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Université Libre de Bruxelles

Brussels, Belgium

Abstract

This paper develops an information criterion for the choice of the number of com-
mon shocks for the approximate dynamic factor model developed by Forni, Hallin,
Lippi, and Reichlin (2000). In this framework, the number q of common shocks is
associated to the number of diverging eigenvalues of the spectral density matrix of the
observations as the number n of time series goes to infinity. The criterion exploits this
characteristic of the model. We provide sufficient conditions for consistency of the
criterion for large n and T (where T is the series length). The paper shows how the
method can be implemented and provides simulations and empirics which illustrate
its good performance in finite samples.
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1 Introduction

Factor models recently have been quite successfully considered in the analysis of large
panels of time series data. Under such models, the observation Xit (where i = 1, . . . , n
stands for the cross-sectional index, and t = 1, . . . , T denotes time) is decomposed into
the sum χit + ξit of two nonobservable mutually orthogonal (at all leads and lags) parts,
the common component χit, and the idiosyncratic component ξit, respectively.

In the dynamic factor approach, the common component results from the action of
a small number q of unobserved shocks. More specifically, χit takes the form χit =
∑q

j=1 bij(L)ujt, where the common shocks ujt—call them the dynamic factors—are loaded
via linear one-sided filters bij(L), j = 1, . . . , q (L, as usual, stands for the lag operator).
This approach first was proposed by Sargent and Sims (1977) and Geweke (1977) in a
model where the idiosyncratic components are assumed to be mutually orthogonal (exact
factor model), and developed for large panels with weakly cross-correlated idiosyncratic
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components (approximate factor model) in a series of papers by Forni and Lippi (2001)
and Forni, Hallin, Lippi, and Reichlin (2000, 2004). The main theoretical tool in the latter
papers is Brillingers’ theory of dynamic principal components (Brillinger 1981).

A similar approximate factor model has been proposed by Stock and Watson (2002a
and b). In their approach however, the common component χit is expressed as a linear com-
bination

∑r
j=1 aijFjt of a small number r of unobserved common factors (F1t, . . . , Frt)—

the static factors; the loadings aij are real numbers, and all factors, in this approach, are
loaded contemporaneously.

A crucial step in the statistical analysis of these factor models is the preliminary
identification of the number q of common shocks or the number r of static factors. A
method for the identification of r in the static model has been proposed by Bai and
Ng (2002), using an information criterion approach. The criterion they are proposing is
shown to be consistent (under appropriate assumptions) as n, the cross-section dimension,
and T , the length of the observed series, both tend to infinity. More recently, another
criterion, based on the theory of random matrices, has been developed by Onatski (2005),
still for the number r of static factors, but in a model with iid idiosyncratic components.

For the number q of common shocks in the general dynamic model, Forni et al. 2000
only suggest a heuristic rule based on the number of diverging (as n → ∞) dynamic
eigenvalues. The purpose of this paper is to propose a statistical criterion for this iden-
tification, and to establish its consistency as n and T approach infinity. This number q
indeed plays an essential role in the practical implementation of the generalized dynamic
factor method. Moreover, common shocks in a dynamic framework can be given an eco-
nomic interpretation (on this latter point, see Giannone, Reichlin, and Sala 2005, Forni,
Giannone, Lippi, and Reichlin 2005, and Stock and Watson 2005).

As shown by Forni, Hallin, Lippi, and reichlin (2005) and Forni et al. (2005), for
restricted forms of the dynamic structure one can bring the dynamic factor model back
under the traditional umbrella of the static one via stacking. In such a setting, static
factors are functions of the number of common shocks and their lags, and the relation
between q and r can be exploited to develop an identification criterion for q. Building on
this idea, Bai and Ng (2005) recently proposed, in that restricted setting, a criterion for q
adapted from Bai and Ng (2002)’ s criterion for r. The criterion we are developing in this
paper, however, is valid under much more general assumptions on the dynamic structure.

From a technical point of view, due to the spectral techniques involved, the tools we
are using in the proofs are entirely different from those used in the static framework; our
criterion builds directly on the (n, T )-asymptotic properties of the eigenvalues of sample
spectral density matrices, as in Forni et al. (2004). Simulations indicate that the method
performs quite well, even in relatively small panels with moderate series lengths.

The paper is organized as follows. In Section 2, the generalized dynamic factor model
proposed by Forni et al. (2000) is briefly described, together with the required identi-
fiability assumptions. Section 3 introduces the information criterion we are proposing
for the identification of q, and establishes sufficient conditions for consistency as n and
T tend to infinity. We recommend a covariogram-smoothing version of our method, the
practical implementation of which is carefully discussed in Section 4. A simulation study
of the small sample properties of the proposed identification procedure, and an applica-
tion to macroeconomic data, are presented in Section 5. Section 6 concludes. Proofs are
concentrated in an appendix (Section 7).

Boldface are used for vectors and matrices, primes for transposes, and stars for complex
conjugates. A sequence {ζ(n, T, θ);n ∈ N, T ∈ N, θ ∈ [−π, π]} of real numbers is said to
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be o(1) (resp. O(1)) as T → ∞ uniformly in n and θ if sup
n∈N

sup
θ∈[−π,π]

ζ(n, T, θ) is o(1) (resp.

O(1)) as T → ∞. A sequence {ζ(n, T, θ); n ∈ N, T ∈ N, θ ∈ [−π, π]} of random variables
is said to be oP (1) (resp. OP (1)) as T → ∞ uniformly in n and θ if for all ǫ > 0 and
η > 0 there exists Tǫ,η such that sup

n∈N

sup
θ∈[−π,π]

P [|ζ(n, T, θ)| > η] < ǫ for all T > Tǫ,η (resp.

if for all ǫ > 0 there exist Bǫ and Tǫ such that sup
n∈N

sup
θ∈[−π,π]

P [|ζ(n, T, θ)| > Bǫ] < ǫ for all

T > Tǫ.

2 The dynamic factor model

The model we are considering throughout is Forni et al. (2000)’s generalized dynamic
factor model, which we now briefly describe. Let {Xit, i ∈ N, t ∈ Z} be a double array of
random variables, where

Xit = bi1(L)u1t + bi2(L)u2t + . . . + biq(L)uqt + ξit, (2.1)

and the following assumptions A1 through A4 are assumed to hold.
Assumption A1. (i) The vector process {ut := (u1t u2t . . . uqt)

′; t ∈ Z} is q-dimensional
orthonormal white noise;
(ii) the n-dimensional processes {ξξξn := (ξ1t ξ2t · · · ξnt)

′; t ∈ Z} are zero-mean stationary
for any n; moreover, ξi,t1 ⊥ uj,t2 for any i, j, t1 and t2, and

(iii) the one-sided filters bij(L) :=
∞
∑

k=1

bijkL
k have square summable coefficients:

∞
∑

k=1

b2
ijk < ∞ for all i ∈ N and j = 1, . . . , q.

The processes {ujt, t ∈ Z}, j = 1, . . . , q, are called the common shocks or factors. The
random variables ξit and χit are called the idiosyncratic and common components of Xit,
respectively.
Assumption A2. For all n, the vector process Xnt := (x1t x2t . . . xnt)

′ is a linear
process, with a representation of the form Xnt =

∑∞
k=−∞ CkZt−k, where Zt is full-rank

n-dimensional white noise with finite fourth order cumulants, and the n × n matrices
Ck = (Cij,k) are such that

∑∞
k=−∞ |Cij,k||k|1/2 < ∞.

