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SUMMARY

Copulas [1] enable to specify multivariate distributions with given marginals.
Various parametric proposals were made in the literature for these quantities,
mainly in the bivariate case (see e.g. [2]). They can be systematically derived
from multivariate distributions with known marginals, yielding e.g. the normal
and the Student copulas. Alternatively, one can restrict his interest to a sub-
family of copulas named Archimedean [3]. They are characterized by a strictly
decreasing convex function ϕ(·) on (0, 1) such that ϕ(0+) = +∞ (when strict)
and ϕ(1) = 0. We propose to approximate λ(·) = ϕ(·)/ϕ′(·) using B-splines
[4] and show how the associated parameters can be estimated using Markov
Chains Monte-Carlo (MCMC, see e.g. [5]). The estimation is reasonably quick.
The fitted generator is smooth and parametric. The generated chain(s) can
be used to build “credible envelopes” for λ(·) and derived quantities such as
Kendall’s tau, posterior predictive probabilities, etc. Parameters associated
to parametric models for the marginals can be estimated jointly with the cop-
ula parameters. This is an interesting alternative to the two-steps procedure
(see e.g. [6]) which assumes that the regression parameters are fixed known
quantities when it comes to copula parameter(s) estimation.

A simulation study is performed to evaluate the approach. The practical
utility of the method is illustrated by a basic analysis of the dependence
structure underlying the diastolic and the systolic blood pressures in male
subjects.

1. INTRODUCTION

A n−variate copula C(u1, . . . , un) is a multivariate distribution with uniform mar-
gins on (0, 1). A n−variate distribution H(y1, . . . , yn) with given univariate margins
Fi(yi) can derived from it:

H(y1, . . . , yn) = C(F1(y1), . . . , Fn(yn)) (1)

Conversely, any n−variate distribution H(y1, . . . , yn) can be written as in Equation
(1) where C(u1, . . . , un) is a copula and Fi(yi) (i = 1, . . . , n) are the margins of
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H [1]. If the margins are continuous, then the copula is unique; otherwise, it is
uniquely determined on Ran(F1) × . . . × Ran(Fn) . Thus, the copula associated to
H characterises its dependence structure.

Archimedean copulas [3] is a subclass of copulas characterized by a generator

ϕ(t). It is a strictly decreasing and convex function on (0, 1) such that ϕ(1) = 0,
with the associated copula defined as

C(u1, . . . , un) = ϕ−1[ϕ(u1) + . . . + ϕ(un)] ∀(u1, . . . , un) ∈ [0, 1]n

We shall restrict our attention to strict generators and, thus, assume that ϕ(0+) =
+∞.

Many parametric proposals were made for that function (see e.g. [2]) usually
involving one or two parameters to tune the strength of dependence. They differ in
the induced dependence pattern.

In practice, one might decide to work with a specific generator. This could
be motivated by an approximate prior knowledge of the dependence structure or
by the robustness of the analysis conclusions to the generator choice. Otherwise,
it is advisable to make the analysis for a library of generators and to proceed to
a selection according to some criteria. Genest and Rivest7 proposed a graphical
method comparing the distribution K(p) function of C(u, v),

K(p) = Pr {C(u, v) ≤ p} = p − ϕ(p)

ϕ′(p+)

for the considered generators to a non-parametric estimate of K(p). Vandenhende
and Lambert8 consider different parametric generators in a longitudinal study and
select the one yielding the smallest Akaike criterion for the fitted models. Goodness-
of-fit procedures for copula models also exist: we refer to [9] for a recent proposal and
references on the topic. Alternatively, one could propose a very flexible specification
for the generator to make sure that the imposed structure is not too constraining.
Vandenhende and Lambert10 approximate an unknown bivariate copula using a
continuous piecewise log-linear combination of simple Archimedean generators.

Here, we consider a flexible B-splines specification for (a function of) the gen-
erator and show how the associated parameters can be estimated in a Bayesian
framework. The B-splines specification is described in Section 2 and the inference
strategy in Section 3. We show how smoothness can be required for the fitted gen-
erator in Section 4. The efficacy of the method is illustrated on simulated data
in Section 5. A basic analysis of the dependence structure in systolic and diastolic
blood pressures is proposed jointly with some marginal regression models in Section
6. We conclude the paper by a discussion.

