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Abstract

We consider the problem of estimating the shape of an elliptical distribution from a para-
metric (completely specified radial density) and a semiparametric point of view. For every
radial density, we provide a closed form expression of the corresponding parametric and semi-
parametric efficiency bounds. For each case (specified and unspecified density), we exhibit
an estimator of shape that achieves the corresponding efficiency bound in the multinormal
case. We show that the efficiency loss due to the non-specification of the radial density is
entirely caused by the non-specification of its scale. This loss however remains bounded, and
reaches a maximum at arbitrarily heavy tails; we also show that under arbitrarily light tails,
parametric and semiparametric efficiency bounds coincide, so that, under such densities, ig-
noring the scale (ignoring the exact density) asymptotically does not harm the estimation of
shape.

AMS 1980 subject classification : 62M15, 62G35.
Key words and phrases : Elliptical densities, Shape matrices, Local asymptotic normality,

Semiparametric efficiency.

1 Introduction.

Denote by Pn
θθθ,V,f the distribution of the n-tuple of k-variate observations X(n) = (X1, . . . ,Xn),

where the Xi’s are i.i.d. with common elliptical density

x 7→ ck,f

(

detV
)−1/2

f
(
√

(x − θθθ)′ V−1(x− θθθ)
)

. (1.1)

The center of symmetry θθθ is a k-dimensional real vector, the shape matrix V belongs to the
collection V of all symmetric positive definite real k × k matrices with entry 1 in the upper-left
corner, and the radial density f : R

+
0 −→ R

+
0 satisfies µk−1,f :=

∫ ∞
0 rk−1f(r) dr < ∞; ck,f is a

normalization factor. The class of all such radial densities will be denoted as F .
The shape matrix V, which coincides with the usual scatter matrix up to a positive scale

factor, is a parameter of interest in a number of very standard problems in multivariate analysis:
principal component analysis (PCA), canonical correlation analysis (CCA), and the problem of
testing for sphericity, among others, only depend on shape—rather than on the scatter matrix.
Inference on shape is thus an essential tool in the domain. However we mainly concentrate on

∗Research supported by by a P.A.I. contract of the Belgian Federal Government and an Action de Recherche
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the two generic problems of (i) estimating V, and of (ii) testing that V coincides with some
given V0 ∈ V.

These problems can be considered in parametric models of the form Pn
f := {Pn

θθθ,V,f , θθθ ∈

R
k,V ∈ V}, where the radial density f is completely specified. Such full specification of f

however is too much of an assumption, and the classical approach consists in specifying f up to
a scale parameter only. This leads to rewriting (1.1) as

x 7→ ck,f1

1

σk|V|1/2
f1

(

1

σ

(

(x− θθθ)′V−1(x − θθθ)
)1/2

)

, x ∈ R
k, (1.2)

and Pn
θθθ,V,f as Pn

θθθ,σ,V,f1
, where σ > 0 is a scale parameter and f1 : R

+
0 −→ R

+
0 a standardized

radial density. To ensure identifiability of σ and ck,f1 × f1 without imposing any moment
conditions, we require that

Med
[

‖V−1/2(X
(n)
i − θθθ)‖

]

= σ, (1.3)

where Med[Y ] denotes the median of Y under Pn
θθθ,σ,V,f1

. The resulting model, still of a parametric

nature, is of the form Pn
f1

:= {Pn
θθθ,σ,V,f1

, θθθ ∈ R
k, σ2 > 0,V ∈ V}.

Special cases of (1.2) are the k-variate multinormal distribution, with radial density f1(r) =
φ1(r) := exp(−akr

2/2), the k-variate Student distributions, with radial densities (for ν degrees
of freedom) f1(r) = f t

1,ν(r) := (1 + ak,νr
2/ν)−(k+ν)/2, and the k-variate power-exponential

distributions, with radial densities of the form f1(r) = f e
1,η(r) := exp(−bk,ηr

2η), η > 0; the
constants ak, ak,ν > 0, and bk,η are such that (1.3) is satisfied.

Specifying the density up to a scale parameter still may be unrealistic, and one may prefer
considering the same problems of inference on V in the semiparametric model Pn := {Pn

θθθ,V,f , θθθ ∈
R

k,V ∈ V, f ∈ F} =
⋃

f∈F Pn
f .

