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Abstract

Let
{
(Yi,Xi), i ∈ Z

N
}

be a stationary real-valued (d + 1)-dimensional spatial processes.
Denote by x 7→ qp(x), p ∈ (0, 1), x ∈ R

d, the spatial quantile regression function of order
p, characterized by P{Yi ≤ qp(x)|Xi = x} = p. Assume that the process has been observed
over a N -dimensional rectangular domain of the form In := {i = (i1, . . . , iN) ∈ Z

N |1 ≤
ik ≤ nk, k = 1, . . . , N}, n = (n1, . . . , nN ) ∈ Z

N . We propose a local linear kernel estimator
of qp, which extends to random fields with unspecified and possibly highly complex spatial
dependence structure the weighted quantile regression methods considered in the context
of independent samples or time series. Under mild regularity assumptions, we obtain a
Bahadur representation for the estimators of qp and its derivatives, from which we establish
consistency and asymptotic normality. The spatial process is assumed to satisfy some very
general mixing conditions, generalizing classical time-series strong mixing concepts. The size
of the rectangular domain In is allowed to tend to infinity at different rates depending on the
direction in Z

N (non-isotropic asymptotics). The method provides much richer information
than the traditional mean regression approach.
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1 Introduction

Since the pathbreaking paper by Koenker and Basset (1978), quantile regression methods have
attracted considerable interest, basically in all domains of statistics: see Koenker (2000) or the
recent monograph by Koenker (2005) for a review of regression and autoregression quantiles in
a traditional setting of independent samples or time series data. To the best of our knowledge,
and quite surprisingly so, quantile regression seldom has been considered in a spatial context.
Recently, Koenker and Mizera (2004) have proposed, under the name of penalized triograms, a
penalized spline method based on adaptively selected triangulations of the plane which allows
for computing conditional quantiles. Their method however is limited to the case where re-
gressors are the two-dimensional spatial coordinates, and does not take into account the spatial
dependence structure of the data.

Let Z
N , N ≥ 1, denote the integer lattice points in the N -dimensional Euclidean space. A

point i = (i1, . . . , iN ) in Z
N will be referred to as a site. Spatial data are modelled as finite

realizations of vector stochastic processes indexed by i ∈ Z
N , also called random fields. In this

paper, we will consider strictly stationary (d+ 1)-dimensional real random fields, of the form

{
(Yi,Xi) ; i ∈ Z

N
}
, (1.1)

where Yi, with values in R, and Xi, with values in R
d, are defined over some probability space

(Ω,F ,P). Such spatial data arise in a variety of fields, including econometrics, environmental
sciences, image analysis, oceanography, geostatistics, and many others. The statistical treat-
ment of such data is the subject of an abundant literature, which cannot be reviewed here;
for background reading, we refer the reader to the monographs by Anselin and Florax (1995),
Cressie (1993), Guyon (1995), Possolo (1991), or Ripley (1981).

In a number of applications, a crucial problem consists in describing and analyzing the
influence of a vector Xi of covariates on some real-valued response variable Yi. In the present
context, where the observations are made over a collection of sites, this study is more difficult,
due to the complexity of the possible spatial dependence among the various sites—a dependence
that typically cannot be modelled in any adequate way, and is to be treated as an unspecified
nuisance. The traditional approach to this problem consists in assuming that Yi has finite

expectation, so that the spatial mean regression function g : x 7→ g(x) := E
[
Yi

∣∣Xi = x
]

is well

defined and clearly carries relevant information on the dependence of Y on the covariates X.
This approach has been successfully considered in several papers, among which Hallin, Lu, and
Tran (2004b). However, (conditional) expectations may not exist. And, even when they do,
they only carry a limited information on the dependence under study. In most practical cases,
for instance, we would expect different structural relationships for the higher (or lower) order
quantiles than for the central ones: a regression analysis based on conditional means and spatial
mean regression functions (or on conditional medians as well) overlooks such an essential feature
of the dependence of Y on X, which can be taken care of by Koenker and Bassett’s more general
conditional quantile analysis only.

In this paper, instead of spatial mean regression, we thus consider the spatial quantile regres-
sion functions qp : x 7→ qp(x), 0 < p < 1, characterized by P{Yi ≤ qp(x)|Xi = x} = p. Although
qp (just as g) is only defined up to a P-null set of values of x (being a class of P-a.s. mutually
equal functions rather than a function), we treat it, for the sake of simplicity, as a well-defined
real-valued x-measurable function, which has no implication on the probabilistic statements of
this paper. In the particular case under which Xi itself is measurable with respect to a subset
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of Yj’s, with j ranging over some neighborhood of i, qp is called a spatial quantile autoregression
function. Parametric (linear) spatial mean autoregression models were considered as early as
1954 by Whittle (1954, 1963); see Besag (1974) for further developments in this context. Simi-
larly, we could expect that spatial quantile autoregression would be of wide interests in robust
modelling of spatial dependence (cf., for instance, Sections 3.3 and 3.5 of Cressie 1993) as well
as in the construction of confidence (prediction) intervals.

Our objective consists in estimating the spatial quantile regression functions qp : x 7→ qp(x);
contrary to Whittle (1954), we adopt a nonparametric point of view, as in Hallin, Lu and
Tran (2004b), avoiding any parametric specification, both for qp as for the possibly extremely
complex spatial dependence structure of the data.

For N = 1, this problem reduces to the classical problem of quantile (auto)regression for
independent samples or serially dependent observations. This problem has received extensive
attention in the literature: see, for instance, Koenker and Bassett (1978, 1982), Koenker and
Portnoy (1987), Granger, White, and Kamstra (1989), Efron (1990), Portnoy (1991), Fan, Hu,
and Truong (1994), Koenker and Zhao (1996), Koul and Mukherjee (1994), Welsh (1996), Yu
and Jones (1997, 1998), Taylor and Bunn (1999), Honda (2000), Cai (2002), as well as Yu and
Lu (2004), to quote only a few. Quite surprisingly, despite its importance for applications,
the spatial version (N > 1) of the same problem remains essentially unexplored. Several recent
papers (among which Tran 1990, Tran and Yakowitz 1993, Carbon, Hallin, and Tran 1996, Hallin,
Lu, and Tran 2001 and 2004a, Yao 2003) are dealing with the related problem of estimating the
density f of a random field of the form {Xi ; i ∈ Z

N}, whereas Hallin, Lu, and Tran (2004b),
Lu and Chen (2002, 2004)consider the estimation of spatial mean regression functions. But, to
the best of our knowledge, the only attempt that has been made to estimate spatial quantile
regression functions is Koenker and Mizera (2004)’s penalized triogram method, which however
restricts to d = 2 = N , with Xi = i and mutually independent observations—on the other hand,
a regular grid is not assumed for the sites.