2. B-SPLINES SPECIFICATION OF ARCHIMEDEAN COPULAS

Directly approximating the generator using polynomials is not a good strategy
because ϕ(u) is unbounded at 0+. Instead, we propose to build an approximation
to the associated function λ(t) where

λ(t) =
ϕ(t)

ϕ′(t)

ϕ(t) = ϕ(t0) exp

{∫ t

t0

ds

λ(s)

}

Its properties can easily be derived from the requirements made on ϕ(·):

1. λ(0) = λ(1) = 0,
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Figure 1: Cubic B-splines on [0, 1] for equidistant knots.

2. ϕ(·) is strictly decreasing on (0, 1) provided that ϕ′(·) = ϕ(·)/λ(·) is negative,
implying that λ(·) is negative on (0, 1),

3. ϕ(·) is a convex function on (0, 1) provided that

ϕ′′ =
ϕ′

λ
(1 − λ′)

is positive on (0, 1), requiring that λ′(·) < 1 on (0, 1).

We consider a cubic B-splines [4] specification to approximate1 λ(·) on [0, 1], i.e.

λ̃(t|α) = bt
T α ∀t ∈ [0, 1]

where bt is the B-splines basis evaluated at t and associated to a pre-specified
set of K knots on [0, 1], and α ∈ IRK+2. Such a basis is illustrated in Figure 1
for equidistant knots on [0, 1]. One can see that a cubic B-spline has a compact
support spanned by 5 knots (possibly repeated).

Consider a set of K equidistant knots {κk = (k − 1)/(K − 1) : k = 1, . . . , K}
on [0, 1]. In practice, we recommend to take a reasonably large value for K (say
between 20 and 30). If K is too large, our estimate of the generator will be too
noisy (i.e. contaminated with irrelevant features of the dataset at hand). If it is
too small, we shall potentially miss important features in the dependence structure.
We propose to follow the proposal made by [11] to keep a large number of knots
counterbalanced by the introduction of a penalty in the inference procedure. Its
specific implementation in a Bayesian framework is deferred to Section 3.

Consider the following notation, b′
t = d

dt
bt, for the first derivative of a B-spline

basis. Then,

λ̃′(t|α) = b′
t

T
α

where t ∈ [0, 1] and α ∈ IRK+2.

1The tilde symbol above a function name will be used to indicate the associated B-spline
approximation.
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These K + 1 components in α cannot be freely chosen as we wish that the
associated approximation

ϕ̃(t) = ϕ̃(t0) exp

{∫ t

t0

ds

λ̃(s)

}
(2)

to the generator also checks the requirements made on any (strict) generator ϕ(·).
As already examined at the beginning of the section, these requirements translate
into constraints on the lambda function, and thus here, on the components of α

involved in λ̃(t|α):

1. We have
λ̃(0|α) = 0 ⇔ (1, 0, . . . , 0)T α = α1 = 0

Similarly,
λ̃(1|α) = 0 ⇔ (0, . . . , 0, 1)T α = αK+2 = 0

2. The monotonicity constraint on the generator forces

λ̃(t|α) = bT
t α < 0 ∀t ∈ (0, 1)

Imposing that αk < 0 for k ∈ {2, . . . , K+1} is a sufficient (but not necessary)
condition.

3. Finally, the convexity constraint on the generator imposes that a valid pro-
posal for α must check that

λ̃′(t|α) = b′
t

T
α < 1 ∀t ∈ (0, 1)

Constraints 2 & 3 leave the parameter vector θ = (α2, . . . , αK+1)
T in a convex set

Θ within IRK .

3. INFERENCE

We propose to make inference in a Bayesian framework. The following joint im-
proper prior is considered for the free B-splines (log-) parameters

p(θ1, . . . , θK) =

{
1 if θ ∈ Θ
0 otherwise

(3)

To simplify the presentation, we shall assume that we have paired data that can
be seen as a random sample

y = {(ui, vi) : i = 1, . . . , n}

with marginal (continuous) uniform distributions on [0, 1].
If a B-splines model for the underlying (assumed) Archimedean copula is con-

sidered, see Section 2, then we obtain the following likelihood:

L(θ; y) =

n∏

i=1

∂2C̃(ui, vi|α)