Under this form, Assumption A2 is sufficient for a consistent estimation of the model
(see Forni et al. 2000), provided that the number q of factors is known. Consistent
identification of q, as we shall see, is more demanding: denoting by ci1...iℓ(k1, . . . , kℓ−1) :=
cum

(

Xi1(t + k1), . . . ,Xiℓ−1
(t + kℓ−1),Xiℓ(t)

)

the cumulant of order ℓ of Xi1(t+k1), . . . ,Xiℓ−1
(t+

kℓ−1),Xiℓ(t), it also requires some uniform decrease, as the lags tend to infinity, of ci1...iℓ(k1, . . . , kℓ−1)
up to the order ℓ = 4.
Assumption A2′. Same as Assumption A2, but the convergence condition on the Cij,k’s
is uniform: supi,j∈N

∑∞
k=−∞ |Cij,k||k|1/2 < ∞. Moreover, for all 1 ≤ ℓ ≤ 4 and all 1 ≤ j <

ℓ,

sup
i1,...,iℓ





∞
∑

k1=−∞

. . .
∞
∑

kℓ−1=−∞

(1 + |kj |) |ci1,...,iℓ(k1, . . . , kℓ−1)|


 < ∞ (2.2)

This assumption is the uniform version of a condition considered in Section 4.3 of
Brillinger (1981) for the consistency of periodogram-based spectral estimation.
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Denote by ΣΣΣn(θ), θ ∈ [−π, π], the spectral density matrix of Xnt, with elements σij(θ),
and by λn1(θ), . . . , λnn(θ) the corresponding eigenvalues in decreasing order of magnitude.

Similarly, with obvious notation, let λχ
nj(θ) and λξ

nj(θ) be the eigenvalues associated with

the spectral densities ΣΣΣχ
n(θ) and ΣΣΣξ

n(θ) of χχχnt and ξξξnt, respectively. Such eigenvalues
(actually, the functions θ 7→ λ(θ)) are called dynamic eigenvalues.

Assumption A3. The first idiosyncratic dynamic eigenvalue λξ
n1(θ) is uniformly (with

respect to θ ∈ [−π, π]) bounded, i.e. supθ∈[−π,π] λ
ξ
n1(θ) < ∞ as n → ∞.

Assumption A4. The qth common dynamic eigenvalue λχ
nq(θ) diverges θ−a.e. in [−π, π]

as n → ∞.
Assumptions A3 and A4 play a key role in the identification of the common and

idiosyncratic components in (2.1). However, only the Xit’s are observable, and these
assumptions thus involve the unobserved quantities χχχnt and ξξξnt. This may seem unrealistic,
and the following proposition provides a Xit-based counterpart.
Proposition 1 (Forni and Lippi 2001) Let Assumption A2 (or A2′) hold. Then, Assump-
tions A1, A3, and A4 are satisfied iff the first q eigenvalues of ΣΣΣn(θ) diverge as n → ∞,
a.e. in [−π, π], while the (q + 1)th one is uniformly bounded.

Forni et al. (2000) show how, under Assumptions A1-A4, the common components
χit and the idiosyncratic components ξit are asymptotically identified as n → ∞ and
are consistently estimated, as both n and T → ∞, by means of the dynamic principal
components method. Dynamic principal components are the solutions of an optimization
problem, the main features of which we briefly summarize in the following proposition.
Proposition 2 (Brillinger 1981, Theorem 9.3.1.) Let {Yt, t ∈ Z} be an n-
dimensional stationary process, with zero-mean and rational spectrum ΣY (θ). Denote by
Vj(θ) the eigenvector associated with the jth largest eigenvalue µj(θ) of ΣΣΣY (θ). Then, the
coefficients of the (q × n) filter b(L) :=

∑

k bkL
k and the coefficients of the (n × q) filter

c(L) :=
∑

k ckL
k that minimize

E{[Yt − c(L)b(L)Yt]
∗′[Yt − c(L)b(L)Yt]} (2.3)

are

bk =
1

2π

∫ π

−π
B(θ)e-ikθdθ and ck =

1

2π

∫ π

−π
C(θ)e-ikθdθ, (2.4)

respectively, where C(θ) = [V1(θ) · · · Vq(θ)] and B(θ) = C(θ)∗′. The resulting minimum
of (2.3) is

∫ π
−π{

∑

j>q µj(θ)}dθ.
The first q dynamic principal components are defined as the components of the ran-

dom q-dimensional vector c(L−1)′Yt. Under model (2.1) and Assumptions A1-A4, Forni
et al. (2000) show that the common component χχχnt can be consistently (as n → ∞)
reconstructed (with Xnt playing the role of Yt) by

χ
(n)
it := (K(L)Xnt)it , with K(L) := c(L)c(L−1)′. (2.5)

This χ
(n)
it of course cannot be computed from the data, since it involves the true

spectral density matrix ΣΣΣn(θ) and the true number of factors q. The spectral density
ΣΣΣn(θ) however can be estimated from the data by means of periodogram or covariogram
smoothing methods. Provided that q is known, applying (2.5) to the estimated spectral
density yields a consistent estimator of χχχnt (Forni et al. 2000, 2004). Determining q prior
to this estimation step thus is absolutely crucial.

4



3 An information criterion

3.1 Population level

In practice, only finite segments, of length T , of a finite number n of {Xit} processes are
observed, and the selection of q has to be based on this finite-sample information. As a
preparation, however, we first prove a consistency result, as n → ∞, at population level,
that is, assuming that observations are made over t ∈ Z, so that the spectral density
matrices ΣΣΣn(θ) are known. Only asymptotics in n are of interest here. We define a
(deterministic) selection criterion (3.1) and provide sufficient conditions for its consistency
as the size n of the panel tends to infinity.

As mentioned in Proposition 2, the estimated common components χ
(n)
it in (2.5) can

be viewed as solutions of the optimization problem (2.3). For fixed k, this optimization is
equivalent to minimizing n−1E{[Xnt−K(L)Xnt]

∗′[Xnt−K(L)Xnt]} with respect to K(L).
The corresponding minimum is then n−1 ∑n

j=k+1{
∫ π
−π λnj(θ)dθ}.

The information criterion approach consists in selecting the number of factors as

q̂n := argmin0≤k≤kmax
Ln(k), where Ln(k) :=

1

n

n
∑

j=k+1

∫ π

−π
λnj(θ)dθ + kp(n), (3.1)

where qmax is some predefined upper bound for the actual q, and p(n) is an adequate
penalty function. Note that p(n) here is deterministic, and depends only on n since the
spectral density matrices ΣΣΣn(θ) are assumed to be known; the solution q̂n is deterministic
as well, since ΣΣΣn(θ) is.

The intuition behind (3.1) is clear: for the bounded eigenvalues (k > q), the averaged
contribution 1

n

∑n
j=k+1

∫ π
−π λnj(θ)dθ should be “small”. The penalty kp(n), as n → ∞,

should not be too large, or q will be underestimated; still, it should be large enough to avoid
overestimation. This delicate balance between over- and under-estimation is intimately
related to the rate of divergence, as n → ∞, of the diverging eigenvalues. In order to
impose consistency conditions on the penalty p(n), an assumption about the behavior of
the diverging eigenvalues is needed.
Assumption A5. (i) All diverging eigenvalues of ΣΣΣn(θ) diverge linearly in n, that
is, there exist 2q constants 0 < c−i ≤ c+

i , i = 1, ..., q, with c+
i < c−i−1 and (θ - a.e.)

c−i ≤ liminfn→∞n−1λni(θ) ≤ limsupn→∞n−1λni(θ) ≤ c+
i , θ−a.e, i = 1, ..., q, n ∈ N.

(ii) The non-diverging eigenvalues λni(θ) (i > q) are uniformly bounded away from zero,
i.e., there exists cλ > 0 such that, for all i > q and n ∈ N, λni(θ) > cλ, θ-a.e.

The linear divergence in (i) has a natural interpretation: the influence of the common
shocks, in some sense, is “stationary along the cross-section”. For a detailed discussion of
this assumption, we refer to Forni et al. (2004).

