumed over
the domain of interest, denoted χ, through an equation of the form

Yi = fi (x,βi) + εi with εi ∼ N(0, σ2
εi). (1)

We assume that the link function fi and the model parameters βi are known as well as the error term
variance σ2

εi .

The most well-known class of models is the multiple linear regression. The link between the ith response
Yi and transformed factors z = g(x) is assumed to follow an equation of the form

Yi = z′βi + εi with εi ∼ N(0, σ2
εi). (2)

For given factors settings x, each response Yi|x is supposed to be a random variable with known distri-
bution:

Yi|x ∼ N(E [Yi|x] , σ2
εi). (3)

The usual way to deal with those p random variables is to optimize the desirability of the expected quality
responses, E[Yi|x] (??). An other treatment of randomness could be, as proposed by ?, to optimize the
expected desirability of responses considering the desirability index as a random variable. This is possible if

1Institute of Statistics from the Université catholique de Louvain – 20, voie du roman pays, 1348 Louvain-la-Neuve, Belgium
– lebailly@stat.ucl.ac.be

1



the distribution of the desirability index is known.

This paper discusses the derivation of the desirability index distribution using the density transforma-
tion theorem (?). First, desirability functions and desirability indexes are reviewed. A focus is made on
desirability functions based on the standard Normal distribution function. Then, the desirability functions
distribution is studied and formulas derived in the case of desirability functions based on the standard Nor-
mal distribution function. Finally, the question of desirability index distribution is treated. The practical
case of unknown models and parameters estimation is also discussed.

2 Desirability functions and desirability index

The concept of desirability was introduced by ? to provide a solution to multiresponse optimization prob-
lems. It allows to balance the optimized properties, Yi’s, one against the other, taking into account their
target value, their relative importance and their scale.

Harrington proceeds in two steps. First, each response Yi is transformed to the same scale using a de-
sirability function, denoted by di, such that di (Yi) ∈ [0, 1]. If di (Yi) = 0, the product is not at all acceptable
according to the specifications of the ith property and if di (Yi) = 1, the product fullfields them perfectly.
Secondly, the properties transformed by desirability functions are aggregated in a single value still in the [0, 1]
interval, the desirability index, representing the overall desirability of the product. The weighted geometric
mean or the weighted arithmetic mean of the desirability functions, as well as their minimum are the three
most often used desirability index, denoted by D:

D(Y) =

p∏

i=1

(di (Yi))
wi , D(Y) =

p∑

i=1

wi · di (Yi) or D(Y) = min di (Yi) with

p∑

i=1

wi = 1 (4)

The most well-known desirability functions are the Harrington’s ones (1965) based on the exponential
function of a linear transformation of the Yi’s and the Derringer and Suich’s ones (1980) based on a power of
a linear transformation of the Yi’s. ? proposed also smoother and differentiable desirability functions using
the logit function. These three types of desirability functions are presented in Table 1 for the cases where
the response Y (the sub-index i has been removed to simplify notations) must be maximized, minimized or
reach a target value. Desirability functions depend on parameters (a, b, s or T ) that have to be fixed by a
specialist of the product to define which responses values are desirable. As it can be seen on Figure ??, the
three desirability functions may provide similar desirability curves.

Maximum Minimum Target Value
Harrington (1965) exp(−exp(−a−bY )) 1−exp(−exp(−a−bY )) exp(−| Y−Tb |n)

Derringer
and Suich (1980)





0 if Y <a

(Y−ab−a )s if a≤Y≤b
1 if Y >b





1 if Y <b

( a−Ya−b )s if b≤Y≤a
0 if Y >a





0 if Y <a1

(
Y−a1
T−a1

)s1 if a1≤Y≤T
(
a2−Y
a2−T )s2 if T≤Y≤a2

0 if Y >a2

Gibb et al (2001) (1+exp(− Y−ab ))−1 (1−exp(− Y−ab ))−1 exp(− 1
2 (Y−Tb )2)

Table 1: Examples of desirability functions. Y is a response; the target value T and the parameters a, b and s have
to be adjusted according to the specifications.

We propose a new classe of desirability functions to transform a quality property Y in the (0, 1) interval.
It is based on the cumulative distribution function, abbreviated cdf, of the standard Normal:

Φ(y) =
1√
2π

∫ y

−∞
exp

(
− t

2

2

)
dt
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Figure 1: Different desirability functions. The continuous lines represent cases of a targeted property and the dotted
and dashed lines represent cases of a minimized and a maximized property respectively.