∂u ∂v
= −

n∏

i=1

ϕ̃′′(C̃i|α) ϕ̃′(ui|α) ϕ̃′(vi|α)

{ϕ̃′(C̃i|α)}3

= −
n∏

i=1

[1 − λ̃′(C̃i|α)]
λ̃(C̃i|α)

λ̃(ui|α) λ̃(vi|α)

exp
[∫ ui

vi

ds

λ̃(s|α)

]

{
1 + exp

[∫ ui

vi

ds

λ̃(s|α)

]}2
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where αT = (0, θT , 0) and

C̃i = C̃(ui, vi|α) = ϕ̃−1(ϕ̃(ui|α) + ϕ̃(ui|α)|α) (4)

Several numerical difficulties arise when computing the likelihood. First,
∫ ui

vi

ds

λ̃(s|α)

has to be evaluated for each pair of data. Directly using numerical quadrature
methods (based on Newton-Cotes formulas) is not a good strategy as the integrand
1/λ̃(s|α) has vertical asymptotes at 0 and 1. Instead, we found that making the
complementary log-log change of variable t = log(− log(s)) stabilises the integrand.
The integral becomes

∫ log(− log(ui))

log(− log(vi))

exp[1 − exp(t)]

λ̃{exp[1 − exp(t)]|α}
dt

The integrand is computed once on a fine grid for a given α. The so-obtained
values are used to compute the integral for all the pairs of data using a Newton-
Cotes formula (e.g. the one corresponding to the trapeze method). These integrals
are also necessary to compute the generator ϕ̃(·|α), cf. Equation (2).

A second numerical difficulty is the computation of C̃i. It requires the inversion
of the function ϕ̃(·|α), cf. Equation (4). It was done by evaluating the generator
on a fine grid on (0, 1) using the techniques just described: ϕ̃−1(·|α) can then be
evaluated using interpolation.

Inference will be made using the posterior distribution for the B-splines param-
eters:

p(θ1, . . . , θK |y) ∝ L(θ; y) × p(θ1, . . . , θK)

It has the same support as the prior distribution.
We propose to explore that posterior distribution using Markov Chains Monte-

Carlo (MCMC), see [5] for an excellent introduction. The Metropolis-Hastings
algorithm will be used sequentially on the K components of θ. Some authors (see
[12], p. 159) suggest to name that particular procedure univariate Metropolis.

Assume that we start the chain at θ0 = (θ0
1 , . . . , θ

0
K)T . We propose to build the

following chain at iteration m by updating the K components of θ sequentially: to
update the kth component,

1. Generate z such that Z ∼ N(0, 1) and build the proposal value

ξk = (θm
1 . . . , θm

k−1, θ
m−1
k + σkz, θm−1

k+1 , . . . , θm−1
K )T

for θ.

2. Denote the state of the chain after the update of the (k − 1)th component by

ζk−1 = (θm
1 , . . . , θm

k−1, θ
m−1
k , θm−1

k+1 , . . . , θm−1
K )T

with ζ0 = θm−1.

Let

p =
p(ξk|y)

p(ζk−1|y)

• If p ≥ 1, accept the proposal, i.e. ζk = ξk, and set θm
k = θm−1

k + σkz.

• If p < 1, accept the proposal with probability p and set

θm
k =

{
θm−1

k + σkz if accepted (ζk = ξk)
θm−1

k otherwise (ζk = ζk−1)
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The theory ensures that after a sufficiently large number of iterations, say M ,
{θM+1, θM+2, . . .} can be considered as a random sample from the posterior dis-
tribution. It is recommended in [13] to select the variances σ2

k’s of the proposal
densities to achieve acceptance rates in the range (0.15, 0.40), as suggested by a
careful study of the algorithm when the target distribution is multivariate normal.
This can be done by increasing (decreasing) a variance when the observed accep-
tance rate is too small (large) for the concerned component.

To accelerate the inference procedure, one can use the following strategy close
to the proposal in [14, 15]:

1. Run the univariate Metropolis algorithm for another extra few hundreds it-
erations, say M1, and use these to tune the proposal variances to make sure
that the acceptance rate for each component is in a reasonable range.

2. Run the univariate Metropolis algorithm for a few hundreds iterations, say
M2, using the updated proposal variances and make sure that the acceptance
rates remain in the selected ranges for all the components.

