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Abstract

In this paper, we study strong uniform consistency of a weighted average of

artificial data points. This is especially useful when information is incomplete (cen-

sored data, missing data . . . ). In this case, reconstruction of the information is

often achieved nonparametrically by using a local preservation of mean criterion

for which the corresponding mean is estimated by a weighted average of new data

points. This way of doing enlarges beyond incomplete data context and applies to

the estimation of the conditional mean of specific functions of complete data points.

As a consequence, we establish the strong uniform consistency of the Nadaraya-

Watson (1964) estimator for general transormations of the data points. This result

generalizes the one of Härdle, Janssen and Serfling (1988). In addition, the strong

uniform consistency of a modulus of continuity will be obtained for this estimator.

Applications of those two results are detailed for some popular estimators.

KEY WORDS: Kernel estimation; Nonparametric regression; Right censoring.
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1 Introduction

In many regression contexts where the data are incomplete, one has to reconstruct

missing information by using other data points. In particular, if Z denotes a data point,

X the covariate and ∆ is a binary variable equal to 1 if the data point Z is complete

(in this case Z = Y, the true data point) and 0 if it is incomplete, a natural way to

reconstruct a function ϕt(Y |x) atX = x and for t ∈ I is to take Γt(Z,∆|x) = (ϕt(Y |x))∗ =

E[ϕt(Y |x)|x, Z,∆] = ϕt(Y |x)∆+E[ϕt(Y |x)|Y > Z, x](1−∆). (in the case of missing data,

Z = −∞ and therefore E[ϕt(Y |x)|Y > Z, x] = E[ϕt(Y |x)|x]). In censored regression, this

scheme with ϕt(Y |x) = Y has been used by Buckley and James (1979), Koul, Susarla and

Van Ryzin (1981), Leurgans (1987), Fan and Gijbels (1994), Heuchenne and Van Keilegom

(2004) among others. In estimation with missing data, this kind of new data points has

been proposed by e.g. Cheng (1994), Chu and Cheng (1995) and Cheng and Chu (1996).

As explained in Heuchenne and Van Keilegom (2005) for nonparametric estimation with

censored data, ϕt(Y |x) can be any function of x, t and Y , e.g., Y, Y 2 or I(Y ≤ t), for

fixed t ∈ I, if the objective is to estimate E[Y |x], E[Y 2|x] or E[I(Y ≤ t)|x] = P (Y ≤ t|x)

respectively. Therefore, there is a need to construct a general asymptotic theory for a

nonparametric estimator of E[ϕt(Y |x)|x] (E[(ϕt(Y |x))∗|x]) in the complete (incomplete)

data case.

More precisely, let {Γt, t ∈ I} be a family of real valued measurable functions on R

and suppose we want to estimate

E[Γt(Z,∆|x)|x] =
∑

δ=0,1

∫
Γt(z, δ|x)dHδ(z|x), (1.1)

where I is a possibly infinite or degenerate interval in R, x ∈ RX , a compact interval in

R and Hδ(y|x) = P (Z ≤ y,∆ = δ|x) (δ = 0, 1). A natural nonparametric estimator for

this conditional mean is given by

∑n
i=1 K(x−Xi

an
)Γt(Zi,∆i|x)

∑n
i=1 K(x−Xi

an
)

. (1.2)

In the case Γt(Z,∆|x) = Z, this estimator reduces to the usual Nadaraya-Watson (1964)

estimator and in the case Γt(Z,∆|x) = I(Z ≤ t), we obtain the Stone (1977) estimator.

The objective of Section 3 is to provide the almost sure convergence of (1.2) uniformly

in x, t with the rate (nan)−1/2(log n)1/2. Now, suppose s, t ∈ I with |t−s| ≤ dn. In Section

4, we aim to obtain the almost sure convergence of the modulus of continuity based on
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(1.2) uniformly in x, s, t, |t − s| ≤ dn, with the rate (nan)−1/2(logn)1/2d1/2
n . The useful

purpose of these results is illustrated for some typical examples in Section 2.

2 Examples and Assumptions

Example 2.1 (Nonparametric estimation of conditional location and scale func-

tions for complete data)

Suppose Y1, . . . , Yn are n i.i.d. random variables corresponding to X1, . . . , Xn, n i.i.d.

covariates with distribution FX(x) = P (X1 ≤ x). Let F (t|x) = P (Y1 ≤ t|X1 = x) be

the conditional distribution of the response given the covariate. Usual location and scale

estimators are given by

m̂ST (x) =

1∫

0

F̂−1(s|x)L(s) ds, σ̂2
ST (x) =

1∫

0

F̂−1(s|x)2L(s) ds− m̂2
ST (x), (2.1)

where F̂ (·|·) is the Stone (1977) estimator and L(s) is a given score function satisfying
∫ 1
0 L(s)ds = 1. If the objective is to estimate

1∫

0

F−1(s|x)L(s) ds (2.2)

and

1∫

0

F−1(s|x)2L(s) ds, (2.3)

it is clear that Γt1(Y |x) = Y L(F (Y |x)) for (2.2) and Γt2(Y |x) = Y 2L(F (Y |x)) for (2.3) as

E[Γti(Y |x)|x] equals the function to estimate (2.2) for i = 1 and (2.3) for i = 2. Since the

data points Γti(Y |x) depend themselves on F (Y |x), they are estimated by Y L(F̂ (Y |x))

and Y 2L(F̂ (Y |x)) so that the classical Nadaraya-Watson estimator based on those data

points corresponds to (2.1).

Note that when L(s) = I(0 ≤ s ≤ 1), m̂ST (x) and σ̂2
ST (x) reduce to estimators of

the conditional mean and variance. Theorem 3.3 of the next section thus enables to

prove at the same time the strong uniform consistency of estimators of any location and

scale functions defined by the score function L. This is achieved in two steps : first, an

application of Theorem 3.3 for data points I(Yi ≤ t) (i = 1, . . . , n) in order to delete

3



the Stone estimators in the expressions Y L(F̂ (Y |x)) and Y 2L(F̂ (Y |x)), and second, an

application of the same theorem on the functions Γt1(Y |x) and Γt2(Y |x).

Example 2.2 (Nonparametric estimation of conditional location and scale func-

tions for censored data)

Now, suppose Y1, . . . , Yn are possibly right censored by C1, . . . , Cn n i.i.d. random vari-

ables with distribution function G(t|x) = P (C1 ≤ t|X = x). The observed random

variable for the covariate Xi is therefore the pair (Zi,∆i), i = 1, . . . , n, with Zi = Yi ∧ Ci
and ∆i = I(Yi ≤ Ci). We will now assume independence of Yi and Ci conditionally on Xi.