This function is continuous and differentiable, which will be usefull to apply the density transformation
theorem further. According to the desirable values of the property Y , we will use the following transforma-
tions as depicted on Figure ??:

d (Y ) = Φ

(
Y − a
b

)
ifY has to be maximized, (5)

d (Y ) = 1− Φ

(
Y − a
b

)
ifY has to be minimized, (6)

d (Y ) =

√
Φ

(
Y − a1

b1

)
·
[
1− Φ

(
Y − a2

b2

)]
ifY has to reach some optimal value. (7)

The parameters a and b have to be chosen according to the knowledge of both the statistician and the
specialist of the product. They can be fixed using one of the two simple following rules, :

- If the specialist notifies that under the value LL (Lower Limit) and over the value UL (Upper Limit)
changes for the property Y have no additional interest, the parameters a and b can be chosen as a
function of those limits according to the properties of the standard Normal distribution:

• If Y has to be maximized, take a = LL+UL
2 and b =

UL−LL+UL
2

2 such that d(LL) ≈ 0.023 and
d(UL) ≈ 0.977

• If Y has to be minimized, take a = LL+UL
2 and b =

UL−LL+UL
2

2 such that d(LL) ≈ 0.977 and
d(UL) ≈ 0.023

• If Y has to reach some optimal value T , take a1 = LL+T
2 , b1 =

T−LL+T
2

2 , a2 = T+UL
2 and

b2 =
UL−T+UL

2

2 such that d(LL) = d(UL) ≈ 0.151 and d(T ) = 0.977

- If the specialist does not notify any limit for the property Y and just desires to maximize or minimize
it, or to reach a target value T , the two parameters a and b can be chosen according to the values of
the response Y observed on a small sample of the experimental domain.

• If Y has to be maximized or minimized, take a and b respectively as the sample average and the
sample standard deviation.

• If Y has to reach some optimal value T , divide the sample into a first subset with smaller values
than T and a second subset with higher value than T. Take a1 and b1, as the arithmetic mean and
the standard deviation of the first subset and a2 and b2, as the arithmetic mean and the standard
deviation of the second subset respectively.
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Figure 2: Desirability functions based on the standard Normal cdf . The three graphs correspond to the case of
maximized property (left), minimized property (center) and targeted property (right). The dashed lines correspond
to the limits (LL and USL). Decreasing or increasing parameter a shifts the desirability curves respectively to the
left or to the right and decreasing or increasing parameter b makes the curves respectively more or less stiff.

If statistical models of the form (??) are assumed, there are two possibilities to associate a desirability
value to any factors settings x: applying desirability functions on expected responses or taking the expec-
tation of the desirability index. The first case is the classical use of desirability, DC(x), as Harrington and
Derringer and Suich proposed in their papers and the second case is the new concept introduced by ?, DN (x).

If for instance the weighted geometric mean is used as desirability index (??) the optimization problem
can be formalised as below:

max
x∈χ

DC(x) = max
x∈χ

D (E [Y|x]) = max
x∈χ

p∏

i=1

[di (E[Yi|x])]
wi = max

x∈χ

p∏

i=1

[di (fi (x,βi))]
wi or (8)

max
x∈χ

DN (x) = max
x∈χ

E [D(Y|x)] = max
x∈χ

E

[
p∏

i=1

[di (Yi|x)]
wi

]
= max

x∈χ
E

[
p∏

i=1

[di (fi (x,βi) + εi)]
wi

]
(9)

As the expectation of a random variable function is the function of the random variable expectation if
and only if the transformation is linear, most of the time, D (E [Y|x]) 6= E [D(Y|x)] and the corresponding
optima, xCopt and xNopt, are different.

The idea of maximizing the expected DI instead of the DI of expected responses is the same as in the util-
ity theory field (?). The expected utility function, u, is maximized instead of the utility function of expected
results, R, to take risk factors into account: maxE [u(R)] instead of maxu (E[R]). Similarly, as it takes into
account the propagation of the uncertainty of the response εi on the desirability index, Steuer proposes to
associate to each factors setting x the average desirability of the resulting product quality, E [D (Y|x)].

Steuer approximates for each design point x ∈ χ the distribution of D(Y|x) by Monte-Carlo simulations
on the basis of the model error distribution often assumed to be Normal. This is an heavy procedure, espe-
cially if there is more than two optimized properties and a huge experimental domain χ to explore.