Our estimators of the spatial quantile regression functions naturally involve some spatial
smoothing techniques. Among all these techniques, the Nadaraya-Watson method, in the tra-
ditional serial case (N = 1), is probably the most standard one; it has been well documented,
however—see, for instance, Fan and Gijbels (1996)—that this approach suffers from several se-
vere drawbacks, such as poor boundary performances, excessive bias and low efficiency, and that
the local polynomial fitting methods developed by Stone (1977) and Cleveland (1979) are gen-
erally preferable. Such local polynomial methods, and more particularly local linear fitting have
become increasingly popular in the light of recent work by Fan (1992), Fan and Gijbels (1996),
Ruppert and Wand (1994), Yu and Jones (1997, 1998), Loader (1999), and several others. For
N = 1, Honda (2000) has studied the asymptotics of local polynomial fitting for quantile regres-
sion under general mixing conditions. In this paper, we extend this approach to the context of
spatial quantile regression (N > 1) by defining an estimator of qp based on local linear regression
quantiles.

Extending classical or time-series asymptotics (N = 1) to spatial asymptotics (N > 1)
however is far from trivial. Due to the absence of any canonical ordering in the space, there is
no obvious definition of tail sigma-fields, ergodicity, mixing, and other traditional time-domain
concepts. And, little seems to exist about this in the literature, where only central limit results
are well documented: see, e.g., Bolthausen (1982) or Nakhapetian (1980). Even the simple idea
of a sample size n going to infinity (the sample size here is a domain in Z

N ) has to be clarified in
this setting. The assumptions we are making in (A3, A3′, and A3′′) are reasonable and flexible
generalizations of traditional time series concepts.
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The paper is organized as follows. In Section 2.1 we provide the notation and main assump-
tions. Sections 2.2 and 2.3 introduce the main ideas underlying local linear regression in the
context of random fields, and sketch the main steps of the proofs to be developed in the sequel.
Section 2.4, where asymptotic normality is stated under various types of asymptotics and vari-
ous mixing assumptions, is the main theoretical section of the paper. Section 3 is devoted to a
real-data application. Proofs and technical lemmas are concentrated in an Appendix (Section 4).

2 Local linear spatial quantile regression.

2.1 Notation and main assumptions.

For the sake of convenience, we are summarizing here the main assumptions we are making on
the random field (1.1) and the kernel K to be used in the estimation method. Assumptions
(A1)-(A3) are related to the random field itself.

(A1) (Conditions on densities) The random field (1.1) is strictly stationary, with densities (de-
note by f the joint density of (Yi,Xi), by fX the marginal density of X, by fY |X=x the
density of Y conditional on X = x) satisfying the following assumptions:

(i) for all x, x 7→ fX(x) is strictly positive and continuous;

(ii) for all x, there exist a neighborhood B of y = qp(x) and a neighborhood B of x such
that y 7→ fY |X=x(y) is strictly positive and continuous over B, uniformly over B, and
x 7→ fY |X=x(y) is continuous over B for all y ∈ B;

(iii) the joint density fi,j(x, x̃) of (Xi, Xj) is bounded uniformly in i and j, that is,
supi,j∈ZN supx, x̃∈Rd fi,j(x, x̃) ≤ C for some C > 0.

(A2) (Conditions on the spatial quantile regression function) The spatial quantile regression
function x 7→ qp(x) is twice differentiable. Denoting by q̇p(x) and q̈p(x) its gradient and
the matrix of its second derivatives (at x), respectively, x 7→ q̈p(x) is continuous at all x.

Conditions similar to Assumption (A1) have been considered in the literature, in the i.i.d. setting
(cf. Fan et al., 1994). Assumption (A2) is standard. Throughout, we denote by C a generic
positive constant, the value of which may vary according to the context.

Besides (A1) and (A2), we need some appropriate assumption of spatial mixing. For any
collection S ⊂ Z

N of sites, denote by B(S) the Borel σ-field generated by {(Yi,Xi)| i ∈ S}. For
each couple S ′,S ′′, let d(S ′,S ′′) := min{‖i′ − i′′‖ | i′ ∈ S ′, , i′′ ∈ S ′′} be the distance between S ′

and S ′′, where ‖i‖ := (i21 + . . . + i2N )1/2 stands for the Euclidean norm. Finally, write Card(S)
for the cardinality of S. As in Hallin, Lu, and Tran (2004b), two distinct forms (either (A3) and
(A3′) or (A3) and (A3′′)) of spatial mixing are considered.

(A3) There exist two functions, ϕ : R
+ → R

+ such that ϕ(t) ↓ 0 as t → ∞, and ψ : N
2 → R

+

symmetric and decreasing in each of its two arguments, such that

α
(
B(S ′),B(S ′′)

)
:= sup

{
|P(AB) − P(A)P(B)|, A ∈ B(S ′), B ∈ B(S ′′)

}

≤ ψ(Card(S ′),Card(S ′′))ϕ(d(S ′,S ′′)). (2.1)

for any S ′,S ′′ ⊂ Z
N . The function ϕ moreover is such that

lim
m→∞

ma
∞∑

j=m

jN−1{ϕ(j)} = 0 for some constant a > N .
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The assumptions we are making on the function ψ are either

(A3′) ψ(n′, n′′) ≤ min(n′, n′′)

or

(A3′′) ψ(n′, n′′) ≤ C(n′ + n′′ + 1)κ for some C > 0 and κ > 1.

In case (2.1) holds with ψ ≡ 1, the random field {(Yi, Xi)} is called strongly mixing. In the
serial case (N = 1), many stochastic processes and time series are known to be strongly mixing;
cf. Fan and Yao (2003). Guyon (1987) has shown that, under certain conditions, linear random
fields of the form Xn =

∑
j∈ZN gjZn−j, where the Zj’s are independent random variables, are

strongly mixing. Assumptions (A3′) and (A3′′) are the same as the mixing conditions used by
Neaderhouser (1980) and Takahata (1983), respectively, and are weaker than the uniform strong
mixing condition considered by Nakhapetyan (1980). They are satisfied by many spatial models,
as shown by Neaderhouser (1980), Rosenblatt (1985), and Guyon (1987).

Throughout, we assume that the random field (1.1) is observed over a rectangular region of
the form In := {i = (i1, . . . , iN ) ∈ Z

N | 1 ≤ ik ≤ nk, k = 1, . . . ,N}, for n = (n1, · · · , nN ) ∈ Z
N

with strictly positive coordinates n1, . . . , nN . The total sample size is thus n̂ :=
∏N

k=1 nk. We
write n → ∞ as soon as min1≤k≤N{nk} → ∞. A more demanding way for n to tend to infinity
is the one considered in Tran (1990): we use the notation n =⇒ ∞ if n → ∞ and moreover
|nj/nk| < C for some 0 < C < ∞, 1 ≤ j, k ≤ N . In this latter case, all components of n tend
to infinity at the same rate.