Usual location and scale estimators are given by

m̂B(x) =

T̃∫

−∞
yL(F̃ (y|x)) dF̃ (y|x) (2.4)

and

σ̂2
B(x) =

T̃∫

−∞
y2L(F̃ (y|x)) dF̃ (y|x)− m̂2

B(x), (2.5)

where F̃ (·|·) is the Beran (1981) estimator given by

F̃ (t|x) = 1−
∏

Zi≤t,∆i=1

{
1− Wi(x, an)

∑n
j=1 I(Zj ≥ Zi)Wj(x, an)

}
I(t < Z(n)), (2.6)

Wi(x, an) =
K
(
x−Xi
an

)

∑n
j=1K

(
x−Xj
an

) (2.7)

are the Nadaraya-Watson weights and L(s) is a given score function satisfying
∫ 1
0 L(s)ds =

1. In order to avoid consistency problems in the right tails of the Beran estimators, T̃ is

chosen smaller than infx τH(·|x), where H(y|x) = P (Z ≤ y|x) and τF (·) = inf{t : F (t) = 1}
for some F. Seeing that the objective is to estimate E[Y I(Y ≤ T̃ )L(F (Y |x))|x] and

E[Y 2I(Y ≤ T̃ )L(F (Y |x))|x] with an estimator of the Nadaraya-Watson type, we rewrite

(2.4) and (2.5) as

m̂B(x) =
n∑

i=1

Wi(x, an)Γ̂t3(Zi,∆i|x), (2.8)

and

σ̂2
B(x) =

n∑

i=1

Wi(x, an)Γ̂t4(Zi,∆i|x)− m̂2
B(x), (2.9)
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where

Γ̂t3(Zi,∆i|x) = ZiI(Zi ≤ T̃ )L(F̃ (Zi|x))∆i +

∫ T̃
Zi∧T̃ yL(F̃ (y|x))dF̃ (y|x)

1− F̃ (Zi ∧ T̃ |x)
(1−∆i),

and

Γ̂t4(Zi,∆i|x) = Z2
i I(Zi ≤ T̃ )L(F̃ (Zi|x))∆i +

∫ T̃
Zi∧T̃ y

2L(F̃ (y|x))dF̃ (y|x)

1− F̃ (Zi ∧ T̃ |x)
(1−∆i).

Γ̂t3(Z,∆|x) and Γ̂t4(Z,∆|x) actually estimate

Γt3(Z,∆|x) = ZI(Z ≤ T̃ )L(F (Z|x))∆ +

∫ T̃
Z∧T̃ yL(F (y|x))dF (y|x)

1− F (Z ∧ T̃ |x)
(1−∆),

and

Γt4(Z,∆|x) = Z2I(Z ≤ T̃ )L(F (Z|x))∆ +

∫ T̃
Z∧T̃ y

2L(F (y|x))dF (y|x)

1− F (Z ∧ T̃ |x)
(1−∆)

respectively. It is easy to check that

E[Γt3(Z,∆|x)|x] = E[Y I(Y ≤ T̃ )L(F (Y |x))|x],

and

E[Γt4(Z,∆|x)|x] = E[Y 2I(Y ≤ T̃ )L(F (Y |x))|x].

As for the complete data case, Theorem 3.3 enables to prove the strong uniform

consistency of estimators of any location and scale functions (truncated by T̃ ) defined by

the score function L. Note that in order to use Theorem 3.3 with the functions Γt3(Z,∆|x)

and Γt4(Z,∆|x), we first need to delete the Beran estimators that appear in Γ̂t3(Z,∆|x)

and Γ̂t4(Z,∆|x). This can be done by using Proposition 4.3 of Van Keilegom and Akritas

(1999).

Example 2.3 (Estimation of a conditional distribution function under the het-

eroscedastic model)

Now, suppose in the previous example that we want to estimate the conditional distribu-

tion function of the response given the covariate when the relation Y = m0(X) +σ0(X)ε0

with ε0 independent of X is assumed. The corresponding preservation of means criterion

is: construct new indicators for which the conditional mean equals the asked conditional
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distribution function and which use the above heteroscedastic model. More precisely, this

estimator is a weighted sum of data points Γ̂t5(Zi,∆i|x), i = 1, . . . , n, that approximate

Γt5(Zi,∆i|x) = I(Zi ≤ t)∆i +
F 0
ε (T xt )− F 0

ε (E0Tt
ix )

1− F 0
ε (E0T

ix )
(1−∆i), (2.10)

where E0Tt
ix = Zi∧Tx∧t−m0(x)

σ0(x)
, E0

i = Zi−m0(x)
σ0(x)

, E0T
ix = E0

i ∧ T, T xt = Tx∧t−m0(x)
σ0(x)

. Tx =

Tσ0(x) + m0(x) and T < τH0
ε (·), where H0

ε (y) = P (E0 ≤ y). We refer the reader to

Heuchenne and Van Keilegom (2005) for complete description and explanation of this

estimator. The same paper also provides proofs of the strong uniform consistency and

the strong uniform consistency of the modulus of continuity for the estimator based on

those new data points. Those proofs largely use Theorems 3.3 and 4.3.

Example 2.4 (Nonparametric regression with missing data)

Suppose in Example 2.1 that some Yi, i = 1, . . . n, are possibly missing. In this case,

∆i = 0 if Yi is a missing data and ∆i = 1 otherwise. Moreover, the MAR (missing at

random) assumption requires that

P (∆ = 1|X, Y ) = P (∆ = 1|X) = p(X) (2.11)

(see Little and Rubin, 1987, p.14). In this context, a simple idea (similar to the one

developed by Chu and Cheng, 1995) to estimate a regression function is to construct a

Nadaraya-Watson estimator with new data points given by

Ŷ ∗i = Yi∆i + m̂S(Xi)(1−∆i), i = 1, . . . , n,

where m̂S(x) is the Nadaraya-Watson estimator based on the complete pairs:

∑n
i=1 K(x−Xi

an
)Yi∆i

∑n
i=1 K(x−Xi

an
)∆i

.

Therefore, two first applications of Theorem 3.3 with data points Γt6(Z,∆|x) = Y∆ and

Γt7(Z,∆|x) = ∆ allow with assumption (2.11) to proof the uniform strong consistency of

m̂S(x). Next, if fX(x) = dFX(x)
dx

and p(x) are uniformly Lipshitz continuous and mS(x) is

two times continuously differentiable, the uniform strong consistency of (1.2) with data

points Γt8(Z,∆|x) = Y ∗i = Yi∆i +mS(Xi)(1−∆i) is obtained in two steps. First, replace

mS(Xi) by mS(x)+(Xi−x)m′S(x)+O(a2
n). Then, by similar developments as in Corollary

1 (ii) of Theorem 2 in Masry (1996), m′S(x)
∑n
i=1 Wi(x, an)(Xi − x)(1−∆i) = O(a2

n) a.s.

Second, a third application of Theorem 3.3 allows to obtain the result.
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Strong uniform consistency and modulus of continuity proofs are achieved in three

steps. First, we consider new data points γt(Zi,∆i|x), i = 1, . . . n, t ∈ I, x ∈ RX ,

and kernels that are defined by indicators. Second, we combine those data points to

obtain the Γt(Zi,∆i|x) used in this section and we sum indicators to construct kernels

of step-function form. Third, by using a number of indicators that tends to infinity in

the step-function kernel, we show the announced results for usual smooth kernels. The

assumptions we need for the proofs of the results of Sections 3 and 4 are listed below.

(A1) γt(·, ·|·) is Lipshitz on RX (compact) uniformly in t ∈ I :

sup
|x−xj |≤d, x,xj∈RX

sup
t∈I
|γt(z, δ|x)− γt(z, δ|xj)| ≤ L0(z, δ|xj)d

where L0(·, ·|·) is a (positive) function independent of t such that E[L0(Z,∆|x)6] ≤ L6 <

∞ for all x ∈ RX .

(A2) 0 ≤ γt(z, δ|x) ≤ γt′(z, δ|x), t < t′ ∈ I, for all x, z and δ = 0, 1.

(A3) g(t|x) = E[γt(Z,∆|x)] is a continuous function of t in I for all x.

(A4) The limit functions γt∗= limt→t∗ γt and γt∗= limt→t∗ γt exist and are finite a.s. (w.r.t.

H(z) = P (Z ≤ z)) for all x, where t∗ = inf{t : t ∈ I}, t∗ ≥ −∞ and t∗ = sup{t : t ∈ I},
t∗ ≤ ∞.