Optimal inference on V at some given Pn
θθθ,V,f , as well as the corresponding optimal perfor-

mance (efficiency), depends on the model adopted. Clearly, the optimal performance achievable
in Pn

f , where f is completely specified, is highest (parametric efficiency), followed by the perfor-
mance in Pn

f1
, where f is only partially specified, and the performance in Pn (semiparametric

efficiency) where f is completely unspecified. It can be shown however that, under mild regu-
larity assumptions (ensuring LAN) on f and the family F ,

(i) the location parameter θθθ has no influence on any of these efficiencies, which are the same

whether θθθ is known or not; in practice, any root-n consistent estimator θ̂θθ
(n)

thus can be
substituted for θθθ, whereas in theoretical developments, we safely can assume that θθθ = 0;

(ii) parametric and semiparametric efficiencies at Pn
θθθ,V,f do not depend on the actual values

of θθθ and σ: it makes sense, thus, to speak about f1-(semi)parametric efficiencies;

(iii) at standardized radial density f1, radial optimal performances in Pn
f1

and Pn coincide;
the difference between parametric and semiparametric efficiencies at given Pn

θθθ,V,f thus is
entirely due to the non-specification of scale.

Natural questions in this context are: how do these f1-parametric and f1-semiparametric
efficiencies compare to each other, that is, how large is, under given f1, the cost of not knowing
the scale (not knowing f) when performing inference on shape? Are there density types f1 for
which this cost would be minimal? Maximal? Zero? Arbitrarily large?

In the hypothesis testing context, efficiencies are measured in terms of local powers, which
depend on quadratics in the difference between the parametric and semiparametric informa-
tion matrices for V. These information matrices, and the answers to the above questions, are
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explicitly provided in Hallin and Paindaveine (2005a). The corresponding problem for point
estimation is much harder, as comparisons here involve asymptotic covariance matrices which
are the inverses of information matrices; those information matrices are rather complex, and
obtaining their inverse under closed form is far from trivial.

The paper is organized as follows. In Section 2, we introduce some further notation and
state the ULAN result which provides the various efficiency bounds. In Section 3, we determine
the asymptotic covariance matrix of the f1-parametric estimators of shape. Section 4 states
the corresponding result for the f1-semiparametric estimators. We state the main results of
the paper in Section 5, in which we compare both types of performance at f1 and discuss our
findings in terms of the dimension k and the tail weight of the underlying elliptical distribution.
Technical results are proved in the appendix.

2 A ULAN result.

Writing vech M := (M11, (ve
◦
ch M)′)′ for the k(k +1)/2-dimensional vector obtained by stacking

the upper-triangular elements of a k×k symmetric matrix M = (Mij), we also write Pn
ϑϑϑ,f1

for the

distribution Pn
θθθ,σ,V,f1

of X(n) under given values of ϑϑϑ := (θθθ′, σ2, (ve
◦
chV)′)′ and f1. Below, we state

the uniform local asymptotic normality (ULAN) result, with respect to ϑϑϑ = (θθθ′, σ2, (ve
◦
chV)′)′,

of the families of distributions Pn
f1

:= {Pn
ϑϑϑ,f1

,ϑϑϑ ∈ ΘΘΘ}, where ΘΘΘ = R
k × R

+
0 × ve

◦
chV. Of course,

ULAN requires some regularity condition on the radial density f1. A minimal assumption
is given in Hallin and Paindaveine (2005a); for the sake of simplicity, we rather provide the
following sufficient one:

Assumption (A). The radial density f1 is absolutely continuous, with a.e.-derivative ḟ1, and,
letting ϕf1 := −ḟ1/f1, the expectations (under Pn

0,1,Ik,f1
, where Ik denotes the k-dimensional

identity matrix)

Ik(f1) := E
[

ϕ2
f1

(‖Xi‖)
]

and Jk(f1) := E
[

‖Xi‖
2ϕ2

f1
(‖Xi‖)

]

are finite.

Rather than introducing a new specific notation, we henceforth tacitly assume that F is the
class of all radial densities satisfying Assumption (A).

This assumption is extremely mild, and does not imply any moment conditions; Ik(f1) and
Jk(f1) can be interpreted as radial Fisher information for location and radial Fisher information
for shape/scale, respectively. It can be checked that—provided that k ≥ 2 (which is not a
limitation, since the problem under consideration is void for k = 1)—Assumption (A) is satisfied
at Gaussian densities, at all Student densities (including the Cauchy ones), as well as at all power-
exponential densities. Using the notation of the previous section, the corresponding radial Fisher
information values are given, for the Gaussian, the Student with ν degrees of freedom, and the
power-exponential with parameter η, by

Ik(φ1) = ak k, Ik(f
t
1,ν) = ak,ν

k(k + ν)

k + ν + 2
, Ik(f

e
1,η) = 4η2bk,η

Γ ((4η + k − 2)/(2η))

Γ (k/(2η))
,

and

Jk(φ1) = k(k + 2), Jk(f
t
1,ν) =

k(k + 2)(k + ν)

k + ν + 2
, Jk(f

e
1,η) = k(k + 2η),
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respectively, where Γ stands for Euler’s Gamma function. Note that the lower bound k2 of the
radial information for shape/scale Jk(f1) (see Hallin and Paindaveine 2005a) is achieved for
arbitrarily heavy tails, that is, as ν → 0 and η → 0 in the classes of k-variate Student and
power-exponential distributions, respectively.