Assumption (A4) deals with the kernel function K : R
d → R to be used in the estimation

method. For any c := (c0, c
′
1)

′ ∈ R
d+1, define Kc(u) := (c0 + c′1u)K(u), u ∈ R

d.

(A4)(i) For any c ∈ R
d+1, |Kc(u)| is uniformly bounded by some constant K+

c , and is integrable,

i.e.,

∫

Rd+1

|Kc(x)|dx <∞;

(ii) for any c ∈ R
d+1, |Kc| has an integrable second order radial majorant, that is, QK

c (x) :=
sup‖y‖≥‖x‖

[
‖y‖2Kc(y)

]
is integrable;

(iii) the kernel function K is a bounded density function with compact support CK ⊂ R
d such

that
∫

uK(u)du = 0 and
∫

uu′K(u)du is positive definite.

Finally, for convenient reference, we are listing here some conditions on the asymptotic
behavior, as n → ∞, of the bandwidth hn that will be used in the sequel.

(B1) The bandwith hn tends to zero in such a way that n̂hd
n → ∞ as n → ∞.

(B2) Same as B1, but moreover n̂h4+d
n = O(1) as n → ∞.

Also, we denote by FY |X(y|x) := P (Yi < y|Xi = x) and fY |X(y|x) the conditional distribu-
tion and conditional density functions of Yi given Xi = x, respectively. The notation M′ is used
for the transpose of a matrix or vector M.

2.2 Local fitting of the spatial quantile regression function.

In this section we extend the traditional local linear fitting approach to estimate the spatial
quantile regression function.
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Write q̇p(x) = (∂qp(x)/∂x1, · · · , ∂qp(x)/∂xd)
′ for the vector of the first order partial deriva-

tives of the quantile regression function qp(x) at x = (x1, · · · , xd)
′ ∈ R

d. The general idea
of local linear fitting, which can be found in Fan and Gijbels (1996) and Loader (1999), con-
sists in approximating the unknown quantile regression function qp(z) by a linear function in a
neighborhood of x (cf. Fan et al.1994, and Yu and Jones 1998):

qp(z) ≈ qp(x) + (q̇p(x))′(z − x) ≡ a0 + a′
1(z − x). (2.2)

Therefore, estimating (qp(x), q̇p(x)) is locally equivalent to estimating (a0, a1). The classical
theory of quantile regression suggests estimating a0 and a1 as

(â0, â1) := arg min
(a0,a1)

nk∑

ik=1
k=1,...,N

ρp(Yi − a0 − a′
1(Xi − x))Kh(Xi − x), (2.3)

where ρp(y) := y(p− I{y<0}) stands for the traditional check function ρp(y) := y(p− I{y<0}), IA
is the indicator function of set A, and Kh(x) := h−d

n K(x/hn), with a kernel function K defined
on R

d, and a bandwidth h = hn > 0 tending to 0 as n → ∞. This motivates the choice of
q̂p(x) ≡ â0 and ̂̇qp(x) ≡ â1 as estimators of qp(x) and q̇p(x), respectively.

Note that the definition (2.3) of the estimator does not require the regular grid structure
we assuming throughout. It seems intuitively clear that “nearly regular grids” will not harm
the results of this paper. However, the asymptotic treatment of irregular grids (essentially, a
definition of a “nearly regular grid”) is a delicate and problematic issue that we will not consider
here.

2.3 Bahadur representation

The definition in (2.3) looks simple, but, unlike the local linear fitting estimator for spatial mean
regression proposed in Hallin, Lu and Tran (2004b), (2.3) does not allow for an explicit solution,
which creates additional difficulties in developing the asymptotic theory. We overcome these
difficulties by obtaining a Bahadur representation for for q̂p and ̂̇qp. Note that the following only
requires x 7→ qp(x) to be continuously differentiable.

Theorem 2.1 (Bahadur representation) Let Assumptions A1, A3, A4 (for some a > N), and
B1 hold, and assume that the quantile function qp has a continuous first order derivative at x.
Then,

(n̂hd
n)1/2

[
q̂p(x) − qp(x)

hn(̂̇qp(x) − q̇p(x))

]

= ηp(x)
1

√
n̂hd

n

nk∑

ik=1
k=1,...,N

ψp(Y
∗
i )

[
1

Xi−x
hn

]

K

(
Xi − x

hn

)
+ oP (1),

as n → ∞, where ψp(y) := p − I{y<0}, Y
∗
i := Y ∗

i (p) = Yi − qp(x) − (q̇p(x))′(Xi − x), and
ηp(x) := (fY |X(qp(x)|x)fX(x))−1.

The proof of Theorem 2.1 is postponed to Section 4.2.

2.4 Asymptotic normality

Using the powerful tool of the Bahadur representation, we can establish the consistency and
asymptotic distribution of the local linear quantile regression estimates under weak conditions.

6



First, we consider the case where the sample size tends to ∞ in the manner of Tran (1990), that
is, n =⇒ ∞.

Assuming that Assumption A2 holds, so that qp is twice differentiable, let

B0(x) := {fX(x)}−1 tr

[
q̈p(x)

∫
uu′K(u)du

]
and B1(x) := (B11(x), · · · , B1d(x))′,

with B1j(x) := f−1
X (x)tr [q̈p(x)

∫
uu′ujK(u)du] , j = 1, · · · , d, σ2

0(x) := η∗(x)
∫
K2(u)du, and

σσσ2
1(x) := η∗(x)

∫
uu′K2(u) du, where η∗(x) := η2

p(x)p(1 − p)fX(x) =
p(1 − p)

fX(x)f2
Y |X(qp(x)|x)

Theorem 2.2 Let Assumptions A1, A2, A3 ′, A4 (with ϕ(x) = O(x−µ) as x → ∞ for some
µ > 2N), and B2 hold. Suppose that there exists a sequence of positive integers q = qn such

that qn → ∞, qn = o
(
(n̂hd

n)1/2N
)
, and n̂q−µ → 0 as n =⇒ ∞. Moreover, let the bandwidth

hn tend to zero in such a manner that

lim inf
n =⇒ ∞

qhd/a
n > 1 for some N < a < µ−N. (2.4)

Then, for any x and 0 < p < 1, as n =⇒ ∞,

√
n̂hd

n

[(
q̂p(x) − qp(x)

hn(̂̇qp(x) − q̇p(x))

)

−
1

2

(
B0(x)
B1(x)

)

h2
n

]
L

−→ N

(

0,

(
σ2

0(x) 0

0 σσσ2
1(x)

))

,

so that q̂p(x) and ̂̇qp(x) are asymptotically independent.

The asymptotic normality results in Theorem 2.2 are stated for q̂p(x) and ̂̇qp(x) at a given
site x. They are easily extended, via the traditional Cramér-Wold device, into a joint asymptotic
normality result for any couple (x1,x2) (or any finite collection) of sites; the asymptotic covari-
ance terms (between q̂p(x1) and q̂p(x2), q̂p(x1) and ̂̇qp(x2), etc.) all are equal to zero (cf. Hallin,
Lu and Tran, 2004b, page 2478). The same remark also holds for Theorems 2.3-2.6 below.