(A5) For all x, E[γt∗(Z,∆|x)6λ] ≤ M6λ <∞ for some λ, 2 < λ <∞; in the case λ =∞,
supx,z,δ |γt∗(z, δ|x)| <∞.

(A6) Let {cn} a nonnegative sequence satisfy (i) 0 ≤ cn → 0, (ii) ∆n = ncn/ logn → ∞,
(iii) c−1

n ≤ (n/ logn)1−2/λ, for λ as in (A5).

(A7)(i) FX(x) is differentiable with respect to x with derivative fX(x).

(ii) Hδ(x, y) is differentiable with respect to (x, y).

(iii) Hδ(y) is differentiable with respect to y.

(iv) For the density fX|Z,∆(x|z, δ) of X given (Z,∆), supx,z |fX|Z,∆(x|z, δ)| < ∞,

supx,z |ḟX|Z,∆(x|z, δ)| <∞ and supx,z |f̈X|Z,∆(x|z, δ)| <∞ (δ = 0, 1), where ḟX|Z,∆(x|z, δ)
(f̈X|Z,∆(x|z, δ)) denotes the first (second) derivative of fX|Z,∆(x|z, δ) with respect to x

(A8) Define new data points as Γt(z, δ|x) =
∑i0
i=1 qiγti(z, δ|x), z ∈ R, t ∈ I, x ∈ RX ,

δ = 0, 1, with fixed and finite i0, q1, . . . , qi0 and with families {γti, t ∈ I}, 1 ≤ i ≤ i0,

satisfying assumptions (A1)-(A5), with common λ in (A5).
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(A9)(i) Consider kernel sequences of step-function form, Kn(u) =
∑jn
j=1mnjI(−bnj ≤ u ≤

bnj), u ∈ R, with {jn}, {mnj}, {bnj} nonnegative constants such that |2∑jn
j=1mnjbnj−1| =

O(max(∆−1/2
n , a2

n)), with jn = O(ns), s > 0 and ∆n = nan/ logn.

(ii) supn
∑jn
j=1mnjb

1/2
nj <∞.

(iii) supn
∑jn
j=1mnjb

3
nj <∞.

(A10) Let {cn} and {dn} two nonnegative sequences satisfy (i) 0 ≤ cn, dn → 0, (ii)

∆n = ncn/ logn→∞, (iii) c−1
n ≤ dn(n/ logn)1−2/λ for λ as in (A5).

(A11) The data points γt(Zi,∆i|x), t ∈ I, x ∈ RX , i = 1, . . . , n, have the following mean-

Lipshitz properties : (i) sup{x∈RX ,|t−s|≤dn,s,t∈I,dn→0} |E[γt(Z,∆|x)− γs(Z,∆|x)]| ≤ CLdn,

(ii) sup{x∈RX ,|t−s|≤dn,s,t∈I,dn→0}E[(γt(Z,∆|x) − γs(Z,∆|x))2] ≤ CL2dn, for n sufficiently

large.

(A12)(i)− (iii) Consider kernel sequences of the same form and with the same assump-

tions as in (A9) except that |2∑jn
j=1mnjbnj − 1| = O(max(∆−1/2

n d−1/2
n , a2

n)) in (A9) (i).

3 Strong uniform consistency of the weighted aver-

age of artificial data points

We start by showing two preliminary results which will lead to the strong uniform

consistency of the estimator (1.2).

Proposition 3.1 Assume (A6), (A7). Then,

P (M0n(cn) > C0∆−1/2
n + C1c

2
n) = O(n−2),

where

M0n(cn) = sup
x∈RX

sup
t∈I
| 1

2ncn

n∑

i=1

γt(Zi,∆i|x)I(x− cn < Xi ≤ x + cn)

−
∑

δ=0,1

∫ ∞

−∞
γt(z, δ|x)hδ(x, z)dz|,

γt(z, δ|x), t ∈ I, x ∈ RX , z ∈ R, δ = 0, 1, satisfy assumptions (A1)-(A5).
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Proposition 3.2 Assume (A7)-(A9). an satisfies (i) anBn → 0, (ii) nanbn/ logn → ∞
and (iii) a−1

n ≤ bn(n/ logn)1−2/λ, where bn = minj≤jn bnj, Bn = maxj≤jn bnj and λ is given

as in (A5). Then,

sup
x∈RX

sup
t∈I
|dtn(x)− dt(x)| = O(max(∆−1/2

n , a2
n)) a.s.,

where

dtn(x) =
1

nan

n∑

i=1

Γt(Zi,∆i|x)Kn(
x−Xi

an
),

and

dt(x) =
∑

δ=0,1

∫ ∞

−∞
Γt(z, δ|x)hδ(x, z)dz.

Theorem 3.3 Assume (A7), (A8). For the sequence an, we suppose (i) an → 0, (ii)

na5/2
n / logn → ∞, (iii) a−5/2

n ≤ (n/ logn)1−2/λ, where λ is given as in (A5), and (iv)

na4
n → 0. K is a symmetric kernel with bounded support, bounded first derivative and

∫
K(u)du = 1. Then,

sup
x∈RX

sup
t∈I
|dtn(x)− dt(x)| = O(∆−1/2

n ) a.s.,

where dtn(x) and dt(x) are defined with kernel K and ∆n = nan/ logn. Moreover, if

infx∈RX |fX(x)| > 0,

sup
x∈RX

sup
t∈I
|
∑n
i=1 K(x−Xi

an
)Γt(Zi,∆i|x)

∑n
i=1 K(x−Xi

an
)

− dt(x)

fX(x)
| = O(∆−1/2

n ) a.s.

Remark 3.4 (density estimator) If we denote fnX(x) = (1/nan)
∑n
i=1 K(x−Xi

an
), the

classical density estimator, we have using Proposition 3.3 with Γ(Zi,∆i|x) = 1 that

supx∈RX |fnX(x)− fX(x)| = O(∆−1/2
n ) a.s., since supx∈RX |fX(x)| <∞.

Remark 3.5 (moment conditions) For a number of artificial data points, the mo-

ment conditions in (A1) and (A5) are not used. Indeed, those data points can often be

of the form γt∗(Zi,∆i|x) ≤ γ∗t∗(Zi,∆i) and such that L0(Zi,∆i|x) ≤ L∗0(Zi,∆i). In this

case, strong law of large numbers can be immediately used with (1/n)
∑n
i=1 γ

∗λ
t∗ (Zi,∆i)−

E[γ∗λt∗ (Z,∆)] and (1/n)
∑n
i=1 L

∗
0(Zi,∆i)−E[L∗0(Z,∆)] in the appendix. The terms Vn∆

−1/2
nj

and 2Wn∆
−1/2
nj can then be treated outside Proposition 3.1 and be directly introduced in

(A.13) in the proof of Proposition 3.2 (see the appendix) such that the final result of
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Theorem 3.3 is preserved.

Remark 3.6 (boundary effects) The degree of smoothing of fX|Z,∆(x|z, δ) allows via

(A7) (iv) to obtain the artificial order O(∆−1/2
n ) near the boundaries of RX . If we suppose

for instance the weaker condition

sup
|x−x′|≤d, x,x′∈RX

sup
t∈I
|
∑

δ=0,1

∫
γt(z, δ|x)(hδ(x

′, z)− hδ(x, z))dz| ≤ Cd,

instead of (A7) (iv), then the more realistic rate O(an) can be obtained near the bound-

aries.