The following lemma states a consistency result (as n → ∞) for q̂n at population level;
see the appendix for the proof.
Lemma 1. Let q̂n be defined in (3.1), and let the penalty p(n) be such that

lim
n→∞

p(n) = 0 and lim
n→∞

np(n) = ∞. (3.2)

Then, under Assumptions A1-A5, limn→∞ q̂n = q.
Examples of penalty functions satisfying (3.2) are c/

√
n or c log(n)/n, where c is an

arbitrary positive real number. Lemma 1 of course has little practical consequences. But
the pedagogical value of its proof, which is extremely simple, is worth some attention.
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First of all, it very clearly appears from that proof, that the 1
n coefficient, in the definition

of the criterion Ln(k) and the second assumption on the penalty (np(n) → ∞) are directly
related to the O(n) divergence rate in Assumption A5: a different divergence rate (r(n))
would result in a different coefficient (1/r(n)), and a different assumption on the penalty
(r(n)p(n) → ∞). A second remark is that a penalty p(n) leads to consistent estimation
of q iff cp(n) does, where c is an arbitrary positive constant. Multiplying the penalty
with an arbitrary constant thus has no influence on the asymptotic performance of the
identification method. But it obviously quite dramatically may affect the actual result for
given n. This will be exploited later on in the implementation of the criterion (Section 4).

In practical situations, the spectral density matrix has to be estimated from observed
series with finite length T ; this series length moreover quite naturally has to play a role
in the penalty function.

3.2 Sample level : periodogram smoothing estimation

In this section, we derive sufficient conditions for consistent estimation of q as both n
and T tend to infinity. As mentioned at the end of Section 2, one possibility consists in
using a periodogram-smoothing estimate Σ

T
n (θ) of Σn(θ). Based on the nT observations

{Xit; t = 1, ..., T, i = 1, ..., n}, this estimator is defined as

Σ
T
n (θ) :=

2π

T

T−1
∑

t=1

W (T )
(

θ − 2πt

T

)

I
T
n

(

2πt

T

)

, (3.3)

where I
T
n (α) :=

1

2πT

[

T−1
∑

t=1

Xnt exp(−iαt)

] [

T−1
∑

t=1

X
′
nt exp(iαt)

]

and

W (T )(α) :=
∞
∑

j=−∞

W (B−1
T (α + 2πj)),

with a positive even weight function W (α), and a bandwidth BT . This estimator Σ
T
n (θ) is

consistent for any n, as T → ∞, provided that W and BT satisfy the following assumption.
Assumption B1. (i) BT > 0, BT → 0, and BT T → ∞, as T → ∞, and
(ii) α 7→ W (α) is a differentiable positive even function, of bounded variation, with bounded
derivative W ′, satisfying

∫ ∞
−∞ W (α)dα = 1 and

∫ ∞
−∞ |α|3W (α)dα < ∞. However, such

fixed-n consistency is not sufficient here, and some uniformity over the cross-section is
needed. This uniformity can be obtained by requiring some uniformity in the smoothness
of the spectrum and its derivatives.
Assumption B2. The entries σij(θ) of Σn(θ) are uniformly (in n and θ) bounded, and
have uniformly (in n and θ) bounded derivatives up to the order three: there exists Q < ∞
such that supi,j∈N supθ

∣

∣

∣

∣

dk

dθk σij(θ)

∣

∣

∣

∣

≤ Q, k = 0, 1, 2, 3.

Assuming that Assumptions A2′, B1, and B2 hold, we have the following uniform
consistency result (see equation (7.4.20) in Brillinger 1981): there exist constants K1, K2,
and T0 such that, for any T > T0,

sup
n

max
1≤i,j≤n

sup
θ

[

E
∣

∣

∣ΣΣΣT
n (θ) −ΣΣΣn(θ)

∣

∣

∣

2

ij

]

≤ K1B
−1
T T−1 + K2B

4
T . (3.4)

The proof of this results is long but easy; it mainly consists in going through all
the steps of Brillinger’s proofs (Section 7.4), and taking into account the uniformity of
Assumption A2′ and B2.
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The stochastic information criterion we are proposing is defined, in terms of the eigen-
values λT

ni(θ) of the estimated spectral density matrices Σ
T
n (θ), as

ICT
n (k) :=

1

n

n
∑

i=k+1

1

T − 1

T−1
∑

l=1

λT
ni(θl) + kp(n, T ), 0 ≤ k ≤ kmax < ∞, (3.5)

where p(n, T ) is a penalty function, θl := 2πl/T for l = 1, . . . , T − 1, and qmax is some
predetermined upper bound. For given n and T , the number of factors q is estimated as

qT
n := argmin0 ≤k≤qmaxICT

n (k). (3.6)

The following consistency property is the first main result of this paper.
Proposition 3. Let Assumptions A1, A2′, A3 through A5, B1, and B2 hold. Then,
P(qT

n = q) → 1 as n and T both tend to infinity in such a way that

(i) p(n, T ) → 0, (ii) min

[

n,B−2
T , B

1/2
T T 1/2

]

p(n, T ) → ∞. (3.7)

Proof. See the Appendix.
Observe that if p(n, T ) is an appropriate penalty function, that is, if (3.7) holds, then

cp(n, T ), where c is an arbitrary positive real, also is appropriate.

3.3 Sample level : covariogram smoothing estimation

The consistency conditions in Proposition 3 are derived for the periodogram smoothing
estimator (3.3) of ΣΣΣn(θ). For computational convenience, however, covariogram smoothing
estimation is preferable in the practical implementation of the Forni et al. (2000) method.
The covariogram smoothing estimator of ΣΣΣn(θ) is defined as

ΣΣΣ∗T
n (θ) :=

1

2π

MT
∑

u=−MT

w(M−1
T u)ΓΓΓT

nue−iuθ (3.8)

where ΓΓΓT
nu denotes the sample cross-covariance matrix of Xnt and Xn,t−u based on T

observations, w(α) is a positive even weight function, and MT is a truncation parameter.
The estimator Σ

∗T
n (θ) is consistent for any n, as T → ∞, provided that w and MT satisfy

the following assumption.
Assumption B1′. (i) MT > 0, MT → ∞, and MT T−1 → 0, as T → ∞, and
(ii) α 7→ w(α) is even, piecewise continuous, three times boundedly differentiable, and
satisfies w(0) = 1, |w(α)| ≤ 1 for all α, and w(α) = 0 for |α| > 1.

Under Assumptions A2′, B1′, and B2, we have the following uniform consistency result:
there exist constants L1, L2, and T0 such that

sup
n

max
1≤i,j≤n

sup
θ

[

E
∣

∣

∣ΣΣΣ∗T
n (θ) −ΣΣΣn(θ)

∣

∣

∣

2

ij

]

≤ L1MT T−1 + L2M
−4
T (3.9)

for any T > T0. As in the periodogram smoothing case, the proof of this result is long
but easy; it mainly consists in going through all the steps of the proof of Theorem 5A in
Parzen (1957), and taking into account the uniformity of Assumption A2′, B1′, and B2.
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Associated with the covariogram smoothing estimator ΣΣΣ∗T
n (θ) and the penalty function

p(n, T ), consider the information criterion

IC∗T
1;n(k) :=

1

n

n
∑

i=k+1

1

2MT + 1

MT
∑

l=−MT

λ∗T
ni (θl) + kp(n, T ), 0 ≤ k ≤ qmax (3.10)

where θl := πl/(MT + 1/2) for l = −MT , . . . ,MT , and qmax is some predetermined upper
bound; the eigenvalues λ∗T

ni (θ) are those of ΣΣΣ∗T
n (θ).