The following notation is needed in the statement of ULAN and will be used throughout
the paper. Write V⊗2 for the Kronecker product V ⊗ V. Denoting by eℓ the ℓth vector of
the canonical basis of R

k, let Kk :=
∑k

i,j=1(eie
′
j) ⊗ (eje

′
i) be the k2 × k2 commutation matrix,

and put Jk :=
∑k

i,j=1(eie
′
j) ⊗ (eie

′
j) = (vec Ik)(vec Ik)

′ (as usual, vec (A) stands for the vector
resulting from stacking the columns of A on top of each other). Also let Nk be such that
Nk(vec v) = ve

◦
ch(v) for any k × k matrix v and Mk be such that M′

k(ve
◦
chv) = vec (v) for any

symmetric k × k matrix v = (vij) such that v11 = 0. Finally, although any square root V1/2

of V (satisfying V1/2V1/2′ = V) can be used in the results below (provided, of course, it is used
in a consistent way), we will use the symmetric root in order to save superfluous primes.

We then have the following ULAN result (See Hallin and Paindaveine 2005a for the explicit

form of the central sequence ∆∆∆
(n)

ϑϑϑ(n);f1
and a proof).

Proposition 2.1 Under Assumption (A), the family Pn
f1

is ULAN, that is, for any ϑϑϑ(n) =

(θθθ(n)′, (σ(n))2, (ve
◦
chV(n))′)′ = ϑϑϑ + O(n−1/2) and any bounded sequence τττ (n) := (τττ

(n)′
1 , τ

(n)
2 , τττ

(n)′
3 )′

:= (t(n)′, s(n), (ve
◦
chv(n))′)′ ∈ R

k+k(k+1)/2, we have, under Pn
ϑϑϑ(n);f1

,

log
(

dPn
ϑϑϑ(n)+n−1/2τττ (n);f1

/dPn
ϑϑϑ(n);f1

)

= (τττ (n))′∆∆∆
(n)

ϑϑϑ(n);f1
−

1

2
(τττ (n))′ΓΓΓϑϑϑ;f1

τττ (n) + oP(1),

for some sequence of random vectors ∆∆∆
(n)

ϑϑϑ(n);f1
that are, still under Pn

ϑϑϑ(n);f1
, asymptotically normal

with mean zero and covariance matrix

ΓΓΓϑϑϑ;f1
:=







ΓΓΓϑϑϑ;f1;11 0 0

0 Γϑϑϑ;f1;22 ΓΓΓ′
ϑϑϑ;f1;32

0 ΓΓΓϑϑϑ;f1;32 ΓΓΓϑϑϑ;f1;33






, (2.1)

with

ΓΓΓϑϑϑ;f1;11 :=
Ik(f1)

kσ2
V−1, Γϑϑϑ;f1;22 :=

Jk(f1) − k2

4σ4
, ΓΓΓϑϑϑ;f1;32 :=

Jk(f1) − k2

4kσ2
Mk vec (V−1),

and

ΓΓΓϑϑϑ;f1;33 :=
1

4
Mk

(

V⊗2
)−1/2

[

Jk(f1)

k(k + 2)
(Ik2 + Kk + Jk) − Jk

]

(

V⊗2
)−1/2

M′
k. (2.2)

The block-diagonal structure of the information matrix (2.1) implies that the non-specification
of the location centre θθθ does not affect the optimal parametric performance when estimat-
ing V; more precisely, the optimal asymptotic covariance matrix that can be achieved (at
Pn

θθθ,σ,V,f1
) by an estimator V(n) of V is the same in Pn

f = {Pn
θθθ,σ,V,f1

, θθθ ∈ R
k,V ∈ V} as

in Pn
θθθ,f := {Pn

θθθ,σ,V,f1
,V ∈ V}, where θθθ is specified. Since moreover ΓΓΓϑϑϑ;f1

itself does not de-
pend on θθθ, this optimal performance does not depend on θθθ.
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3 Parametric efficiency bounds.