Remark 3.7 (bandwidth assumptions) The bandwidth parameter an could tend to

zero more slowly. Indeed, the condition na4
n → 0 of Theorem 3.3 can be written with

another power on an. By example, if na5
n(logn)−1 = O(1), Theorem 3.3 also holds if

na3
n/ logn→∞ and a−3

n ≤ (n/ log n)1−2/λ.

Remark 3.8 (artificial data representation) The representation

Γt(z, δ|x) =
i0∑

i=1

qiγti(z, δ|x),

needed in the above proofs, requires nonnegative γti(z, δ|x), i = 1, . . . , i0. This assump-

tion is not restrictive since any random variable X with real values can be represented

by X = max(X, 0)−(−min(X, 0)), where the two terms of this difference are nonnegative.

Remark 3.9 (Extension to local linear estimator with conditional new data

points) The extension of Theorem 3.3 to local linear estimator is easily obtained by

similar developments as in Corollary 1 (ii) of Theorem 2 in Masry (1996) and if fX(x) is

uniformly Lipshitz continuous. Indeed, using those arguments, the local linear estimator

reduces to the classical weighted sum of conditional new data points dicussed above.

4 Modulus of continuity for the weighted average of

conditional synthetic data points

The development of this section is similar to Section 3. The strong uniform consistency

of the modulus of continuity is established via two preliminary results.
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Proposition 4.1 Assume (A7), (A10). Then,

P (M9n(cn) > Cm0∆−1/2
n d1/2

n + Cm1c
2
ndn) = O(n−2),

where

M9n(cn) = sup
x∈RX

sup
|t−s|≤dn, s,t∈I

| 1

2ncn

n∑

i=1

(γt(Zi,∆i|x)− γs(Zi,∆i|x))I(x− cn < Xi ≤ x + cn)

−
∑

δ=0,1

∫ ∞

−∞
(γt(z, δ|x)− γs(z, δ|x))hδ(x, z)dz|,

γt(z, δ|x), t ∈ I, x ∈ RX , z ∈ R, δ = 0, 1, satisfy assumptions (A1)-(A5) and (A11).

Proposition 4.2 Assume (A7), (A8), (A11), (A12). an and dn satisfy (i) anBn →
0, dn → 0, (ii) nanbn/ logn → ∞ and (iii) a−1

n ≤ bndn(n/ logn)1−2/λ, where bn =

minj≤jn bnj, Bn = maxj≤jn bnj, and λ is given as in (A5). Then,

sup
x∈RX

sup
|t−s|≤dn, s,t∈I

|dstn(x)− dst(x)| = O(max(∆−1/2
n d1/2

n , a2
ndn)) a.s.,

where

dstn(x) =
1

nan

n∑

i=1

(Γt(Zi,∆i|x)− Γs(Zi,∆i|x))Kn(
x−Xi

an
),

dst(x) =
∑

δ=0,1

∫ ∞

−∞
(Γt(z, δ|x)− Γs(z, δ|x))hδ(x, z)dz.

Proof. The proof is along the same lines as the proof of Proposition 3.2.

Theorem 4.3 Assume (A7), (A8), (A11). an and dn satisfy (i) an → 0, dn → 0, (ii)

na5/2
n d−1/2

n / logn→∞, (iii) a−5/2
n ≤ d1/2

n (n/ logn)1−2/λ, where λ is given as in (A5), (iv)

logn/nandn = O(1) and (v) na4
n → 0. K is a symmetric kernel with bounded support,

bounded first derivative and
∫
K(u)du = 1. Then,

sup
x∈RX

sup
|t−s|≤dn, s,t∈I

|dstn(x)− dst(x)| = O(∆−1/2
n d1/2

n ) a.s.,

where dstn(x) and dst(x) are defined with kernel K and ∆n = nan/ logn. Moreover, if

na5/2
n / logn→∞ and infx∈RX |fX(x)| > 0,

sup
x∈RX

sup
|t−s|≤dn, s,t∈I

|
∑n
i=1 K(x−Xi

an
)Γts(Zi,∆i|x)

∑n
i=1 K(x−Xi

an
)

− dst(x)

fX(x)
| = O(∆−1/2

n d1/2
n ) a.s.,

where Γts(Zi,∆i|x) = Γt(Zi,∆i|x)− Γs(Zi,∆i|x).

Remark 4.4 (bandwidth assumptions) If na5
n(logn)−1 = O(1), Theorem 4.3 also

holds if na3
n/ logn→∞ and a−3

n ≤ d1/2
n (n/ logn)1−2/λ.
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Appendix : Proofs of main results

Proof of Proposition 3.1. Let fn = ∆−1/2
n cn. We have

M0n(cn) = sup
x∈RX

sup
t∈I
| 1

2ncn

n∑

i=1

γt(Zi,∆i|x)I(x− cn < Xi ≤ x + cn)

− 1

2cn

∫ x+cn

x−cn

∑

δ=0,1

∫ ∞

−∞
γt(z, δ|x)hδ(s, z)dzds|

+ sup
x∈RX

sup
t∈I
| 1

2cn

∫ x+cn

x−cn

∑

δ=0,1

∫ ∞

−∞
γt(z, δ|x)hδ(s, z)dzds

−
∑

δ=0,1

∫ ∞

−∞
γt(z, δ|x)hδ(x, z)dz|

= sup
x∈RX

sup
t∈I
|M1tn(x)|+ sup

x∈RX
sup
t∈I
|M2tn(x)|.

First, we treat the term M2tn(x). It is given by

∑

δ=0,1

∫ ∞

−∞
γt(z, δ|x)

{
1

2cn

∫ x+cn

x−cn
hδ(s, z)ds− hδ(x, z)

}
dz.

Using two Taylor developments of order three around x, we get

1

2cn

∫ x+cn

x−cn
hδ(s, z)ds− hδ(x, z) = (c2

n/12)[f̈X|Z,∆(θ1|z, δ) + f̈X|Z,∆(θ2|z, δ)]hδ(z),

where θ1 (θ2) is between x + c and x (x and x − c). Since supx,z |f̈X|Z,∆(x|z, δ)| < ∞
(δ = 0, 1) and sup{x∈RX , t∈I} E[γt(Z,∆|x)] <∞ with γt(Z,∆|x) ≥ 0,

sup
{x∈RX , t∈I}

|M2tn(x)| ≤ C1c
2
n. (A.1)

Let LX the length of RX and divide RX into [2LX
fn

] intervals of length smaller or equal to

fn ([x] denotes the integer part of x). Denote x0 = inf{x : x ∈ RX}, IX the set of points

{xk = x0 + k[2LX
fn

]−1LX , 1 ≤ k ≤ [2LX
fn

]− 1 = LnX} and xLn
X

+1 = sup{x : x ∈ RX} which

limit the intervals. Using the Lipshitz condition (A1), we can rewrite for 1 ≤ j ≤ LnX ,

sup
x∈RX

sup
t∈I
|M1tn(x)| (A.2)

≤ max
xj∈IX

sup
x∈[xj−1,xj+1]

sup
t∈I
| 1

2ncn

n∑

i=1

γt(Zi,∆i|xj)I(x− cn < Xi ≤ x+ cn)

− 1

2cn

∫ x+cn

x−cn

∑

δ=0,1

∫ ∞

−∞
γt(z, δ|xj)hδ(s, z)dzds|+ max

xj∈IX
(E[L0(Z,∆|xj)] + |Vn(xj)|)∆−1/2

n

= (2cn)−1 max
xj∈IX

sup
x∈[xj−1,xj+1]

sup
t∈I
|M3tn(xj, x)|+ max

xj∈IX
(E[L0(Z,∆|xj)] + |Vn(xj)|)∆−1/2

n ,

12



where Vn(xj) = (1/2n)
∑n
i=1 L0(Zi,∆i|xj)− (E[L0(Z,∆|xj)]/2). We have

P (max
xj∈IX

(E[L0(Z,∆|xj)] + |Vn(xj)|) > 2C2)