One of the important advantages of local polynomial (and linear) fitting over the more
traditional Nadaraya-Watson approach is that it has much better boundary behavior. This
advantage often has been emphasized in the usual regression and time-series settings when the
regressors take values on a compact subset of R

d. For example, as Fan and Gijbels (1996) and
Fan and Yao (2003) illustrate for mean regression, for a univariate (d = 1) regressor X with
bounded support ([0, 1], say), it can be proved, using an argument similar to the one developed
in the proof of Theorem 3.1 of Hallin et al. (2004b), that asymptotic normality still holds at the
origin, but with asymptotic bias and variances

B0 =
{
fX(0+)

}−1
[
q̈p(0

+)

∫ ∞

−c
u2K(u)du

]
and σ2

0 = η∗(0+)

∫ ∞

−c
K2(u)du,

and

B1 =
{
fX(0+)

}−1
[
q̈p(0

+)

∫ ∞

−c
u3K(u)du

]
and σ2

1 = η∗(o+)

∫ ∞

−c
u2K2(u) du,

respectively, where η∗(0+) = η2
p(0

+)p(1 − p)fX(0+) =
p(1 − p)

fX(0+)f2
Y |X(qp(0+)|0+)

. As pointed out

in Hallin et al. (2004b), this advantage is likely to be much more substantial as N is growing.
In the important particular case under which ϕ(x) tends to zero at exponential rate, the

same results are obtained under milder conditions.
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Theorem 2.3 Let Assumptions A1, A2, A3 ′, and A4 hold, with ϕ(x) = O(e−ξx) as x→∞ for

some ξ > 0. Then, if hn tends to zero as n =⇒∞ in such a manner that (n̂h
d(1+2N/a)
n )1/2N (log n̂)−1→

∞ for some a > N , the conclusions of Theorem 2.2 still hold.

Note that, for N = 1, and for “large” values of a, this condition is “close” to the classical
condition (for independent observations) that nhd

n → ∞.
Next, we consider the situation under which the sample size tends to ∞ in the “weak” sense

(that is, n → ∞ instead of n =⇒ ∞).

Theorem 2.4 Let Assumptions A1, A2, A3 ′, and A4 hold, with ϕ(x) = O(x−µ) as x → ∞
for some µ > 2N . Let the sequence of positive integers q = qn → ∞, and let the bandwidth
hn factorize into hn :=

∏N
i=1 hni

, such that n̂q−µ → 0, q = o((min1≤k≤N (nkh
d
nk

))1/2), and

lim infn→∞ qh
d/a
n > 1 for some N < a < µ−N. Then the conclusions of Theorem 2.2 hold as

n → ∞.

In the important case that ϕ(x) tends to zero at an exponential rate, we have the following
result, which parallels Theorem 2.3.

Theorem 2.5 Let Assumptions A1, A2, A3 ′, and A4 hold, with ϕ(x) = O(e−ξx) as x → ∞
for some ξ > 0. Let the bandwidth hn factorize into hn :=

∏N
i=1 hni

in such a way that, as

n → ∞, min1≤k≤N{(nkh
d
nk

)1/2}h
d/a
n (log n̂)−1 → ∞ for some a > N . Then the conclusions of

Theorem 2.2 hold as n → ∞.

Under (A3′′), we then have the following counterpart of Theorem 2.2.

Theorem 2.6 Let Assumptions A1, A2, A3 ′′, and A4 hold, with ϕ(x) = O(x−µ) as x → ∞
for some µ > 2N . Suppose that there exists a sequence of positive integers q = qn → ∞ such
that qn = o((n̂bdn)1/2N ) and n̂κ+1q−µ−N → 0 as n =⇒ ∞, and that the bandwidth hn tends to
zero in such a manner that (2.4) is satisfied as n =⇒ ∞. Then the conclusions of Theorem 2.2
hold as n =⇒ ∞.

Analogues of Theorems 2.3, 2.4, and 2.5 can also be obtained under Assumption (A3′′);
details are left to the reader. The proofs of Theorems 2.2-2.6 are given in Section 4.3.

3 Numerical example

The wheat data (Mercer and Hall, 1911) were collected in 1910 at the Rothamsted Experimental
Station. They consist of 500 yields obtained on a 20 × 25 lattice of plots approximately 1 acre
in total area; the 20 rows run in the East-West direction, and the 25 columns in the North-
South direction. This data set has been analyzed via parametric spatial regression models by
several authors, among which Besag (1974), McBratney and Webster (1981), and Cressie (1993,
Section 4.51). Besag (1974) implemented his first-order auto-normal scheme method, McBratney
and Webster (1981) and Cressie (1993) their two-way parametric effect analysis. These methods
all model the expected wheat yield by a linear regression model involving two regressors: the
sum of the two row-neighbours and that of the two column-neighbours, thus artificially imposing
East-West and North-South symmetric (isotropic) spatial influences. They moreover assume the
homogeneous dependence of wheat yield for spatial variation: Besag (1974) for instance assumes
that, denoting by Yi,j the yield in the ith row and jth column (i = 1, ..., 20; j = 1, ..., 25), the

8



Yi,j’s are multinormal, and that the conditional expectation of Yi,j, given all other site values, is
of the form γ0 + γ1(Yi−1,j + Yi+1,j) + γ2(Yi,j−1 + Yi,j+1) (“first-order scheme”). Besag’s analysis
leads to the estimates γ̂0 = 0.16, γ̂1 = 0.34, γ̂2 = 0.14: row- (East-West-) neighbours thus are
better predictors than column- (North-South-) ones. The surface (Figure 1b) going through
the estimated conditional means ŷij := γ̂0 + γ̂1(Yi−1,j + Yi+1,j) + γ̂2(Yi,j−1 + Yi,j+1) provides an
estimation of the spatial variations of expected yields across the grid. This surface exhibits a
visible North-South trend, with a crest, followed by a trough, both parallel to the East-West
direction. This North-South trend is a finding of the analysis, which is by no means apparent in
the data themselves (which look quite “horizontal”). As we shall see, it is probably a consequence
of the model choice, rather than an actual spatial variation of expected yields.

(a) (b)
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The estimated conditional mean surface

Figure 1: Wheat-yield data. Three-dimensional perspective of (a) the observations, (b) the
smoothed surface based on expected yields estimated via Besag’s first order autonormal scheme.

Besag himself in his concluding remarks indicates that his autonormal schemes (a “second-
order scheme” appears to be equally unsatisfactory) fail to provide a fully convincing fit of the
data. Our approach, which avoids parametric (linear) specification of the conditional mean
function, constancy of conditional variances and Gaussian assumptions, is more flexible, and
provides a more complete picture of the process under study.