To avoid intensive use of Monte-Carlo simulations, ?, suggest to derive analytically the distribution
of D(Y|x) on the basis of the model error distribution using the density transformation theorem. If the
probability density function (abbreviated pdf ) of D(Y|x) is known, its expectation E [D(Y|x)] can be
computed by analytical or numerical integration. They derived the analytical expression of the Harrington
DFs distribution and deduced, for special cases, the DI distribution. In this paper we derive analytically the
distribution of DFs based on the Normal cdf .
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3 Distribution of desirability functions

In this section, the pdf of the DFs di(Yi|x) and of the weighted DFs [di(Yi|x)]
wi are derived analytically in

the case of maximized, minimized and targeted properties. For simplicity we remove the i indice standing
for the ith property Yi.

3.1 Pdf of the desirability function d(Y |x)

Most of the following results are based on the univariate density transformation theorem.

Theorem 1 (Density transformation). Let Z have a pdf fZ(z). If h(z) is either increasing or decreasing
for all z such that fZ(z) > 0, then U = h(Z) has a pdf given by

fU (u) = fZ
(
h−1(u)

)
·
∣∣∣
d
(
h−1(u)

)

du

∣∣∣ (10)

Given the assumption that the error term ε for each model (??) follows a N(0, σ2
ε ) distribution, we know

that Y |x ∼ N(E[Y |x], σ2
ε ) and Y |x−a

b ∼ N
(
E[Y |x]−a

b ,
σ2
ε

b2

)
. As the DFs based on the Normal cdf for the

maximization and the minimization cases (see equations (??-??)) are respectively increasing and decreasing

functions of Y |x−a
b , we can derive their pdf ’s using the density transformation theorem.

In the following E[Y |x] is abbreviated µY , φM ;S2 and ΦM ;S2 denote respectively the pdf and the cdf of
the Normal with expectation M and variance S2 and φ and Φ without any indice denote respectively the
pdf and the cdf of the standard Normal.

Proposition 1 (DF - maximization). The pdf of U ≡ d(Y |x) = Φ
(
Y |x−a
b

)
is given by

fU (u) =





φ
µY −a
b

;
σ2
ε
b2

(Φ−1(u))

φ(Φ−1(u)) if 0 < u < 1

0 otherwise
(11)

Proposition 2 (DF - minimization). The pdf of U ≡ d(Y |x) = 1− Φ
(
Y |x−a
b

)
is given by

fU (u) =





φ
µY −a
b

;
σ2
ε
b2

(Φ−1(1−u))

φ(Φ−1(1−u)) if 0 < u < 1

0 otherwise
(12)

For both maximization and minimization cases, the DFs pdf ’s are the ratio of two Normal pdf ’s and are
then easy to compute in practice with any statistical software. The shapes of those two densities are similar
and vary in the same way with parameters µY , a, b and σ2

ε as presented in Figure ??.

The pdf of the DF in the case of a targeted property can not be derived directly using the density

transformation theorem (Theorem ??) as U ≡ d(Y |x) =

√
Φ
(
Y |x−a1

b1

)
·
[
1− Φ

(
Y |x−a2

b2

)]
does not satisfy

the monotonicity assumption. Nevertheless, d(Y |x) is strictly increasing in Y |x below the value target T
and strictly decreasing above the value target T . Thanks to this particular shape, as represented in Figure
??, realizations of U smaller than a given u correspond either to realizations of Y |x smaller than a certain
y1 ∈ (−∞, T ] such that d(y1) = u, or realizations of Y |x higher than a certain y2 ∈ [T,∞) such that
d(y2) = u. This allows to compute first the cdf of d(Y |x) and then derive this analytical expression to
obtain its pdf .
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Figure 3: Different shapes for the pdf of DFs based on the standard Normal cdf in the case of maximized property.
The first graphs shows how the shape varies with a (inverse behaviour with µY ) and the second graph shows how
the shape varies with b (inverse behaviour with σ2

ε ).

Figure 4: DFs based on the standard Normal cdf in the case of a targeted property. y1 ∈ (−∞, T ] is such that
d(y1) = u and y2 ∈ [T,∞) is such that d(y2) = u.
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Proposition 3 (DF - target). The cdf and the pdf of U ≡ d(Y |x) =

√[
Φ
(
Y |x−a1

b1

)]
·
[
1− Φ

(
Y |x−a2

b2

)]

are respectively given by

FU (u) =





0 if u ≤ 0
ΦµY ;σ2

ε
(y1) + 1− ΦµY ;σ2

ε
(y2) if 0 < u < d(T) = 0.9772

1 if u ≥ d(T) = 0.9772
(13)

and

fU (u) = φµY ;σ2
ε

(y1) ·


0.5 · φ

“
y1−a1
b1

”
· 1
b1r

Φ
“
y1−a1
b1

” ·
√

1− Φ
(
y1−a2

b2

)
− 0.5 · φ

“
y1−a2
b2

”
· 1
b2r

1−Φ
“
y1−a2
b2

” ·
√

Φ
(
y1−a1

b1

)