The ULAN result of Proposition 2.1 is about the “unspecified scale” model Pn
f1

, but automat-
ically entails ULAN for the “specified scale” models Pn

f , the information matrices of which are

obtained by deleting the σ2 rows and columns in (2.1).
Parametric efficiency at Pn

ϑϑϑ,f1
, thus is characterized by the parametric information matrix for

shape ΓΓΓf1(V) := ΓΓΓϑϑϑ;f1;33 in (2.2), which does not depend on σ nor on θθθ (whence the notation). An
estimator V(n) of V thus is f1-parametrically efficient (here again, the terminology is justified by
the fact that the information matrix does not depend on the value of the scale parameter σ) iff,

for all admissible ϑϑϑ = (θθθ′, σ2, (ve
◦
chV)′)′, n1/2ve

◦
ch (V(n)−V)

L
−→ N (0, (ΓΓΓf1(V))−1), under Pn

ϑϑϑ,f1
,

as n → ∞, or, in terms of vec V, iff

n1/2vec
(

V(n) −V
)

L
−→ N

(

0,M′
k

(

ΓΓΓf1(V)
)−1

Mk

)

, (3.1)

under Pn
ϑϑϑ,f1

, as n → ∞. One of the main objectives of this paper is to provide an explicit
(Mk-free) expression for the asymptotic covariance in (3.1), allowing for a comparison with
the corresponding semiparametric asymptotic covariance matrix achievable in the more realistic
unspecified scale setup, that is, in Pn

f1
:= {Pn

θθθ,σ,V,f1
, θθθ ∈ R

k, σ2 > 0,V ∈ V}. This performance
coincides with the f1-semiparametric one, achievable in Pn, which was determined by Hallin,
Oja and Paindaveine (2005): see Section 4 below.

Denoting by ek2,1 the first vector of the canonical basis of R
k2

, let

Q
(r,s)
k (V) := r

{

[

Ik2 + Kk

]

(V⊗2)

}

+ (s − 2r)

{

(V⊗2) ek2,1e
′
k2,1(V

⊗2)

}

(3.2)

+ s

{

(vecV) (vecV)′ − (vecV) e′k2,1(V
⊗2) − (V⊗2)(ek2,1) (vecV)′

}

.

The following lemma provides the key result in the derivation of an explicit expression of in (3.1)
above (see the appendix for the proof).

Lemma 3.1 Let V = (Vij) ∈ V. Then,
(i) for all a 6= 0 and 2a + (k − 1)b 6= 0,

{

1

4
Mk

(

V⊗2
)−1/2 [

a(Ik2 + Kk) + bJk

] (

V⊗2
)−1/2

M′
k

}−1

= NkQ
(A,B)
k (V)N′

k, (3.3)

with A = a−1 and B := −2a−1b/(2a + (k − 1)b);

(ii) for all r, s ∈ R, M′
kNkQ

(r,s)
k (V) = Q

(r,s)
k (V) = Q

(r,s)
k (V)N′

kMk, so that

(iii) M′
k

{

1

4
Mk

(

V⊗2
)−1/2 [

a(Ik2 + Kk) + bJk

] (

V⊗2
)−1/2

M′
k

}−1

Mk = Q
(A,B)
k (V).

Using this lemma in (3.1), we directly obtain the following proposition.

Proposition 3.1 The asymptotic (under Pn
ϑϑϑ,f1

, as n → ∞) covariance matrix of f1-parametrically

efficient estimators of V is, for all admissible values ϑϑϑ = (θθθ′, σ2, (ve
◦
chV)′)′,

M′
k

(

ΓΓΓf1(V)
)−1

Mk =
k(k + 2)

Jk(f1)
Q

(1,2Mk(f1))
k (V), (3.4)
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where

Mk(f1) :=
k(k + 2) − Jk(f1)

(k + 1)(Jk(f1) − k2) + 2k
. (3.5)

Note that, since Jk(f1) ≥ k2, the quantity Mk(f1) in (3.5) satisfies

−1/(k + 1) ≤ Mk(f1) ≤ 1. (3.6)

These lower and upper bounds for Mk(f1) are achieved in the limiting cases η → ∞ and η → 0,
respectively, within the class of k-variate power-exponential densities f e

1,η.

As an illustration, we now provide an estimator V
(n)
N that is φ1-parametrically efficient, that

is, parametrically efficient in the multinormal case. Under Pn
ϑϑϑ,φ1

, the regular sample covariance

matrix ΣΣΣ(n) := (n − 1)−1 ∑n
i=1(Xi − X̄)(Xi − X̄)′ (with X̄ := n−1 ∑n

i=1 Xi) is consistent for
ΣΣΣk := a−1

k σ2V (where ak was defined in page 2). Actually, it is easy to show that

n1/2vec
(

ΣΣΣ(n) −ΣΣΣk

) L
−→ N

(

0, [Ik2 + Kk] (ΣΣΣ
⊗2
k )

)

,

under Pn
ϑϑϑ,φ1

, as n → ∞. If the scale parameter σ is known, one can define the estimator of shape