≤
∑

j

{P (|2Vn(xj)| > 2C2) + P (E[L0(Z,∆|xj)] > C2)},

where the second term on the right hand side of the above expression is zero when C2 >

L
1/6
6 . For the first term, we use an extension of Chebyshev’s inequality :

P (|n−1
n∑

i=1

L0(Zi,∆i|xj)− E[L0(Z,∆|xj)]| > 2C2)

≤ 1

(2nC2)6
E[{

n∑

i=1

(L0(Zi,∆i|xj)− E[L0(Z,∆|xj)])}6] = O(n−3),

since E[L0(Z,∆|xj)6] ≤ L6 <∞. Then, with LnXO(n−3) = o(n−2),

P (max
xj∈IX

(E[L0(Z,∆|xj)] + |Vn(xj)|) > 2C2) = o(n−2),

for which, using Borel-Cantelli Lemma, we obtain

Vn = max
xj∈IX

(E[L0(Z,∆|xj)] + |Vn(xj)|) = O(1) a.s.

To treat the first term on the right hand side of (A.2), we introduce some notations. Let

Gtn(xj, x) = n−1
n∑

i=1

γt(Zi,∆i|xj)I(Xi ≤ x),

and

Gt(xj, x) = E[Gtn(xj, x)] =
∫ x

x0

∑

δ=0,1

∫ ∞

−∞
γt(z, δ|xj)hδ(s, z)dzds.

Therefore,

|M3tn(xj, x)| = |Gtn(xj, x + cn)−Gtn(xj, x− cn)− [Gt(xj, x+ cn)−Gt(xj, x− cn)]|

≤ 2 sup
|z|≤cn

|Gtn(xj, x+ z)−Gtn(xj, x)− [Gt(xj, x + z)−Gt(xj, x)]|

= 2M4tn(xj, x, cn). (A.3)

By conditions (A2)−(A5), the functions g(t|xj), j = 1, . . . , LnX , are nondecreasing, contin-

uous in t with finite limits g(t∗|xj) and g(t∗|xj) as t→ t∗ and t∗. Divide I in O(f−2
n ) inter-

vals such that |g(t1|xj)− g(t∗|xj)| ≤ fn, |g(tk+1|xj)− g(tk|xj)| ≤ fn, for k = 1, . . .Nnj− 1,
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|g(t∗|xj)− g(tNnj |xj)| ≤ fn, j = 1, . . . , LnX . Let Inj denote the set {t∗, t1, . . . , tNnj , t∗} and

I∗nj the set {(t∗, t1), (t1, t2), . . . , (tNnj , t
∗)}. Clearly, the cardinality Nnj of I∗nj is bounded

by

Nnj ≤
2(g(t∗|xj)− g(t∗|xj))

fn
.

Also, for fixed j, x, z, n, the functions Gtn(xj, x+z)−Gtn(xj, x) and Gt(xj, x+z)−Gt(xj, x)

are monotone in t and have finite limits as t→ t∗, t∗. We therefore have

|Gtn(xj, x+ z)−Gtn(xj, x)− [Gt(xj, x+ z)−Gt(xj, x)]|

≤ max
t∈Inj
|Gtn(xj, x + z)−Gtn(xj, x)− [Gt(xj, x+ z)−Gt(xj, x)]|

+ max
(s,t)∈I∗nj

|Gt(xj, x+ z)−Gs(xj, x + z)− [Gt(xj, x)−Gs(xj, x)]|. (A.4)

It is easily shown that the right hand side of the above expression is bounded by

2
∫

RX

∑

δ=0,1

∫ ∞

−∞
(γt(z, δ|xj))− γs(z, δ|xj))hδ(s, z)dzds

= 2
∑

δ=0,1

∫ ∞

−∞
(γt(z, δ|xj))− γs(z, δ|xj))hδ(z)dz

≤ 2(g(t|xj)− g(s|xj)) ≤ 2fn,

using monotonicity of γt with respect to t. Therefore,

max
xj∈IX

sup
x∈[xj−1,xj+1]

sup
t∈I

M4tn(xj, x, cn) ≤ max
xj∈IX

sup
x∈[xj−1,xj+1]

max
t∈Inj

M4tn(xj, x, cn) + 2fn. (A.5)

Let

M5tn(xj, x, z) = |Gtn(xj, x+ z)−Gtn(xj, x)− [Gt(xj, x+ z)−Gt(xj, x)]|.

We have

max
xj∈IX

sup
x∈[xj−1,xj+1]

max
t∈Inj

sup
|z|≤cn

M5tn(xj, x, z) (A.6)

≤ max (max
j∈IX

sup
x∈[xj−1,xj+1]

max
t∈Inj

sup
x+z∈[xj−1,xj+1]

M5tn(xj, x, z),

max
xj∈IX\{xLn

X
}

sup
x∈[xj ,xj+1]

max
t∈Inj

sup
x+z∈[xj+1,x+cn]

M5tn(xj, x, z),

max
xj∈IX\{x1}

sup
x∈[xj ,xj+1]

max
t∈Inj

sup
x+z∈[x−cn,xj−1]

M5tn(xj, x, z),

max
xj∈IX\{xLn

X
}

sup
x∈[xj−1,xj ]

max
t∈Inj

sup
x+z∈[xj+1,x+cn]

M5tn(xj, x, z),

max
xj∈IX\{x1}

sup
x∈[xj−1,xj ]

max
t∈Inj

sup
x+z∈[x−cn,xj−1]

M5tn(xj, x, z)).
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Introducing Gtn(xj, xj+k) and Gt(xj, xj+k) for k = −1, 0 or 1, it is easily shown that

max
xj∈IX

sup
x∈[xj−1,xj+1]

max
t∈Inj

M4tn(xj, x, cn)

≤ 2 max
xj∈IX

max
t∈Inj

max
k∈{−1,0,1}

sup
|z|≤cn

M5tn(xj, xj+k, z).

Now, put Qn = Mλf
−1/(λ−1)
n , where, for all x, (E[(γt∗(Z,∆|x))λ])1/λ ≤ Mλ <∞ for some

λ, 2 < λ <∞. In the case λ =∞, M∞ denotes then supx,z,δ |γt∗(z, δ|x)|. Also, put

Htn(xj, x) = n−1
n∑

i=1

γt(Zi,∆i|xj)I(γt(Zi,∆i|xj) ≤ Qn)I(Xi ≤ x),

and define M6tn(xj, x, z) by substitution of Htn for Gtn and E[Htn] for Gt in M5tn(xj, x, z).

That yields

sup
x∈RX

sup
t∈I
|M1tn(x)| ≤ 2c−1

n max
xj∈IX

max
t∈Inj

max
k∈{−1,0,1}

sup
|z|≤cn

M6tn(xj, xj+k, z)

+2fnc
−1
n (1 + Vn/2 +Wn + θn),

where

Wn = f−1
n max

xj∈IX
max
t∈Inj

max
k∈{−1,0,1}

sup
|z|≤cn

M7tn(xj, xj+k, z),

M7tn(xj, x, z) = |Gtn(xj, x+ z)−Gtn(xj, x)− [Htn(xj, x+ z)−Htn(xj, x)]|,

θn = f−1
n max

xj∈IX
max
t∈Inj

max
k∈{−1,0,1}

sup
|z|≤cn

M8t(xj, xj+k, z),

and

M8t(xj, x, z) = |Gt(xj, x + z)−Gt(xj, x)− [E[Htn(xj, x+ z)]− E[Htn(xj, x)]]|.