−1

−φµY ;σ2
ε

(y2) ·


0.5 · φ

“
y2−a1
b1

”
· 1
b1r

Φ
“
y2−a1
b1

” ·
√

1− Φ
(
y2−a2

b2

)
− 0.5 · φ

“
y2−a2
b2

”
· 1
b2r

1−Φ
“
y2−a2
b2

” ·
√

Φ
(
y2−a1

b1

)


−1

if 0 < u < d(T) = 0.9772 ; 0 otherwise
(14)

where y1 ∈ (−∞, T ] and y2 ∈ [T,∞) depend on u through the equations

√
Φ
(
y1−a1

b1

)
·
[
1− Φ

(
y1−a2

b2

)]
=

u and

√
Φ
(
y2−a1

b1

)
·
[
1− Φ

(
y2−a2

b2

)]
= u.

It has to be noted that the two roots y1 and y2 such that d(y1) = d(y2) = u can not analytically be
calculated. An adequate algorithm, such as the one of Newton-Raphson, provides easily the two values.

The shapes of this density vary with parameters µY , a1 and a2, b1 and b2, and σε as presented in Fig-
ure ??.

Figure 5: Different shapes for the pdf of DFs based on the standard Normal cdf in the case of targeted property. The
graphs show how the shape varies with a1 and a2 (inverse behaviour with µY ) and with b1 and b2 (inverse behaviour
with σε).

3.2 Pdf of the weighted desirability function (d(Y |x))w

Propositions ??, ?? and ?? provide the pdf of DFs for the three optimization cases, d(Y |x) = Φ
(
Y |x−a
b

)
,

d(Y |x) = 1 − Φ
(
Y |x−a
b

)
and d(Y |x) =

√
Φ
(
Y |x−a1

b1

)
·
[
1− Φ

(
Y |x−a2

b2

)]
. The DI based on the geometric

mean (equation (??)) makes use of such functions weighted by a certain exponent w ∈ (0, 1). The following
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question arises then: what’s the pdf of a weighted DF (d(Y |x))w? The density transformation theorem
(Theorem ??) provides the following results as (d(Y |x))w is an increasing function of d(Y |x):

Proposition 4 (weighted DF - maximization). The pdf of V ≡ (d(Y |x))w =
[
Φ
(
Y |x−a
b

)]w
is given by

fV (v) =





φ
µY −a
b

;
σ2
ε
b2

(Φ−1(v1/w))

φ(Φ−1(v1/w))
·
(

1
wv

1
w−1

)
if 0 < v < 1

0 otherwise

(15)

Proposition 5 (weighted DF - minimization). The pdf of V ≡ (d(Y |x))w =
[
1− Φ

(
Y |x−a
b

)]w
is given by

fV (v) =





φ
µY −a
b

;
σ2
ε
b2

(Φ−1(1−v1/w))

φ(Φ−1(1−v1/w))
·
(

1
w v

1
w−1

)
if 0 < v < 1

0 otherwise

(16)

For both maximization and minimization cases, the pdf ’s are the ratio of two Normal pdf ’s times a simple
factor depending on the realisation v and the weight w. Those two pdf ’s are still easy to compute with any
statistical software. The shapes of the densities for both cases are similar and vary in the same way with
parameters µY , a, b, σε and w as presented in Figure ??.

Figure 6: Different shapes for the pdf of weighted DFs based on the standard Normal cdf in the case of maximized
property. The three graphs show how the shape varies with w, a (inverse behaviour with µY ) and b (inverse behaviour
with σε) respectively.

The cdf and the pdf of the weighted DF in the case of a targeted property can be obtained in the same
way as proposition ??, using the particular increasing-decreasing shape of (d(Y |x))w like d(Y |x) (Figure
??).