First, our method can be used to check whether the assumptions of Besag’s autonormal
scheme are plausible. For example, using our method for estimating the pth quantile (0 < p < 1)
of Yij conditional on Xi,j := 0.34(Yi−1,j + Yi+1,j) + 0.14(Yi,j−1 + Yi,j+1), then plotting these
quantiles against Xi,j , one should obtain, under sufficient smoothing, roughly parallel horizontal
lines.

Figure 2 displays the observations (scatter plot) of Yi,j against Xij , along with the estimated
conditional quantile curves for p=10%, 50%, and 90%, respectively, along with their asymptotic
90% confidence intervals. Although no rigorous testing procedure is performed, an informal
inspection of this figure suggests a strong nonlinear pattern in the three curves, indicating that
the assumptions of the model are unlikely to hold, hence that the conclusions (Figure 1(b))
should be considered with caution.

Breaking with Besag’s approach, we performed two different quantile analyses:

9



(a) maintaining Besag’s assumption of East-West and North-South isotropic spatial influences,
we estimated the quantiles of order p=10%, 50%, and 90% of Yi,j conditional on the two-

dimensional covariate Xi,j =: (X
(1)
ij ,X

(2)
ij ), where X

(1)
ij := Yi−1,j + Yi+1,j and X

(2)
ij :=

Yi,j−1 + Yi,j+1;

(b) abandoning the isotropy assumption, we estimated the quantiles of order p=10%, 50%,
and 90% of Yi,j conditional on Xi,j =: (Yi−1,j , Yi+1,j, Yi,j−1, Yi,j+1) (a four-dimensional
covariate).

The results are presented in Figures 3 and 4, respectively. In order to facilitate the com-
parison with Besag, we provide smoothed three-dimensional perspectives of the estimated 10%,
median, and 90% conditional quantile surfaces computed at the observations: at each site (i, j),
the surface provides an estimation of the quantiles of Yij conditional on Xij taking the observed
value xij . All three surfaces in Figure 3 exhibit globally increasing North-South profiles, with a
peak followed by a trough; this peak is hardly detected in the 10% surface, and sharper in the
90% than in the median surface. East-West profiles, on the other hand, look quite flat. The
median surface is pretty much the same as that obtained by Besag, despite the fact that his
model assumptions clearly are not satisfied.

Interpretation of Figure 3 might be as follows: on the Northern boundary of the grid, where
median yields are low, conditional distributions are also more spread out (mainly, on the left-
hand side of the median) than on the Southern boundary, where yields are better: high left-tail
variability, thus, with low median yields in the North, stable high yields in the South. East-West
spatial variations seem negligible (hence East-West isotropy is not implausible), but North-South
isotropy is clearly unreasonable.

These conclusions however are strongly invalidated by the non-isotropic analysis. Turning
to Figure 4, indeed, the three estimated quantile surfaces appear to be much less parallel than
in Figure 3. While an East-West trend is still present, and quite marked for the 10% surface, it
is hardly present anymore in the median and 90% ones. Again, the left-tail conditional spread
is much larger on the Northern than on the Southern boundary of the grid, whereas East-
West spatial variations remain negligible. The right conclusion thus is that median yields are
roughly stable over the grid, and that the North-South mean-trend detected in Besag (1974), as
well as the median-trend in the isotropic analysis of Figure 3 are essentially due to conditional
heteroskedasticity (more precisely, to left-tail spread): this variation in the spread seems to be
the main spatial issue in the data set. The difference between Figure 3 and Figure 4 are entirely
imputable to the isotropy assumption made in the first one, which artificially attributes the same
influence to a Northern neighbor with larger left-tail spread and a Southern one, for which this
left-tail spread is considerably less. Such a phenomenon is undetectable in classical approaches,
where only conditional location (typically, conditional mean) is modelled.

4 Appendix: Proofs

4.1 A preliminary lemma

The following lemma is an improved version of the cross-term inequality of Lemma 5.2 of Hallin
et al.(2004b), adapted to the quantile regression context, and plays a crucial role in the sub-
sequent sections. For the sake of generality, and in order for this lemma to apply beyond the
specific framework of this paper, we do not necessarily assume that the mixing coefficient α take
the form imposed in Assumption (A3).

10



Lemma 4.1 (Cross-term Lemma) Let {(Yj,Xj); j ∈ Z
N} denote a stationary spatial process

with general mixing coefficient

ϕ(j) = ϕ(j1, . . . , jN ) := sup
{
|P(AB) − P(A)P(B)| : A ∈ B({Yi, Xi}), B ∈ B({Yi+j, Xi+j)}

}
.

Let (y,x) 7→ b̃(y,x) be a bounded Borel-measurable function defined on R
1 × R

d. Set

ηj(x) := b̃(Yj,Xj)K((x −Xj)/hn), ∆j(x) := ηj(x) − Eηj(x),

and R̃(x) := (n̂hd
n)−1

∑

{i,j∈In|∃

∑

k : ik 6=jk}

E [∆i(x)∆j(x)] . For any cn := (cn1, · · · , cnN ) ∈ Z
N with

1 < cnk < nk for all k = 1, · · · , N , define J̃1(x) := h2d
n

∏N
k=1(nkcnk) and

J̃2(x) := n̂

N∑

k=1





ns∑

|js|=1
s=1, ··· , k−1

nk∑

|jk|=cnk

ns∑

|js|=1
s=k+1, ··· , N

{ϕ(j1, · · · , jN )}



 .

Then, under Assumptions A1, A2, and A4, there exists a constant C > 0 such that

|R̃(x)| ≤ C(n̂hd
n)−1

[
J̃1(x) + J̃2(x)

]
. (4.5)

If furthermore ϕ(j1, . . . , jN ) takes the form ϕ(‖j‖), then

J̃2(x) ≤ Cn̂

N∑

k=1




‖n‖∑

t=cnk

tN−1ϕ(t)



 . (4.6)

Proof. The main idea of the proof is similar to that of Lemma 5.2 of Hallin et al. (2004b),
but details are different. We only sketch the proof here. Writing Zj for b̃(Yj,Xj), we have
ηj(x) = ZjK((x − Xj)/hn), where |Zj| is bounded by some L > 0. For i 6= j, letting Kn(x) :=
(1/hd

n)K(x/hn),

h−d
n E∆j(x)∆i(x)

= hd
n

∫ ∫
Kn(x− u)Kn(x − v){g1ij(u,v)fi,j(u,v) − g

(1)
1 (u)g

(1)
1 (v)f(u)f(v)}dudv,

where g1ij(u, v) := E(ZiZj|Xi = u, Xj = v), and g
(1)
1 (u) := E(Zi|Xi = u). Since |Zi| is bounded

by L, we have that |g1ij(u, v)| ≤ L2 and |g
(1)
1 (u)g

(1)
1 (v)| ≤ L2. Thus,

|g1ij(u, v)fi, j(u, v) − g
(1)
1 (u)g

(1)
1 (v)f(u)f(v)|

≤ L2|fi, j(u, v) − f(u)f(v)| + 2L2f(u)f(v).