This criterion has a structure comparable to that of Bai and Ng (2002). In a Corollary
to their Theorem 2, these authors also show that a logarithmic form of their criterion has
similar consistency properties as the original one. Experience seems to indicate, more-
over, that this logarithmic form has better finite sample performances. We therefore also
consider the criterion

IC∗T
2;n(k) := log





1

n

n
∑

i=k+1

1

2MT + 1

MT
∑

l=−MT

λ∗T
ni (θl)



 + kp(n, T ), 0 ≤ k ≤ qmax, (3.11)

Depending on the criterion adopted, the resulting estimated number of factors, for
given n and T , is

q∗Ta;n := argmin0 ≤k≤qmaxIC∗T
a;n(k), a = 1, 2. (3.12)

The following proposition provides sufficient conditions for the consistency of both q∗T1;n

and q∗T2;n (see the appendix for a proof).
Proposition 4. Let Assumptions A1, A2′, A3 through A5, B1′, and B2 hold. Then,
P(q∗Ta;n = q) → 1 for a = 1, 2 as n and T tend to infinity, in such a way that

(i) p(n, T ) → 0, and (ii) min
(

n,M2
T ,M

−1/2
T T 1/2

)

p(n, T ) → ∞. (3.13)

Here again, if p(n, T ) is an appropriate penalty function, then cp(n, T ), where c is an
arbitrary positive real, also is; for given n and T , a penalty function p(n, T ), although
satisfying (3.13), can be arbitrary bad.

4 A practical guide to the selection of q

As emphasized in the previous section, if our identification procedures are consistent for
penalty p(n, T ), they also are for any penalty of the form cp(n, T ), where c ∈ R

+. Impor-
tant as they are, the above consistency results thus are of limited practical value. In this
section, we show how this degree of freedom in the choice of c can be exploited. We first
give some theoretical considerations, which we check on two examples (Examples 1 and
2) before describing a practical implementation of our method. In Section 5.1, we vali-
date the method through simulation; in Section 5.2, we apply it to a dataset of quarterly
macroeconomic indicators.

Denote by q∗Tc;1;n and q∗Tc;2;n the number of factors resulting from applying (3.10) or
(3.11), respectively, with penalty cp(n, T ): as both n and T in practice are fixed, the
only information we can obtain on the functions (n, T ) 7→ q∗Tc;a;n is to be obtained from

J-tuples of the form q
∗Tj
c;a;nj , a = 1, 2, j = 1, . . . J , where 0 < n1 < n2 < . . . < nJ = n,
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and 0 < T1 < T2 < . . . < TJ = T . For any fixed value of (nj , Tj), q
∗Tj
c;a;nj clearly is a

nonincreasing function of c: for given a, the curves [nj, Tj ] 7→ q
∗Tj
c;a;nj thus never cross each

other. The typical situation is as follows (for simplicity, we drop a subscripts).
Assume that q > 0. If we let c = 0 (no penalty at all—this is thus a non-valid value

of c), q
∗Tj

0;nj
is increasing with j, and would tend to infinity if n and T would. If c > 0 is “very

small” (severe underpenalization), although Proposition 4 applies, the situation for finite

(n, T ) will not be very different: q
∗Tj
c;nj is still an increasing function of j, and only would

redescend and tend to q (as implied by Proposition 4) if n and T were allowed to increase

without limits. As c grows, hence also the penalization, this increase of j 7→ q
∗Tj
c;nj is less

and less marked; for c large enough, it eventually decreases, or even may be decreasing
from the beginning. A common feature of all these underpenalized cases however is that

the variability among the J values of q
∗Tj
c;nj , j = 1, . . . , J , is high; this variability can be

captured, for instance, by the mean squared deviation J−1 ∑J
j=1

(

q
∗Tj
c,nj − J−1 ∑J

j=1 q
∗Tj
c,nj

)2

or its square root.
Let us now consider, quite on the contrary, a “very large” value of c, hence severely

overpenalized q
∗Tj
c;nj ’s. If c is large enough, q

∗Tj
c;nj will be identically zero for all [nj , Tj ]’s,

and convergence to q will not be visible for the values of n and T at hand. As c decreases,
this convergence is observed for smaller and smaller values of (n, T ) yielding horizontal
segments at underestimated values of q.

In view of the monotonicity of c 7→ q
∗Tj
c;nj , somewhere between those “small” underpe-

nalizing values of c (with j 7→ q
∗Tj
c;nj curves eventually tending to q from above) and the

“large” overpenalizing ones (with j 7→ q
∗Tj
c;nj curves tending to q from below), a range of

“moderate” values of c, yielding a stable behavior of j 7→ q
∗Tj
c;nj ≈ q, typically exists. This

stability can be assessed, for instance, via the empirical standard error, for given c, of the

q
∗Tj
c;nj ’s, j = 1, . . . , J (see (4.14) below).

As an illustration, let us consider two examples:

– in Example 1, a panel of size n = 200 and length T = 200 was generated. The
common part was modelled with q = 3 factors and MA loadings, see Section 5.1 for
details. The truncation parameter was set as MT = [0.7

√
T ];

– in Example 2 a panel of size n = 150 and length T = 120 was generated. The
common part was modelled with q = 2 factors and AR loadings, see Section 5.1 for
details. The truncation parameter was set as MT = [0.5

√
T ].

In both cases, a triangular window was used, qmax was set to 19, and the penalty

p3(n, T ) =
(

min
[

n,M2
T ,M

−1/2
T T 1/2

])−1
log

(

min
[

n,M2
T ,M

−1/2
T T 1/2

])

was chosen. The

values of c ∈ [0, 2] were explored, with a grid step of size 0.01.

– Example 1. The graphs of (nj , Tj) 7→ q
∗Tj
c,nj and

c 7→ Sc :=






J−1

J
∑

j=1



q
∗Tj
c,nj − J−1

J
∑

j=1

q
∗Tj
c,nj





2






1/2

(4.14)

are presented for nj = Tj = 50, 60, . . . , 200 and various values of c in Figure 1, based
on criterion IC∗T

1;n(k) in (a1) and (a2), on criterion IC∗T
2;n(k) in (b1) and (b2). The
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typical patterns described are all present in (a1) as well as in (b1). Inspection of
(a2) in conjunction with (a1) reveals the very characteristic fact that Sc vanishes
over certain intervals, corresponding with a stable behavior of the corresponding
graphs in (a1): (a2) yields four “stability intervals”, (0, 0.02], [0.20, 0.29], [0.36, 0.48]
and [0.54, 0.70], corresponding to a selection of q = qmax = 19, 3, 2, and 1 factors,
respectively. Those “stability intervals” are separated by “instability” intervals, cor-
responding to more fluctuations in (a1) curves. The correct value of q, in (a1), is

obtained for c = 0.25. Note that q
∗Tj

0.15,nj
, as j ↑, converges to q

∗Tj

0.25,nj
from above,

while q
∗Tj

0.35,nj
converges to q

∗Tj

0.25,nj
from below and that c = 0.25 is the only value

ĉ of c in (a1) exhibiting that pattern. The same comments can be made for the
logarithmic version of the criterion: see (b1). Moreover, this ĉ corresponds to the
second “stability interval” in the c 7→ Sc graphs (a2) and (b2), while the first “sta-
bility interval” (namely, (0, 0.02] in (a2), and (0, .24] in (b2)) clearly is associated
with severe underpenalization, hence the maximal possible number of factors qmax;
Figure (b2) in this respect provides a somewhat clearer picture than (a2).

This example suggests that, irrespective of the choice of IC∗T
1;n or IC∗T

2;n, the selection

of q should be based on an inspection of the family of curves (nj , Tj) 7→ q
∗Tj
c,nj , trying to

spot (as in Figure 1(a1)) the curve (and the associated value of c) the neighbors of which
(corresponding to c ± δ) tend to, both from above (for δ < 0) as from below (for δ > 0).
This search is greatly facilitated, and can be made automatic, by considering also the
c 7→ Sc mapping, and choosing q∗Tĉ,n, where ĉ belongs to the second “stability interval”.

The relevant figure then is a joint plot of c 7→ Sc and c 7→ q∗Tc,n: see Figure 2 (c1) and (c2).

– Example 2. Here we apply the automatic selection rule just described, but with
nj = 80 + 10j, j = 1, . . . , J = 7, Ti = 60 + 10i, i = 1, . . . , I = 6, and

Sc :=






(IJ)−1

∑

i,j



q∗Ti
c,nj

− (IJ)−1
∑

i,j

q∗Ti
c,nj





2






1/2

; (4.15)

the relevant plots of c 7→ Sc and c 7→ q∗Tc,n are given in Figure 3. For the IC∗T
1;n(k)

criterion, the stability intervals (in Figure (d1)) are (0, 0.02], [0.17, 0.54], [0.63,
0.93], and [1, 2], yielding q∗Tc,n = 19, 2 (correct identification), 1, and 0, respectively.

