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Abstract

In this paper, we study strong uniform consistency of a weighted average of
artificial data points. This is especially useful when information is incomplete (cen-
sored data, missing data ...). In this case, reconstruction of the information is
often achieved nonparametrically by using a local preservation of mean criterion
for which the corresponding mean is estimated by a weighted average of new data
points. This way of doing enlarges beyond incomplete data context and applies to
the estimation of the conditional mean of specific functions of complete data points.
As a consequence, we establish the strong uniform consistency of the Nadaraya-
Watson (1964) estimator for general transormations of the data points. This result
generalizes the one of Hardle, Janssen and Serfling (1988). In addition, the strong
uniform consistency of a modulus of continuity will be obtained for this estimator.

Applications of those two results are detailed for some popular estimators.
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1 Introduction

In many regression contexts where the data are incomplete, one has to reconstruct
missing information by using other data points. In particular, if Z denotes a data point,
X the covariate and A is a binary variable equal to 1 if the data point Z is complete
(in this case Z = Y, the true data point) and 0 if it is incomplete, a natural way to
reconstruct a function ¢, (Y|x) at X = x and for t € I is to take I'y(Z, Alx) = (¢ (Y]z))* =
Elp(Yz) |z, Z, Al = (Y |2)A+E[p(Y|x)|Y > Z, 2](1—A). (in the case of missing data,
Z = —oo and therefore Ep;(Y|2)|Y > Z, 2] = E[p:(Y|x)|z]). In censored regression, this
scheme with ¢;(Y|z) =Y has been used by Buckley and James (1979), Koul, Susarla and
Van Ryzin (1981), Leurgans (1987), Fan and Gijbels (1994), Heuchenne and Van Keilegom
(2004) among others. In estimation with missing data, this kind of new data points has
been proposed by e.g. Cheng (1994), Chu and Cheng (1995) and Cheng and Chu (1996).
As explained in Heuchenne and Van Keilegom (2005) for nonparametric estimation with
censored data, ¢;(Y|z) can be any function of z,t and Y, e.g., Y, Y2 or I(Y < t), for
fixed t € I, if the objective is to estimate E[Y |z], E[Y?|z] or E[I(Y < t)|z] = P(Y < t]z)
respectively. Therefore, there is a need to construct a general asymptotic theory for a
nonparametric estimator of Efp,(Y|x)|z] (E[(¢¢(Y|x))*|z]) in the complete (incomplete)
data case.

More precisely, let {I';,t € I} be a family of real valued measurable functions on R

and suppose we want to estimate
EL(Z, Alz)|z] = Y /Ft(z,é\x)ng(z\x), (1.1)
6=0,1

where [ is a possibly infinite or degenerate interval in R, x € Rx, a compact interval in
R and Hs(y|z) = P(Z < y,A = §|z) (6 = 0,1). A natural nonparametric estimator for

this conditional mean is given by

an

NEES

an

o K(“*Xi)Pt(Zi,Aill“). (1.2)

In the case I't(Z, Alx) = Z, this estimator reduces to the usual Nadaraya-Watson (1964)

estimator and in the case I';(Z, Alz) = I[(Z < t), we obtain the Stone (1977) estimator.
The objective of Section 3 is to provide the almost sure convergence of (1.2) uniformly

in z,¢ with the rate (na,)~"/?(logn)'/2. Now, suppose s,t € I with |t —s| < d,,. In Section

4, we aim to obtain the almost sure convergence of the modulus of continuity based on
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(1.2) uniformly in z,s,t, |t — s| < d,, with the rate (na,)~"?(logn)/2d}/?. The useful

purpose of these results is illustrated for some typical examples in Section 2.

2 Examples and Assumptions

Example 2.1 (Nonparametric estimation of conditional location and scale func-
tions for complete data)

Suppose Yi,...,Y, are n i.i.d. random variables corresponding to Xi,...,X,, n iid.
covariates with distribution Fx(z) = P(X; < x). Let F(t|lx) = P(Y; < t|X; = z) be
the conditional distribution of the response given the covariate. Usual location and scale

estimators are given by
1 1
Asr (@) :/F_1(3|x)L(s) ds, &%0(x) :/F_1(3|x)2L(s) ds — 2 (z), (2.1)
0 0

where F'(-|-) is the Stone (1977) estimator and L(s) is a given score function satisfying
Ji L(s)ds = 1. If the objective is to estimate

/ F(s|z)L(s) ds (2.2)
and
/ F(s|)2L(s) ds, (2.3)

it is clear that Ty (Y|z) = YL(F(Y|z)) for (2.2) and T (Y|z) = Y2L(F(Y|x)) for (2.3) as
E[T';(Y]|z)|x] equals the function to estimate (2.2) for ¢ = 1 and (2.3) for i = 2. Since the
data points T'y;(Y|z) depend themselves on F(Y|z), they are estimated by Y L(F (Y |z))
and Y2L(F (Y |z)) so that the classical Nadaraya-Watson estimator based on those data
points corresponds to (2.1).

Note that when L(s) = I(0 < s < 1), thgr(z) and 6%,(x) reduce to estimators of
the conditional mean and variance. Theorem 3.3 of the next section thus enables to
prove at the same time the strong uniform consistency of estimators of any location and
scale functions defined by the score function L. This is achieved in two steps : first, an

application of Theorem 3.3 for data points I(Y; < t) (i = 1,...,n) in order to delete
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the Stone estimators in the expressions Y L(F(Y|x)) and Y2L(F(Y|x)), and second, an

application of the same theorem on the functions I'y1 (Y |x) and Ty (Y]|z).

Example 2.2 (Nonparametric estimation of conditional location and scale func-
tions for censored data)

Now, suppose Y1, ...,Y,, are possibly right censored by C4,...,C), n ii.d. random vari-
ables with distribution function G(t|z) = P(Cy; < t|X = xz). The observed random
variable for the covariate X; is therefore the pair (Z;, A;), i =1,...,n, with Z; = Y; A C;
and A; = I(Y; < C;). We will now assume independence of Y; and C; conditionally on Xj.