Using (A2), (A4) and the fact that f−1
n = (Qn/Mλ)

λ−1, we have

Mλ−1
λ Wn ≤ Qλ−1

n max
xj∈IX

n−1
n∑

i=1

γt∗(Zi,∆i|xj)I(γt∗(Zi,∆i|xj) > Qn)

≤ max
xj∈IX

n−1
n∑

i=1

γt∗(Zi,∆i|xj)λ,

if λ <∞ and Wn = 0 if λ =∞. Next, for λ <∞,

P (max
xj∈IX

n−1
n∑

i=1

γt∗(Zi,∆i|xj)λ > C3)

≤
∑

j

{P (n−1
n∑

i=1

γt∗(Zi,∆i|xj)λ − E[γt∗(Z,∆|xj)λ] > C3/2)

+P (E[γt∗(Z,∆|xj)λ] > C3/2)},
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where the second term on the right hand side of the above expression is zero when C3/2 >

Mλ
λ . For the first term, we also use the extension of Chebyshev’s inequality :

P (n−1
n∑

i=1

γt∗(Zi,∆i|xj)λ − E[γt∗(Z,∆|xj)λ] > C3/2)

≤ 64

(nC3)6
E[{

n∑

i=1

(γt∗(Zi,∆i|xj)λ − E[γt∗(Z,∆|xj)λ])}6] = O(n−3),

since E[γt∗(Z,∆|xj)6λ] ≤ M6λ <∞. Then, with LnXO(n−3) = o(n−2),

P (max
xj∈IX

n−1
n∑

i=1

γt∗(Zi,∆i|xj)λ > C3) = o(n−2),

for which, using Borel-Cantelli Lemma, we obtain Wn = O(1) a.s. We also see that

θn ≤
maxxj∈RX E[γt∗(Z,∆|xj)λ]

Mλ−1
λ

≤Mλ,

if λ <∞ and θn = 0 if λ =∞.
Now, define

wn = [
2Qncn
fn

+ 1]

and

ηnjkr = xj+k +
rcn
wn

, for r = −wn,−wn + 1, . . . , wn.

Defining

ξntjkr = |Htn(xj, ηnjkr)−Htn(xj, xj+k)− [E[Htn(xj, ηnjkr)]− E[Htn(xj, xj+k)]]|,

we have

sup
|z|≤cn

M6tn(xj, xj+k, z) ≤ max
−wn≤r≤wn

ξntjkr

+ max
−wn≤r≤wn−1

|E[Htn(xj, ηnjk(r+1))]− E[Htn(xj, ηnjkr)]|.

The second term of the right hand side of the above expression is bounded by

Qn max
−wn≤r≤wn−1

∫ ηnjk(r+1)

ηnjkr

∑

δ=0,1

∫ ∞

−∞
hδ(s, z)dzds

≤ Qn max
−wn≤r≤wn−1

∫ ηnjk(r+1)

ηnjkr

fX(s)ds ≤ QnC4(ηnjk(r+1) − ηnjkr) ≤ C4fn/2,
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where C4 is the Lipshitz constant of FX(·). The goal is therefore to calculate

P ( sup
x∈RX

sup
t∈I
|M1tn(x)| > C0∆−1/2

n )

≤ P (2 max
j,t,k,r

ξntjkr + fn(2Wn + Vn) > (C0 − 2− C4 − 2Mλ)fn)

≤
∑

j,t,k,r

P (ξntjkr > (1/6)(C0 − 2− C4 − 2Mλ)fn)

+P (Wn > (1/6)(C0 − 2− C4 − 2Mλ))

+P (Vn > (1/3)(C0 − 2− C4 − 2Mλ)),

where C0, C2 and C3 have to satisfy 2Mλ < (C3/M
λ−1
λ ) = (1/6)(C0− C4 − 2Mλ − 2) and

L
1/6
6 < C2 = (1/6)(C0 − C4 − 2Mλ − 2). Therefore, we only have to treat the first term

on the right hand side of the above expression. Defining C ′0 = (1/6)(C0− 2−C4− 2Mλ),

we have by Bernstein’s inequality,

P (ξntjkr > C ′0fn) ≤ 2 exp(−νtjknr),

where

νtjknr =
C ′20 n

2f 2
n

2nσ2
tjknr + 2

3
nC ′0fnQn

,

and σtjknr = V ar[Dtjknr], where

Dtjknr = γt(Z,∆|xj)I(γt(Z,∆|xj) ≤ Qn)(I(X ≤ ηnjkr)− I(X ≤ xj+k)).

We have

σ2
tjknr ≤ E[D2

tjknr] ≤
∫ ηnjkr∨xj+k

xj+k∧ηnjkr

∑

δ=0,1

∫ ∞

−∞
γ2
t (z, δ|xj)I(γt(z, δ|xj) ≤ Qn)hδ(s, z)dzds

≤ C5M
2
λcn, (A.7)

using (A5), condition (A7) (iv) and where C5 = maxδ supx,z |fX|Z,∆(x|z, δ)|. Using (A6)

(iii),

Qnfn = Mλf
(λ−2)/(λ−1)
n = Mλ(

cn log n

n
)(λ−2)/2(λ−1) ≤Mλcn. (A.8)

We thus have by (A.7) and (A.8),

νtjknr ≥ C ′′0 logn,
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with

C ′′0 =
C ′20

2Mλ(C5Mλ + 1
3
C ′0)

> max(
6

3C5 + 2
,

3L
1/3
6

Mλ(6MλC5 + 2L
1/6
6 )

).

Therefore,

∑

j,t,k,r

P (ξntjkr > C ′0fn) ≤ 6

LnX∑

j=1

(Nnj + 2)(2wn + 1)n−C
′′
0 , (A.9)

where C ′′0 has to be chosen large enough so that the right hand side of (A.9) tends to zero

sufficiently fast. Thus, the highest order term on the right hand side of (A.9) is

96(
LXMλQncn

f 3
n

)n−C
′′
0 , (A.10)

where

Nnj ≤
2g(t∗|xj)

fn
≤ 2

Mλ

fn

and

Qncn
fn

= Mλcn(
n

cn log n
)

λ
2(λ−1) .

Using (A6) (iii), (A.10) is bounded by

Lλ(
n

cn log n
)

3λ−2
2(λ−1) cnn

−C′′0 ≤ Lλ(
n

logn
)2n−C

′′
0 ,

where Lλ = 96M2
λLX . Therefore, choosing C ′′0 ≥ 4 allows to write

P ( sup
x∈RX

sup
t∈I
|M1tn(x)| > C0∆−1/2

n ) = O(n−2). (A.11)

By (A.1) and (A.11), we finally obtain

P ( sup
x∈RX

sup
t∈I
|M1tn(x) +M2tn(x)| > C0∆−1/2

n + C1c
2
n) = O(n−2). (A.12)

Proof of Proposition 3.2. Write

sup
x∈RX

sup
t∈I
|dtn(x)− dt(x)| ≤

i0∑

i=1

|qi|(S(1)
ni + S

(2)
ni ),

where

S
(1)
ni = 2

jn∑

j=1

mnjbnj sup
x∈RX

sup
t∈I
|M (i,j)

1tn (x) +M
(i,j)
2tn (x)|, (A.13)
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M
(i,j)
1tn (x) +M

(i,j)
2tn (x) = sup

x∈RX
sup
t∈I
| 1

2ncnj

n∑

k=1

γti(Zk,∆k|x)I(x− cnj < Xk ≤ x+ cnj)

−
∑

δ=0,1

∫ ∞

−∞
γti(z, δ|x)hδ(x, z)dz|,

cnj = anbnj and

S
(2)
ni = sup

x∈RX
sup
t∈I
|(2

jn∑

j=1

mnjbnj − 1)
∑

δ=0,1

∫ ∞

−∞
γti(z, δ|x)hδ(x, z)dz|

≤ C5Mλ|(2
jn∑

j=1

mnjbnj − 1)|.