The situation again is rather clearer with IC∗T
2;n(k) (Figure (d2)), with stability

intervals (0, 0.26], [0.39, 0.95], [1.06, 1.12], and [1.2, 2], yielding q∗Tc,n = 19, 2 (correct
identification), 1, and 0, respectively. In both cases, thus, the second stability interval
identifies the correct value q = 2.

When T is small relative to n, which is typically the case in macroeconomic data sets,
one may like to look at J-tuples n1, . . . , nJ only, keeping T fixed. The monotoniocity of
c 7→ q∗Tc;nj

still holds, and the same discussion as above can be made, though all patterns

may not be present (typically, the “redescending” to q of j 7→ q∗Tc;nj
may not be observed).

Finally, whenever the actual value of q is zero (no common component at all), the same
analysis can be made, but the overpenalization part of the picture is not present: typically,

no (nj , Tj) 7→ q
∗Tj
c,nj curve will tend to any other integer from below, and only two stability

intervals will appear in the c 7→ Sc plots, the second one extending to the maximal possible
value of c, yielding q∗Tc,n = 0.

Summing up, our identification method in practice is to be performed as follows.

10



(0) Preliminary to the analysis, it may be worth choosing a random permutation of the
n cross-sectional items, as some irrelevant structure may exist in the initial ordering
of the panel;

(i) fix the upper bound qmax on the number of factors;

(ii) choose a covariogram smoothing function w(α) satisfying Assumption B1∗(ii);

(iii) choose T 7→ MT so that Assumption B1′(i) be satisfied, e.g., MT := [0.5
√

T ] or
MT := [0.7

√
T ];

(iv) choose a penalty function (n, T ) 7→ p(n, t) and a criterion (IC∗T
1;n(k) or IC∗T

2;n(k)),
and define p∗c(n, t) = cp(n, t) for a suitable set C ⊂ R

+ of values of c (e.g. C :=
[0.01, 0.02, . . . , 3]);

(v) define sequences n1 < n2 < . . . < nJ = n and T1 < T2 < . . . < TI = T (e.g., for n =
150, set nj := 40 + 10j, j = 1, . . . , 11, for T = 100, set Ti := 70 + 10i, i = 1, . . . , 3);
if T is too small, let I = 1, that is, keep T fixed;

(vi) defining Sc as in (4.14) or (4.15), identify the number of factors as q̂ := q∗Tĉ,n, where ĉ
is selected as explained above (see Examples 1-2), either by inspecting the (nj , Tj) 7→
q
∗Tj
c,nj curves, or by selecting the second stability interval of c 7→ Sc.

5 Numerical study

5.1 Simulations

In order to evaluate the performance of the selection strategy proposed in the previous
section, the following Monte-Carlo experiment has been conducted. Three datasets were
generated, with q = 1, 2, and 3 factors, respectively, from the model

xnt = Bnq(L)ut + ent, (n, T ) = (70, 60), (90, 90), (150, 120),

where
– the random shocks ut = (u1t, ..., uqt)

′, the idiosyncratic components ent = (e1t, ..., ent)
′,

and the loading filters [Bnq(L)]rs = brs(L), r = 1, ..., n, s = 1, ..., q are randomly generated
as follows:

– the vectors ut and et are i.i.d., with ut ∼ N(0, Iq),

– the eit’s are of the form ei,t = difi,t, fit = yi,t+0.1yi,t−1+0.1yi+1,t, with yit ∼ N(0, 1)
and di ∼ U(0.9, 1.1) mutually independent and independent of the ut’s;

– the filters bik(L) (i = 1, ..., n, k = 1, ..., q) are independently (from the ut’s and
et’s) generated by one of the following two devices:

(MA loadings): bik(L) = b0
ik + b1

ikL + b2
ikL

2 with (b0
ik, b1

ik, b2
ik) ∼ N(0, I);

(AR loadings): bik = b0
ik(1 + b1

ikL)−1, with b0
ik ∼ N(0, 1) and b1

ik ∼ U(−0.8, 0.8),
mutually independent;
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– for each i, the variance of fi,t and that of the common component
∑q

k=1 bik(L)uit

were normalized to 0.5.
In each case, the number of replications was set to 500, the upper bound qmax to 19.

Spectral density matrices were estimated with a triangular smoothing function w(v) = 1−
|v| and two different values of MT , MT = [0.5

√
T ] and MT = [0.7

√
T ]. For each pair (n, T ),

the automatic identification rule described in the previous section was performed with
sequences nj := n − 10j, j = 1, . . . , 3, Ti := T − 10i, i = 1, . . . , 3, C := [0.01, 0.02, . . . , 3],
and penalty functions

p1(n, T ) =
(

M−2
T + M

1/2
T T−1/2 + n−1

)

log
(

min
[

n,M2
T ,M

−1/2
T T 1/2

])

p2(n, T ) =
(

min
[

n,M2
T ,M

−1/2
T T 1/2

])−1/2

p3(n, T ) =
(

min
[

n,M2
T ,M

−1/2
T T 1/2

])−1
log

(

min
[

n,M2
T ,M

−1/2
T T 1/2

])

,

respectively.
Tables 1 and 2 provide, for each case, the percentages (over the 500 replications) of

under-, correct, and over-identification of the number of factors. Inspection of the results
show that identification is uniformly very good. The choice of MT , the penalty function
and the criterion (IC∗T

1;n(k) or IC∗T
2;n(k)) apparently have very little impact when n and

T are large; larger values of q (q = 3) and the MA loadings in this respect are “more
difficult” than smaller qvalues (q = 1) and AR loadings.

5.2 A real data application

The proposed criteria thus seems to work rather well in simulated data. We now consider
a real case study. We build a panel of n = 62, T = 40 by pooling seven quarterly
macroeconomic indicators for all countries of the Eurozone, excluding Luxembourg and
Ireland, from 1995 to first quarter 2005 (source: Eurostat). For all those countries, the
panel includes seasonally adjusted series of imports of goods and services (millions of euros,
at 1995 prices and exchange rates), exports of goods and services (millions of euros, at
1995 prices and exchange rates), harmonized consumer price indices (3rd, 6th, 9th, 12th
months values), quarterly production index, total industry (excluding construction), gross
domestic product at market prices (constant prices, millions of euros, at 1995 prices and
exchange rates), final consumption expenditure of households (millions of euros, at 1995
prices and exchange rates), gross fixed capital formation (millions of euros, at 1995 prices
and exchange rates). Only the Austrian quarterly production index is missing. Data
are taken in log-differenced and then normalized by their sample standard deviations.
The truncation parameter is MT = [0.5

√
T ] = 3 and nj = 47 + j, j = 1, . . . , 15. A

triangular window was used, and the penalty function p1(n, T ) was chosen. The automatic
identification based on IC∗T

2;n(k) yields the stability interval [0.44, 0.63], and the number
of factors q = 1 is identified: see Figure 5.

6 Concluding remarks

This paper is filling an important gap in the literature on dynamic factor models, by
providing an efficient yet flexible tool for identification of the number q of factors. We
establish the consistency, as both n and T approach infinity in an appropriate way, of two
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methods, based on periodogram and covariogram smoothing, logged and non-logged cri-
teria, respectively. We also show how to take advantage of the fact that penalty functions
are defined up to a multiplicative constant. The performance of the method is evaluated
through simulation, and appears to be surprisingly good.

7 Appendix.

Proof of Lemma 1. We have to show that limn→∞

[

Ln(k) − Ln(q)
]

> 0 for all k 6= q,
k ≤ qmax < ∞. This inequality holds true provided that there exists a finite n0 such that,
for all n > n0 and k 6= q,

1

n

n
∑

j=k+1

{∫ π

−π
λnj(θ)dθ

}

+ kp(n) >
1

n

n
∑

j=q+1

{∫ π

−π
λnj(θ)dθ

}

+ qp(n).