Proposition 6 (weighted DF - target). The cdf and the pdf of

V ≡ (d(Y |x))w =

(√[
Φ
(
Y |x−a1

b1

)]
·
[
1− Φ

(
Y |x−a2

b2

)])w
are respectively given by

FV (v) =





0 if v ≤ 0
ΦµY ;σ2

ε
(y1) + 1− ΦµY ;σ2

ε
(y2) if 0 < v < d(T)w = 0.9772w

1 if v ≥ d(T) = 0.9772w
(17)
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and

fV (v) = φµY ;σ2
ε

(y1) ·
[
w
2 ·

φ
“
y1−a1
b1

”
· 1
b1h

Φ
“
y1−a1
b1

”i1−w
2
·
[
1− Φ

(
y1−a2

b2

)]w
2 − w

2 ·
φ
“
y1−a2
b2

”
· 1
b2h

1−Φ
“
y1−a2
b2

”i1−w
2
·
[
Φ
(
y1−a1

b1

)]w
2

]−1

−φµY ;σ2
ε

(y2) ·
[
w
2 ·

φ
“
y2−a1
b1

”
· 1
b1h

Φ
“
y2−a1
b1

”i1−w
2
·
[
1− Φ

(
y2−a2

b2

)]w
2 − w

2 ·
φ
“
y2−a2
b2

”
· 1
b2h

1−Φ
“
y2−a2
b2

”i1−w
2
·
[
Φ
(
y2−a1

b1

)]w
2

]−1

if 0 < v < d(T)w = 0.9772w; 0 otherwise
(18)

where y1 ∈ (−∞, T ] and y2 ∈ [T,∞) depend on v by the equations

(√[
Φ
(
y1−a1

b1

)]
·
[
1− Φ

(
y1−a2

b2

)])w
=

v and

(√[
Φ
(
y2−a1

b1

)]
·
[
1− Φ

(
y2−a2

b2

)])w
= v.

3.3 Pdf of the weighted desirability function w · d(Y |x)

In the DI based on the arithmetic mean (equation (??)), DFs can be multiplied by a constant w ∈ (0, 1) to
take into account the relative importance of each response. The pdf of w · d(Y |x) can be easily derived by
applying once again the density transformation theorem for the maximization and the minimization cases

where d(Y |x) = Φ
(
Y |x−a
b

)
and d(Y |x) = 1 − Φ

(
Y |x−a
b

)
. For the targeted case, the double monotonic

shape of d(Y |x) =

√
Φ
(
Y |x−a1

b1

)
·
[
1− Φ

(
Y |x−a2

b2

)]
allows to derive the pdf of w · d(Y |x).

Proposition 7 (weighted DF - maximization). The pdf of V ≡ w · d(Y |x) = w · Φ
(
Y |x−a
b

)
is given by

fV (v) =





φ
µY −a
b

;
σ2
ε
b2

(Φ−1( vw ))

φ(Φ−1( vw ))
· 1
w if 0 < v < w

0 otherwise

(19)

Proposition 8 (weighted DF - minimization). The pdf of V ≡ w · d(Y |x) = w ·
[
1− Φ

(
Y |x−a
b

)]
is given

by

fV (v) =





φ
µY −a
b

;
σ2
ε
b2

(Φ−1(1− v
w ))

φ(Φ−1(1− v
w ))

· 1
w if 0 < v < w

0 otherwise

(20)

Proposition 9 (weighted DF - target). The cdf and the pdf of

V ≡ w · d(Y |x) = w ·
[
Φ
(
Y |x−a1

b1

)]0.5 [
1− Φ

(
Y |x−a2

b2

)]0.5
are respectively given by

FV (v) =





0 if v ≤ 0
ΦµY ;σ2

ε
(y1) + 1− ΦµY ;σ2

ε
(y2) if 0 < v < w · d(T) = w · 0.9772

1 if v ≥ w · d(T) = w · 0.9772
(21)

and

fV (v) = φµY ;σ2
ε

(y1) ·


w ·


0.5 · φ

“
y1−a1
b1

”
· 1
b1r

Φ
“
y1−a1
b1

” ·
√

1− Φ
(
y1−a2

b2

)
− 0.5 · φ

“
y1−a2
b2

”
· 1
b2r

1−Φ
“
y1−a2
b2

” ·
√

Φ
(
y1−a1

b1

)




−1

−φµY ;σ2
ε

(y2) ·


w ·


0.5 · φ

“
y2−a1
b1

”
· 1
b1r

Φ
“
y2−a1
b1

” ·
√

1− Φ
(
y2−a2

b2

)
− 0.5 · φ

“
y2−a2
b2

”
· 1
b2r

1−Φ
“
y2−a2
b2

” ·
√

Φ
(
y2−a1

b1

)




−1

if 0 < v < w · d(T) = w · 0.9772; 0 otherwise
(22)
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where y1 ∈ (−∞, T ] and y2 ∈ [T,∞) depend on v by the equations w ·
√

Φ
(
y1−a1

b1

)
·
[
1− Φ

(
y1−a2

b2

)]
= v

and w ·
√

Φ
(
y2−a1

b1

)
·
[
1− Φ

(
y2−a2

b2

)]
= v.