3. Reparametrize the problem by applying a translation and a rotation to the
initial parameter vector. More precisely, denote by S the empirical variance-
covariance matrix of the parameters evaluated using the last M2 iterations of
the generated chain, and by θ̄ the corresponding mean vector.

Reparametrize the posterior distribution using β where

θ = S
1
2 β + θ̄

Then, either use the univariate Metropolis algorithm described above on the
reparametrized posterior distribution, or use the classical Metropolis algo-
rithm with a vector proposal at each iteration instead of an iteration split
into K component proposals.

Let us detail that vectorial approach. Denote by βm−1 the state of the chain at the
(m − 1)th iteration. Let

ξ = βm−1 + σz (5)

p =
p(ξ|y)

p(βm−1|y)

where Z ∼ NK(0, IK) and ξ is a proposal for the vector at iteration m.

• If p ≥ 1, accept the proposal, i.e. set βm = ξ.

• If p < 1, accept the proposal with probability p:

βm =

{
ξ if accepted

βm−1 otherwise

After a sufficiently large number of iterations, say M ,

{S 1
2 β

M+1 + θ̄, S
1
2 β

M+2 + θ̄, . . .}

can be considered as a random sample from the posterior distribution. In such
high dimensional problem, Gelman, Roberts and Gilks13 recommend to target an
acceptance rate close to 25% which achieves the largest efficiency (≈ 0.3/K) of the
Metropolis algorithm compared to independent samples when the target is multi-
variate normal. A useful guideline to choose σ in Equation (5) is to take σ = 2.4/

√
K

and to update it to approach the target acceptance rate.
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4. AUTOMATIC SMOOTHING OF THE COPULA ESTIMATOR

In Section 2, we proposed to work with a large number of knots to build a B-splines
approximation to the copula generator. That strategy can yield a noisy estimate
revealing irrelevant (random) features from the dataset under study. A possible
strategy proposed in the frequentist literature is to subtract a roughness penalty
from the log-likelihood.

Schumaker16 proposes to use the penalty

λ

∫
|f ′′(x; θ)|2 dx

where f(·; θ) is the curve model. The parameter λ is usually selected using cross-
validation criteria or an information criterion like the AIC after defining the effective
number of parameters as a function of λ.

O’Sullivan17 (see also [11]) defines the penalty using differences of successive
B-splines coefficients leading to

penalty = λ
K∑

j=r+1

(∆rθj)
2 = λ |Drθ|2 = λ θT Pθ

where ∆k denotes the difference operator of order k. Here, P = D′
rDr, where Dr

is the matrix representation of the difference operator ∆r [11].

4.1. Bayesian P-splines

In Bayesian terms, it is equivalent to introducing a prior distribution on the (K−r)
rth order differences of the B-splines coefficients, i.e.

∆rθj ∼ N(0, τ−1
λ )

(see [18] for a Bayesian implementation of P-splines in normal regression models
and [14, 19, 20] for a similar exercise in additive models). Consequently, we propose
to multiply the improper prior in Equation (3) by

τ
K−r

2

λ exp

{
−1

2
τλ θT Pθ

}

The inverse variance τλ plays the role of λ in the frequentist approach. A vague
prior distribution can be chosen for it, say, a gamma distribution G(a, b), i.e.

p(τλ) =
ba

Γ(a)
τa−1
λ exp(−b τλ)

keeping in mind the potentially improper posterior that can arise when inappropri-
ate choices are made (for a and b) to express our absence of knowledge on the penalty
parameter (see [21] for a discussion in hierarchical linear mixed models). Taking
e.g. a = b = .0001 is usually suitable and expresses our ignorance, while yielding a
proper posterior distribution for τλ (see the discussion and the simulations in [19],
and the recommendations in [20]).

An initial condition θ0 can be obtained for θ using the non-parametric (NP)
estimate λ̃NP(·) proposed by [7] for the lambda function λ(·) = ϕ(·)/ϕ′(·). We
propose to take for θ0 the minimiser of

∑

v∈V

{
λ̃NP(v) − λ̃(v|α)

}2

+ νθT Pθ

7



with αT = (0, θT , 0) under the linear constraints θ > 0 and λ̃′(v|α) < 1 ∀v ∈ (0, 1)
where V is chosen to be the set of values where the NP estimate changes. These
constraints ensure that ϕ̃(v|α0) is a valid generator. The term νθT Pθ imposes
smoothness to that function: the larger ν, the smoother the associated lambda
function. This is a quadratic programming problem that can be solved numerically
using e.g. the quadprog package developed in S by B.A. Turlach and ported to the
R software2 by A. Weingessel.