Two cases are possible.

(a) Either k > q; then, for n sufficiently large, (k − q)p(n) > 1
n

∑k
j=q+1

{

∫ π
−π λnj(θ)dθ

}

,

since np(n) → ∞ as n → ∞; or

(b) k < q and , for n sufficiently large, 1
n

∑q
j=k+1

{

∫ π
−π λnj(θ)dθ

}

> (q − k)p(n), since

p(n) → 0 as n → ∞ and λnj(θ), j ≤ q, under Assumption E, is O(n) but not o(n).

The result follows. Q.E.D.
Before turning to the proof of Proposition 3, we prove a general result on the asymptotic

behavior of eigenvalues of (n, T )-indexed sequences of n×n random matrices, as both n and
T tend to infinity. This result relies on a matrix inequality of Weyl (1912), the importance
of which in the context of factor models was first recognized by Giannone (2004) (see also
Lemma 1 of Forni et al. 2005). Lemma 2 and Corollary 1 below collect the statements
under the form we need in the sequel; the ideas and the arguments of the proof, however,
belong to Giannone (2004).

Denote by {ζij; i, j ∈ N} a collection of complex numbers such that for all n the n× n

matrices ζζζn with entries (ζij ; 1 ≤ i, j ≤ n) be hermitian. Denote by
{

ζT
n,ij; 1 ≤ i, j ≤ n, n ∈ N, T ∈ N

}

a collection of complex-valued random variables such that similarly, for all n and T , the

n×n matrices ζζζT
n with entries

(

ζT
n,ij; 1 ≤ i, j ≤ n

)

be hermitian. Write λni(ζζζ) and λT
ni(ζζζ),

respectively, for ζζζn and ζζζT
n ’s eigenvalues in decreasing order of magnitude. The following

lemma characterizes the asymptotic behavior of λni(ζζζ) − λT
ni(ζζζ) when ζζζn − ζζζT

n converges
to zero in a sense to be made precise in (7.16) below.
Lemma 2. Assume that, for all 1 ≤ i, j ≤ n, n ∈ N and T ∈ N, there exist a positive
constant K that does not depend on n, T , i nor j, and a sequence of positive constants
MT depending on T only such that MT → ∞ as T → ∞ and

E

[

∣

∣

∣ζT
n,ij − ζij

∣

∣

∣

2
]

≤ KM−1
T . (7.16)

Then, for any ǫ > 0, there exist Bǫ and Tǫ such that, for any qmax, n and T > Tǫ,

max
1≤k≤qmax

P

[

M
1/2
T

1

n

∣

∣

∣λnk(ζζζ) − λT
nk(ζζζ)

∣

∣

∣ > Bǫ

]

≤ ǫ. (7.17)
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Corollary 1. Let Assumptions A1, A2′ , B1, and B2 hold. Then, for any ǫ > 0, there
exist Bǫ and Tǫ such that, for any fixed qmax, n and T > Tǫ,

max
1≤k≤qmax

sup
θ

P

[

min
(

B−2
T , B

1/2
T T 1/2)

∣

∣

∣

∣

∣

λT
nk(θ)

n
− λnk(θ)

n

∣

∣

∣

∣

∣

> Bǫ

]

≤ ǫ.

Proof of Lemma 2. Weyl’s inequality implies that, for any hermitian matrices A and B,
with eigenvalues λj(A) and λj(B), respectively, maxj |λj(B) − λj(A)|2 ≤ tr ((B − A)(B − A)′) .
It follows that, for all n, T , and k,

∣

∣

∣λT
nk(ζζζ) − λnk(ζζζ)

∣

∣

∣

2
≤ tr

(

(ζζζT
n − ζζζn)(ζζζT

n − ζζζn)′
)

=
n

∑

i=1

n
∑

j=1

∣

∣

∣ζT
n,ij − ζij

∣

∣

∣

2
.

Taking expectations, we thus have, in view of (7.16),

E

[

∣

∣

∣λT
nk(ζζζ) − λnk(ζζζ)

∣

∣

∣

2
]

≤
n

∑

i=1

n
∑

j=1

E

[

∣

∣

∣ζT
n,ij − ζij

∣

∣

∣

2
]

≤ n2KM−1
T

for all n, T , and k. The Markov inequality completes the proof. Q.E.D.
Proof of Corollary 1. From (3.4) there exist constants K1, K2, and T0 such that

supn max1≤i,j≤n supθ

[

E
∣

∣

∣ΣΣΣT
n (θ) −ΣΣΣn(θ)

∣

∣

∣

2

ij

]

≤ K1B
−1
T T−1 +K2B

4
T for any T > T0. There-

fore, ΣΣΣT
n (θ) and ΣΣΣn(θ) for all θ satisfy the assumption (7.16) of Lemma 2, with a constant

K = max [K1,K2] and a rate MT = max
[

B−1
T T−1, B4

T

]

that do not depend on θ. The

corollary follows.

Proof of Proposition 3: We will prove that, under (3.7), P
[

ICT
n (q) < ICT

n (k)
]

→ 1

for all k 6= q, k ≤ qmax, as min(n, T ) → ∞. For all k < q,

ICT
n (q) < ICT

n (k) (7.18)

if and only if
∑q

i=k+1
1

T−1

∑T−1
l=1

λT
ni

(θl)
n > (q − k)p(n, T ), that is, in view of Corollary 2, if

and only if

q
∑

i=k+1

1

T − 1

T−1
∑

l=1

[

λni(θl)

n
+ K1n(T )

]

> (q − k)p(n, T ), (7.19)

where K1n(T ) is OP

(

max
[

B2
T , B

−1/2
T T−1/2

])

uniformly in n and θ. By Assumption E, the

first q eigenvalues λni(θ) diverge linearly in n, which implies that there exists a dense set Ω

in [−π, π] such that supθ
λni(θ)

n = O(1) and lim infn→∞ supθ∈Ω
λni(θ)

n > 0, for i = k+1, ..., q.
Since K1n(T ) converges to 0, a sufficient condition for (7.18) to hold with probability one
as min(n, T ) → ∞ is that p(n, T ) → 0 as min(n, T ) → ∞.

Next, for any k > q, (7.18) holds if and only if

k
∑

i=q+1

1

T − 1

T−1
∑

l=1

λT
ni(θl)

n
< (k − q)p(n, T ),

that is, in view of Corollary 1, if and only if

k
∑

i=q+1

1

T − 1

T−1
∑

l=1

[

λni(θl)

n
+ K2n(T )

]

< (k − q)p(n, T ), (7.20)
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where K2n(T ) is OP

(

max
[

B2
T , B

−1/2
T T−1/2

])

uniformly in n and θ. By Assumption

E, λn q+1(θ), λn q+2(θ), . . . are bounded uniformly in n and θ. Hence, supθ
λni(θ)

n =
O(n−1) as n → ∞ for i = q + 1, . . . , k . It is sufficient, for inequality (7.18) to hold
with probability arbitrarily close to one as min(n, T ) → ∞, that np(n, T ) → ∞ and

min
[

B−2
T , B

1/2
T T 1/2

]

p(n, T ) → ∞, as min(n, T ) → ∞. The result follows. Q.E.D.

Turning to covariogram estimation, the proof of Proposition 4 relies on the following
counterpart of Corollary 1.
Corollary 2. Let Assumptions A1, A2′, B1′, and B2 hold. Then, for any ǫ > 0, there
exist Mǫ and Tǫ such that, for any fixed qmax, n and T > Tǫ,

max
1≤k≤qmax

sup
θ

P

[

min
(

M2
T ,M

−1/2
T T 1/2)

∣

∣

∣

∣

∣

λ∗T
nk (θ)

n
− λnk(θ)

n

∣

∣

∣

∣

∣

> Mǫ

]

≤ ǫ.