Usual location and scale estimators are given by

ip(e) = [ yL(F(yle)) dF(yl) (2.4)

and

/ y*L(F(yla)) dF (y|z) — s (x). (25)

where F(-]-) is the Beran (1981) estimator given by

F(tlz)=1- Ziggiﬂ f1- T ZVJVSZ“;I)% o V(t < Ziwy), (2.6)
K (=X
Wil a) = = g(“("z)xj) (2.7)

are the Nadaraya-Watson weights and L(s) is a given score function satisfying [, L(s)ds =
1. In order to avoid consistency problems in the right tails of the Beran estimators, T is
chosen smaller than inf, 744, where H(y|z) = P(Z < y|r) and 7p() = inf{t : F'(t) = 1}
for some F. Seeing that the objective is to estimate E[YI(Y < T)L(F(Y|z))|z] and
E[Y?I(Y < T)L(F(Y|z))|z] with an estimator of the Nadaraya-Watson type, we rewrite
(2.4) and (2.5) as

n

mB(’r) - ZVVi(l',CLn)f‘tg(Zi,A”{L'), (28)
i=1
and
5129@) = Z Wi(, an)ft4(Zia Aj|z) — mQB(w), (2.9)
i=1



where

ST i yL(F(yla))dE (y|x)
1— F(Z; AT)z)

Tis(Z;, Ai|x) = Z,1(Z; < T)L(F(Z;|x)) A + (1—A,),

and

JE G PL(F(y|2)dF (y|x)

Tu(Z;, Ni|z) = Z21(Z; < T)L(F(Z|x))A; + (1—A).

T3(Z, Alz) and Ty (Z, Alz) actually estimate

_ - [ yL(Fyla)dF (ylz)
T(Z, Alx) = Z1(Z < T)L(F(Z|z))A + L FZATI) (1—A),

and

e - JE i P L(F(yla)dF(ylz)
Pu(Z, Alr) = 221(Z < T)L(F(Z]x))A + AL FZ ATl (1—A)

respectively. It is easy to check that

Elis(Z, Alo)la] = EY I(Y < T)L(F(Y |2))]a],
and

ELu(Z, Alz)|z] = E[Y2I(Y < T)L(F(Y|z))|z].

As for the complete data case, Theorem 3.3 enables to prove the strong uniform
consistency of estimators of any location and scale functions (truncated by T) defined by
the score function L. Note that in order to use Theorem 3.3 with the functions I'i3(Z, A|z)
and Ty (Z, Alz), we first need to delete the Beran estimators that appear in I's(Z, Alz)
and ft4(Z ,Alz). This can be done by using Proposition 4.3 of Van Keilegom and Akritas
(1999).

Example 2.3 (Estimation of a conditional distribution function under the het-
eroscedastic model)

Now, suppose in the previous example that we want to estimate the conditional distribu-
tion function of the response given the covariate when the relation Y = m°(X) +0%(X)e"
with € independent of X is assumed. The corresponding preservation of means criterion

is: construct new indicators for which the conditional mean equals the asked conditional



distribution function and which use the above heteroscedastic model. More precisely, this

estimator is a weighted sum of data points ft5(ZZ~, A;lz), i =1,...,n, that approximate

FATY) — F(ELy ')

where B = ZALflom) po - Ao pOT = EOAT, Tp = B 7 o

To%x) + m®(x) and T < Tho(), where H(y) = P(E° < y). We refer the reader to
Heuchenne and Van Keilegom (2005) for complete description and explanation of this
estimator. The same paper also provides proofs of the strong uniform consistency and
the strong uniform consistency of the modulus of continuity for the estimator based on

those new data points. Those proofs largely use Theorems 3.3 and 4.3.

Example 2.4 (Nonparametric regression with missing data)
Suppose in Example 2.1 that some Y;, ¢ = 1,...n, are possibly missing. In this case,
A; = 0 1if Y; is a missing data and A; = 1 otherwise. Moreover, the MAR (missing at

random) assumption requires that
PA=1]X,Y)=P(A=1|X) =p(X) (2.11)

(see Little and Rubin, 1987, p.14). In this context, a simple idea (similar to the one
developed by Chu and Cheng, 1995) to estimate a regression function is to construct a

Nadaraya-Watson estimator with new data points given by
VY =YiA 4+ mg(X)(1—A,), i=1,...,n,

where mg(x) is the Nadaraya-Watson estimator based on the complete pairs:

P K(52)YiA,
P K (XA

Qn

Therefore, two first applications of Theorem 3.3 with data points I';s(Z, Alz) = YA and
' (Z, Alx) = A allow with assumption (2.11) to proof the uniform strong consistency of
mg(x). Next, if fx(z) = ng_z(z) and p(x) are uniformly Lipshitz continuous and mg(z) is
two times continuously differentiable, the uniform strong consistency of (1.2) with data
points I'is(Z, Alz) = Y = V;A; + mg(X;)(1 — A;) is obtained in two steps. First, replace
ms(X;) by ms(z)+(X; —x)ms(z) +O(a?). Then, by similar developments as in Corollary
1 (ii) of Theorem 2 in Masry (1996), m'y(z) S0, Wi(z, a,)(X; — 2)(1 — A;) = O(a?) a.s.

Second, a third application of Theorem 3.3 allows to obtain the result.
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Strong uniform consistency and modulus of continuity proofs are achieved in three
steps. First, we consider new data points v,(Z;, Ai|z), i = 1,...n, t € I, x € Ry,
and kernels that are defined by indicators. Second, we combine those data points to
obtain the I';(Z;, A;|x) used in this section and we sum indicators to construct kernels
of step-function form. Third, by using a number of indicators that tends to infinity in
the step-function kernel, we show the announced results for usual smooth kernels. The

assumptions we need for the proofs of the results of Sections 3 and 4 are listed below.

(A1) %(-,+|) is Lipshitz on Rx (compact) uniformly in ¢t € I :

sup sup [:(z, 6|x) — vi(2, 0lz;)| < Lo(z, 6[z;)d

|z—x;|<d, z,x;€ERx tEl

where Lg(+,+|+) is a (positive) function independent of ¢ such that F[Lo(Z, Alx)%] < L¢ <

oo for all x € Rx.
(A2) 0 < (2, 6]x) < yw(z,0)|z), t <t €I, for all z,z and 6 =0, 1.
(A3) g(t|z) = E[v(Z, Alx)] is a continuous function of ¢ in I for all .