Those expressions are similar to the pdf of the unweighted cases of section 3.1 but evaluated in v
w and

multiplied by 1
w .

4 Distribution of desirability indexes

Different formulas can be used to aggregate the p desirability functionss into an unique desirability index.
This section analyze the pdf ’s of the three most often used indexes presented in equations (??). The DFs
di(Yi|x) considered are still the ones based on the cdf of the standard Normal.

4.1 Distribution of the weighted geometric mean of DFs

The weighted geometric mean is defined as the product of the weighted individual DFs: D(Y|x) =
∏p
i=1 (di (Yi|x))

wi

with wi ∈ (0, 1) and
∑p
i=1 wi = 1. This DI is a random variable, abbreviated D, constructed by the product

of p continuous random variables Vi ≡ di(Yi|x)wi : D =
∏p
i=1 Vi. The pdf of a product of such p random

variables can be generalized from the following theorem that provides the pdf of the product of two random
variables. A demonstration can be found in (?).

Theorem 2 (Density of the product of two random variables). Let (V1, V2) be a vector of two continuous
random variables with known joint distribution fV1,V2(·, ·) then W ≡ V1 · V2 is a continuous random variable
with pdf given by.

fW (w) =

∫ ∞

−∞
fV1,V2(t,

w

t
)

1

|t|dt =

∫ ∞

−∞
fV1,V2(

w

t
, t)

1

|t|dt (23)

The density of the product V1 · V2 depends on the joint density of the vector (V1, V2). If the realistic
assumption is made that, conditionally to x, the two responses are independent, i.e. (Y1|x) q (Y2|x), then
V1 ≡ d1(Y1|x)w1 q V2 ≡ d2(Y2|x)w2 and the joint density of (V1, V2) is simply the product of the two known
marginal densities: fV1,V2(v1, v2) = fV1(v1) · fV2(v2). Generalizing that, by recurrence, to the product of p
independent random variables leads to the new proposition:

Proposition 10 (Pdf of the weighted geometric mean). Under the assumption that (Yi|x)q (Yj |x) ∀i 6= j,
the pdf of D ≡ D(Y|x) =

∏p
i=1 (di (Yi|x))wi is given by

fD(d) =

∫ ∞

−∞
· · ·
∫ ∞

−∞

∫ ∞

−∞
fV1 (t1) · fV2

(
t2
t1

)
· · · fVp−1

(
tp−1

tp−2

)
· fVp

(
d

tp−1

)
1

|t1 · t2 · · · tp−1|
dt1dt2 · · · dtp−1

(24)
where fVi(·) is the pdf of the random variable Vi ≡ di(Yi|x)wi for i = 1, 2, · · · , p.

This results can not be extented to the case of non-independent random variables. It has also to be noted
that the range of each integral can be simplified has the marginal densities fVi(vi) are positive for 0 < vi < 1
if the ith response must be maximized or minimized and for 0 < vi < d(T )w = 0.9772w if the ith response
must reach some optimal target value T (see propositions ??-??-??). According to those domains to have
fVi(vi) > 0, the density fD(d) is non zero for d ∈ (0, 1) without any targeted property but could be more
narrow otherwise.

The pdf of D(Y|x) (??) is difficult to handle analytically as the multiple integral to solve makes use of
complex marginal pdf ’s fVi(·). The quantity of interest E[D(Y|x)] can, on the other hand, be computed
without using the pdf of D(Y|x) as the expectation of a product of independent random variables is the
product of the marginal expectations.
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Proposition 11 (Expectation of the weighted geometric mean). If (Yi|x) q (Yj |x) ∀i 6= j, then

E [D(Y|x)] = E

[
p∏

i=1

(di (Yi|x))
wi

]
=

p∏

i=1

E [(di (Yi|x))
wi ] (25)

where each individual expectation E [(di (Yi|x))
wi ], i = 1, 2, · · · , p, can be computed using the pdf of (di (Yi|x))

wi

presented in proposition ??, ?? or ??.

Proposition ?? can be used to associate to any combination of factors levels x the expected desirability
of the resulting product E[D(Y |x)] and find the corresponding optimum. This approach is different from
the classical use of DI,

∏p
i=1 (di (E [Yi|x]))

wi , as (di (·))wi is a non linear function.

4.2 Distribution of the weighted arithmetic mean of DFs

The weighted arithmetic mean is constructed by summing the individual DFs multiplied by a constant
weight: D(Y|x) =

∑p
i=1 wi · di (Yi|x) with wi ∈ (0, 1) and

∑p
i=1 wi = 1. This DI is a random variable,

abbreviated D, constructed by the sum of p continuous random variables Vi ≡ wi · di (Yi|x): D =
∑p

i=1 Vi.
There is a well-known result (?) for the case of the sum of two random variables (?).