Proof of Corollary 2. From (3.9) there exist constants L1, L2, and T0 such that

supn max1≤i,j≤n supθ

[

E
∣

∣

∣ΣΣΣ∗T
n (θ) −ΣΣΣn(θ)

∣

∣

∣

2

ij

]

≤ L1MT T−1 + L2M
−4
T for any T > T0.

Therefore, ΣΣΣ∗T
n (θ) and ΣΣΣn(θ) for all θ satisfy the assumption (7.16) of Lemma 2, with

a constant K = max [L1, L2] and a rate MT = max
[

MT T−1,M−4
T

]

that do not depend

on θ. The corollary follows. Q.E.D.

Proof of Proposition 4: We will prove that P
[

IC∗T
a;n(q) < IC∗T

a;n(k)
]

→ 1 for all

k 6= q, k ≤ qmax, a = 1, 2, as min(n, T ) → ∞ in such a way that (3.13) holds. Let
V T

n (k) :=
∑n

i=k+1
1

2MT +1

∑MT

l=−MT
λ∗T

ni (θl)/n. For all k < q,

IC∗T
1;n(q) < IC∗T

1;n(k) (7.21)

if and only if

q
∑

i=k+1

1

2MT + 1

MT
∑

l=−MT

λ∗T
ni (θl)

n
> (q − k)p(n, T ), (7.22)

that is, in view of Corollary 2, if and only if

q
∑

i=k+1

1

2MT + 1

MT
∑

l=−MT

[

λni(θl)

n
+ K1n(T )

]

> (q − k)p(n, T ), (7.23)

where K1n(T ) is OP

(

max
[

M−2
T ,M

1/2
T T−1/2

])

uniformly in n and θ. By Assumption A5,

the first q eigenvalues λni(θ) diverge linearly in n, which implies that there exists a dense
set Ω in [−π, π] such that

sup
θ

λni(θ)

n
= O(1) and lim inf

n→∞
sup
θ∈Ω

λni(θ)

n
> 0, (7.24)

for i = k + 1, ..., q. Since K1n(T ) converges to 0, a sufficient condition for (??) to hold
with probability tending to one as min(n, T ) → ∞ is that p(n, T ) → 0 as min(n, T ) → ∞.

Similarly, for the logarithmic version of the criterion,

IC∗T
2;n(q) < IC∗T

2;n(k) (7.25)

15



for k < q if and only if

log
[

V T
n (k)/V T

n (q)
]

> (q − k)p(n, T ), (7.26)

where V T
n (k) :=

∑n
i=k+1

1
2MT +1

∑MT

l=−MT
λ∗T

ni (θl)/n. In view of Corollary 2,

V T
n (q) =

n
∑

i=q+1

1

2MT + 1

MT
∑

l=−MT

[

λni(θl)

n
+ K2n(T )

]

(7.27)

for k = q, where K2n(T ) is OP

(

max
[

M−2
T ,M

1/2
T T−1/2

])

uniformly in n and θ. By

Assumption A5, the eigenvalues λni(θ), i > q are, uniformly in n and θ-a.e. in [−π, π],
bounded and bounded away from zero. Thus there exist positive constants c0 and c1 such

that P
[

c0 > V T
n (q) > c1

]

→ 1 as min(n, T ) → ∞. For k < q, we have

V T
n (k) − V T

n (q) =
q

∑

i=k+1

1

2MT + 1

MT
∑

l=−MT

[

λni(θl)

n
+ K3n(T )

]

(7.28)

where K3n(T ) is OP

(

max
[

M−2
T ,M

1/2
T T−1/2

])

uniformly in n and θ-a.e. in [−π, π]. As

(7.28) coincides with the left-hand side of (7.23), by the same argument as above, there

exists a constant c2 > 0 such that P
[

V T
n (k) − V T

n (q) > c2

]

→ 1, hence a a constant c3 > 0

such that

P
[

log
[(

V T
n (k) − V T

n (q)
)

/V T
n (q) + 1

]

> c3

]

= P
[

log
[

V T
n (k)/V T

n (q)
]

> c3

]

→ 1

as min(n, T ) → ∞. The same condition that p(n, T ) → 0 is thus sufficient for both (7.22)
and (7.26) to hold with probability tending to one as min(n, T ) → ∞.

Next, for any k > q, (7.21) holds if and only if

k
∑

i=q+1

1

2MT + 1

MT
∑

l=−MT

λ∗T
ni (θl)

n
< (k − q)p(n, T ), (7.29)

that is, in view of Corollary 2, if and only if

k
∑

i=q+1

1

2MT + 1

MT
∑

l=−MT

[

λni(θl)

n
+ K4n(T )

]

< (k − q)p(n, T ), (7.30)

where K4n(T ) is OP

(

max
[

M−2
T ,M

1/2
T T−1/2

])

uniformly in n, θ-a.e. in [−π, π]. As,

λn q+1(θ), λn q+2(θ), . . . are bounded uniformly in n and θ, supθ
λni(θ)

n = O(n−1) as n →
∞ for i = q + 1, . . . , k . For k > q, it is thus sufficient for inequality (7.21) to hold
with probability arbitrarily close to one as min(n, T ) → ∞ that np(n, T ) → ∞ and

min
[

M2
T ,M

−1/2
T T 1/2

]

p(n, T ) → ∞ as min(n, T ) → ∞.

Turning to the logarithmic criterion, (7.25) holds for k > q if and only if

log
[

V T
n (q)/V T

n (k)
]

< (k − q)p(n, T ). (7.31)

Still in view of Corollary 2, V T
n (k) =

n
∑

i=k+1

1

2MT + 1

MT
∑

l=−MT

[

λni(θl)

n
+ K5n(T )

]

, where

K5n(T ) is OP

(

max
[

M−2
T ,M

1/2
T T−1/2

])

uniformly in n and θ. By the same arguments as
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in (7.27), there exist positive constants c4 and c5 such that P
[

c4 > V T
n (k) > c5

]

→ 1 as

min(n, T ) → ∞. Similarly,

V T
n (q) − V T

n (k) =
k

∑

i=q+1

1

2MT + 1

MT
∑

l=−MT

[

λni(θl)

n
+ K6n(T )

]

,

where K6n(T ) is OP

(

max
[

M−2
T ,M

1/2
T T−1/2

])

uniformly in n and θ. This term coincides

with the left-hand side of (7.30), and the same arguments imply that V T
n (q) − V T

n (k) =

OP

(

max
[

n−1,M−2
T ,M

1/2
T T−1/2

])

as min(n, T ) → ∞. Thus,
(

V T
n (q) − V T

n (k)
)

/V T
n (k),

hence also log
[(

V T
n (q) − V T

n (k)
)

/V T
n (k) + 1

]

= log
[

V T
n (q)/V T

n (k)
]

are OP

(

max
[

n−1,M−2
T ,M

1/2
T T−1/2

])

as min(n, T ) → ∞. Consequently, it is sufficient, for inequality (7.31) to hold with proba-

bility arbitrarily close to one as min(n, T ) → ∞, that min
[

n,M2
T ,M

−1/2
T T 1/2

]

p(n, T ) →
∞, as min(n, T ) → ∞. This completes the proof. Q.E.D.
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Figure 1: Example 1. MA loadings, q = 3, n = T = 200;

MT = [0.7
√

T ]. Graphs of (nj , Tj) 7→ q
∗Tj
c;nj and c 7→ Sc for (nj, Tj) =

(50, 50), (60, 60), . . . , (200, 200) and various values of c, using penalty function p3(n, T ) :=
(

min
[

n,M2
T ,M

−1/2
T T 1/2

])−1
log

(

min
[

n,M2
T ,M

−1/2
T T 1/2

])

, qmax = 19, and ((a1), (a2))

IC∗T
1;n(k) criterion, ((b1), (b2)) IC∗T

2;n(k) criterion, respectively.
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Figure 2: Example 1. MA loadings, q = 3, n = T = 200; MT =
[0.7