(A4) The limit functions = lim;_4+ v, and ;= lim;_4, y; exist and are finite a.s. (w.r.t.
H(z) = P(Z < z)) for all z, where t, =inf{t : ¢t € I}, t, > —oc0 and t* = sup{t : t € [},
t* < 0.

(A45) For all z, E[y+(Z, Alx)®] < Mgy < oo for some A, 2 < A < oo; in the case A = oo,
SUPg 2.6 |’Yt* (Zv 5|‘T)| < 0.

(A6) Let {c,} a nonnegative sequence satisfy (i) 0 < ¢, — 0, (ii) A, = ne,/logn — oo,
< (n/logn)'=%* for A as in (A5).

(iid) ¢!

AT)(i) Fx(z) is differentiable with respect to « with derivative fx(x).

(
(11) Hs(z,y) is differentiable with respect to (z,y).
(7i1) Hs(y) is differentiable with respect to y.

(iv) For the density fxza(z|z,6) of X given (Z,A), sup, . |fxza(z|z,0)] < oo,
sup,, , | fxiz.a(z]2,0)| < oo and sup,, . | fxiz.a(z]2,0)] < 0o (6 = 0,1), where fxjza(z|z,0)

(fx|z.a(x]2,0)) denotes the first (second) derivative of fy|z.a (7|2, d) with respect to x

(A8) Define new data points as I'y(z,d|z) = S ¢vi(z,6lx), z€ R, t €I, x € Ry,
0 = 0,1, with fixed and finite ig, qi,...,q, and with families {vy, t € I}, 1 < i < i,
satisfying assumptions (A1)-(A5), with common A in (A5).
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(A9)(i) Consider kernel sequences of step-function form, K, (u) = Z]:" 1ML (=bpj <u <
bnj), u € R, with {j,}, {mn;}, {bn;} nonnegative constants such that |2 ZJ L Minjbnj—1] =
O(max(A; 12 a?)), with j, = O(n®), s >0 and A, = na,/logn.

(i1) sup,, Zg" 1 mmb,llé2 < 0.

(14i) sup,, ZJ | Mingb); < 00.

(A10) Let {c,} and {d,} two nonnegative sequences satisfy (i) 0 < ¢,,d, — 0, (i)
A, =nc,/logn — oo, (iii) ¢;' < d,(n/logn)'=%* for A as in (A5).

(A11) The data points v.(Z;, Ai|z), t € I, € Rx, i = 1,...,n, have the following mean-
Lipshitz properties : (i) SUD{ e py jt—s|<dp,steldnoo} [E[11(Z, Alx) —75(Z, Alx)]| < Crd,,
(”) Sup{xERx,|t—s\§dn,s,tel,dn—>0} E[(’Yt(ZvALr) - 78(Z7A|'r))2] < CLana for n SUfﬁCiently

large.

(A12)(i) — (i27) Consider kernel sequences of the same form and with the same assump-
tions as in (A9) except that |2 Zﬁ” L Msbn; — 1] = O(max(A;Y2d ;12 a2)) in (A9) (i).

3 Strong uniform consistency of the weighted aver-

age of artificial data points

We start by showing two preliminary results which will lead to the strong uniform

consistency of the estimator (1.2).
Proposition 3.1 Assume (A6), (A7). Then,

P(Mon(cn) > CoAY? +Cicl) = O(n ™),
where

Mo, (c,) = sup sup| Z% Zi, Nl (2 — ¢, < X; <24 ¢p)

z€Rx tel 2ney i=1

- > / Ye(z, 0|x)hs(x, 2)dz],

6=0,1

Y(z,0lx), t €I, x € Rx, z € R, § = 0,1, salisfy assumptions (A1)-(A5).



Proposition 3.2 Assume (A7)-(A9). a, satisfies (i) a, B, — 0, (ii) na,b,/logn — oo
and (i) a;t < b,(n/logn) =% where b, = min;<;, b,;, B, = maxj<;, b,; and X is given
as in (A5). Then,

sup sup |d, () — di(z)| = O(max(A;Y2 62)) a.s.,

reERx tel " T
where
1 n

n j=1 n

),

and

di(x) = Z /OO Ty(z,0|z)hs(x, 2)dz.

Theorem 3.3 Assume (A7), (A8). For the sequence a,, we suppose (i) a, — 0, (i7)
na’?/logn — oo, (iii) a;°/? < (n/logn)'=%* where X is given as in (A5), and (iv)
nal — 0. K is a symmetric kernel with bounded support, bounded first derivative and
[ K(u)du = 1. Then,

sup sup |din () — di ()] = O(A;?) a.s.,

n
ze€Rx tel

where dy,(x) and di(z) are defined with kernel K and A, = na,/logn. Moreover, if
infaer, |fx(z)] >0,

sup sup | i=1 K(”?;fi)Ft(Zi,AJx) _ dy()
reRx tel ?:1 K(L&) fX(x)

Qn

| = O(A;Y?) as.
Remark 3.4 (density estimator) If we denote f,x(x) = (1/na,) X", K(”’;—f"), the
classical density estimator, we have using Proposition 3.3 with I'(Z;, A;|z) = 1 that

SUD,e Ry |fox(z) — fx ()| = O(A;VQ) a.s., since sup,ep, |fx(x)] < 0.

Remark 3.5 (moment conditions) For a number of artificial data points, the mo-
ment conditions in (A1) and (A5) are not used. Indeed, those data points can often be
of the form v (Z;, Aj|x) < 45 (Z;, A;) and such that Lo(Z;, As|x) < L§(Z;, A;). In this
case, strong law of large numbers can be immediately used with (1/n) X0, v (Zs, A;) —
ElyNZ,A) and (1/n) X0y Ly(Zi, A)— E[Lj(Z, A)] in the appendix. The terms V, A,
and 2WnA;j1/ ? can then be treated outside Proposition 3.1 and be directly introduced in
(A.13) in the proof of Proposition 3.2 (see the appendix) such that the final result of
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Theorem 3.3 is preserved.