A major advantage of the above Bayesian proposal over the frequentist penalized
likelihood approach is the simultaneous estimation of the penalty parameter and of
the other parameters, and, hence, the automatic accountability of the effects of the
(usually) “imprecise” estimation of the penalty parameter on the dispersion of the
other parameters. That imprecision is ignored in the frequentist approach leading
to an underestimation of the standard errors of these other parameter estimators.

The Metropolis algorithm in Section 3 can easily be adapted by adding a Gibbs
step for τλ to start each MCMC iteration. Indeed, one can easily show that the
conditional posterior distribution of the penalty parameter, p(τλ|θ; y), is G(a∗, b∗)
where





a∗ = a + K−r
2 = a + ρ(P )

2

b∗ = b + 1
2θT Pθ

with ρ(P ) denoting the rank of the penalty matrix P . Therefore, the Gibbs step at

the mth iteration consists of a random generation of τ
(m)
λ using

(
τ

(m)
λ |θ(m−1); y

)
∼ G

(
a +

ρ(P )

2
, b +

1

2
θ

(m−1)T
Pθ

(m−1)

)

Alternatively, one could work with the marginal posterior distribution for θ obtained
by integrating out the penalty parameter from the joint posterior:

p(θ|y) =

∫ ∞

0

p(θ, τλ|y) dτλ

∝
∫ ∞

0

L(θ|y) τ
a+

ρ(P )
2 −1

λ exp

{
−

(
b +

1

2
θT Pθ

)
τλ

}
dτλ

∝ L(θ|y)
(
b + 1

2θT Pθ
)a+ ρ(P )

2

(6)

The Metropolis-Hastings algorithm proposed in Section 3 can be used to make
inference from that marginal posterior distribution.

4.2. Bayesian P-splines with a mixture prior

The choice of the specific values for a & b in the penalty prior is usually not crucial
and hardly affects the smooth of the approximating curve. However, in specific
circumstances, the recommended choices can yield models that lack flexibility, see
[22].

Therefore, we propose to use a mixture prior (see e.g. [23], Chap. 14) for the
roughness penalty parameters. Let Q = {aq = 10−q : q = 1, . . . , Q} (say) be the set
of values that we would like to evaluate for a = b and denote by Qq the qth prior
model. A mixture prior for τλ giving an equal prior weight to the Q possibilities is

(τλ|Qq) ∼ G(aq , bq) with p(Qq) =
1

Q

2http://cran.r-project.org
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where p(Qq) denotes the prior probability associated to the qth prior. The joint
posterior distribution for (θ, τλ, Qq) is

p(θ, τλ, Qq|y) ∝ L(θ; y) p(θ|τλ) p(τλ|Qq) p(Qq)

The conditional posterior distributions, useful to set up the Gibbs sampler, are

p(θ|τλ, Qq ; y) ≡ p(θ|τλ; y) ∝ L(θ; y) p(θ|τλ)

(τλ|θ, Qq; y) ∼ G(aq + 0.5 ρ(P ), bq + 0.5 θT Pθ)

p(Qq |θ, τλ; y) ≡ p(Qq|τλ; y) =
p(τλ|Qq) p(Qq)∑
l p(τλ|Ql) p(Ql)

A marginal posterior for θ can be derived from the joint:

p(θ|y) =

Q∑

q=1

∫ +∞

0

p(θ, τλ, Qq|y) dτλ

∝ L(θ; y)
1

Q

Q∑

p=1

Γ(aq + 0.5 ρ(P )) b
aq
q

Γ(aq) (bq + 0.5 θT Pθ)aq+0.5 ρ(P )

That expression is to be compared to Equation (6) where a single value was chosen
for a & b. Like before, the Metropolis-Hastings algorithm proposed in Section 3 can
be used to make inference from that marginal posterior distribution.

5. ILLUSTRATION ON SIMULATED DATA

We propose to use simulations of paired data with uniform marginals and a depen-
dence structure corresponding to two well-known Archimedean copula generators
to illustrate the pertinence of the proposed inference procedure.