V
(n)
N :=

akΣΣΣ
(n)

σ2
−

1

(Σ
(n)
11 )2

(

akΣ
(n)
11

σ2
− 1

)

(

ΣΣΣ(n)e1

)(

ΣΣΣ(n)e1

)′
(3.7)

(eℓ stands for the ℓth vector of the canonical basis of R
k). Applying Slutzky’s Lemma, we obtain,

under
⋃

θθθ

{

Pn
θθθ,σ,V,φ1

}

,

n1/2vec
(

V
(n)
N − V

)

=
ak

σ2

[

Ik2 − (V⊗2) ek2,1e
′
k2,1

][

n1/2vec
(

ΣΣΣ(n) −ΣΣΣk

)]

+ oP(1)
L

−→ N (0,A) ,

as n → ∞. The asymptotic covariance matrix A, after some standard algebra, reduces to

[

Ik2 − (V⊗2) ek2,1e
′
k2,1

] [

Ik2 + Kk

]

(V⊗2)
[

Ik2 − (V⊗2) ek2,1e
′
k2,1

]′
= Q

(1,0)
k (V),

which is the value of the asymptotic covariance matrix in (3.4) at f1 = φ1. Consequently, the

estimator V
(n)
N in (3.7) is parametrically efficient in the multinormal case.

4 Semiparametric efficiency bounds.

In the more realistic setup where θθθ, σ2, and f1 remain unspecified and play the role of a nuisance,
estimators are optimal if they reach semiparametric efficiency bounds, either at some prespecified
radial density f1, or at any density in F . The corresponding semiparametric efficiency bound,
at f1, is the inverse of the efficient Fisher information for shape

ΓΓΓ∗
f1

(V) = ΓΓΓϑϑϑ;f1;33 −ΓΓΓϑϑϑ;f1;32Γ
−1
ϑϑϑ;f1;22

ΓΓΓ′
ϑϑϑ;f1;32

=
Jk(f1)

4k(k + 2)
Mk

(

V⊗2
)−1/2

[

Ik2 + Kk −
2

k
Jk

]

(

V⊗2
)−1/2

M′
k; (4.1)
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see Hallin and Paindaveine (2005a). More precisely, an estimator V
(n)
∗ of V is f1-semiparametrically

efficient iff, for all admissible ϑϑϑ = (θθθ′, σ2, (ve
◦
chV)′)′, n1/2ve

◦
ch (V

(n)
∗ −V)

L
−→ N (0, (ΓΓΓ∗

f1
(V))−1),

under Pn
ϑϑϑ,f1

, as n → ∞, or, in terms of vecV, iff

n1/2vec
(

V
(n)
∗ −V

)

L
−→ N

(

0,M′
k

(

ΓΓΓ∗
f1

(V)
)−1

Mk

)

, (4.2)

under Pn
ϑϑϑ,f1

, as n → ∞. Using Lemma 3.1 again, we obtain

Proposition 4.1 The asymptotic (under Pn
ϑϑϑ,f1

, as n → ∞) covariance matrix of f1-semi-

parametrically efficient estimators of V is, for all admissible values ϑϑϑ = (θθθ′, σ2, (ve
◦
chV)′)′,

M′
k

(

ΓΓΓ∗
f1

(V)
)−1

Mk =
k(k + 2)

Jk(f1)
Q

(1,2)
k (V), (4.3)

with Q
(r,s)
k is defined in (3.2).

We conclude this section by defining an estimator V
(n)
N∗ that is semiparametrically efficient

in the multinormal case (at f1 = φ1). Let

V
(n)
N∗ :=

ΣΣΣ(n)

Σ
(n)
11

, (4.4)

where ΣΣΣ(n) denotes the sample covariance matrix. Slutzky’s Lemma yields

n1/2vec
(

V
(n)
N∗− V

)

=
ak

σ2

[

Ik2 − (vecV) (ek2,1)
′
][

n1/2vec
(

ΣΣΣ(n) −ΣΣΣk

)]

+ oP(1)
L

−→ N (0,B) ,

under
⋃

θθθ

{

Pn
θθθ,σ,V,φ1

}

, as n → ∞, where the matrix B, after standard algebra, reduces to
[

Ik2 − (V⊗2) ek2,1e
′
k2,1

] [

Ik2 + Kk

]

(V⊗2)
[

Ik2 − (V⊗2) ek2,1e
′
k2,1

]′
= Q

(1,2)
k (V),

which is the value, at f1 = φ1, of the asymptotic covariance matrix in (4.3). The semiparametric

efficiency of V
(n)
N∗ in the multinormal case follows.