Remark 3.6 (boundary effects) The degree of smoothing of fx|za(z|z,0) allows via
(A7) (iv) to obtain the artificial order O(A;,'/2) near the boundaries of Rx. If we suppose
for instance the weaker condition

sup sup| Y /*yt z,0|z)(hs(2', 2) — hs(x, 2))dz| < Cd,

le—z'|<d, z,2’€Rx t€l §_ 0,1

instead of (A7) (iv), then the more realistic rate O(a,) can be obtained near the bound-

aries.

Remark 3.7 (bandwidth assumptions) The bandwidth parameter a,, could tend to
zero more slowly. Indeed, the condition nal — 0 of Theorem 3.3 can be written with
another power on a,. By example, if na’(logn)™! = O(1), Theorem 3.3 also holds if

nal/logn — oo and a;* < (n/logn)'=2/*.

Remark 3.8 (artificial data representation) The representation
)
Ft(za 5’1') = Z Qi’yti(za (5‘1’),
i=1
needed in the above proofs, requires nonnegative 7, (z,d|x), i = 1,...,4y. This assump-
tion is not restrictive since any random variable X with real values can be represented

by X = max(X,0)—(—min(X,0)), where the two terms of this difference are nonnegative.

Remark 3.9 (Extension to local linear estimator with conditional new data
points) The extension of Theorem 3.3 to local linear estimator is easily obtained by
similar developments as in Corollary 1 (ii) of Theorem 2 in Masry (1996) and if fx(x) is
uniformly Lipshitz continuous. Indeed, using those arguments, the local linear estimator

reduces to the classical weighted sum of conditional new data points dicussed above.

4 Modulus of continuity for the weighted average of

conditional synthetic data points

The development of this section is similar to Section 3. The strong uniform consistency

of the modulus of continuity is established via two preliminary results.
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Proposition 4.1 Assume (A7), (A10). Then,
P(Mgy(cn) > Cog A, 2dy? + Concpd,,) = O(n™?),

where

1 n
MQn(Cn) = Sup sSup | Z(/Yt(Zla Az|x) - ’ys(Zia AJI’))](ZE —Cp < Xz S T+ Cn)

TERX |t—s|<dn, s,t€l 2ney i=1

= 3 [ Gulzdla) = vz Ol 2)dz),

0=0,1""

Y(z,0lz), t €I, x € Rx, z € R, § =0,1, satisfy assumptions (A1)-(A5) and (A11).

Proposition 4.2 Assume (A7), (A8), (A11), (A12). a, and d, satisfy (i) a,B, —
0, d, — 0, (ii) na,b,/logn — oo and (iii) a;' < byd,(n/logn)'=%* where b, =

n

min;<;, by;, By, = max,<;, by;, and X is given as in (A5). Then,

sup sup |dgin(2) — dg(z)] = O(max(A;Y2dY? a2d,)) a.s.,

n %
zERX |t—s|<dn, s,t€l

where

dun(1) = —— STu(Ze, Adlir) — To(Ze, Al K (20

Nln =

),

Qp

du(z) = 3 /O:O(Ft(z,5|x)—Fs(z,6|x))h5(x, 2)dz.

5=0,1""

Proof. The proof is along the same lines as the proof of Proposition 3.2.

Theorem 4.3 Assume (A7), (A8), (Al1). a, and d, satisfy (i) a, — 0, d,, — 0, (i7)
na’?d;1/?/logn — oo, (i) a;°/? < dY?(n/logn)'=2/* where X is given as in (A5), (iv)
logn/na,d, = O(1) and (v) nal — 0. K is a symmetric kernel with bounded support,
bounded first derivative and [ K(u)du = 1. Then,

sp sup dun() — dule)] = O(ATd?) as.

TERX |t—s|<dn, s,t€l
where dg,(x) and dg(x) are defined with kernel K and A, = na,/logn. Moreover, if

na;”;/?/]ogn — 00 and inf,er, |fx(z)| >0,

nOK (XD (Z0 Alz) d
sup sup \ = (na" ) ;_(X =) - St($)| = O(A;2dY?) as.,
zERX [t—s|<dn, s,tel i=1 K(—Z) fX(:E)

where FtS(Zia AZ|ZL') = Ft(Zi7 Az‘l') — FS(ZZ', Az‘l')
Remark 4.4 (bandwidth assumptions) If na’(logn)™' = O(1), Theorem 4.3 also

holds if na? /logn — oo and a; 3 < dY/?(n/logn)'=%*,
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Appendix : Proofs of main results
Proof of Proposition 3.1. Let f, = A-'/2c,. We have

Moy, (cp) = Z% A [(x—c, < Xy <z +0¢yp)

reRx tel 2n

x+cn
/ / Ye(z, 0|z)hs(s, z)dzds|

QCn xc”(SOl

x+cn
+ sup sup|—/ / Ye(z,0|z)hs(s, 2)dzds

r€ERx tel Cn  §— 0,1
- > / Ye(z, 0|z)hs(x, z)dz|
5=0,1

= sup sup | My, (x)| + sup sup | Mo, (x)].
reRx tel r€Rx tel

First, we treat the term Moy, (x). It is given by
x+cn,
> / Ye(z, 0| ) { / hs(s, z)ds — h(;(x,z)}dz.
§=0,1 Cn Ja—cn

Using two Taylor developments of order three around x, we get

1 T+cn 9 .. .
—/ hs(s, 2)ds — hs(x, 2) = (¢;,/12)[fx12,a(01]2,6) + fx|z.a(02]2,0)]hs(2),

QCn Tr—cCnp
where 6, (0) is between x + ¢ and x (z and x — ¢). Since sup, , | fxiza(z]2,0)] < oo
(0 =0,1) and supg,epy, tery E[v(Z,Alr)] < oo with v(Z, Alz) > 0,
sup | Moy, (2)| < C1c2. (A.1)

{z€Rx, tel}
Let Lx the length of Ry and divide Ry into [QL—X] intervals of length smaller or equal to
fn ([x] denotes the integer part of x). Denote :c(: inf{x : © € Rx}, Ix the set of points
{z) = 20+ k[QJ{J—nX]_lLX, 1<k< [QJ{J—HX] —1= L%} and wgn 1 = sup{z : © € Rx} which
limit the intervals. Using the Lipshitz condition (A1), we can rewrite for 1 < j < L%,
sup sup | My, (x)| (A.2)

r€ERx tel

> Zi Az (= cn < Xi S @+ )

zjelx x€lxj_1,xj41] tEL 2ncey, i=1

< max sup  sup|

T+cCn
e TS [ bl ha(s, dads| + max (BLLo(Z, Ala)] + Vi) A,

n §=0,1

= (2¢,) 'max  sup  sup|Msy(z;,7)| + gnelei(E[Lo(Z Alz)] + [V (z)) A2,

2iCIx wefn;1,m54a] tel
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where V,,(z;) = (1/2n) X1, Lo(Zi, Ailz;) — (E[Lo(Z, Alz;)]/2). We have