Let us shortly remind how such data can be generated when ϕ(·) is the generator:

• First generate two independent sets of n independent data, u = {u1, . . . , un}
and t = {t1, . . . , tn}, with a uniform distribution on (0, 1).

• Define

wi = ϕ′−1{ϕ′(ui)/ti)}
vi = ϕ−1{ϕ(wi) − ϕ(ui)}

for i = 1, . . . , n.

Then, as shown in [3], {(ui, vi) : i = 1 . . . n} is an independent random sample from
a bivariate distribution with uniform marginals and an underlying Archimedean
copula with generator ϕ(·).

The one-parameter families of Clayton’s and Frank’s generators were used to
generate paired data with continuous uniform marginals. The copula parameters
were chosen to correspond to a Kendall’s tau equal to 0.3. One hundred datasets
of size N = 100 were generated in both cases.

In all cases, inference was made using the strategy proposed in Sections 3 &
4 with K = 20 equidistant knots on (0, 1). The non-parametric (NP) estimate
[7] of the copula generator was used to obtain a starting value for θ0. A first
chain of length 500 was run to help in specifying the variances σ2

k in the univariate
Metropolis algorithm. Then, 500 extra iterations were run to evaluate the empirical
variance-covariance matrix S used to reparametrize the posterior. Finally, two
different strategies were considered to sample from the reparametrized posterior.
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Figure 2: Simulation study: boxplots of 1
card(V)

∑
v∈V |ϕ(v) − ϕ̃(v)| for the Frank

(left part) and Clayton (right part) copulas. The labels in abscissa indicate which
estimate ϕ̃(v) was used: 1: non-parametric estimate by Genest & Rivest. 2: pos-
terior mean obtained with 1, 000 iterations of the univariate Metropolis algorithm.
3: posterior mean obtained with 5, 000 iterations of the classical (multivariate)
Metropolis algorithm.

The first one uses the univariate Metropolis algorithm to build a chain of length
1, 000 with variances σ2

k tuned with 200 preliminary iterations. The second one
relies on 5, 000 iterations of the classical (multivariate) Metropolis algorithm with
multivariate normal proposals with variance-covariance matrix S (following 500
iterations for the burn-in). For each of the 100 simulated datasets, the distance

1

card(V)

∑

v∈V

|ϕ(v) − ϕ̃(v)|

was computed with ϕ̃ corresponding to the NP estimate of Genest & Rivest, to the
posterior mean estimate obtained with the univariate Metropolis algorithm, and to
the posterior mean estimate obtained with the classical (multivariate) Metropolis
algorithm. V was chosen to be the set of values where the NP estimate changes.

The boxplots of these distances are provided in Figure 2 for the three different
estimates of the generator. The performances of the MCMC estimates are better
than the non-parametric one. The MCMC estimates are equally performant (as
it should be asymptotically). This suggests working with the classical (multivari-
ate) Metropolis algorithm as it is much faster. Indeed, the univariate Metropolis
algorithm requires K evaluations of the posterior per iteration while the former
algorithm just evaluates the posterior once per iteration.

The posterior mean is not the only useful result of the MCMC procedure. The
chains can be also used to compute credible regions for the generator or for any
function of the generator like Kendall’s tau, specific posterior predictive proba-
bilities, etc. An example is proposed in Figure 3. The fitted lambda function
λ̃(u|ᾱpost) = ϕ̃(u|ᾱpost)/ϕ̃′(u|ᾱpost) (evaluated at the estimated posterior mean

ᾱT
post = (0, θ̄

T

post, 0) of the spline parameters) is proposed (thick dashed lines)
together with the 90% credible envelope (containing 90% of the 5,000 sampled
λ̃(·|αm), m = 1, . . . , 5, 000) for one of the 100 simulated samples: the envelope
contains the target (thick solid line). One can see that the fitted function somehow
tries to track the non-parametric estimate (dotted line) with the constraints that it
should be smooth and computed from a valid generator (cf. end of Section 2).
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Figure 3: Lambda function ϕ(u)/ϕ′(u) associated to the Frank’s generator (thick
solid line ; Kendall’s tau= 0.30), Genest & Rivest (1993) non-parametric estimate
(dotted line), fitted lambda function ϕ̃(u|ᾱpost)/ϕ̃′(u|ᾱpost) (dashed line) and as-
sociated 90% credible envelope (grey area).