5 The cost of unspecified scale/radial density.

We now are able to compare the asymptotic performances of f1-parametrically and f1-semi-
parametrically efficient estimators for shape, and to quantify the corresponding efficiency losses.
The main result of this paper is stated in the next proposition; see the appendix for the proof.
For the sake of simplicity, we restrict to the case where the shape matrix V is diagonal, and, in
order to improve readability, write AVar[S(n)] and ACov[S(n), T (n)] for the asymptotic variance
of Sn and asymptotic covariance of Sn and T n, respectively.

Proposition 5.1 Assume that V = (Vij) ∈ V is diagonal. Then, under
⋃

θθθ

⋃

σ

{

Pn
θθθ,σ,V,f1

}

, for

a f1-parametrically efficient estimator V(n) = (V
(n)
ij ) of V, we have

AVar[n1/2(V
(n)
ii − Vij)] =

2k(k + 2)

Jk(f1)

(

Mk(f1) + 1
)

V 2
ii , i = 2, . . . , k, (5.1)

AVar[n1/2(V
(n)
ij − Vij)] =

k(k + 2)

Jk(f1)
ViiVjj, i, j = 1, . . . , k, i 6= j, and (5.2)

ACov[n1/2(V
(n)
ii − Vii), n

1/2(V
(n)
jj − Vjj)] =

2k(k + 2)

Jk(f1)
Mk(f1)ViiVjj, i, j = 2, . . . , k, i 6= j,(5.3)
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whereas, for a f1-semiparametrically efficient estimator V
(n)
∗ = (V

(n)
∗,ij ) of V,

AVar[n1/2(V
(n)
∗,ii− Vij)] =

4k(k + 2)

Jk(f1)
V 2

ii , i = 2, . . . , k,

AVar[n1/2(V
(n)
∗,ij− Vij)] =

k(k + 2)

Jk(f1)
ViiVjj, i, j = 1, . . . , k, i 6= j, and

ACov[n1/2(V
(n)
∗,ii− Vii), n

1/2(V
(n)
∗,jj− Vjj)] =

2k(k + 2)

Jk(f1)
ViiVjj, i, j = 2, . . . , k, i 6= j.

In both cases, all other entries of asymptotic covariance matrices are zero.

Note that, both for W(n) = V(n) and W(n) = V
(n)
∗ ,

ACov[n1/2(W
(n)
ii − Vii), n

1/2(W
(n)
jj − Vjj)]

=
(

AVar[n1/2(W
(n)
ii − Vii)]

)1/2 (

AVar[n1/2(W
(n)
jj − Vjj)]

)1/2
− 2AVar[n1/2(W

(n)
ij − Vij)],

so that the asymptotic covariance matrices under consideration are completely determined by the

quantities AVar[n1/2(W
(n)
ii −Vii)] (i = 2, . . . , k) and AVar[n1/2(W

(n)
ij −Vij)] (i, j = 1, . . . , k, i 6= j);

see Ollila, Croux, and Oja (2004) and Ollila, Oja, and Croux (2003) for a similar phenomenon.
The difference between the performances of f1-parametrically efficient and f1-semiparametrically
efficient estimators of shape can therefore be fully characterized by the asymptotic relative

efficiencies associated with the components W
(n)
ii (i = 2, . . . , k) and W

(n)
ij (i, j = 1, . . . , k, i 6= j)

of such estimators. Now, it directly follows from Proposition 5.1 that

AREk,f1

[

V
(n)
∗,ii /V

(n)
ii

]

=
Mk(f1) + 1

2
, i = 2, . . . , k, and (5.4)

AREk,f1

[

V
(n)
∗,ij /V

(n)
ij

]

= 1, i, j = 1, . . . , k, i 6= j.

As a first conclusion, this shows that, irrespective of the underlying radial density type f1,
there is no efficiency loss due to the non-specification of scale when estimating off-diagonal entries
of shape matrices. However, there is some efficiency loss when estimating diagonal entries. In
view of the lower and upper bounds on Mk(f1) in (3.6), we have

k

2(k + 1)
≤ AREk,f1

[

V
(n)
∗,ii /V

(n)
ii

]

≤ 1, i = 2, . . . , k. (5.5)

As an illustration, at k-dimensional Student densities with ν degrees of freedom, we have (with
obvious notation)

AREk,ν

[

V
(n)
∗,ii /V

(n)
ii

]

=
ν + 2

2(ν + 1)
, i = 2, . . . , k, (5.6)

which does not depend on the space dimension k. These AREs are decreasing with ν (equiv-
alently, they are increasing with the tail weight of the underlying Student distribution); their
value is minimal (the efficiency loss is maximal) at the multinormal case (ν → ∞), where the
AREs in (5.6) take the pretty low value of .5. On the contrary, in the limit as ν → 0, no
efficiency loss is incurred. This latter remark is compatible with the fact that Tyler’s estimator
of shape, which does not take any radial information into account—and, in particular, does not
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take advantage of any scale information—is optimal as ν → 0 (see Section 3.2 in Hallin, Oja,
and Paindaveine 2005 for a precise statement).