Theorem 3 (Density of the sum of two random variables). Let (V1, V2) be a vector of two continuous random
variables with known joint distribution fV1,V2(·, ·) then W ≡ V1 + V2 is a continuous random variable with
pdf given by

fW (w) =

∫ ∞

t=−∞
fV1,V2(t, w − t)dt =

∫ ∞

t=−∞
fV1,V2(w − t, t)dt (26)

This theorem is easely proved by derivating the cdf of W ≡ V1 + V2. Unfortunatly theorem ?? can not
be generalized to obtain the pdf of the sum of p continuous random variables. The only result about the pdf
of the sum of p continuous random variables necessitates the independence assumption. This leads to the
next corollary:

Corollary 1 (Density of the sum of two independent random variables). Let (V1, V2) be a vector of two
continuous independent random variables with known marginal distributions fV1(·) and fV2(·) then W ≡
V1 + V2 is a continuous random variable with pdf given by the convolution of fV1(·) and fV2(·):

fW (w) = fV1 ∗ fV2(x) =

∫ ∞

t=−∞
fV1(t) · fV2(w − t)dt = fV2 ∗ fV1(x) =

∫ ∞

t=−∞
fV1(w − t) · fV2(t)dt (27)

This corollary can be extended, by recurrence, to any number of independent random variables. This
way, the pdf of the weighted arithmetic mean can be obtained only under the independence assumption.

Proposition 12 (weighted arithmetic mean). Under the assumption that (Yi|x)q (Yj |x) ∀i 6= j, the pdf of
D ≡ D(Y|x) =

∑p
i=1 wi · di (Yi|x) is given by

fD(d) =

∫ ∞

−∞
· · ·
∫ ∞

−∞

∫ ∞

−∞
fV1 (v1) · fV2 (v2) · · · fVp−1 (vp−1) · fVp (d− vp−1 − · · · − v2 − v1) dv1dv2 · · · dvp−1

(28)
where fVi(·) is the pdf of the random variable Vi ≡ wi · di (Yi|x) for i = 1, 2, · · · , p.

The range of each integral can be simplified according to the values of vi such that fVi(vi) > 0 (see
propositions ??-??-??). According to those domains to have fVi(vi) > 0, the density fD(d) is non zero for
d ∈ (0, 1) without any targeted property but could be more narrow otherwise.

The pdf of D(Y|x) is difficult to handle analytically as the multiple integral to solve makes use of complex
marginal pdf ’s fVi(·). The quantity of interest E[D(Y|x)] can, on the other hand, be computed without
using the pdf of D(Y|x) as the expectation of a sum is the sum of the expectations for independent or
non-independent random variables.
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Proposition 13 (Expectation of the weighted arithmetic mean).

E [D(Y|x)] = E

[
p∑

i=1

wi · di (Yi|x)

]
=

p∑

i=1

E [wi · di (Yi|x)] =

p∑

i=1

wi ·E [di (Yi|x)] (29)

where each individual expectation E [di (Yi|x)], i = 1, 2, · · · , p, can be computed using the pdf of di (Yi|x)
presented in propositions ??, ?? and ??.

This proposition can be used to associate to any combination of factors levels x the expected desirability
of the resulting responses E[D(Y |x)] and to find the corresponding optimum. Like the geometric mean DI,
E [
∑p
i=1 wi · di (Yi|x)] is different from the classical use of DI

∑p
i=1 wi · di (E [Yi|x]) as di (·) is a non linear

function.

4.3 Distribution of the minimum of DFs

A third often used way to summarize the individual DFs is to take their minimum: D(Y|x) = min
i=1,2,··· ,p

di (Yi|x).

This desirability index is a random variable, abbreviated D, constructed as the min of p continuous random
variables Vi ≡ di (Yi|x): D = min

i=1,2,··· ,p
Vi. In most cases, nothing can be said about the density of the

minimum of random variables without assuming their independence (?).