The posterior probability p(Qq |y) associated to the qth prior for τλ with Q =
{aq = bq = 10−q : q = 1, . . . , 6} was estimated and found to be

q 1 2 3 4 5 6
˜p(Qq |y) 0.00 0.00 0.32 0.57 0.10 0.01

showing the relative contribution of each prior to the mixture prior.

6. APPLICATION TO REAL DATA

We propose to illustrate the method using a subset of the Framingham Heart study
data3. We shall focus our attention on the dependence structure underlying the
diastolic (DBP) and the systolic (SBP) blood pressures (in mmHg) measured on
663 male subjects at their first visit (see [24] for another illustration of the use of
copula to analyse hemodynamic parameters measured in a longitudinal study). The
histograms of the log-blood pressures and the associated scatterplot can be found in
Figure 4. It suggests asymmetric marginal distributions for the log-blood pressures
and a strong positive dependence between the two responses.

The marginal distributions of log(DBP) and log(SBP) will be modelled using
the 4-parameter skewed-Student distribution [25]. The location parameter, µ, which

3
http://www.framingham.com/heart/
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Figure 4: Histograms and scatterplot of the log-diastolic and log-systolic blood
pressures.

turns to be the mode, will be related to a covariate using the regression model

µ = β0 + β1
˜CHOL

where ˜CHOL is the cholesterol level (mean 226 and standard error 42) of the con-
sidered subject minus the mean cholesterol level of the subjects in the study. The
dispersion parameter (which is the standard deviation when the distribution is sym-
metric), the skewness parameter (with a distribution which is left skewed when
negative, symmetric when 0, right skewed when positive) and the tail parameter
(which is the degrees of freedom) will not be related to that covariate.

We assume that the dependence structure in the blood pressures can be ade-
quately described using an Archimedean copula with unknown (strict) generator.
A B-splines specification, see Section 2, will be used for it.

Two estimation strategies were considered. The first one is the traditional two-
steps strategy consisting of fitting marginal models first, and then estimating the
copula parameters conditionally on the fitted marginals. The second one proposes
to estimate the marginal and the dependence parameters in a single run. It enables
to reflect the uncertainty attached to the marginal parameters estimation when
it comes to the estimation of the parameters involved in the description of the
dependence structure, and vice-versa.

We do not expect much difference in the results between the two strategies as
the dependence structure is fully characterized by the copula in the continuous case.
Our expectations were confirmed in our example. Note that this would not be the
case anymore if we were dealing with discrete data, see [26], [27] and the references
therein for motivating arguments.
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log(DBP) log(SBP)
Mean MC error Mean MC error

95% c.i. 95% c.i.

β0 4.44 0.0003 4.87 0.0003
( 4.42, 4.47) (4.85, 4.91)

β1 4.1 × 10−4 3.0 × 10−6 2.9 × 10−4 2.8 × 10−6

(1.5, 6.7) × 10−4 (0.29, 5.5) × 10−4

log(σ) -1.92 0.0008 -1.89 0.0008
(-1.98, -1.85) (-1.96, -1.82)

skewness 0.152 0.0013 0.319 0.0013
(0.040, 0.261) (0.195, 0.441)

1/df 0.084 0.0007 0.057 0.0006
(0.022, 0.154) (0.007, 0.122)

Table 1: Posterior means and 95% credible intervals for the parameters involved in
the marginal regression models for the diastolic and the systolic blood pressures ;
Monte-Carlo errors with a chain of length 10,000 using the univariate Metropolis
algorithm after a rotation and a translation, see Section 3.

Summary measures of the posterior distributions can be found in Table 1 for
the marginal skewed-Student regression models for log(SBP) and log(DBP), and
in Table 2 for the B-splines parameters describing the fitted Archimedean copula
generator.

Table 1 reveals a positive marginal association between the cholesterol level and
blood pressures (see β1), the positive skewness of the distributions of log(DBP)
and log(SBP), as well as very moderate kurtosis. Note that the quality of the fits
provided by the marginal parametric models was assessed and found to be excellent.