It then follows from Assumption (A1) and the Lebesgue density theorem (see Chapter 2 of
Devroye and Györfi 1985) that

h−d
n |E∆j(x)∆i(x)| ≤ hd

n

∫ ∫
Kn(x− u)Kn(x − v)L2|fi, j(u, v) − f(u)f(v)| dudv

+hd
n

∫ ∫
Kn(x − u)Kn(x− v)2L2f(u)f(v)} dudv

≤ Chd
nL

2 = Chd
n. (4.7)
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Let cn = (cn1, · · · , cnN ) ∈ R
N be a sequence of vectors with positive components. Define

S1 := {i 6= j ∈ In : |jk − ik| ≤ cnk, for all k = 1, · · · , N} ,

and
S2 := {i, j ∈ In : |jk − ik| > cnk, for some k = 1, · · · , N} .

Clearly, Card(S1) ≤ 2N n̂
∏N

k=1 cnk. Splitting R̃(x) into (n̂hd
n)−1(J1 + J2), with

Jℓ :=
∑

i, j

∑
∈Sℓ

E∆j(x)∆i(x), ℓ = 1, 2, it follows from (4.7) that

|J1| ≤ Ch2d
n Card(S1) ≤ 2NCh2d

n n̂

N∏

k=1

cnk. (4.8)

Turning to J2, we have |J2| ≤
∑

i, j

∑

∈S2

|E∆j(x)∆i(x)|. Davydov’s inequality (cf. Lemma 2.1 of

Tran 1990) and the boundedness of ∆i(x) yield |E∆j(x)∆i(x)| ≤ Cϕ(j − i). Hence,

|J2| ≤ C
∑ ∑

i, j∈S2

ϕ(j − i) =: CΣ2, say.

We now analyze Σ2 in detail. For any N -tuple 0 6= ℓℓℓ = (ℓ1, . . . , ℓN ) ∈ {0, 1}N , set

S(ℓ1, . . . , ℓN ) := {i, j ∈ In : |jk−ik| > cnk if ℓk = 1 and |jk − ik| ≤ cnk if ℓk = 0, k = 1, · · · , N}

and V (ℓ1, . . . , ℓN ) :=
∑ ∑

i,j∈S(ℓ1, ..., ℓN )

ϕ(j − i). Then, Σ2 =
∑

i,j

∑

∈S2

ϕ(j − i) =
∑

0 6=ℓℓℓ∈{0,1}N

V (ℓ1, . . . , ℓN ) where,

as in (5.11) of Hallin et al. (2004b),

V (ℓ1, ℓ2, . . . , ℓN ) ≤ n̂
∑

|j1|

. . .
∑

|jk|

. . .
∑

|jN |

ϕ(j1, . . . , jN ),

with the sums
∑

|jk|
running over all values of jk such that 1 ≤ |jk| ≤ nk if ℓk = 0, such that

cn1 ≤ |jk| ≤ nk if ℓk = 1. Since the summands are nonnegative, for 1 ≤ cnk ≤ nk, we have∑nk

|jk|=cnk
. . . ≤

∑nk

|jk|=1 . . ., and

|J2| ≤ Cn̂

N∑

k=1




n1∑

|j1|=1

. . .

nk−1∑

|jk−1|=1

nk∑

|jk|=cnk

nk+1∑

|jk+1|=1

. . .
nN∑

|jN |=1

ϕ(j1, . . . , jN )



 . (4.9)

Thus (4.5) is a consequence of (4.8) and (4.9). If furthermore ϕ(j1, . . . , jN ) depends on ‖j‖
only, then (4.6) follows from the fact that

n1∑

|j1|=1

. . .

nk−1∑

|jk−1|=1

nk∑

|jk|=cnk

nk+1∑

|jk+1|=1

. . .
nN∑

|jN |=1

ϕ(‖j‖) ≤
‖n‖∑

t=cnk

t∑

|j1|=1

. . .
t∑

|jN−1|=1

ϕ(t) ≤
‖n‖∑

t=cnk

tN−1ϕ(t). �
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4.2 Proof of the Bahadur representation result

We first introduce some notation. Throughout the proof, let C denote a generic positive constant.
Set

Xhi := (Xi − x)/hn, Xhi := (1, X′
hi)

′, Ki := K(Xhi), Hn =
√

n̂hd
n,

θn := Hn

(
â0 − qp(x), hn(â1 − q̇(x))′

)′
, θ := Hn

(
a0 − qp(x), hn(a1 − q̇(x))′

)′
,

and θ̃ := Hn (ã0 − qp(x), hn(ã1 − q̇(x))′)′, where (a0, a
′
1)

′, (ã0, ã
′
1)

′ ∈ R
1+d. With Y ∗

i defined
in Theorem 2.1, put Y ∗

ni(θ) := Y ∗
i − θ′Xhi/Hn, Tni := (q̇p(x))′Xhihn, and Uni := Uni(θ) =

Tni+θ
′Xhi/Hn. Based on these notations, Y ∗

i = Yi−qp(x)−Tni and Y ∗
ni(θ) = Yi−qp(x)−Uni(θ) =

Yi − a0 − a′
1(Xi − x). Since K is a bounded function with bounded support,

‖Xhi‖ ≤ C, ‖Xhi‖ ≤ C when Ki > 0. (4.10)

When ‖θ‖ ≤ M and Ki > 0, |Tni| ≤ Chn and |Uni| ≤ Chn + CH−1
n → 0 as n → ∞. It follows

from (2.3) that

θn = argminθ∈R1+d

nk∑

ik=1
k=1,...,N

ρp(Y
∗
ni(θ))Ki. (4.11)

Finally, define Vn(θ) := H−1
n

∑nk

ik=1
k=1,...,N

ψp(Y
∗
ni(θ))XhiKi . The following lemma provides an

asymptotic representation result for sequences θn of solutions of Vn(θ) = 0 or, more generally, for
any sequence θn such that Vn(θ) = oP (1) as n → ∞. This result is a spatial version of Lemma
A.4 of Koenker and Zhao (1996, page 809), and plays a key role in the proof of Theorem 2.1.

Lemma 4.2 Let ∆ 7→ Vn(∆) satisfy

(i) −∆′Vn(λ∆) ≥ −∆′Vn(∆), λ ≥ 1,

(ii) sup‖∆‖≤M ‖Vn(∆) + fY |X(qp(x)|x)D∆ − An‖ = oP (1) as n → ∞, where ‖An‖ = OP (1),
0 < M <∞, fY |X(qp(x)|x) > 0, and D is a positive definite matrix.

Suppose that ∆n is such that ‖Vn(∆n)‖ = oP (1). Then, ‖∆n‖ = OP (1), and

∆n = [fY |X(qp(x)|x)]−1D−1An + oP (1) as n → ∞.