At the k-dimensional power-exponential densities f e
1,η, we obtain

AREk,η

[

V
(n)
∗ii /V

(n)
ii

]

=
kη + 2

2((k + 1)η + 1)
i = 2, . . . , k.

Again, no efficiency loss is incurred under arbitrarily heavy tails (as η → 0), whereas the maximal
efficiency loss occurs at extremely light-tailed densities (as η → ∞); in this case, note that the
maximal efficiency loss within this class of densities coincides with the overall maximal efficiency
loss in (5.5), namely, an ARE value of k/[2(k + 1)].

degrees of freedom ν of the Student density

k 0 1 3 8 15 20 ∞

1.000 0.750 0.625 0.556 0.531 0.524 0.500

parameter η of the power-exponential density

k 0 0.1 0.5 1 2 5 ∞
2 1.000 0.846 0.600 0.500 0.429 0.375 0.333
3 1.000 0.821 0.583 0.500 0.444 0.405 0.375
4 1.000 0.800 0.571 0.500 0.455 0.423 0.400
6 1.000 0.765 0.556 0.500 0.467 0.444 0.429
10 1.000 0.714 0.538 0.500 0.478 0.464 0.455
∞ — 0.500 0.500 0.500 0.500 0.500 0.500

Table 1: Numerical values, for k = 2, 3, 4, 6, 10, and k → ∞, of the AREs (5.4), under k-
dimensional Student densities (with ν degrees of freedom, ν = 1, 3, 8, 15, 20, along with the
limiting values obtained for ν → 0 and ν → ∞), and under k-dimensional power-exponential
densities (with η = .1, .5, 1, 2, 5, along with the limiting values obtained for η → 0 and η → ∞);
for Student densities, the ARE values do not depend on the space dimension k.

Numerical values of the AREs given in (5.4) under various Student and power-exponential
densities, and for various space dimensions k, are provided in Table 1. [Comments].

A Appendix.

In this final section, we prove Lemma 3.1 and Proposition 5.1.

Proof of Lemma 3.1. (i) Write ΓΓΓa,b for the matrix in braces in the left-hand side of (3.3). Using
part (ii) of the lemma (as we shall see, the proof of (ii) does not require (i)) and the identities
K2

k = Ik2, KkJk = Kk = JkKk, J2
k = kJk, vec (ABC) = (C

′
⊗ A) (vec B), (vec A)′(vec B) =

tr (A′B), Kk(A⊗B) = (B⊗A)Kk, Kk(vec A) = vec (A′) (holding for all k× k matrices A, B,
and C), lengthy but straightforward calculations yield

ΓΓΓa,b

(

NkQ
(A,B)
k (V)N′

k

)

=
1

2
Mk

[

Ik2+Kk

]

N′
k+Mkek2,1

[

(2aB − 4)e′k2,1(V
⊗2) − 2aB (vecV)′

]

N′
k.

Now, since

(a) Mkek2,1 = 0 (it follows from the definition of Mk that its first column is the (k(k+1)/2−1)-
dimensional zero-vector),
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(b) MkKk = Mk (since KkM
′
k(ve

◦
ch w) = Kk(vecw) = vecw = M′

k(ve
◦
ch w) for all symmetric

k × k matrix w = (wij) such that w11 = 0), and

(c) MkN
′
k = Ik(k+1)/2−1 (since NkM

′
k(ve

◦
chw) = Nk(vec w) = ve

◦
ch w for all symmetric k × k

matrix w = (wij) such that w11 = 0),

we obtain that NkQ
(A,B)
k (V)N′

k is a right-inverse of ΓΓΓa,b. Since both NkQ
(A,B)
k (V)N′

k and ΓΓΓa,b

are symmetric, this right-inverse is also a left-inverse.