The results in Table 2 are summarized graphically in Figure 5. Like for the sim-
ulated data, we see that λ̃(u|ᾱpost) is close to the non-parametric estimate proposed
in [7]. It is smooth as required.

The posterior probability p(Qq |y) associated to the qth prior for τλ with Q =
{aq = bq = 10−q : q = 1, . . . , 6} was estimated and found to be

q 1 2 3 4 5 6
˜p(Qq |y) 0.00 0.00 0.18 0.67 0.14 0.01

showing the relative contribution of each prior to the mixture prior.
As an illustration, the lambda function corresponding to three well-known (para-

metric) Archimedean copulas evaluated at their MLEs for the dependence parameter
are also plotted on Figure 5. One can see that the Frank’s and Clayton’s copula
are not adequate to summarize the dependence structure in the (log-) blood pres-
sures, while the Gumbel copula is obviously more appropriate without being fully
satisfactory.

The fitted joint distribution for the log-diastolic and log-systolic blood pressures
for an average cholesterol level is given as a contour plot (solid curves) in Figure 6
together with the contours (dashed curves) for the Gumbel generator. The fitted
distributions are very close with some differences in the shape of the contours around
the modal values for the responses. This feature was already revealed in Figure 5
with the Gumbel lambda function lying slightly outside the 90% credible region
around 0.45.
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Mean 90% c.i. MC error
θ1 -0.030 (-0.044,-0.019) 0.0003
θ2 -0.068 (-0.081,-0.056) 0.0003
θ3 -0.106 (-0.120,-0.093) 0.0003
θ4 -0.132 (-0.148,-0.116) 0.0004
θ5 -0.156 (-0.174,-0.138) 0.0005
θ6 -0.169 (-0.187,-0.149) 0.0005
θ7 -0.170 (-0.185,-0.153) 0.0004
θ8 -0.159 (-0.174,-0.144) 0.0003
θ9 -0.148 (-0.163,-0.133) 0.0004
θ10 -0.141 (-0.158,-0.124) 0.0004
θ11 -0.146 (-0.161,-0.129) 0.0004
θ12 -0.144 (-0.158,-0.130) 0.0003
θ13 -0.138 (-0.151,-0.124) 0.0003
θ14 -0.122 (-0.136,-0.109) 0.0003
θ15 -0.102 (-0.115,-0.090) 0.0003
θ16 -0.086 (-0.097,-0.075) 0.0003
θ17 -0.074 (-0.085,-0.063) 0.0003
θ18 -0.054 (-0.063,-0.045) 0.0002
θ19 -0.026 (-0.033,-0.020) 0.0001
θ20 -0.015 (-0.021,-0.010) 0.0001

Table 2: B-splines estimation of the Archimedean copula generator: posterior means
and 90% credible intervals for the B-splines parameters associated to K = 20
equidistant knots on (0, 1) ; Monte-Carlo errors in the two-steps estimation ap-
proach with a chain of length 10,000 using the multivariate Metropolis algorithm
after a rotation and a translation, see Section 3.
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Figure 5: λ(u) = ϕ(u)/ϕ′(u): our B-splines estimate λ̃(u|θ̄post) (solid line) and the
associated 90% credible envelope (grey area) ; the Genest & Rivest (1993) non-
parametric estimate (discontinuous dotted line) ; best fitting Clayton (dashed),
Gumbel (dotted line) and Frank (long-dashed) copulas.

7. DISCUSSION

We have shown how to construct a smooth approximation to the generator of an
Archimedean copula using cubic B-splines. That approximation is constrained to
be a valid generator. A Bayesian setting was found convenient to express some of
these constraints and to guarantee smoothness.

Smoothness was obtained using a Bayesian translation [18, 19] of the roughness
penalty proposed by [11] through the prior distribution of the B-splines parameters.
We extended the corresponding procedure by specifying a mixture prior for the
penalty parameter as the usual gamma prior was found to affect the smooth of the
fitted curve in specific circumstances. The marginal posterior distributions of the
spline parameters was also derived.

The generated chains can be used to obtain an approximation to the posterior
distribution of any function of the generator such as Kendall’s tau or Spearman’s
rho. It was used here to derive credible intervals for λ(·) = ϕ(·)/ϕ′(·). The utility
of the method was illustrated using simulated datasets and data from an epidemi-
ological study.
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