Next, define

εn = 2C0∆−1/2
n

jn∑

j=1

mnjb
1/2
nj + 2C1a

2
n

jn∑

j=1

mnjb
3
nj.

Then,

P (S
(1)
ni > εn) ≤

jn∑

j=1

P ( sup
x∈RX

sup
t∈I
|M (i,j)

1tn (x) +M
(i,j)
2tn (x)| > C0∆

−1/2
nj + C1c

2
nj),

with ∆nj = ∆nbnj and cnj = anbnj. By using (A.12), we thus obtain

P (S
(1)
ni > εn) ≤ O(jnn

−2).

For s < 1 and using the Borel-Cantelli Lemma, we obtain

S
(1)
ni = O(εn) a.s.,

for which εn = O(max(∆−1/2
n , a2

n)).

Proof of Theorem 3.3. Let bnj = ja3/2
n and mnj = K(ja3/2

n )−K((j + 1)a3/2
n ) in (A9).

(A9) (i) becomes

|(2
jn∑

j=1

mnjbnj − 1)| ≤
∫
|Kn(u)−K(u)|du ≤ Ca3/2

n ,

for some C > 0. (A9) (ii) and (A9) (iii) become

sup
n
a9/4
n

jn∑

j=1

j1/2|K ′(θnj)| <∞
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and

sup
n
a6
n

jn∑

j=1

j3|K ′(θnj)| <∞,

where θnj is between ja3/2
n and (j + 1)a3/2

n . Therefore, we can choose 0 < s < 1 such that

jn = O(a−3/2
n ). Next, if we denote dtn(x,K), dtn(x) using kernel K, it is clear that

sup
x∈RX

sup
t∈I
|dtn(x,K)− dtn(x,Kn)|

≤ sup
x∈RX

sup
t∈I

(
Da3/2

n

nan

n∑

i=1

|Γt(Zi,∆i|x)|I(x− an < Xi ≤ x + an)) = O(a3/2
n ) a.s.,

for some constant D > 0, a kernel support equal to [−1, 1] and where Proposition 3.1 is

used with cn = an (with cn = (L/2)an if L is the length of the support).

Finally, write

sup
x∈RX

sup
t∈I
|
∑n
i=1 K(x−Xi

an
)Γt(Zi,∆i|x)

∑n
i=1 K(x−Xi

an
)

− dt(x)

fX(x)
| ≤ sup

x∈RX
sup
t∈I
|dtn(x)− dt(x)

fnX(x)
|

+ sup
x∈RX

sup
t∈I
|dt(x)(fX(x)− fnX(x))

fX(x)fnX(x)
|.

If we use the fact that infx∈RX |fX(x)| > 0 in addition to the obtained result for dtn(x,K),

the two terms on the right hand side of the above expression are O(∆−1/2
n ) a.s. since

supx∈RX supt∈I |dt(x)| is bounded (using the definition (A8) of the points Γ(·, ·|·)).

Proof of Proposition 4.1. Let

M9n(cn) = sup
x∈RX

sup
|t−s|≤dn, s,t∈I

| 1

2ncn

n∑

i=1

(γt(Zi,∆i|x)

−γs(Zi,∆i|x))I(x− cn < Xi ≤ x + cn)

− 1

2cn

∫ x+cn

x−cn

∑

δ=0,1

∫ ∞

−∞
(γt(z, δ|x)− γs(z, δ|x))hδ(s, z)dzds|

+ sup
x∈RX

sup
|t−s|≤dn, s,t∈I

| 1

2cn

∫ x+cn

x−cn

∑

δ=0,1

∫ ∞

−∞
(γt(z, δ|x)− γs(z, δ|x))hδ(s, z)dzds

−
∑

δ=0,1

∫ ∞

−∞
(γt(z, δ|x)− γs(z, δ|x))hδ(x, z)dz|

= sup
x∈RX

sup
|t−s|≤dn, s,t∈I

|M10stn(x)|+ sup
x∈RX

sup
|t−s|≤dn, s,t∈I

|M11stn(x)|.

First, M11stn(x) is treated as M2tn(x) in Proposition 3.1 such that

sup
{x∈RX ,|t−s|≤dn, s,t∈I}

|M11stn(x)| ≤ Cm1dnc
2
n, (A.14)
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using (A11).

Divide RX into [ 2LX
fnd

1/2
n

] intervals of length smaller or equal to fnd
1/2
n . Denote JX the set of

points {xk = x0 + k[ 2LX
fnd

1/2
n

]−1LX , 1 ≤ k ≤ [ 2LX
fnd

1/2
n

]− 1 = Ld
n

X } and xLdnX +1 = sup{x : x ∈
RX} which limit the intervals. M10stn(x) is treated like (A.2) in Proposition 3.1, where

γt(·, ·|·) is replaced by γt(·, ·|·)− γs(·, ·|·), Vn(xj) by V d
n (xj) = (1/n)

∑n
i=1 L0(Zi,∆i|xj) −

E[L0(Z,∆|xj)] and Vn by V d
n = maxxj∈JX (2E[L0(Z,∆|xj)]+ |V d

n (xj)|). Using Chebyshev’s

inequality, P (V d
n > Cm2) = o(n−2) with Cm2 chosen larger than 4L

1/6
6 . A development

similar to (A.3) and (A.6) is used to obtain

sup
x∈RX

sup
|t−s|≤dn, s,t∈I

|M10stn(x)| (A.15)

≤ 2c−1
n max

xj∈JX
max

|t−s|≤dn, s,t∈I
max

k∈{−1,0,1}
sup
|z|≤cn

M12stn(xj, xj+k, z) + V d
n ∆−1/2

n d1/2
n ,

where

M12stn(xj, x, z) = |Gstn(xj, x+ z)−Gstn(xj, x)− [Gst(xj, x+ z)−Gst(xj, x)]|,

Gstn(xj, x) = n−1
n∑

i=1

(γt(Zi,∆i|xj)− γs(Zi,∆i|xj))I(Xi ≤ x),

and

Gst(xj, x) = E[Gstn(xj, x)] =
∫ x

x0

∑

δ=0,1

∫ ∞

−∞
(γt(z, δ|xj)− γs(z, δ|xj))hδ(s, z)dzds.