P(max (B[Lo(Z, Alay)] +Va(;)]) > 2C)
< D AP(12Vi())] > 2Cs) + P(E[Lo(Z, Alz))] > C2)},
J
where the second term on the right hand side of the above expression is zero when Cy >

Lé/ % For the first term, we use an extension of Chebyshev’s inequality :

P(|n1§;Lo(Zi, Ailz;) — E[Lo(Z, Alz;)]| > 2C5)
< e PO (ol Zi Arlay) = ELLo(Z, Al D] = O™,

i=1

since E[Lo(Z,A|z;)®] < Lg < co. Then, with L% O(n™?) = o(n™?),

P(max (E[Lo(Z, Alx;)] + [Va(z;)]) > 2C3) = o(n™?),

z‘jGIX

for which, using Borel-Cantelli Lemma, we obtain

Vi = max (E[Lo(Z, Alx))] + [Va(2;)]) = O(1) a.s.

zi€lx
To treat the first term on the right hand side of (A.2), we introduce some notations. Let
th(l'j, .I') = nil Z’}/t(ZZ, Az‘l'])[(Xz S l’),
i=1

and

Gi(xj,v) = E|Gn(zj, x / / (2, 0|z;)hs(s, 2)dzds.

05 0,1

Therefore,

| My (25, 2)] = |Gm(xj, v+ cn) — Gz, 2 — ¢,) — [Ge(xj, x4+ ¢,) — Gi(zj, 2 — ¢,)]|

<2 sup |Gz, + 2) — Gz, 7) — [Gi(z), v + 2) — Gi(zj, x)]|

|z|<cn

= 2Muyy (25,2, ¢p). (A.3)

By conditions (A2)—(A5), the functions g(t|x;), j = 1,..., L, are nondecreasing, contin-
uous in ¢ with finite limits ¢(t*|z;) and g(t.|z;) as t — t* and ¢.. Divide I in O(f,,?) inter-
vals such that |g(t1]x;) — g(te|x;)| < fuu l9(thsa]zj) — g(t|z;)| < fr, for k=1,... N,; — 1,

13



lg(telz;) — g(tn,,|z5)| < fa, 5 =1,..., L%. Let I,,; denote the set {t,,t1,...,tn,,,t"} and
Iy the set {(t.,t1), (t1,t2),.. ., (tn,;,t")}. Clearly, the cardinality N,; of I, is bounded
by
N, < 2(g(#"|z;) — g(t|z;))
fn
Also, for fixed j, z, z, n, the functions Gy, (z;, v+2) =Gy, (xj, ) and Gy(z;, v+2)—Gi(z;, )

are monotone in t and have finite limits as t — t,,t*. We therefore have

Gin(wj, 0+ 2) — G5, ) — [Ge(x), 7 + 2) — Gy, )]

<max |G (xj, 7 + 2) — Gip(xj, x) — [Ge(xj, 2 + 2) — Gi(z5, 7)]|

teln;

Gi(zj, x4+ 2) — Gs(zj, x + 2) — [Gi(z;,x) — Gs(x5, 2)]]. (A.4)

4+ max
(s,t)el’,

It is easily shown that the right hand side of the above expression is bounded by

2[5 [l 8l)) = vl 0 (s, 2)dzds
X §=0,17"°°

=2 % [ (= 003)) = 2z 0la)hs ()
§=0,1"7"°°
< 2(g(tlz;) — g(slz;)) < 2fa,

using monotonicity of v, with respect to t. Therefore,

max sup  sup My (2,2, ¢,) < max sup  max My, (2, x,¢,) + 2fn. (A.D)
rielx z€[xj_1,x541] tEL rjE€lx TE[XTj—1,T541] teln;

Let
M5tn($j7$’ 2) = |th(xj’x + Z) - th(xj’x) - [Gt(xj’x + Z) - Gt(xjvx)”
We have

max  sup  max sup Msy,(z;,, 2) (A.6)
TiCIX gefw; 1,m541] 1€ |2 <en

<max (max sup  max sup My (x5, 2, 2),
JEIX elwj 1,m541) 161 atz€fm;1,@541]

max sup max sup My (x5, 2, 2),
vi€Ix\zrn b aele;,z;i1] €100 atz€(n;p,a+cn]

max sup max sup My (25,2, 2),
zj€lx\{z1} €[z x5 41] t€ln; T+zE[T—Cn,wj_1]

max sup max sup My, (25, 2, 2),
$JEIX\{J"L7;( } x€lx;_1,%;] t€ln; x+2z€[Tj1,2+Cn]

max sup  max sup Mz (xj, 2, 2)).
zjelx\{z1} z€[zj_1,24) t€ln; T+zE[T—Cn,Tj-1]

14



Introducing Gy, (2, xj4x) and Gy(x;, z;4y) for k= —1,0 or 1, it is easily shown that

max sup  max My, (z;,z,c,)
z;€lx w€lwj 1,mj11) tel,;

<2max max max  sup Mz, (z;, Tjk, 2).
zj€lx tely; k‘E{—l,O,l} ‘Z‘Scn

Now, put Q,, = My f;7 /O~ where, for all 2, (E[(y(Z, Alz))])Y* < M) < oo for some
A, 2 < X < oo. In the case A = 0o, My denotes then sup, , s[4+ (2, d|z)|. Also, put

n

Hpn(z,2) = 07 3l Zi, Adley) L (w(Zi, Aylzy) < Qn)I(X; < ),

i=1
and define Mgy, (z;, x, z) by substitution of Hy, for Gy, and E[Hy,| for Gy in My, (25, x, 2).
That yields

sup sup | M, (z)] < 2¢,' max max max  sup Mem (2, )1k, 2)
r€ERx tel zi€lx t€ln; ke{-1,0,1} |z|<cn