Proof. The proof follows along the same lines as in Koenker and Zhao (1996, page 809);
details are left to the reader. �

In order to establish the Bahadur representation result of Theorem 2.1, it is now sufficient
to check that the assumptions of Lemma 4.2 are satisfied. To do this, we will repeatedly use the
next lemma, the proof of which is essentially the same as in the time series case (cf. Lu, Hui,
and Zhao 1998) and hence is omitted.

Lemma 4.3 Let Assumptions A1(ii)-(iii) and A2 hold. Then, for n large enough,

E|ψp(Y
∗
ni(θ)) − ψp(Y

∗
ni(θ̃))|Ki ≤ CEI(|Y ∗

ni
(θ̃)|<C‖θ−θ̃‖/Hn) Ki ≤ C‖θ − θ̃‖hd

n/Hn,

E|ψp(Y
∗
ni(θ)) − ψp(Y

∗
ni(θ̃))|

2K2
i ≤ CEI(|Y ∗

ni
(θ̃)|<C‖θ−θ̃‖/Hn) K

2
i ≤ C‖θ − θ̃‖hd

n/Hn

for any θ, θ̃ ∈ {θ : ‖θ‖ ≤M}.
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Lemma 4.4 Under the conditions of Theorem 2.1,

sup
‖θ‖≤M

‖Vn(θ) − Vn(0) − E(Vn(θ) − Vn(0))‖ = oP (1).

Proof. The proof is divided into two steps. The first step consists in proving that

‖Vn(θ) − Vn(0) − E(Vn(θ) − Vn(0))‖ = oP (1). (4.12)

for any fixed θ such that ‖θ‖ ≤M . Note that

Vn(θ) − Vn(0) = H−1
n

nk∑

ik=1
k=1,...,N

[ψp(Y
∗
ni(θ)) − ψp(Y

∗
i )]XhiKi =: H−1

n

nk∑

ik=1
k=1,...,N

Vni(θ), (4.13)

where Vni(θ) = (V 0
ni(θ), (V

1
ni(θ))

′)′, with

V 0
ni(θ) = [ψp(Y

∗
ni(θ)) − ψp(Y

∗
i )]Ki and V 1

ni(θ) = [ψp(Y
∗
ni(θ)) − ψp(Y

∗
i )]XhiKi.

Then, from (4.13), the left-hand side of (4.12) is bounded by

H−1
n

∣∣∣∣∣∣∣∣

nk∑

ik=1
k=1,...,N

(V 0
ni(θ) − EV 0

ni(θ))

∣∣∣∣∣∣∣∣
+H−1

n

∥∥∥∥∥∥∥∥

nk∑

ik=1
k=1,...,N

(V 1
ni(θ) − EV 1

ni(θ))

∥∥∥∥∥∥∥∥
=: V 0

n + V 1
n , say. (4.14)

It follows from stationarity together with Lemma 4.1 that

E(V 0
n )2 = (n̂hd

n)−1




nk∑

ik=1
k=1,...,N

var(V 0
ni(θ)) +

∑

{i,j∈In|∃

∑

k : ik 6=jk}

cov(V 0
ni(θ), V

0
nj(θ))





≤ h−d
n var(V 0

n1(θ)) + (n̂hd
n)−1[J̃1(x) + J̃2(x)], (4.15)

where J̃1(x) ≤ Cn̂h2d
n

∏N
k=1 cnk and J̃2(x) ≤ Cn̂

∑N
k=1

∑‖n‖
t=cnk

tN−1ϕ(t), as implied by Lemma 4.1.
Here cnk, k = 1, · · · , N , are positive integers depending on n, to be specified later on. In order
to bound (4.15), we apply Lemma 4.3 with θ̃ = 0; for ‖θ‖ ≤M ,

var(V 0
n1(θ)) ≤ E(V 0

n1)
2 = E|ψp(Y

∗
ni(θ)) − ψp(Y

∗
i )|2K2

i ≤ Chd
n/Hn.

Then it follows from (4.15) with cnk = h
−d/a
n for k = 1, · · · ,N , that

E(V 0
n )2 ≤ CH−1

n + Chd
n

N∏

k=1

cnk + Ch−d
n

N∑

k=1

‖n‖∑

t=cnk

tN−1ϕ(t)

= CH−1
n + Ch(1−N/a)d

n + C
N∑

k=1

cank

∞∑

t=cnk

tN−1ϕ(t) = o(1), (4.16)

in view of Assumption A3 and the fact that hn → 0, n̂hd
n → ∞, and a > N . Similarly to (4.16),

we have E(V 1
n )2 = o(1) which, together with (4.14) and (4.16), implies (4.12).
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The second step consists in establishing the uniform consistency with respect to ‖θ‖ ≤M by
a chaining argument. Decompose {‖θ‖ ≤M} into cubes based on the grid (j1γM, · · · , jd+1γM),
ji = 0, ±1, · · · , ±[1/γ]+1, where [1/γ] denotes the integer part of 1/γ, and γ is a small positive
number that does not depend on n. Let R(θ) be the lower vertex of the cube that contains θ.
Clearly, ‖R(θ) − θ‖ ≤ Cγ and the number of elements of {R(θ) : ‖θ‖ ≤M} is finite. Then

sup
‖θ‖≤M

‖Vn(θ) − Vn(0) −E(Vn(θ) − Vn(0))‖ ≤ V ∗
n1 + V ∗

n2 + V ∗
n3 (4.17)

where, following (4.12), V ∗
n1 := sup‖θ‖≤M ‖Vn(R(θ)) − Vn(0) − E(Vn(R(θ)) − Vn(0))‖ is oP (1),

V ∗
n2 := sup‖θ‖≤M ‖Vn(θ)−Vn(R(θ))‖, and V ∗

n3 := sup‖θ‖≤M ‖E(Vn(θ)−Vn(R(θ)))‖. Using (4.10)

and, for ‖θ‖ ≤M , applying Lemma 4.3 with θ̃ = R(θ) for n large enough,

V ∗
n3 ≤ CH−1

n n sup
‖θ‖≤M

E|ψp(Y
∗
ni(θ))−ψp(Y

∗
ni(R(θ)))|Ki ≤ C sup

‖θ‖≤M
‖θ −R(θ)‖ ≤ Cγ. (4.18)

Therefore, letting n → ∞ and γ → 0, we have V ∗
n3 = o(1).