Partition I into O(f−1
n d−3/2

n ) intervals such that for each xj, j = 0, . . . , Ld
n

X + 2, g(t∗|xj)−
g(t∗|xj) is divided into mj = [g(t

∗|xj)−g(t∗|xj)
CLdn

] intervals of length Cm3(xj)CLdn, 1 ≤ Cm3(xj)

≤ 2 (|g(t∗|xj) − g(t1|xj)| = Cm3(xj)CLdn, |g(tα+1|xj) − g(tα|xj)| = Cm3(xj)CLdn, α =

1, . . . , mj − 2, |g(t∗|xj) − g(tmj−1|xj)| = Cm3(xj)CLdn, t0 = t∗, tmj = t∗ for all j). Let

Ijα = [g(tα−1|xj), g(tα+1|xj)], α = 1, . . . , mj − 1. For each s, t ∈ I with |t − s| ≤ dn,

there exists an interval Ijα such that g(s|xj), g(t|xj) ∈ Ijα. Partition each Ijα by a grid

g(tαβ|xj) = g(tα|xj) + β
Cm3(xj)CLdn

pn
, β = −pn, . . . , pn, where pn = [∆1/2

n d1/2
n + 1]. Using

(A7) (iv), (A4), (A5) and the monotonicity of γt(Z,∆|x), (A.15) is majorized by

2c−1
n max

xj∈JX
max

k∈{−1,0,1}
max

1≤α≤mj−1
max

−pn≤β,ζ≤pn
sup
|z|≤cn

M12tαζ tαβn(xj, xj+k, z) (A.16)

+4c−1
n max

xj∈JX
max

1≤α≤mj−1
max

−pn≤β≤pn−1
C5cn|g(tα(β+1)|xj)− g(tαβ|xj)|+ V d

n ∆−1/2
n d1/2

n ,

where C5 is defined as in (A.7) and the second term of the above expression equals

4C5
Cm3(xj)CLdn

pn
≤ Cm4∆−1/2

n d1/2
n , where Cm4 = 8C5CL. Now, put Tn = Mλ(f−1

n d−1/2
n )

1
λ−1 .
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Define Mλ for 2 < λ ≤ ∞ as in the proof of Proposition 3.1, Hstn(xj, x) by

n−1
n∑

i=1

(γt(Zi,∆i|xj)− γs(Zi,∆i|xj))I(|γt(Zi,∆i|xj)− γs(Zi,∆i|xj)| ≤ Tn)I(Xi ≤ x),

and M13stn(xj, x, z) by substitution of Hstn for Gstn and E[Hstn] for Gst. (A.16) is then

majorized by

2c−1
n max

xj∈JX
max

k∈{−1,0,1}
max

1≤α≤mj−1
max

−pn≤β,ζ≤pn
sup
|z|≤cn

M13tαζ tαβn(xj, xj+k, z)

+2c−1
n fnd

1/2
n (W d

n + θdn) + (V d
n + Cm4)∆−1/2

n d1/2
n , (A.17)

where W d
n and θdn are defined similarly to Wn and θn in the proof of Proposition 3.1. It

is easy to check that P (2W d
n > Cm5) = o(n−2) and 2θdn < Cm6, where Cm5 and Cm6 are

chosen such that Cm5 > 2λ+2Mλ and Cm6 = 2λ+1Mλ.

Next, consider

κnjkr = xj+k +
rcn
pn
, for r = −pn,−pn + 1, . . . , pn.

Define Mntαζtαβjkr by

|Htαζtαβn(xj, κnjkr)−Htαζ tαβn(xj, xj+k)− [E[Htαζ tαβn(xj, κnjkr)]− E[Htαζ tαβn(xj, xj+k)]]|.

For fixed j, k, α, β, ζ, n, Htαζ tαβn(xj, xj+k+z)−Htαζ tαβn(xj, xj+k) and E[Htαζ tαβn(xj, xj+k+

z)]−E[Htαζ tαβn(xj, xj+k)] are monotone with respect to z and have finite limits in xj+k+cn

and xj+k − cn. Therefore,

sup
|z|≤cn

M13tαζ tαβn(xj, xj+k, z)

≤ max
−pn≤r≤pn

Mntαζ tαβjkr

+ max
−pn≤r≤pn−1

|E[Htαζtαβn(xj, xj+k +
(r + 1)cn

pn
)]− E[Htαζ tαβn(xj, xj+k +

rcn
pn

)]|,

where the second term on the right hand side of the above expression is bounded by

4CLC5cn∆−1/2
n d1/2

n .

Therefore, (A.17) is majorized by

2c−1
n max

xj∈JX
max

k∈{−1,0,1}
max

1≤α≤mj−1
max

−pn≤β,ζ,r≤pn
Mntαζtαβjkr

+(2W d
n + V d

n + Cm4 + Cm6 + Cm7)∆−1/2
n d1/2

n , (A.18)
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where Cm7 = 8CLC5.

Next,

P ( sup
x∈RX

sup
|t−s|≤dn, s,t∈I

|M10stn(x)| > Cm0∆−1/2
n d1/2

n ) (A.19)

≤
∑

j,k,α,β,ζ,r

P (Mntαζtαβjkr > C ′m0fnd
1/2
n ) + P (W d

n > C ′m0) + P (V d
n > 2C ′m0),

where C ′m0 = (1/6)(Cm0 − 16C5CL − 2λ+1Mλ) and Cm0, Cm2 and Cm5 have to satisfy

max(2λ+1Mλ, 2L
1/6
6 ) < C ′m0 = Cm2/2 = Cm5/2.

By Bernstein’s inequality,

P (Mntαζtαβjkr > C ′m0fnd
1/2
n ) ≤ 2 exp(−φntαζ tαβjkr),

where

φntαζ tαβjkr =
C ′2m0n

2f 2
ndn

2nσ2
ntαζ tαβjkr

+ 2
3
nC ′m0fnd

1/2
n Tn

,

σ2
ntαζ tαβjkr

= V ar[Ωntαζ tαβjkr] and

Ωntαζ tαβjkr = (γtαβ(Z,∆|xj)− γtαζ (Z,∆|xj))

×I(|γtαβ(Z,∆|xj)− γtαζ (Z,∆|xj)| ≤ Tn)(I(X ≤ κnjkr)− I(X ≤ xj+k)).

Using (A11) (ii), σ2
ntαζ tαβjkr

≤ CL2C5cndn, and (A10) (iii), Tn∆−1/2
n ≤ d1/2

n . Therefore,

φntαζ tαβjkr ≥ C ′′m0 log n,

with

C ′′m0 =
C ′2m0

2(CL2C5 + 1
3
C ′m0)

.

Finally,

∑

j,k,α,β,ζ,r

P (Mntαζtαβjkr > C ′m0fnd
1/2
n ) ≤ 2

Ld
n

X∑

j=1

1∑

k=−1

mj−1∑

α=1

∑

−pn≤β,ζ,r≤pn
n−C

′′
m0 ,

for which the highest order term on the right hand side is

96
LXMλ

CL
∆2
nc
−1
n n−C

′′
m0 ≤ 96

LXMλ

CL

n2

(logn)2
n−C

′′
m0 .
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Choosing C ′′m0 sufficiently large finishes the proof.

Proof of Theorem 4.3. Let bnj = ja3/2
n d−1/2

n and mnj = K(ja3/2
n d−1/2

n ) − K((j +

1)a3/2
n d−1/2

n ) in (A12). (A12) (i) becomes

|(2
jn∑

j=1

mnjbnj − 1)| ≤
∫
|Kn(u)−K(u)|du ≤ Ca3/2

n d−1/2
n ,

for some C > 0. (A12) (ii) and (A12) (iii) are easily satisfied using jn = O(a−3/2
n d1/2

n )

such that s can then be chosen between 0 and 1. Next, let denote dstn(x,K), dstn(x) using

kernel K. It is clear that

sup
x∈RX

sup
|t−s|≤dn, s,t∈I

|dstn(x,K)− dstn(x,Kn)|

≤ sup
x∈RX

sup
|t−s|≤dn, s,t∈I

(
Da3/2

n d−1/2
n

nan

n∑

i=1

|Γts(Zi,∆i|x)|I(x− an < Xi ≤ x + an))

= O(a3/2
n d1/2

n ) a.s.,

for which we use Proposition 4.1 with cn = an (for a kernel support equal to [−1, 1]).
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