42 0 M1+ V2 4+ W, +6,),
where

W, = f7! max max max sup M (2, Tivp, 2
n n zj€lx t€l,; ke{*170»1}|z|§cn n( Jr itk )7

Myn (5,7, 2) = |Gen(2), 7 + 2) — Gin(2,7) — [Hen(75, 7 + 2) — Hin(, 2)]],

0, = f;' max max max sup Mg (2, i, 2),
xzj€lx t€ly; ke{-1,0,1} |z|<en

and
MSt(xjvx’ Z) = |Gt(xj7$ + Z) - Gt(xjax) - [E[th(xjvx + 2)] - E[th(xjvx)]]|'

Using (A2), (A4) and the fact that f 1 = (Q,/M))*"t, we have

MW, <t nax 0t e (Zi Nl (v (Ziy Ailg) > @Qn)
j i1

n
< max n* Z%*(Zz‘, Az‘|$j)>\,
zj€lx i=1

if A\ <ooand W, =0if A = co. Next, for A\ < oo,

P(max n™" Yy (Z;, Ailx;)* > Cs)

<> AP~ zn:l%*(zz‘a Ajlz)* = Ely (2, Alz;)Y) > Cs/2)
+P (Bl (Z, Alz))Y] > C3/2)},

15



where the second term on the right hand side of the above expression is zero when C3/2 >

M3. For the first term, we also use the extension of Chebyshev’s inequality :

P(n~! Z’Yt*(Zi, Ai|xj))\ — Elvw(Z, A|xj))‘] > (C3/2)
i1
64 n

G EIS G (20 Ay = Bl (2,8l )] = On ™),

<
since B[y (Z, Alz;)%] < Mgy < 0o. Then, with L% O(n™3) = o(n™2),

P(max n™" Y~ 5 (Z;, Ala;)* > Cs) = o(n™?),

z‘jEIX i—1
for which, using Borel-Cantelli Lemma, we obtain W,, = O(1) a.s. We also see that

max, cry Ly (Z, Alx;)?]

en < Mg\,l < M)\a
fA<ooand @, =01if A\ = oo.
Now, define
2Qncp
w, = | + 1]
fn
and
rcp
Nnjkr = Tjk + o forr=—w,, —w,+1,...,w,.
Defining

Entirr = | Hin (25, Mnjr) — Hin (%5, Tjin) — [E[Hin (25, Mjrr)] — E[H (25, 2508)]]]
we have

sup Mo (2, Tjr, 2) < max  Engjkr
|z|<cn —wn <r<wn

+ max |E[th($ja nnjk(rJrl))] - E[th(xja nnjkr)”

—wn <r<wnp—1

The second term of the right hand side of the above expression is bounded by

Q. max /nnjk(rﬂ) > /Oo hs(s, z)dzds
n o9

—wWn<r<wp—1 ke 501’

Mnjk(r+1)
< Qn max / fX(S)dS < QnC4(77njk(r+1) - nnjkr) < C4fn/2>
7,

—wn<r<wn—1Jn,

16



where C} is the Lipshitz constant of Fx(-). The goal is therefore to calculate

P(sup sup | My, (2)] > CoAA;V/?)

r€Rx tel

S P(2 HL}E}CX gntjkr + fn(QWn + Vn> > (CO —2— 04 — QM/\)fn)
J,t,k,r

< Y P(&ujrr > (1/6)(Co — 2 — Cy — 2M)) f)

Itk

+P(V, > (1/3)(Co — 2 — Cy — 2M,)),
where Cy, Cy and Cs have to satisfy 2M, < (Cs/M3™") = (1/6)(Co — Cy — 2M — 2) and
L < Cy = (1/6)(Co — Cy — 2M),, — 2). Therefore, we only have to treat the first term

on the right hand side of the above expression. Defining Cfj = (1/6)(Co — 2 — Cy — 2M,),

we have by Bernstein’s inequality,

P(éntjkr > C(/)fn) S QGXP(_thk;nr),

where

12,2 £2

CYO n fn
2 2 ! )
2natjknr + §nCOann

Vijknr =
and o¢jgnr = Var[Dyjin,|, where

Dijinr = (2, Alay) 1(7(Z, Alzj) < Qn)(I(X < hojrr) — LX< 2j41))-

We have
) < BID2 < MjkrVTjtk o, Sle ] Slas) < L ded
gt]knr = [ t]knr] = An Z Vi (Zv |‘T]) (,yt(z7 |wj) _Qn) 5(872) zas
Tj4+k\Mnjkr §=0,1 —00

< C5M3ey, (A7)

using (A5), condition (A7) (iv) and where C5 = maxssup, , | fx|za(z|z,6)[. Using (A6)
(iii),

cn logn

Qufn = MyfO=2/O=D — pp( YO=220-D < Mo, (A.8)

n
We thus have by (A.7) and (A.8),

"
Vijkenr 2 Co 108;”,
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with

Cp? 6 3L¢"
Cl = 0 > max , 6 .
O 2M,\(C5 M, + 1C) (305 +27 My (6M,Cs +2L§/6))
Therefore,
L%
Z P(gntﬂw > C(/)fn) < 6Z(Nnj + 2)(2wn + 1)717007 (A,Q)
jotokr j=1

where C{ has to be chosen large enough so that the right hand side of (A.9) tends to zero
sufficiently fast. Thus, the highest order term on the right hand side of (A.9) is

LXM)\QnCn

96( ), (A.10)
where
In fn
and
Qncn n A
=M n 2(2—1)
fn A (cn logn)
Using (A6) (iii), (A.10) is bounded by
n 3A—2 " n 1"
L 261 —C < I (—— 2 —C
)‘(cn logn) Cult 0 S A(logn) n

where L) = 96 M3 Lx. Therefore, choosing C§ > 4 allows to write

P(sup sup | My, ()] > CoAY?) = O(n72). (A.11)

rERx tel

By (A.1) and (A.11), we finally obtain
P(sup sup | My, () + Mo, (2)| > CoAY2 + C1c%) = O(n72). (A.12)
r€ERx tel