Set Bi(θ) := I(|Y ∗

ni
(θ)|<Cγ/Hn) ‖Xhi‖Ki. Noting that |I(y<a) − I(y<0)| ≤ I(|y|≤|a|), we obtain

V ∗
n2 ≤ sup

‖θ‖≤M
‖Vn(θ) − Vn(R(θ))‖ ≤ C sup

‖θ‖≤M
H−1

n

nk∑

ik=1
k=1,...,N

Bi(R(θ)) ≤ Bn1 +Bn2,

where, by an argument similar to (4.18), Bn1 := C sup
‖θ‖≤M

H−1
n

nk∑

ik=1
k=1,...,N

EBi(R(θ)) = o(1), and,

similarly to (4.16), Bn2 := C sup
‖θ‖≤M

|H−1
n

nk∑

ik=1
k=1,...,N

(Bi(R(θ)) − EBi(R(θ)))| = oP (1). Thus, V ∗
n2 =

oP (1), and Lemma 4.4 follows from (4.17). �

Lemma 4.5 Let D = fX(x)diag(1,
∫

uu′K(u)du). Under Assumptions A1(iii) and A2, sup‖θ‖≤M ‖E(Vn(θ)−
Vn(0)) + fY |X(qp(x)|x)Dθ‖ = o(1).

Proof. The proof is similar to that in the time series case (cf. Lu, Hui, and Zhao 1998). �

Lemma 4.6 Denote by θn the minimizer defined in (4.11). Then, ‖Vn(θn)‖ = oP (H−1
n ).

Proof. The proof is similar as that of Lemma A.2 of Ruppert and Carroll (1980). �

Lemma 4.7 Under Assumptions A1 and A2, if a ≥ N and hn → 0,

E
[
(c′Vn(0) − c′EVn(0))2

]
→ p(1 − p)fX(x)

∫
(c0 + c′1u)2K2(u)du

as n → ∞, where c = (c0, c
′
1)

′ ∈ R
1+d.
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Proof. Set vi := ψp(Y
∗
i )(c0 + c′1Xhi)Ki. Then, Lemma 4.1 with cnk = h

−d/a
n for k = 1, · · · ,N

leads to

E
[
(c′Vn(0) − c′EVn(0))2

]
= (n̂hd

n)−1




nk∑

ik=1
k=1,...,N

var(vi) +
∑

{i,j∈In|∃

∑

k : ik 6=jk}

cov(vi, vj)





= h−d
n var(v1) +O(1)h(1−N/a)d

n +O(1)
N∑

k=1

cank

∞∑

t=cnk

tN−1ϕ(t)

=: vn1 + vn2 + vn3, say.

Theorem 3 of Devroye and Györfi (1984, page 8) entails

E
[
I(Y ∗

1
<0)(c0 + c′1Xh1)2K2

1

]
= E

[
FY |X(qp(x) + q̇p(X1 − x)|X1)(c0 + c′1Xh1)2K2

1

]

→ pfX(x)

∫
(c0 + c′1u)2K2(u)du

and E
[
I(Y ∗

1
<0)(c0 + c′1Xh1)K1

]
→ pfX(x)

∫
(c0 + c′1u)K(u)du. This in turn implies

h−d
n E

[
v2
1

]
= E

[(
p2 − 2pI(Y ∗

1
<0) + I(Y ∗

1
<0)

)
(c0 + c′1Xh1)2K2

1

]

→ p(1 − p)fX(x)

∫
(c0 + c′1u)2K2(u)du,

and

h−d
n E[v1] = E

[(
p− I(Y ∗

1
<0)

)
(c0 + c′1Xh1)K1

]
→ (p− p)fX(x)

∫
(c0 + c′1u)K(u)du = 0.

Hence, vn1 = h−d
n E

[
v2
1

]
− h−d

n (Ev1)
2 → p(1 − p)fX(x)

∫
(c0 + c′1u)2K2(u)du. On the other

hand, it clearly follows, from the fact that hn → 0 and Assumption (A3) with a > N , that

|vn2 + vn3| = O(1)h
(1−N/a)d
n +O(1)

∑N
k=1 c

a
nk

∑∞
t=cnk

tN−1ϕ(t) → 0. The desired result follows.�

Proof of Theorem 2.1. As already mentioned, it is sufficient to check that the conditions of
Lemma 4.2 are fulfilled. First we note that Lemmas 4.4 and 4.5 lead to (ii) of Lemma 4.2. Also,
it follows from Lemma 4.6 together with Assumptions A2 and A3 that ‖Vn(θn)‖ = oP (1). Take
An = Vn(0). Then it is clear from Lemma 4.7 that An = OP (1). Since ψp(y) is an increasing
function of y, the function

λ 7→ −θ′Vn(λθ) = H−1
n

nk∑

ik=1
k=1,...,N

ψp(y
∗
i − λθ′Xhi/Hn)(−θ′Xhi)Ki

is increasing with λ. Therefore, condition (i) of Lemma 4.2 holds. The theorem follows. �

4.3 Proof of asymptotic normality

On the basis of the Bahadur representation of Theorem 2.1, the asymptotic normality of our
estimators in Theorems 2.2–2.6 follows exactly as in the corresponding proofs for mean regression
in Hallin et al. (2004b), with the cross-term lemma, Lemma 4.1 replacing the corresponding
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Lemma 5.2 in that paper, yielding the asymptotic normality with the bias (i.e. expectation) of
the first term on the right-hand side of (2.5) as

E





ηp(x)

1
√

n̂hd
n

nk∑

ik=1
k=1,...,N

ψp(Y
∗
i )

[
1

Xi−x
hn

]

K

(
Xi − x

hn

)





= ηp(x)
1

√
n̂hd

n

n̂E

{

ψp(Y
∗
i )

[
1

Xi−x
hn

]

K

(
Xi − x

hn

)}

= ηp(x)
√

n̂hd
n h

−d
n

×E

{(
FY |X (qp(Xi)|Xi) − FY |X

(
qp(x) + (q̇p(x))′(Xi − x)|Xi

))
[

1
Xi−x

hn

]

K

(
Xi − x

hn

)}

=
√

n̂hd
n

[

(1 + o(1))
1

2

(
B0(x)
B1(x)

)

h2
n

]

,

where the last equality is derived via a first order Taylor expansion of y 7→ FY |X(y|·) and a
second order Taylor expansion of x 7→ qp(x) (these expansions exist in view of Assumptions
A1(ii) and A2). The (1+o(1)) factor is got rid of in Theorems 2.2–2.6 by using Assumption B2.
Details are omitted. �
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Figure 2: Wheat-yield data. Three estimated conditional quantile regression functions (solid
lines) for p =10%, 50% and 90%, of wheat yield based on Besag’s model and their asymptotic
90% confidence intervals (thin solid lines for 50%, dashed lines for 10%, and dotted lines for
90% conditional quantile).
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Figure 3: Wheat-yield data. Three-dimensional perspective of the smoothed surfaces based
on quantile regression conditional on row and column averaged neighbours, for (a) p = 10%; (b)
p = 50%; (c) p = 90%.
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Figure 4: Wheat-yield data. Three-dimensional perspective of the smoothed surfaces based
on quantile regression conditional on four-dimensional neighbour sites, for (a) p = 0.10; (b)
p = 0.50; (c) p = 0.90.
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