Theorem 4 (Density of the minimum of p random variables). If V1, V2, · · · , Vp are independent random
variables with pdf fV1(·), fV2(·), · · · , fVp(·) and cdf FV1(·), FV2 (·), · · · , FVp(·), then the pdf of D = min

i=1,2,··· ,p
Vi

is given by

fD(d) =

p∑

i=1


fVi(d) ·

p∏

j=1
j 6=i

(
1− FVj (d)

)

 (30)

Applying this result to the minimum of DFs leads to the following proposition:

Proposition 14 (Pdf of the minimum). Under the assumption that (Yi|x) q (Yj |x) ∀i 6= j, the pdf of
D ≡ D(Y|x) = min

i=1,2,··· ,p
di (Yi|x) is given by

fD(d) =

p∑

i=1


fVi(d) ·

p∏

j=1
j 6=i

(
1− FVj (d)

)

 (31)

where fVi(·) and FVi(·) are respectively the pdf ’s and the cdf ’s of the random variables Vi ≡ di(Yi|x) for
i = 1, 2, · · · , p.

The values of d for which fD(d) is non zero depends on the types of individual DFs di (Yi|x). Without
any targeted response, d ∈ (0, 1) but this could be more narrow otherwise.

The expected minimum desirability can then be computed by intergration of its density for any combi-
nation of factors levels x and the optimum can be found using an adequate optimization algorithm.

5 Distribution of DI when models are estimated

All the densities presented in the preceding sections depend on the quantities E[Yi|x] and σ2
εi (i = 1, 2, . . . , p),

that are unknown in practice. Indeed, the models given by equation (??) are not known and have to be
estimated. Using powerful tools of experimental design, a set of n experiences within the domain of interest
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χ can be adequately chosen and performed to collect data on which the assumed models can be fitted. For
each property, the estimated model is denoted by

Ŷi = f̂i

(
x, β̂i

)
. (32)

Thanks to equation (??), the responses can be predicted for any point x in the experimental domain χ,
and the unknown quantities, E[Yi|x] and σ2

εi (i = 1, 2, . . . , p), can be estimated by

Ê[Yi|x] = Ŷi = f̂i

(
x, β̂i

)
and σ̂2

εi =
1

n− qi

n∑

j=1

(yij − ŷij)2
(33)

where n is the number of observations, qi is the number of model parameters, yij (j = 1, 2, · · · , n) are the
observed values for the ith property and ŷij are the corresponding predicted values.

Before using the estimated models for prediction, it’s crucial to analyze their adequacy for the training
data (using R2, adjusted R2, goodness-of-fit tests,. . . ) and their performance for predicting responses of
new points x (using a test set, cross-validation, bootstrap,. . . ). Nevertheless, even if the conclusions of these
analysis are good, it is well known that all models are wrong and that Ê[Yi|x] and σ̂2

εi are only uncertain
estimation of the true parameters E[Yi|x] and σ2

εi , leading to uncertain estimation of the densities of DFs
and DI, as well as uncertain estimation of the expectation of interest: E[D(Y |x)].

There is no method available to quantify the propagation of the uncertainty of the estimated parameters
E[Yi|x] and σ2

εi on the estimated expected desirability index E[D(Y |x)]. This is a subject for futur research.

If the uncertainty is small, i.e. E[Yi|x] and σ2
εi are precisely estimated by Ê[Yi|x] and σ̂2

εi , using the estimated
densities provides quite accurate estimate of E[D(Y |x)].

6 Conclusion

New DFs based on the standard Normal distribution are presented for cases of maximized, minimized or
targeted responses. The parameters of those functions are easy to choose in practice with or without the
knowledge of a production specialist.

Due to the error terms of the assumed models linking the responses to the factors, DFs and DIes are
random variables and the optimization consists of maximizing the expected desirabity index to take the
random errors into account, as suggested by ?.

The densities of the Normal based DFs are derived analytically using the univariate density transforma-
tion theorem under the assumption that the error terms are Normally distributed.

Under the assumption that conditionally to the factors levels, the responses are independent, the densi-
ties of the geometric mean and the arithmetic mean DIes are provided by applying two theorems of the
statistical literature about the density of the product of random variables and the sum of random variables
(convolution). Those densities can be used to compute some kind of prediction interval for the DI of a
new experiment. But they are difficult to handle when integrating to obtain the quantity of interest, the
expected DI. Under the same independence assumption, the expected DI can be computed on the basis of
the expected weighted DFs for which densities are also known and more easy to handle. The density of the
minimum of DFs is also derived and can be integrated to obtain the expected minimum.

The developed densities assume that the models parameters as well as the errors variances are known.
Nevertheless, in practice, only estimates of those quantities are available. If those estimates are quite ac-
curate, the computation of the expected DI on the basis of estimated densities is of reasonnable precision.
Otherwise, the estimated expected DI is suiled with error and the propagation of the models prediction error
has to be taken into account. A way to quantify this uncertainty propagation is through the use of the Delta
method theorem (?).
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