Proof of Proposition 3.2. Write

)
sup sup |de, (z) — di(2)] <> |qz‘\(57%) + 57(3)%
i=1

z€Rx tel
where
1) _ 5 (i) (1)
Sm' = Qme’bm’ Sup sup ‘Mlt;i (.T) + M2t;i (Z‘)‘, (Al?’)
j=1 zERx tel
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M () + Myii? (2) = sup sup|
zeRx tel <4NCpj p—

- > / Yei (2, 0|x)hs(x, 2)dz|,

6=0,1

Cnj = apby,; and

Jn S
S = sup sup 23 mugbuy = 1) 3 [ ulz 0l)ha(e, 2)dz

z€Rx tel j=1 §=0,1 —0o0

Jn
S C'5M)\|(22mnjbnj — 1)|

j=1
Next, define

Jn
= 20,A;1/? me b2 4 201a2 Zmnjbij
=

J=1
Then,

Jn
P(SY) > 20) < 32 P(sup sup | MG (@) + M (2)] > Cor, >+ Cred),

j=1 rERx tel

with A,; = A,by,; and ¢,; = a,b,;. By using (A.12), we thus obtain
P(Sfl? > g,) < O(j,n?).
For s < 1 and using the Borel-Cantelli Lemma, we obtain
S = 0(e,) a.s.,

for which &, = O(max(A; Y2, a2)).

Proof of Theorem 3.3. Let b,; = ja/? and m,,; = K(ja¥?) — K((j + 1)a’/?) in

(A9) (i) becomes
jn
23 Mgy = VI < [ [Kalw) = K(w)ldu < Call?,
=1
for some C' > 0. (A9) (ii) and (A9) (iii) become

supaw4§:y”ﬂhﬂ<wﬂ<<aa
7j=1

19
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and

SUPGGZJ | K (0,)] < o0,
7j=1

where 6,,; is between ja/2? and (j + 1)a’/2. Therefore, we can choose 0 < s < 1 such that
= O(a;%?). Next, if we denote dy,(z, K), du () using kernel K, it is clear that

sup sup |dy,(z, K) — dip(z, Ky,
r€Rx tel
3/2 n
< sup sup( ST Z, Ail2)|I(x — an < X; < 2 +a,)) = O(ad?) a.s.,

reRx tel nap i=1

for some constant D > 0, a kernel support equal to [—1, 1] and where Proposition 3.1 is
used with ¢, = a,, (with ¢, = (L/2)a, if L is the length of the support).

Finally, write

i K(2T(Zs Ailr)— dy(w) dn(7) — di(x)

sup sup | | < sup sup|

veRy tel " K(’”;—fl)  fx(@)' T seny rer fox ()
di()(fx (z) = fux(z))
e e W )

If we use the fact that inf,er, |fx(x)| > 0 in addition to the obtained result for dy,(x, K),
the two terms on the right hand side of the above expression are O(A;/?) a.s. since

SUD,c gy SUPses |di(2)] is bounded (using the definition (A8) of the points I'(-,|-)).

Proof of Proposition 4.1. Let

n

MQn(Cn) = Ssup sup | Z(’Yt(Zz', Az‘x>

TERX |[t—s|<dn, s,tel QTLCnZ 1

—s(Ziy Nj|x)) [ (x — ¢ < X S+ ¢5)

/W / (Ve(2, 0]x) — 7s(2, 0|z))hs(s, 2)dzds]

20n

T 5=0,1
x+cn
+ sup sup / / (Ve(z,0)|x) — vs(2, 8|2))hs(s, 2)dzds
TERX |t—s|<dn, s,itel QCn T—Cn 50,1
= 5 [ Culzdla) — 7l 010 o, 2)dz|

6=0,1

= sup sup | Miostn ()| + sup sup | Mi1tn ()]

TERX |t—s|<dp, s,tel TERX |t—s|<dn, s,tel

First, Mi1s () is treated as My, (x) in Proposition 3.1 such that

sup | Mi1sen ()| < C’mldnci, (A.14)

{z€Rx ,|t—s|<dn, st}
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using (A11).

Divide Ry into [f o X>| intervals of length smaller or equal to fnd'/?. Denote Jx the set of
points {z), = x¢ + k[ 2L1X/2] Ly, 1<k< [fQLf‘/Q] —1=L%} and Tpan g =sup{z:z €
Rx} which limit the mtervals. Miosin () is treated like (A.2) in Proposition 3.1, where
%(-,+|) is replaced by % (-, ) — s, |), Va(zy) by Vil(z;) = (1/n) 330y Lo(Zi, Ailay) —
E[Lo(Z, Alz;)] and V,, by V¥ = max,, ey (2E[Lo(Z, Alz;)]+ |V (2;5)]). Using Chebyshev’s
inequality, P(V.? > C,.2) = o(n™?) with C,,s chosen larger than 4L6 A development
similar to (A.3) and (A.6) is used to obtain

sup sup ‘Mlostn (l’) | (A 15)
TERX |t—s|<dn, s,tel
< dA—1/2 71/2
<2c! xrjnee?)c( " slglimxs . ke?l?}é N \S\glc)n Migsin (75, i1k, 2) + Vi A, 2d,/7,
where
M12stn(xj7 xZ, Z) = ’Gstn(xja T+ Z) - Gstn(xja 33') - [Gst(xja T+ Z) - Gst(xja .%')H,
Gsm(xjax) =n"! Z(%(Zia Az’|37j) —vs(Zs, Ai\xj))f(xi < x),
i=1
and
Go(zj, ) = ElGsn(xj, @ / / (7e(2,0|z5) — vs(2, 6|x;))hs(s, 2)dzds.