(ii) Since Q
(r,s)
k (V) is symmetric, it is clearly sufficient to prove that M′

kNkQ
(r,s)
k (V) =

Q
(r,s)
k (V). Now, it is easily seen that

Q
(r,s)
k (V) =

[

Ik2 − (V⊗2) ek2,1e
′
k2,1

]

{

r
[

Ik2 + Kk

]

(V⊗2) (A.1)

+s (vecV) (vecV)′
}

[

Ik2 − (V⊗2) ek2,1e
′
k2,1

]′
,

so that it is sufficient to show that

M′
kNk

[

Ik2 − (V⊗2) ek2,1e
′
k2,1

]

[Ik2 + Kk] =
[

Ik2 − (V⊗2) ek2,1e
′
k2,1

]

[Ik2 + Kk] (A.2)

and
M′

kNk

[

Ik2 − (V⊗2) ek2,1e
′
k2,1

]

(vecV) =
[

Ik2 − (V⊗2) ek2,1e
′
k2,1

]

(vecV) . (A.3)

But, letting Eij := eie
′
j + eje

′
i, we have

[

Ik2 − (V⊗2) ek2,1e
′
k2,1

]

[Ik2 + Kk] = Ik2 + Kk − 2 (V⊗2) ek2,1e
′
k2,1

=
1

2

k
∑

i,j=1

(vecEij) (vec Eij)
′ − 2

(

vec
(

(

Ve1
)(

Ve1
)′

))

e′k2,1

=
1

2

k
∑

i,j=1
(i,j) 6=(1,1)

(vec Eij) (vecEij)
′ + 2

(

vec
(

e1e
′
1 −

(

Ve1
)(

Ve1
)′

))

e′k2,1.

This establishes (A.2) since M′
kNk (vecw) = (vec w) for all symmetric k × k matrix w = (wij)

such that w11 = 0 (recall that V = (Vij) ∈ V is symmetric with V11 = 1). As for (A.3), it follows
in a similar way from noting that

[

Ik2 − (V⊗2) ek2,1e
′
k2,1

]

(vecV) = (vecV) − (V⊗2) ek2,1

= vec
(

V −
(

Ve1

)(

Ve1

)′
)

.

(iii) This part of the lemma trivially follows from (i) and (ii). �

Proof of Proposition 5.1. In view of Proposition 3.1 and (A.1), the asymptotic covariance
matrix of n1/2vec(V(n) − V) is

k(k + 2)

Jk(f1)
Pk(V)

{

[

Ik2 + Kk

]

(V⊗2) + 2Mk(f1) (vecV) (vecV)′
}

(

Pk(V)
)′

, (A.4)
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where Pk(V) := Ik2 − (V⊗2) ek2,1e
′
k2,1. As V is diagonal with V11 = 1, Pk(V) = Ik2 − ek2,1e

′
k2,1

is the matrix of the projection on the orthogonal complement of {λek2,1, λ ∈ R} in R
k2

. Con-
sequently, the effect of premultiplying by Pk(V) and postmultiplying by (Pk(V))′ the matrix

Rk(V) :=
k(k + 2)

Jk(f1)

{

[

Ik2 + Kk

]

(V⊗2) + 2Mk(f1) (vecV) (vecV)′
}

(A.5)

is to put to zero all components in the first row and first column of Rk(V)—which reflects the

fact that Cov
[

V
(n)
11 , V

(n)
ij

]

= Cov
[

1, V
(n)
ij

]

= 0, for all i, j, n. Consequently, it is sufficient to
study the structure of Rk(V). To this end, we plug V =

∑

i=1 Vii eie
′
i in Rk(V). By using that

Kk((eie
′
i) ⊗ (eje

′
j)) = (eje

′
i) ⊗ (eie

′
j) and that (vec eie

′
i)(vec eje

′
j)

′ = (eie
′
j) ⊗ (eie

′
j), we easily

obtain

Jk(f1)

k(k + 2)
Rk(V) =

k
∑

i=1

(eie
′
i) ⊗

{

k
∑

j=1

ViiVjj(2 + 2Mk(f1))
δi,j eje

′
j

}

+
k

∑

i,j=1

i6=j

(eie
′
j) ⊗

{

2ViiVjjMk(f1) eie
′
j + ViiVjj eje

′
i

}

,

where δi,j = 1 if i = j and 0 otherwise. Denoting by [A]i,j the (k × k)-block in position (i, j) in
the (k2 × k2) matrix A, this means that

[

Jk(f1)

k(k + 2)
Rk(V)

]

i,i

=





























ViiV11 0 . . . 0
0 ViiV22

. . .
... 2V 2

ii (1 + Mk(f1))
...

. . .

ViiVk−1,k−1 0
0 . . . 0 ViiVkk





























,

which proves (5.1) and (5.2), and

[

Jk(f1)

k(k + 2)
Rk(V)

]

i,j

= 2ViiVjjMk(f1) eie
′
j + ViiVjj eje

′
i, i 6= j,

which proves (5.2) and (5.3). The entries in the asymptotic covariance matrix of the f1-

semiparametrically efficient estimator V
(n)
∗ are obtained directly by replacing Mk(f1) by 1

(compare the asymptotic covariance matrices in Propositions 3.1 and 4.1). �
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