√
T ]. Simultaneous plots of c 7→ Sc and c 7→ q∗Tc,n, using penalty function

p3(n, T ) :=
(

min
[

n,M2
T ,M

−1/2
T T 1/2

])−1
log

(

min
[

n,M2
T ,M

−1/2
T T 1/2

])

, qmax = 19, and

(c1) IC∗T
1;n(k) criterion, (c2) IC∗T

2;n(k) criterion, respectively.
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Figure 3: Example 2. AR loadings, q = 2, n = 150, T = 120; MT =
[0.5

√
T ]. Simultaneous plots of c 7→ Sc and c 7→ q∗Tc,n for penalty function

p3(n, T ) :=
(

min
[

n,M2
T ,M

−1/2
T T 1/2

])−1
log

(

min
[

n,M2
T ,M

−1/2
T T 1/2

])

, qmax = 19, and

(d1) IC∗T
1;n(k) criterion, (d2) IC∗T

2;n(k) criterion, respectively.
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Figure 4: Eurozone macroeconomic indicators (n = 62, T = 40). Simultaneous plots of
c 7→ Sc and c 7→ q∗Tc,n for nj = 47 + j, j = 1, . . . , 12, MT = [0.5

√
T ] = 3, penalty function

p1(n, T ) =
(

M−2
T + M

1/2
T T−1/2 + n−1

)

log
(

min
[

n,M2
T ,M

−1/2
T T 1/2

])

, and the IC∗T
2;n(k)

criterion, respectively.
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AR Model T n under-identification correct identification over-identification

MT = [0.5
√

T ] (a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)

q = 1 60 70 0 0 0 0 0 0 100 100 82 100 99 100 0 0 18 0 1 0
q = 1 90 90 0 0 0 0 0 0 100 100 84 100 99 100 0 0 16 0 1 0
q = 1 120 150 0 0 0 0 0 0 100 100 76 100 99 100 0 0 24 0 1 0
q = 2 60 70 0 0 0 0 0 0 100 99 97 99 100 99 0 1 3 1 0 1
q = 2 90 90 0 0 0 0 0 0 100 100 100 100 100 100 0 0 0 0 0 0
q = 2 120 150 0 0 0 0 0 0 100 100 100 100 100 100 0 0 0 0 0 0
q = 3 60 70 14 83 0 25 1 31 84 15 96 73 98 42 2 2 4 2 1 27
q = 3 90 90 0 4 0 0 0 0 99 95 100 100 99 100 1 1 0 0 1 0
q = 3 120 150 0 0 0 0 0 0 100 100 100 100 99 100 0 0 0 0 1 0

MT = [0.5
√

T ] (a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)

q = 1 60 70 0 0 0 0 0 0 99 100 85 100 99 100 1 0 13 0 1 0
q = 1 90 90 0 0 0 0 0 0 99 100 98 100 99 100 1 0 2 0 1 0
q = 1 120 150 0 0 0 0 0 0 100 100 96 100 100 100 0 0 4 0 0 0
q = 2 60 70 0 0 0 0 0 0 100 99 83 100 99 99 0 1 17 0 1 1
q = 2 90 90 0 0 0 0 0 0 99 100 99 100 100 100 1 0 1 0 0 0
q = 2 120 150 0 0 0 0 0 0 99 100 98 100 98 100 1 0 2 0 2 0
q = 3 60 70 8 37 0 61 2 85 90 14 71 37 96 13 2 49 29 2 2 2
q = 3 90 90 0 1 0 0 0 1 99 97 98 99 99 98 1 2 2 1 1 1
q = 3 120 150 0 0 0 0 0 0 100 100 97 100 100 100 0 0 3 0 0 0

Table 1: Relative frequencies of under-, correct and over-identification, frequencies (in %), over 500 replications, for q = 1, 2, and 3, AR
generating device, MT = [0.5

√
T ] and MT = [0.7

√
T ], applying the automatic procedure of Section 4 with (a) penalty function p1(n, T ) :=

(

M−2
T + M

1/2

T T−1/2 + n−1
)

log
(

min
[

n, M2
T , M

−1/2

T T 1/2
])

and IC∗T
1;n criterion; (b) penalty function p1(n, T ) and IC∗T

2;n criterion; (c) penalty func-

tion p2(n, T ) :=
(

min
[

n, M2
T , M

−1/2

T T 1/2
])

−1/2

and IC∗T
1;n criterion; (d) penalty function p2(n, T ) and IC∗T

2;n criterion; (e) penalty function

p3(n, T ) :=
(

min
[

n, M2
T , M

−1/2

T T 1/2
])

−1

log
(

min
[

n, M2
T , M

−1/2

T T 1/2
])

and IC∗T
1;n criterion; (f) penalty function p3(n, T ) and IC∗T

2;n criterion, re-

spectively.

22



MA Model T n under-identification correct identification over-identification

MT = [0.5
√

T ] (a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)

q = 1 60 70 0 0 0 0 0 0 44 97 99 71 9 91 56 3 1 29 91 9
q = 1 90 90 0 0 0 0 0 0 17 63 100 12 3 41 83 37 0 88 97 59
q = 1 120 150 0 0 0 0 0 0 5 17 99 0 0 3 95 83 1 100 100 97
q = 2 60 70 0 10 0 0 0 2 100 90 30 99 96 96 0 0 70 1 4 2
q = 2 90 90 0 0 0 0 0 0 99 100 90 100 99 100 1 0 10 0 1 0
q = 2 120 150 0 0 0 0 0 0 99 100 93 100 99 100 1 0 7 0 1 0
q = 3 60 70 53 100 0 87 9 100 47 0 72 11 90 0 0 0 28 2 1 0
q = 3 90 90 11 44 0 0 0 3 89 56 99 99 99 97 0 0 1 1 1 0
q = 3 120 150 0 0 0 0 0 0 100 100 100 100 100 100 0 0 0 0 0 0

MT = [0.7
√

T ] (a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)

q = 1 60 70 0 0 0 0 0 0 92 100 46 100 93 100 8 0 54 0 7 0
q = 1 90 90 0 0 0 0 0 0 99 100 63 100 99 100 1 0 37 0 1 0
q = 1 120 150 0 0 0 0 0 0 99 100 31 100 99 100 1 0 69 0 1 0
q = 2 60 70 0 5 0 0 0 3 100 95 85 100 100 97 0 0 15 0 0 0
q = 2 90 90 0 0 0 0 0 0 99 100 99 100 99 100 1 0 1 0 1 0
q = 2 120 150 0 0 0 0 0 0 99 100 99 100 99 100 1 0 1 0 1 0
q = 3 60 70 23 99 0 89 8 97 77 1 78 11 91 1 0 0 22 0 1 2
q = 3 90 90 0 12 0 0 0 9 99 88 99 98 99 89 1 0 1 2 1 2
q = 3 120 150 0 0 0 0 0 0 100 100 96 100 98 100 0 0 4 0 2 0

Table 2: Relative frequencies of under-, correct and over-identification, frequencies (in %), over 500 replications, for q = 1, 2, and 3, MA generating
device, MT = [0.5

√
T ] and MT = [0.7

√
T ], of the number q̂ of factors identified by applying the automatic procedure of Section 4 with (a) penalty

function p1(n, T ) :=
(

M−2
T + M

1/2

T T−1/2 + n−1
)

log
(

min
[

n, M2
T , M

−1/2

T T 1/2
])

and IC∗T
1;n criterion; (b) penalty function p1(n, T ) and IC∗T

2;n criterion;

(c) penalty function p2(n, T ) :=
(

min
[

n, M2
T , M

−1/2

T T 1/2
])

−1/2

and IC∗T
1;n criterion; (d) penalty function p2(n, T ) and IC∗T

2;n criterion; (e) penalty

function p3(n, T ) :=
(

min
[

n, M2
T , M

−1/2

T T 1/2
])

−1

log
(

min
[

n, M2
T , M

−1/2

T T 1/2
])

and IC∗T
1;n criterion; (f) penalty function p3(n, T ) and IC∗T

2;n criterion,

respectively.
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