0 6=0,1

Partition I into O(f;*d;3/?) intervals such that for each z;, 7 =0, ..., L% +2, g(t*|z;) —
g(ti|x;) is divided into m; = [W] intervals of length Ci,3(2;)Crd,, 1 < Cps(x;)
< 2 (g(tale5) — g(tl2y)] = Cons(27)Crln, I9(tasslts) — gtalis)] = Cons(5)Crdn, @ =
L...,mj —2, [g(t"|z;) — g(tm;—1|7;)| = Cinz(2;)CLdy, to = t, tm, = t* for all j). Let
Lo = [g(ta=1l7;),9(tat1]z;)], @ = 1,...,m; — 1. For each s,t € I with |t — 5| < d,,
there exists an interval [, such that g(s|z;), g(t|z;) € I,,. Partition each I;, by a grid
Gtaglz;) = gltalz;) + pC2@C0le g — _p p. where p, = [AY2dY/? 4 1]. Using
(A7) (iv), (A4), (A5) and the monotonicity of v,(Z, Alz), (A.15) is majorized by

2¢ 1 max — max max max  sup Mg 4 Ti Lk, 2 A.16
Sma mas | mex | ma o M@ i) (A16)

1 A , dA—1/2 11/2
+ae, max | max | omax | Csenlg(tagarn|rs) = 9(taplrs)| + VIR

where Cj is defined as in (A.7) and the second term of the above expression equals
40 Gl < ¢ NSV2d12 where Cug = 8C5Cy. Now, put T, = My(f,'d, /%)%
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Define M) for 2 < A < 0o as in the proof of Proposition 3.1, Hg,(x;, z) by

n

=Y (3 Zs, Ailag) = s (Zis Nl T (17 (Zi, Ailg) = 76(Ziy Ailay)| < To) (X < ),

i=1
and Mzen, (), z, z) by substitution of Hg,, for G, and E[Hg,] for Gg. (A.16) is then
majorized by

2¢ ' max max max max  sup Mz ¢ Ti itk 2
+k
n zj€Jx ke{—1,0,1} 1<a<m;—1 —pn<B,(<pn |z|<cn ac aﬂn( Iy )

+2¢, fod 2 (WS 4 607) + (V4 Crg) ATY24Y2, (A.17)

where W4 and ¢ are defined similarly to W,, and 6, in the proof of Proposition 3.1. It
is easy to check that P(2W¢2 > C,.5) = o(n™2) and 20¢ < C,6, where C,5 and C,,¢ are
chosen such that C,,5 > 2 2M, and C,,q = 21 M,.

Next, consider

re,
Kngkr = Tj+k + p—7 fOT = —Pn, —Pn + 17 <y Pn-

Define My, 1, 5jkr DY
| Hyoetosn (%55 Kngrr) — Heoctosn (05, Tjr) = [E[Hycton(T5, Bnjrr)] — E[Hy 1o (25, Tj408)]] |-

For fixed Js k? «, ﬁa C7 n, Htactagn(l‘ja :L‘j+/€+z) _Htagtagn(l‘ja xj-i-k) and E[Htactagn(l‘ja :L‘j+k+
2)|=E[H;, 1,5n(25, Tj11)] are monotone with respect to z and have finite limits in x4 +c,
and x4, — ¢,. Therefore,

sup Mg, togn(Tjs Tjin, 2)

|z|<cn

S max Mntagtaﬁjkr

—pn<r<pn
(r+1)c, TCp
+_ max  |E[Hectaon (5, Tk + 771)] — E[Ht, toon @), Tjgr + —n)]\,

where the second term on the right hand side of the above expression is bounded by

40 Csen ATV

n

Therefore, (A.17) is majorized by

-1
2c, " max max max max My 4ok
" zj€dx ke{-1,0,1} 1<a<mj—1 —pp<B.Lr<pn oo

+2WE + VA + Crug + Crng + Coar) A, V22, (A.18)

n
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where C,,,; = 8C.Cs.
Next,

P( sup sup | Miosin (2)] > Crao A 12dY?) (A.19)

TERx |t—s|<dn, s,tel

< Z P(Mat, ctogihr > C;nofndiﬂ) +P(W > Cro) + PV > 2C0),
Jsk,a,8,¢,r

where C! ;= (1/6)(Cyno — 16C5CL, — 221 M) and Cirg, Crna and C,5 have to satisfy
max (2 My, 2L5%) < €'y = Cha/2 = Cons /2.

By Bernstein’s inequality,

P(Motoctopinr > Crofadi/?) < 2eXp(=ntoctopitr);

where
(b CELO”?JCT%dn
ntagtaﬁjkr = 2 1/2 ’
Qnagltactaﬁjlﬂ’ + §nc;n0fn n Tn
2 —
O-’I’Lta(taﬁjkr - Var[Qnta(taﬂjkr] and
Qntagtaﬂjkr = (’Ytaﬂ(Za A|xj) - ’ytaC (Z7 A‘l']))

XA (V15 (25 Alg) = V1o (2, Alg) | < To)(H(X < Rongrr) = 1X < 51)).

Using (A11) (ii), o2

ntactaﬁjlﬂ’

< O1,Cscpd,, and (A10) (iii), T,A; Y2 < d/2. Therefore,

1
¢ntagtaﬁjk‘7‘ Z Cm() 1Og n,

with
O// — C;r27,0
mo T 9(C, O + é(]{nO)
Finally,
Lgl(n 1 mj—1
Z P(Mntactaﬁjlﬁ“ > Cr/nofndrlzﬂ) <2 Z Z Z Z n_CmO’
j7k7a7ﬁ7<>r ]:1 k=—1 a=1 7pn§ﬁ7<7rgpn

for which the highest order term on the right hand side is

LxM " LM 712 "
X )‘A2c_1n_om0§96 XA n~Cmo.

96
c, "7 Cr  (logn)?
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Choosing C7, sufficiently large finishes the proof.

Proof of Theorem 4.3. Let b,; = ja’/?d;'? and m,; = K(ja2/?d;/?) — K((j +
1)a3/2d;1/?) in (A12). (A12) (i) becomes

jn
(@ musbos = VI < [ 1Kalw) = K(w)ldu < Ca?d, 2,
j=1

for some C' > 0. (A12) (ii) and (A12) (iii) are easily satisfied using j, = O(a;%/%d}/?)
such that s can then be chosen between 0 and 1. Next, let denote dg,(z, K), dg, () using
kernel K. It is clear that

sup sup |dsn (2, K) — dgn(x, K,)|

TER |t—s|<dn, s,tel
Da¥2d- 1?2 &

< sup sup  ( S T Zs, Ail2)| I (2 — an < Xi < + ay))
ze€RX |t—s|<dn, s,tel nay, i=1

= 0(a?*dY?) a.s.,

for which we use Proposition 4.1 with ¢, = a, (for a kernel support equal to [—1,1]).
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